
International Journal of Automation and Computing 15(1), February 2018, 115-124

DOI: 10.1007/s11633-017-1092-9

An Approach to Locating Delayed Activities in

Software Processes

Yun-Zhi Jin1 Hua Zhou1,2,3 Hong-Ji Yang4 Si-Jing Zhang5 Ji-Dong Ge6

1School of Software, Yunnan University, Kunming 650091, China
2Key Laboratory for Software Engineering of Yunnan Province, Kunming 650000, China

3Research Center of Cloud Computing of Yunnan Province, Kunming 650000, China
4Centre for Creative Computing, Bath Spa University, Corsham, SN13 0BZ, UK

5Department of Computer Science and Technology, University of Bedfordshire, LU1 3JU, UK
6State Key Laboratory for Novel Software Technology, Software Institute, Nanjing University, Nanjing 210093, China

Abstract: Activity is now playing a vital role in software processes. To ensure the high-level efficiency of software processes, a key

point is to locate those activities that own bigger resource occupation probabilities with respect to average execution time, called

delayed activities, and then improve them. To this end, we firstly propose an approach to locating delayed activities in software

processes. Furthermore, we present a case study, which exhibits the high-level efficiency of the approach, to concretely illustrate this

new solution. Some beneficial analysis and reasonable modification are developed in the end.

Keywords: Locating of the delayed activities, software process, stochastic Petri-nets, Markov random fields, metrics.

1 Introduction

In 1987, Osterweil[1] put forward the view that software

processes are software, too. This view has been accepted

by a large number of scholars and tightly attracted their

attention since then. In view of the standard for informa-

tion technology-software life cycle processes (ISO (interna-

tional organisation for standardization)/IEC (international

electrotechnical commission) 12207 standard)[2], a software

process can be defined as a set of interrelated activities that

transform inputs into outputs, and each process is further

denoted in terms of its own constituent activities. These all

show that activity is an indispensable constituent of soft-

ware process, as also stated in [3] that, “Software processes

denote a set of interrelated processes in the software life

cycle. A software process provides a framework for manag-

ing activities that can very easily get out of control in soft-

ware development” and in [4], “The software development′s
work products (programs, documentation and data) are

produced as consequences of the activities defined by the

software processes”.

As we all know, the key point to success in software pro-

Research Article
Manuscript received June 10, 2016; accepted May 2, 2017; published

online September 21, 2017
This work was supported by National Natural Science Founda-

tion of China (No. 61462091), High-tech Industrial Development Pro-
gram of Yunnan Province (No. 1956, in 2012), New Academic Re-
searcher Award for Doctoral Candidates of Yunnan Province of
China (No. ynu201414), Natural Science Youth Foundation of Yun-
nan Province of China (No. 2014FD006), and the Postgraduates Sci-
ence Foundation of Yunnan University (No. ynuy201424).
Recommended by Associate Editor Xun Chen
c© Institute of Automation, Chinese Academy of Sciences and

Springer-Verlag GmbH Germany 2017

cesses is to ensure that the activities could be finished on

time. The motivation for our research is to help software

processes to be more successful in terms of time cost. Ac-

cording to Wu et al.[5], the problem of delay often unavoid-

ably exists in every aspect of engineering systems, such as

chemical reactor systems, cardiovascular-respiratory control

systems and networked control systems[6]. Specifically, this

problem is no exception in software process. In most of

the cases, some activities that own bigger resource occu-

pation probabilities with respect to average execution time

always exist. In this paper, we call them the delayed ac-

tivities. Informally speaking, to locate the delayed activ-

ities in software process is just as to find the activities of

the critical path in activity on edge (AOE) network. Simi-

larly, we locate the delayed activities in software processes

and improve them so that the time cost of these activities

will reduce and as a result, the efficiency of these software

processes will increase. Hence, it is essential to locate the

delayed activities in software processes in order to improve

the software processes.

To locate the delayed activities in a software process,

the Petri-nets will be used as an efficient tool to model

the software process itself. The Petri-nets were firstly

proposed by Dr. Petri[7] in Germany in 1962 which have

gained popularity for representation of complex logical in-

teractions (say synchronisation, sequentiality, concurrency

and conflict, etc.) among activities. The principles and

applications of Petri-nets have been widely discussed and

developed since then. For example, Van der Aalst[8] intro-

duced workflow management as an application domain for

Petri-nets, proposed state-of-the-art results with respect

116 International Journal of Automation and Computing 15(1), February 2018

to the verification of workflows, and highlighted some Petri-

net-based workflow tools. Likewise, Van der Aalst and

Ter Hofstede[9] presented a Petri-net-based verification ap-

proach of workflow task structures and developed a verifi-

cation tool to illustrate the applicability of the approach.

Besides, Hamadi and Benatallah[10] put forward a Petri-

net-based algebra, used to model control flows, as a neces-

sary constituent of reliable web service composition process.

We can also see Ge et al.[11] for the MOPN-SP-net model,

which is a multi-view software process model based on

multi-object Petri-nets. Specifically, on the basis of Petri-

nets, Molloy[12] discussed the isomorphism between the be-

haviour of Petri-nets with exponentially distributed transi-

tion rates and the Markov processes. Furthermore, Barbot

and Kwiatkowska[13] introduced the stochastic Petri-nets

(SPN) to demonstrate how DNA walkers can be modelled.

By the related SPN basic theory and description method,

Han et al.[14] studied the SPN model for basic activities

of software process and their relations, and discussed the

simulation strategies of SPN model. On all accounts, it is

feasible to use Petri-nets or SPN to describe software pro-

cesses.

The SPN uses time parameter to describe system perfor-

mance indices and is suitable for time performance evalua-

tion of system. For instance, Marsan et al.[15] proposed a

class of generalised stochastic Petri nets (GSPNs) for the

performance evaluation of multiprocessor systems. Further-

more, relying on the SPN, Lei et al.[16] analyzed the per-

formance of device-to-device (D2D) communications with

dynamic interference. Similarly, Dong et al.[17] employed

an approach to predicting the performance of web service

composition. Shan et al.[18] constructed a formalized model

of vehicular 1 553 B bus system and then analysed the per-

formance of the vehicular 1 553 B bus system through sim-

ulation experiment.

Although there are many studies on Petri-nets or SPN

for performance analysis in numerous fields, few of them

provide any form of support for the locating of delayed ac-

tivities in software processes, whereas these delayed activ-

ities in fact are the major important factor of the project

cycle among all activities.

In software process, many researchers nowadays focus on

improving activities by certain measures such as increasing

resources, excavating and executing some parallel tasks in

activities. However, they hardly take account of the delayed

activities, which may make us get half the results with twice

the effort once the activities are numerous. To let us get

twice the results with half the effort, it is necessary to locate

the delayed activities before improving them.

Specifically, based on SPN, Jiao[19] presented an example

in economics field to locate the core opinion leader, which

can be reflected by the values of probabilities of the places

with tokens. Inspired by this, we in this paper locate the

delayed activities by its values of probabilities of the places

with tokens. Unfortunately, the principles and frameworks

of locating delayed activities have not been proposed yet,

and few of approaches are devoted to locating of the delayed

activities in software processes. In recent years, the most

closely related work to our research is that of [20], they

proposed an approach to tailoring software processes from

software processes lines and information about the charac-

teristics of projects. In their work, the prioritization algo-

rithm based on analytic hierarchy process (AHP) method is

used to select the most suitable process elements (e.g., ac-

tivities) to meet the requirements of tailoring and guide the

process engineer to choose the best elements to be added

in the tailored process. By means of this algorithm, the

numerical probability of each alternative elements is calcu-

lated and the higher the probability, the better chances the

alternative will be selected and added in the tailored soft-

ware process line. Different from their work, our research

aims to locate the delayed activities by its values of proba-

bilities of the places with tokens based on SPN in software

processes before improving them.

Motivated by the above observation, we in this paper in-

troduce a framework of locating the delayed activities in

software processes and perform an algorithm to calculate

the probabilities of the places with tokens. Concretely, we

at first build a transaction flow diagram (TFD) of soft-

ware process and then constructively transfer it to SPN. In

addition, by noting that SPNs are isomorphic to homoge-

neous Markov processes as shown in [21], we draw isomor-

phic Markov chain (MC) and reachable marking graph of

the SPN. Moreover, by calculating the equations on proba-

bility transfer matrix of the MC, we locate the places con-

taining tokens with the bigger values of probabilities, which

correspond to the delayed activities in software processes.

Finally, we present a practical example to show the correct-

ness and rationality of this algorithm.

The plan of this paper is as follows. In Section 2, we in-

troduce the background of our research work. In Section 3,

we build up a novel approach to locate delayed activities

in software process. A case study example is followed to

illustrate this new approach in Section 4. Finally, the sig-

nificance and the further application of this approach is

discussed in Section 5.

2 Background

In this section, we present some background concepts on

SPN, TFD and Markov chain which will be used in our

approach.

2.1 Stochastic Petri-nets

This section reviews some basic theories of Stochastic

Petri-nets (SPN)[22−24] model.

Assume that Σ = (S, T ;F, M0, λ) is a stochastic Petri-

net, in which Σ = (S,T ; F, M0) is a prototype Petri-net

and λ : T → R0 is the mapping from T to R0 with R0 the

reachable marking set.

Suppose that T = {t1, t2, · · · , tn}, ti ∈ T , λ(ti) = λi

are nonnegative real values, which represent the occur-

Y. Z. Jin et al. / An Approach to Locating Delayed Activities in Software Processes 117

rence rates of the transition ti (meeting the conditions

of an occurrence). When the transition ti is fired, the

corresponding time delay di is random variable satisfying

di(τ) = e−λiτ , where τ is the related time. Therefore,

the average time delay di of transition ti is determined by

di =
∫ ∞
0

e−λiτdτ = 1
λi

.

In view of that, the memoryless characteristics of the ran-

dom variables obey negative exponential distribution, if Σ

is a bounded stochastic Petri-net, then RG (Σ), the reach-

able marking graph of Σ, is isomorphic to a finite Markov

chain (MC), and the state space of the MC is a reachable

marking set R(M0) of Σ.

Assume that Σ = (S, T ; F, M0, λ) is a Stochastic Petri-

net, λ = [λ1, λ2, · · · , λn](n = |T |), R(M0) is the reachable

marking set of Σ. Suppose that |R (M0)| = r, then the

r-order matrix

Q = [qij]r×r (1)

is called a probability transfer matrix of Σ, where

qij =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

− ∑

Mi[>

λk, if (i = j)

λk, if (i �= j, ∃ tk ∈ T and Mi[tk > Mj)

0, otherwise. (2)

With the help of the probability transfer matrix, we

can calculate the steady state probability Q of r states

(corresponding to r reachable marks of Σ) in the Markov

chain. In general, Q is a r-dimensional vector
∏

=

[π1, π2, · · · , πr](r = |R (M0)|), where πi denote the steady

probabilities of marking Mi. Here, the r-dimensional vector
∏

satisfy the following equations:

⎧
⎨

⎩

∏
Q = 0

r∑

i=1

πi = 1 (3)

where Q is the probability transfer matrix as shown in (1)

and (2). By solving (3), the vector
∏

can be obtained

uniquely.

Using the steady state probability vector
∏

, the actual

system can be simulated by stochastic Petri-nets for all

kinds of performance evaluation. For example, the prob-

abilities of the state set satisfying some special conditions

can be worked out.

Let B be a subset of R(M0). Then, a marking M is an

element of the subset, if and only if M meets some special

conditions (representing a certain performance of the sys-

tem). Therefore, we can calculate the probability of mark-

ing subsets B by
∏

= [π1, π2, · · · , πr] as

ρ(B) =
∑

Mi∈B

πi

where πi is the steady probability of marking Mi.

2.2 Transaction flow diagram

The transaction flow diagram (TFD) is a graphic rep-

resentation of the physical route or flow of communication

associated with a business process. Moreover, it is used to

structure and order a complex business system, or to reveal

underlying structure of the business processes and their in-

teraction. Additionally, it describes a completed specific

business process focussed on business processing, and does

not involve data.

It is worth to mention that designing a TFD is of sig-

nificance. Firstly, as a tool of exchanging ideas between

system analysts and managers, the TFD is the basis for

the successful system analysis by system analyst. Secondly,

with the help of the TFD, the business processes that can

be well processed by computers could be directly mined by

system analysts. Furthermore, it is very helpful to anal-

yse the reasonableness of business process by virtue of the

TFD.

In what follows, we introduce the fundamental notations

of TFD used in our paper, as shown in Fig. 1. Sometimes,

we do not use notations of Begin and End for convenience,

especially when as a TFD is considered cyclic.

2.3 Markov chain

The research of a new vital type of chance process, in

which the outcome of a given experiment can affect the

outcome of the next one, was proposed by Markov in 1907.

This type of process is named after Andrey Andreyevich

Markov and called a Markov chain. Generally speaking,

it possesses a property characterized as “memorylessness”,

called the Markov property, i.e., the probability distribution

of the next state depends only on the current state and not

on the sequence of events that preceded it.

A Markov chain is described as follows[25, 26]: We have a

set of states S = {s1, s2, · · · , sr}, the process starts in one

and only one of these states at a given time and moves suc-

cessively from one state to another. Each move is a step.

If the chain is currently in state si, then it moves into the

state sj at the next step with a probability denoted by pij .

The probability pij is called transition probability, and the

probability does not depend on which states the chain was

in before the current state. The process can remain in the

state it is in, and this occurs with probability pii. An initial

Fig. 1 Fundamental notations of TFD

118 International Journal of Automation and Computing 15(1), February 2018

probability distribution, defined on S, specifies the starting

state. Usually, this can be done by specifying a particular

state as the starting state. We also employ the r × r tran-

sition matrix P with pij to completely specify the Markov

chain.

Howard[27] provides us with a vivid description of a

Markov chain as a frog jumping on a set of lily pads. The

frog starts on one of the pads and then jumps from lily pad

to lily pad with the appropriate transition probabilities.

There are several kinds of Markov chains. Particularly,

this paper involves only the finite ergodic chain. Here, an

ergodic chain is one whose states come from a single er-

godic set or equivalently−a chain in which it is possible to

go from every state to every other state. While a finite

Markov chain is a stochastic process which moves through

a finite number of states, and for which the probability of

entering a certain state depends on the last state occupied.

Furthermore, the finite Markov chain starts in some state

and undergoes transitions from one state to another succes-

sively on a state space.

So far, the Markov chains have been extensively applied

in a large number of statistical models, in control theory[28],

and in many other areas. For instance, the Markov chain

method has been suggested as a means of characterizing or

summarizing economic data and of projecting the time path

of certain economic variables by Judge and Swanson[29].

Moreover, Jiang et al.[30] formulated saliency detection via

absorbing Markov chain on an image graph model.

3 Main idea

In this paper, we adopt two research methods (i.e., quan-

titative analysis method and validation method). On one

hand, we design an algorithm to perform a quantitative

analysis for calculating probabilities of the places with to-

kens. On the other hand, the research is validated by means

of a case study. The main goal of this section is to build up

an approach to locate the delayed activities in software pro-

cess. Firstly, we introduce the principles of this approach

in Section 3.1. Additionally, the framework of locating de-

layed activities is proposed in Section 3.2. Finally, we per-

form an algorithm on calculating probabilities of the places

with tokens.

3.1 Principles

In software process, the activities ai consume resources

from state i-start to state i-finish (State i-start denote the

states of activities ai that are not executed, while state i-

finish accomplished), and 1
λi

is the average execution time.

For each activity, we calculate the values of occupation

probabilities P (μi = 1) of resources in average execution

time. An activity aj is called a delayed activity if it owns

a bigger value of occupation probabilities of resource than

others in software process, which means that the activity

aj does not make the most of resources.

In short, even though the average execution time reflects

how long an activity takes, it can not well reveal how much

these activities have been delayed. In fact, an activity is

delayed or not is justified by its occupation probabilities of

resource in average execution time.

3.2 Framework of locating delayed activi-
ties

We propose a framework of locating delayed activities in

software processes, as shown in Fig. 2.

Fig. 2 Framework of locating delayed activities

This approach is based on a series of classical meth-

ods, say, stochastic Petri-nets, transaction flow diagram

and Markov chain. The first step of the approach is to

build a transaction flow diagram of a software process and

then transfer it to SPN. Additionally, we draw isomorphic

Markov chain and reachable marking graph of the SPN

model. Moreover, we establish (3). Finally, by calculating

the probability transfer matrix of the Markov chain (MC)

(the algorithm and its correctness is given in Section 3.3),

we find that the bigger values of these state probabilities

correspond to the delayed activities in software processes.

This qualitative approach offers an effective method for lo-

cating the delayed activities in software processes.

3.3 Algorithm for calculating probabilities
of the places with tokens

In what follows, we perform an algorithm for calculating

probabilities of the places with tokens.

For any marking, the bigger values of steady state proba-

bility with μi tokens in each place correspond to the delayed

Y. Z. Jin et al. / An Approach to Locating Delayed Activities in Software Processes 119

activities in the software process. Here

μi =

{
0, if place Pi has no token in every marking

1, otherwise.

Assume that the Markov chain with r markings (M1,

M2, · · · , Mr) and reachable marking graph of SPN with m

places (P1, P2, · · · , Pm) have been achieved, then the prob-

abilities of the places with tokens P (μi = 1) can be calcu-

lated by Algorithm 1, in which P (Mi) denote the stable

probabilities of state marking Mi.

Next, we briefly prove the correctness of the algorithm

by three steps. Here, we just give a general idea of prov-

ing. First, we prove that the balance equations of contin-

uous time markov processes (CTMP), whose state spaces

are finite, are equivalent to (3) provided that the sum of

the properties of discrete stochastic variables is 1. Then,

we show that the solution of (3) is unique. In the end, we

calculate the steady state probability and order them from

largest to smallest by the classical BubbleSort algorithm.

For the balance equations, one has the following result.

Please see [31] for the details.

Lemma 1. Let P (Mi) = xi(1 ≤ x ≤ r), ∀Mi ∈ [M0 >,

for all Mu, Mv ∈ [M0 > and Mi[tv > Mv, Mu[tu>Mi, then

the balance equations hold:
(∑

v

λv

)
xi =

(∑

u

λuxu

)
.

By Lemma 1, one can achieve r homogeneous equations
(∑

v

λv

)
xi −

(∑

u

λuxu

)
= 0 (i = 1, 2, · · · , r) (4)

which involves r independent variables (x1, x2, · · · , xr).

Equations (4) can be denoted as

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(x1, x2, · · · , xr)[qi1]r×1 = 0

(x1, x2, · · · , xr)[qi2]r×1 = 0

· · ·
(x1, x2, · · · , xr)[qir]r×1 = 0 (5)

where qij are subject to (2).

Noting that the probability distribution of discrete

stochastic variables satisfies

PX(k) = Prob [X = k] ,
∑

all k

PX(k) = 1

and that the states of continuous time Markov processes

are discrete, it follows that
∑

i

= 1rxi = 1. (6)

Therefore, the balance equations of CTMP (5) and (6) are

equivalent to (3).

In what follows, we show the uniqueness of the solution

of (3).

For Markov processes which are irreducible, aperiodic,

and recurrent nonnull, the vector of steady state probabil-

ities
∏

= [π1, π2, · · · , πr] is the unique solution[32] of (3).

So it is reasonable to solve the state marking probability

P (Mi) by (3) with the help of Matlab.

Finally, we compute the steady state probability with μi

tokens in each place for any marking based on the unique

solution of (3), and order them from largest to smallest by

virtue of the classical BubbleSort algorithm.

Now, we present a case study to concretely illustrate the

high-level efficiency and practicability of this approach.

4 Case study

With the booming of commercial off-the-shelf (COTS),

the increasing number of software components with open

standard interfaces are available in the commercial market.

In order to reduce costs and shorten development time, a

number of enterprises prefer to purchase COTS software

components rather than design them by themselves.

In this paper, we improve a real case of the COTS pur-

chase process in an enterprise and then use the improved

case of a COTS purchase process to demonstrate our ap-

proach. Seven purchase process stages will be considered in

our example, problem definition, the overall requirement

specifications, the quantity and specification of compo-

nents, seeking suppliers and requesting for proposal, the

choice of suppliers, regular purchase and component per-

formance evaluation.

In the following sections, we will give the correspond-

ing TFD, SPN model, isomorphic Markov chain and reach-

able marking graph. The analysis results show that our

approach efficiently helps to locate main factors that affect

purchase processes.

4.1 TFD of COTS purchase process in an
enterprise

In what follows, we use TFD to represent the specific

purchase processes of our example.

There are seven transactions according to the above def-

inition. In TFD, one of the transactions (i.e., regular pur-

chase, seeking suppliers and requesting for proposal) will

be chosen to process according to the importance of review

of quantity and specification of components. The TFD of

purchase processes is shown in Fig. 3.

4.2 SPN model of COTS purchase process
in an enterprise

According to the definition and modeling rules of SPN,

the different purchase process stages can be viewed as dif-

ferent place elements, and transition denotes the changes

of decision-making information acquisition ability in differ-

ent moments, the value of place is either “0” or “1”, where

“0” denotes that the purchase phase information is com-

pletely unknown at the moment t, while “1” fully grasped.

Different flow structures of purchase process correspond to

different purchase progress situations. Then, we can estab-

lish a SPN model by virtue of the flow structures.

120 International Journal of Automation and Computing 15(1), February 2018

Let λi be the firing rate parameters of each transition.

We say that the transition was fired in the average exe-

cution time 1
λi

, it means that, after the average execution

time 1
λi

, the import place indicates that the enterprise ob-

tains or masters the purchase phase information, while the

export place indicates that the enterprise loses or unable

to grasp the purchase phase information. In this way, each

Fig. 3 TFD of COTS purchase process in an enterprise

Table 1 Concrete meaning corresponding to each variable in Fig. 4

Place Meaning Transition Meaning

P1 Problem information set T1 To analyse the problem information

P2 Requirement specification information set T2 To understand the related requirements

P3 Number and specification of components information set T3 To assess the components needed to be purchased

P4 List of suppliers and proposal information set T4 To filter namelist of suppliers

P5 Supplier evaluation information set T5 To evaluate the suppliers

P6 Regular purchase information set T6 To evaluate the used component

P7 Component evaluation information set T7 To remember the evaluation information

T8 To retrieve records of purchase information set

state marking of the SPN indicates that the purchase pro-

cesses of the enterprise changes over time, and the state

of overall activities corresponds to a state marking. More-

over, we can calculate the state marking probability for each

place. Furthermore, by particularly applying the marking

probabilities and the number of tokens in each place in a

particular marking, for any marking, one can deduce the

steady state probability with μi tokens in each place. Con-

sequently, the values of these steady state probabilities can

be used to reflect the ability of concrete information pro-

cessing in the purchase phase, in which the bigger values

correspond to the delayed activities.

Take the COTS purchase process in the enterprise as an

example. Fig. 4 shows the SPN model. Table 1 shows the

concrete meaning corresponding to each variable in Fig. 4.

Fig. 4 SPN model of COTS purchase process in an enterprise

4.3 Isomorphic Markov chain and the
reachable marking graph

In Fig. 4, the firing rate of transitions (T1, T2, T3, T4,

T5, T6, T7, T8) obeys negative exponential distribution.

Just in order to reduce the complexity of locating the de-

layed activities in software processes, in this paper, we as-

sume that, without loss of generality, the average execution

time parameters have the values: 1
λ1

= 1, 1
λ2

= 1
2
, 1

λ3
= 1

2
,

1
λ4

= 1
3
, 1

λ5
= 1, 1

λ6
= 1

3
, 1

λ7
= 1

2
, 1

λ8
= 1, which may be

judged from the previous experience by software process do-

main experts. The Markov chain is shown in Fig. 5, and the

isomorphic reachable marking graph is shown in Table 2.

Fig. 5 Isomorphic Markov chain

Assuming an initial marking of one token in place P1

and no tokens in the remaining places, then solving for the

reachability set, we find seven states.

Y. Z. Jin et al. / An Approach to Locating Delayed Activities in Software Processes 121

Table 2 Reachable marking graph corresponding to Fig. 4

P1 P2 P3 P4 P5 P6 P7

M1 1 0 0 0 0 0 0

M2 0 1 0 0 0 0 0

M3 0 0 1 0 0 0 0

M4 0 0 0 1 0 0 0

M5 0 0 0 0 1 0 0

M6 0 0 0 0 0 1 0

M7 0 0 0 0 0 0 1

4.4 Calculating the steady state probabil-
ity

According to the SPN theory in Section 2.1, we calculate

the probability transfer matrix Q as

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−λ1 λ1 0 0 0

0 −λ2 λ2 0 0

0 0 −λ3 − λ8 λ3 0

0 0 0 −λ4 λ4

0

0

λ7

0

0

0

0

0

0

0

0

0

−λ5

0

0

0 0

0 0

λ8 0

0 0

λ5 0

−λ6 λ6

0 −λ7

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

which satisfies

H ×Q = 0 (7)

where H =
(
P (M1), P (M2), · · · , P (M7)

)
, and

7∑

i=1

P (Mi) = 1.

We plug λ1 = 1, λ2 = 2, λ3 = 2, λ4 = 3, λ5 = 1,

λ6 = 3, λ7 = 2, λ8 = 1 back into (7), then the steady state

probability of each state marking can be computed by the

simultaneous linear equations

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

P (M1)

P (M2)

P (M3)

P (M4)

P (M5)

P (M6)

P (M7)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

T

×

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−1 1 0 0 0 0 0 1

0 −2 2 0 0 0 0 1

0 0 −3 2 0 1 0 1

0 0 0 −3 3 0 0 1

0 0 0 0 −1 1 0 1

0 0 0 0 0 −3 3 1

2 0 0 0 0 0 −2 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0

0

0

0

0

0

0

1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

T

.

(8)

By solving (8), we achieve the following steady-state

marking probabilities in Table 3.

Table 3 Steady-state marking probabilities

M1 M2 M3 M4 M5 M6 M7

0.281 3 0.140 6 0.093 8 0.062 5 0.187 5 0.093 8 0.140 6

Furthermore, making the most of the marking probabili-

ties and the number of tokens in each place in a particular

marking, one can easily deduce the steady state probability

with μi tokens in each place for any marking. The precise

token probability density functions are calculated as follows

in Tables 4(a) and 4(b).

Table 4 (a) Token probability density functions

P (µ1=0) P (µ2=0) P (µ3=0) P (µ4=0) P (µ5=0) P (µ6=0) P (µ7=0)

0.718 7 0.859 4 0.906 2 0.937 5 0.812 5 0.906 2 0.859 4

Table 4 (b) Token probability density functions

P (µ1=1) P (µ2=1) P (µ3=1) P (µ4=1) P (µ5=1) P (µ6=1) P (µ7=1)

0.281 3 0.140 6 0.093 8 0.062 5 0.187 5 0.093 8 0.140 6

4.5 Results analysis

The results in Section 4.4 show that:

1) The value P (μ4 = 1) is minimum, it means that the

enterprise has strong supplier information collection abili-

ties, and the purchasing and bidding work is highly efficient

in the filtering namelist of suppliers stage.

2) The values P (μ3 = 1), P (μ6 = 1) are quite small,

which indicates that the enterprise has more ability in as-

sessing the components needed to be purchased, retrieving

records of purchase information set and evaluating the used

component.

3) The value P (μ1 = 1) is maximum, which indicates

that the occurrence probability of problem information set

in the COTS purchase process is maximum. Hence, the

analyzing problem information stage is delayed activity.

The probability values place P (μ1 = 1) and P (μ5 = 1)

are larger than the others, it implies that the enterprise

has less ability in analyzing the problem information and

evaluating the suppliers. The enterprise should intervene

actively in these two activities such that the ability will

be enhanced in collecting and analyzing to improve these

activities.

The result also shows that analyzing the problem infor-

mation and evaluating the suppliers are the main factors

that affect COTS purchase process in this enterprise, and

that improving some activities can be more conducive for

the enterprise. For example, it is of significance to train-up

the staffs so as to improve their abilities of analyzing prob-

lems information and assessment information. Besides, hir-

ing some experts to analyze the problems and mine parallel

activities are helpful as well.

The above discussion indicates that, only when probabil-

ities of the places with tokens corresponding to the delayed

122 International Journal of Automation and Computing 15(1), February 2018

activities are efficiently calculated, we can take some useful

measures to improve those activities by the proposed ap-

proach. In a word, it is practical and rational to use our

approach in software processes.

5 Conclusions

Activity is a core element in software process. In order to

improve software process effectively, this paper proposes a

new approach to explaining how to locate the delayed activ-

ities in software processes by relying on the related theory

of SPN, TFD and Markov chain. The principles of this ap-

proach are firstly introduced and the framework of locating

delayed activities is proposed. Then, we perform an algo-

rithm on calculating probabilities of the places with tokens

and prove it briefly. Finally, a case study is provided to

show the high-level efficiency of the approach.

Due to limited space in this paper, we have considered

only the SPN in which the firing rate of transitions obeys

negative exponential distribution. Besides, this approach

requires those values of the average execution time of activ-

ities which may be judged from the previous experience by

software process domain experts as input parameters in our

proposed algorithm. Even so, the approach might be help-

ful for software developers to locate the delayed activities

in the software development process so that some effective

measures could be taken to improve these delayed activities

as far as possible. Moreover, it might be also beneficial for

project managers to locate delayed activities in manufac-

turing phase in order to shorten the project cycle.

In the future, on one hand, this approach can be applied

to more fields, such as economics, biology, agriculture, so-

cial science and so on, for locating the delayed activities,

and on the other hand, we will try our best to perform

some high-efficiency algorithms to calculate those values of

the average execution time of activities precisely, instead of

judging from the previous experience. Furthermore, we will

make efforts to propose more effective approaches to locate

the delayed activities in software processes.

Algorithm 1. Calculation of probabilities of the places

with tokens

Input: The average execution time parameters (1
λ1

,
1

λ2
, · · · , 1

λn
)

Output: The values of steady state probability with μi

tokens in each place for any marking

1) Begin

2) Dim Q = [qij]r×r ← 0,
∏

= [π1, π2, · · · , πr]← 0,

P (Mi)← 0,P (μi = 1)← 0, s← 0, i← 0,

j ← 0, r ← 0, m← 0

/* Establish probability transfer Matrix Q = [qij]r×r as

shown in (1), (2) */

3) For i from 1 to r

4) For j from 1 to r

5) If i �= j and Mi[tk > Mj (∃ tk ∈ T), then

6) qij ← λk

7) Elseif i = j, then

8) For h from 1 to r

9) If Mi[tk > Mh(∃ tk ∈ T), then

10) s← s-λk

11) End if

12) End for

13) qij ← s

14) Else

15) qij ← 0

16) End if

17) End for

18) End for

19) Read λ1, λ2, · · · , λn

/* Input values of parameters λ1, λ2, · · · , λn */

20) Solve the equations

⎧
⎨

⎩

∏
Q = 0

r∑

i=1

πi = 1
with the help of

Matlab to obtain πi, namely, the state marking prob-

ability P (Mi), and then output them.

/* Deduce the steady state probability with μi tokens

in each place for any marking */

21) For i from 1 to r

22) P (Mi)← πi

23) Print P (Mi)

24) End for

25) For i from 1 to m /* Loop of place Pm */

26) For j from 1 to r /* Loop of marking Mr */

27) If place Pi has one token in marking Mj , then

28) P (μi = 1)← P (μi = 1) + P (Mj)

29) End if

30) End for

31) End for

32) Dim a[m + 1]← 0, b[m + 1]← 0, c← 0, d← 0

33) For i from 1 to m

34) a[i]← P (μi = 1) /* Save values of probabilities */

35) b[i]← i /* Save numerical order */

36) End for

/* Order the values of steady state probability with μi

tokens in each place for any marking from largest to

smallest */

37) For j from 1 to m

38) For i from m to j

39) If a[i] > a[i− 1], then

40) c← a[i− 1]

41) d← (i− 1)

42) a[i− 1]← a[i]

43) b[i− 1]← b[i]

44) a[i]← c

45) b[i]← d

46) End if

47) End for

48) End for

/* Output the values of steady state probability with

μi tokens in each place for any marking from largest

to smallest */

49) For i from 1 to m

50) Print P (μb[i] = 1): a[i]

Y. Z. Jin et al. / An Approach to Locating Delayed Activities in Software Processes 123

51) End for

52) End

References

[1] L. J. Osterweil. Software processes are software too. In Pro-
ceedings of the 9th International Conference on Software
Engineering, IEEE Monterey, USA, pp. 2–13, 1987.

[2] R. Singh. International Standard ISO/IEC 12207 software
life cycle processes. Software Process: Improvement and
Practice, vol. 2, no. 1, pp. 35–50, 1996.

[3] T. Li. An Approach to Modelling Software Evolution Pro-
cesses, Berlin Heidelberg, Germany: Springer-Verlag, pp. 9,
2009.

[4] R. S. Pressman. Software Engineering: A Practitioner′s Ap-
proach, New York, USA: McGraw Hill, 2000.

[5] X. J. Wu, X. L. Wu, X. Y. Luo. Adaptive neural network
dynamic surface control for a class of nonlinear systems with
uncertain time delays. International Journal of Automation
and Computing, vol. 13, no. 4, pp. 409–416, 2016.

[6] Y. Ge, Y. Li. SCHMM-based compensation for the random
delays in networked control systems. International Journal
of Automation and Computing, vol. 13, no. 6, pp. 643–652,
2016.

[7] C. A. Petri. Kommunikation mit Automaten, Ph. D. disser-
tation, University of Bonn, Germany, 1962.

[8] W. M. P. Van der Aalst. The application of Petri nets to
workflow management. Journal of Circuits, Systems and
Computers, vol. 8, no. 1, pp. 21–66, 1998.

[9] W. M. P. Van Der Aalst, A. H. M. Ter Hofstede. Verification
of workflow task structures: A Petri-net-baset approach. In-
formation Systems, vol. 25, no. 1, pp. 43–69, 2000.

[10] R. Hamadi, B. Benatallah. A Petri-net-based model for
web service composition. In Proceedings of the 14th
Australasian Database Conference, Adelaide, Australia,
pp. 191–200, 2003.

[11] J. D. Ge, H. Hu, Q. Gu, J. Lu. Modeling multi-view soft-
ware process with object Petri nets. In Proceedings of In-
ternational Conference on Software Engineering Advances,
Tahiti, France, 2006.

[12] M. K. Molloy. Performance analysis using stochastic Petri
nets. IEEE Transactions on Computers, vol. c-31, no. 9,
pp. 913–917, 1982.

[13] B. Barbot, M. Kwiatkowska. On quantitative modelling and
verification of DNA walker circuits using stochastic Petri
nets. Application and Theory of Petri Nets and Concur-
rency, R. Devillers, A. Valmari, Eds., Cham: Springer,
pp. 1–32, 2015.

[14] Y. M. Han, X. L. Wu, C. Y. Yue. Model of software pro-
cess and Monte-Carlo simulation analysis based on SPN.
Journal of Huazhong University of Science and Technology
(Nature Science Edition), vol. 31, no. 7, pp. 37–39, 2003. (in
Chinese)

[15] M. A. Marsan, G. Conte, G. Balbo. A class of general-
ized stochastic Petri nets for the performance evaluation of
multiprocessor systems. ACM Transactions on Computer
Systems, vol. 2, no. 2, pp. 93–122, 1984.

[16] L. Lei, Y. K. Zhang, X. M. Shen, C. Lin, Z. D. Zhong.
Performance analysis of device-to-device communications
with dynamic interference using stochastic Petri nets. IEEE
Transactions on Wireless Communications, vol. 12, no. 12,
pp. 6121–6141, 2013.

[17] Y. X. Dong, Y. N. Xia, Q. S. Zhu, Y. Huang. A stochastic
approach to predict performance of web service composi-
tion. In Proceedings of the 2nd International Symposium
on Electronic Commerce and Security, Nanchang, China,
pp. 460–464, 2009.

[18] G. J. Shan, G. J. Wang, Y. Q. Dai, Y. Z. Wang. Perfor-
mance analysis of the vehicular 1553B bus system using
stochastic Petri net. In Proceedings of International Confer-
ence on Quality, Reliability, Risk, Maintenance, and Safety
Engineering, Chengdu, China, pp. 405–408, 2013.

[19] L. Jiao. The research based on the transfer in organizational
buying process to seeking for core opinion leader. Economic
Research Guide, no. 21, pp. 178–181, 2010. (in Chinese)

[20] W. G. Lorenz, M. B. Brasil, L. M. Fontoura, G. V. Pereira.
Activity-based software process lines tailoring. Interna-
tional Journal of Software Engineering and Knowledge En-
gineering, vol. 24, no. 9, pp. 1357, 2014.

[21] M. K. Molloy. On the Integration of Delay and Throughput
Measures in Distributed Processing Models, Ph.D. disser-
tation, University of California, USA, 1981.

[22] C. Lin. Introduction to Stochastic Petri-nets and System
Performance, 2nd ed., Beijing, China: Tsinghua University
Press, 2005. (in Chinese)

[23] Z. H. Wu. An Introduction to Petri-nets, Beijing, China:
China Machine Press, 2006. (in Chinese)

[24] C. Y. Yuan. The Principle and Application of Petri Nets,
Beijing, China: Publishing House of Electronics Industry,
2005. (in Chinese)

[25] J. G. Kemeny, H. Mirkil, J. L. Snell, G. L. Thompson. Finite
Mathematical Structures. New York, USA: Prentice-Hall,
1959.

[26] C. M. Grinstead, J. L. Snell. Introduction to Probability,
New York, America: American Mathematical Society, 2012.

[27] R. A. Howard. Dynamic Probabilistic Systems, New York,
USA: John Wiley and Sons, 1971.

[28] A. Gosavi, A. Parulekar. Solving Markov decision processes
with downside risk adjustment. International Journal of Au-
tomation and Computing, vol. 13, no. 3, pp. 235–245, 2016.

[29] G. G. Judge, E. R. Swanson. Markov chains: Basic concepts
and suggested uses in agricultural economics. Australian
Journal of Agricultural Economics, vol. 6, no. 2, pp. 49–61,
1962.

[30] B. W. Jiang, L. H. Zhang, H. C. Lu, C. Yang, M. H. Yang.
Saliency detection via absorbing Markov chain. In Proceed-
ings of IEEE International Conference on Computer Vision,
Sydney, Australia, pp. 1665–1672, 2013.

[31] F. P. Kelly. Reversibility and Stochastic Networks, New
York, USA: Wiley Press, 1979.

[32] P. J. B. King, I. Mitrani. Numerical methods for infinite
Markov processes. In Proceedings of International Sympo-
sium on Computer performance Modelling, measurement
and evaluation, Toronto, Ontario, Canada, pp. 277–282,
1980.

124 International Journal of Automation and Computing 15(1), February 2018

Yun-Zhi Jin received the M. Sc. degree
in system analysis and integration from
Yunnan University, China in 2013. Cur-
rently, he is a Ph.D. degree candidate in
the Research Center of Cloud Computing
of Yunnan Province, Yunnan University,
China.

His research interests include software
engineering, system analysis and integra-

tion, web and distributed computing.
E-mail: jyzynu@163.com
ORCID iD: 0000-0001-7355-1629

Hua Zhou received the B. Sc. and M. Sc.
degrees in computer from the Jilin Univer-
sity, China in 1987 and 1990, respectively,
and received the Ph. D. degree in software
engineering from De Montfort University,
UK in 2004. In 1984, he was a faculty
member at Yunnan University, China. Cur-
rently, he is a professor in School of Soft-
ware at Yunnan University, China. He has

published about 60 refereed journal and conference papers.
His research interests include software engineering, system

analysis and integration, web and distributed computing.
E-mail: hzhou@ynu.edu.cn (Corresponding author)
ORCID iD: 0000-0001-9381-0827

Hong-Ji Yang received the B. Sc. and
M. Sc. degrees in computer from the Jilin
University, China in 1982 and 1985, respec-
tively China, and received the Ph.D. de-
gree in computing from Durham Univer-
sity, UK in 1994. In 1985, he was a fac-
ulty member at Jilin University, China in
1989 at Durham University, UK, in 1993 at
De Montfort University, UK and in 2013 at

Bath Spa University, UK. Currently, he is a professor in School
of Humanities and Cultural Industries at Bath Spa University,
UK. He has published about 400 refereed journal and conference
papers. He has become IEEE Computer Society Golden Core
member since 2010, also, he is a member of Engineering and
Physical Sciences Research Council Peer Review College since
2003. He is the Editor-in-Chief of International Journal of Cre-

ative Computing.
His research interests include software engineering, creative

computing, web and distributed computing.
E-mail: h.yang@bathspa.ac.uk

Si-Jing Zhang received the B. Sc. and
M. Sc. degrees, both in computer science,
from Jilin University, China in 1982 and
1988, respectively. He received the Ph. D.
degree in computer science from the Univer-
sity of York, UK in 1996. He then joined
the Network Technology Research Centre
(NTRC) of Nanyang Technological Univer-
sity, Singapore as a post-doctoral fellow. In

1998, he returned to the UK to work as a research fellow with
the Centre for Communication Systems Research (CCSR) of the
University of Cambridge. He joined the School of Computing and
Technology, University of Derby, UK, as a senior lecturer in 2000.
Since October 2004, he has been working as a senior lecturer in
Department of Computer Science and Technology, University of
Bedfordshire, UK.

His research interests include wireless networking, data com-
munications, schedulability tests for hard real-time traffic, per-
formance analysis and evaluation of real-time communication
protocols, quality of service (QoS) provision, vehicular ad hoc
networks, and wireless networks for real-time industrial applica-
tions.

E-mail: Sijing.Zhang@beds.ac.uk

Ji-Dong Ge received the Ph.D. degree
in computer science from Institute of Com-
puter Software at Computer Software De-
partment of Nanjing University, China in
2007. Currently, he is an associate profes-
sor in Software Institute, Nanjing Univer-
sity, China.

His research interests include software
engineering, workflow, process mining,

Petri nets, distributed computing, cloud computing, big data,
services computing, software architecture, inheritance of be-
haviour, formal methods, software process, formal verification,
model checking, unified modeling language, mobile agents.

E-mail: gjd@nju.edu.cn

