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Abstract: In order to improve the precision of guidance for the missile intercepting maneuvering targets, this paper proposes a

sliding mode guidance law with impact angle constraints based on the equation of the relative motion of the missile and the target

in a 2D plane. Two finite-time convergent guidance laws are proposed based on the nonsingular terminal sliding mode, while, two

exponential convergent guidance laws involving dynamic delay are developed through applying the higher-order nonsingular terminal

sliding mode. The simulations denote that, in all the four scenarios of the target′s maneuvering, the guidance laws are able to inhibit

the chattering phenomenon of the sliding modes effectively; and from an expected aspect angle, the missiles could attack the targets

with high precision and fast speed.
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1 Introduction

With the continuous development of precision-guided

munitions, the guidance law design is constrained not only

by the requirement on miss distances, but also by the re-

quirement on the angle of the guidance terminal phase in

many scenarios, so as to allow the maximum effectiveness

of the warhead, and to achieve the best damage effect. For

this reason, it is necessary to do further study on the guid-

ance law with terminal impact angle constraints, to meet

the requirement of this special guidance mission.

In 1973, Kim and Grider proposed an optimal guidance

law with impact angle control for the reentry vehicle in

the vertical plane based on a linear model[1]. Since then,

various robust guidance laws with impact angle constraints

have been proposed for different scenarios. Chai et al.[2] re-

viewed the domestic and international researches on guid-

ance laws with terminal angle constraints, and analyzed

both the advantages and disadvantages of the optimal guid-

ance law, variable structure guidance law, improved propor-

tional navigation guidance law and integrated guidance law.

It points out the importance of guidance law with terminal

angle constraints in improving the combat effectiveness of

guided munitions; while there are still practical problems

to be effectively addressed despite of the great progress in

the research on robust guidance law. Ratnoo and Ghose[3]

employed the traditional proportional navigation guidance

law to discuss the conditions to choose all the navigation

coefficients, and it concluded that during ground-to-ground
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attack, it is available to attack with desired impact an-

gle constraints and small miss distances but it applies to

only stationary targets. Shima[4] analyzed the relationship

between the speed ratio and the lead angle based on the

three possible modes of the collision between missiles and

targets, employed sliding mode control to design guidance

law, which is then compared with the proportional naviga-

tion guidance law, and simulated several maneuvering pro-

files of the targets. Harl and Balakrishnan[5] employed the

theory of second-order sliding mode to design the guidance

law satisfying the desired line-of-sight (LOS) angle curve

and scheduled attack time, and applied this guidance law

to multi-missile salvo attack. However, this method does

not consider the dynamic delay of missile autopilot, and is

only applicable to stationary or slow targets. Shashi et al.[6]

employed the traditional terminal sliding mode to design a

guidance law with impact angle constraints, which is then

applied to attack the stationary targets, as well as intercep-

tion of constant speed and maneuvering targets. However,

it does not consider the issue of singularity of the tradi-

tional sliding mode. Sachit and Debasish[7] employed the

theory of variable structure to study the guidance law with

impact angle constraints by switching among different slid-

ing mode controls, and analyzed the capability of missile to

capture maneuvering targets. Sun et al.[8] combined sliding

mode and backstepping theory to study the guidance law

with impact angle constraint when there is dynamic delay

of missile autopilot, but backstepping calls for a quite huge

computation amount.

Due to the preferable adaptivity and robustness of sliding

mode variable structure control to parameter perturbation

and external disturbance, it has been widely applied in mis-

sile guidance and control, and it is obvious that it is applied

by all the literatures mentioned above. However, it has been
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the objective of the study of control system to remove the

chattering behavior of sliding mode, and to improve the

speed to reach the sliding mode manifold. Gao[9] presented

several concepts to improve the speed to reach the sliding

mode manifold, including constant speed reaching law, ex-

ponential reaching law and power reaching law. However,

the speed of constant speed reaching law is too slow; the

convergence rate of exponential reaching law is quite fast,

while there is greater system chattering when the system

state is near sliding mode; power reaching law is conducive

to reduce chattering, while the speed of the reaching stage

is too slow when the system state is far from sliding mode,

which calls for too much time[10]. Yu et al.[11] combined

the traditional power reaching law and exponential reach-

ing law to get a fast power reaching law, which can weaken

the chattering of sliding mode, and improve the speed when

the system state is far from the sliding mode manifold.

The traditional sliding mode control is designed with lin-

ear sliding mode manifold, and when the system state has

reached to the sliding mode manifold, it will asymptoti-

cally converge to the equilibrium of the system, while is not

finite-time convergent[7−9]. The terminal sliding mode con-

trol realizes the finite-time convergence of the system state,

with a convergence performance better than that of the tra-

ditional sliding mode control[12, 13]. However, there is still

the issue of singularity of the terminal sliding mode control,

for which Feng et al.[14] presented a nonsingular terminal

sliding mode control that overcomes the issue of singularity,

to improve control performance.

The dynamic delay of missile autopilot is a main fac-

tor influencing the precision of guidance, and it is of prac-

tical engineering significance to consider the missile′s dy-

namic characteristics in actual process of guidance. Sun et

al.[15−17] designed a guidance law considering the missile′s
dynamic characteristics by a method which is still based on

backstepping, while with no consideration of impact angle

constraints. The main objective of this paper is to design

a new guidance method which considers both the dynamic

delay of missile autopilot and impact angle constraints. By

applying the theory of nonsingular terminal sliding mode,

rapid power reaching law and exponential reaching law,

firstly, the guidance law with impact angle constraints is

designed without the dynamic delay of autopilot. Further-

more, the guidance law with impact angle constraints is

extended to the case of dynamic delay of autopilot. The

numerical simulation is performed for different maneuvers

manners of the target, which verifies the effectiveness of the

guidance law designed in this paper.

2 Problem formulation

Considering the relative motion of the missile and the

target in the intercepting plane oxy, both of which are re-

garded as point masses, and their connecting line is the

LOS, as shown in Fig. 1.

In Fig. 1, The missile is denoted as M and the target is

denoted as T , r is the relative distance between the missile

and the target, ṙ is the derivative of r with respect to time,

Vt ,Vm the target′s and the missile′s speeds respectively,

which are assumed to be constants. q is the LOS angle,

q̇ is the derivative of q with respect to time, φt, φm the

flight path angle of target and missile, respectively. Then

differential equations can be derived from Fig. 1 as

ṙ = Vt cos(q − φt)− Vm(q − φm) (1)

rq̇ = −Vt sin(q − φt) + Vm sin(q − φm). (2)

Taking the derivative of (2), we can get

q̈ = −2ṙ

r
q̇ − 1

r
am +

1

r
at (3)

where am = Vmφ̇m(t) cos(q−φm), at = Vtφ̇t(t) cos(q−φt)

are the components of the acceleration of the missile and

target normal to the LOS. According to the principle of

quasi-parallel approaching method, the key to guidance law

design is to control the LOS angle rate q̇ by am, and let it

tend to zero, to ensure hitting the target precisely.

Fig. 1 Relative motion geometry of missile and target

The dynamics of the missile autopilot is described by the

following first-order term:

ȧm = − 1

τ
am +

1

τ
u (4)

where τ is the time constant of missile autopilot, u the guid-

ance command acceleration given to missile autopilot, and

am the missile′s acceleration obtained.

The impact angle is the included angle between the

missile′s speed vector and the target′s speed vector in the

critical terminal phase of the guidance. With the termi-

nal time of guidance to be defined as tf , and the missile′s
expected impact angle as φ0, the issue of guidance with im-

pact angle control is to ensure a miss distance of zero and

hitting the target from the expected impact angle at the

terminal time of guidance, which means

lim
t→tf

r(t)q̇(t) = 0 (5)

φm(tf )− φt(tf ) = φ0 (6)

|q(tf )− φm(tf )| < π

2
. (7)
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Equation (7) means that the target is in the vision scope

when the missile hits it, and we can get from (2) and (5)

that:

Vt sin[q(tf )− φt(tf )] = Vm sin[q(tf )− φm(tf )]. (8)

For a missile with a specific attack mission, the expected im-

pact angle φ0 is a constant, and when φt(tf ) is known, the

missile′s trajectory inclination angle φm(tf ) will become the

expected one φd, and it is available to get the certain and

unique expected terminal LOS angle by (7) and (8), which

can be defined to be qd, and then the issue of guidance with

impact angle control becomes the issue of terminal LOS an-

gle satisfying q(tf ) = qd.

Remark 1. If the target is stationary, then φt(tf ) = 0.

For non-maneuvering target, φt(tf ) is measurable, while,

for the maneuvering target, φt(tf ) can be obtained through

the ground radar detection. Hence, we suppose that the

value of φt(tf ) is known in the process of guidance law de-

sign.

Assumption 1. As restrained by acceleration capabil-

ity, the maximum lateral acceleration that can be actually

provided by the missile and the target is limited, therefore

there exists a constant Am > 0, A1 > 0, A2 > 0 which

allows:

|am| ≤ Am, |at| ≤ A1, |ȧt| ≤ A2. (9)

During terminal guidance, as restrained by the power of its

angle tracing system, receiver acceleration and other fac-

tors, the seeker has a minimum operating range r0. When

the relative distance between the missile and the target is

no more than r0, the guidance circuit is broken, therefore

the guidance process satisfies the hypothesis below[18].

Assumption 2. The time-varying parameter r(t) in sys-

tem (3) satisfies:

r(t) ≥ r0. (10)

For convenience of guidance law design, some definitions

and lemmas are presented as follows.

Definition 1[19]. Considering a nonlinear system

ẋ = f(x, t), f(0, t) = 0, x ∈ Rn (11)

where, f : U0 × R → Rn is continuous on U0 × R, and

U0 is an open neighborhood with the origin x = 0. The

system′s equilibrium x = 0 (local) is finite-time convergent,

which means that for the given initial state x(t0) = x0 ∈ U0

at any initial time t0, there is a down time depending on,

x0 which makes the solution x(t) = ϕ(t; t0, x0) of (11) with

initial state x0 to be defined (which might not be unique),

and 



lim
t→T (x0)

ϕ(t; t0, x0) = 0

if t > T (x0), then ϕ(t; t0, x0) = 0

which means when t ∈ [t0, T (x0)), ϕ(t; t0, x0) ∈ U0/{0}.
Additionally, the system′s equilibrium x = 0 (local) is finite-

time stable, which means that it is Lyapunov stable, and

finite-time convergent within a neighborhood U ⊂ U0 of the

origin. If U = Rn, the origin is the equilibrium which is

globally finite-time stable.

Lemma 1[11]. Considering a nonlinear system of (11),

if there is a continuous and positive definite function V (t)

satisfying the differential inequality as following:

V̇ (x) + µV (x) + λV α(x) ≤ 0 (12)

where µ, λ > 0, 0 < α < 1 are all constants, the time T

for the system state to reach the stable point satisfies the

inequality below:

T ≤ 1

µ(1− α)
ln

µV 1−α(x0) + λ

λ
.

3 Guidance law design

3.1 Guidance law design not considering
the dynamic delay of missile autopilot

Select state variables

x1 = q(t)− qd, x2 = ẋ1. (13)

Taking the derivative of (13), we can get the state equation

of guidance system with impact angle constraints:

[
ẋ1

ẋ2

]
=


 0 1

0 −2ṙ

r




[
x1

x2

]
+


 0

−1

r


 am +


 0

1

r


 at.

(14)

Let g(t) = 1
r
at, and we can get from Assumptions 1 and

2 that

|g(t)| = |1
r
at| ≤ A1

r0
= δ. (15)

For the system of (14), select the nonsingular terminal slid-

ing mode manifold

s = x1 + βsigγ(x2) (16)

where β > 0, 1 < γ < 2, sigγ(x2) = |x2|γ sgn(x2).

When the target is not maneuvering, at = 0, we select

rapid power reaching law

ṡ = −k1s− k2sig
ρ(s) (17)

where k1, k2 > 0, 0 < ρ < 1.

Taking the derivative of (16), we can get

ṡ =ẋ1 + βγ |x2|γ−1 ẋ2 =

x2 + βγ |x2|γ−1

(
−2ṙ

r
x2 − 1

r
am +

1

r
at

)
. (18)

We can get from (17) and (18) that

am =r(β−1γ−1sig2−γ(x2)− 2ṙ

r
x2+

β−1γ−1 |x2|1−γ (k1s + k2sig
ρ(s))). (19)
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As the factor β−1γ−1 |x2|1−γ will cause singularity when

x2 → 0, we can design the guidance law for the system of

(14) as

ām = r(β−1γ−1sig2−γ(x2)− 2ṙ

r
x2 + k1s + k2sig

ρ(s)).

(20)

Theorem 1. For the system of (14), when at = 0, the

system can reach the sliding mode manifold in finite time

under the guidance law of (20). On the sliding mode s = 0,

the LOS angle will converge to the desired LOS angle in

finite time, and the LOS angle rate will converge to zero in

finite time.

Proof. When the guidance law of (20) is substituted

into (18), we can get

ṡ = βγ |x2|γ−1 (−k1s− k2sig
ρ(s)).

Construct Lyapunov function

V = s2. (21)

Taking the derivative of (21), we can get

V̇ = 2sṡ =

2βγ |x2|γ−1 s(−k1s− k2sig
ρ(s)) =

2βγ |x2|γ−1 (−k1s
2 − k2|s|ρ+1) =

−µV − λV
ρ+1
2 ≤ 0

where µ = 2k1βγ |x2|γ−1 ≥ 0, λ = 2k2βγ |x2|γ−1 ≥ 0.

When x2 6= 0, we can get from Lemma 1 that the system

converges to the sliding mode manifold s = 0 in finite time.

When x2 = 0, s 6= 0, we can get from (16) that x1 6= 0, and

the system have not reached the equilibrium, thus it would

not stop at V̇ = 0. As V̇ ≤ 0, we can get that the system

converges to the nonsingular sliding mode manifold s = 0

in finite time. On s = 0, x1, x2 converges to the equilibrium

in finite time, which means that the LOS angle converges

to the desired value, and the LOS angle rate converges to

zero. ¤
When the target is maneuvering, |g(t)| = | 1

r
at| ≤ δ, we

select the sliding mode manifold of (16) and exponential

reaching law

ṡ = −k3s− k4sgn(s) (22)

where k3, k4 > 0.

Taking the derivative of (16), we can get

ṡ = ẋ1 + βγ |x2|γ−1 ẋ2 =

x2 + βγ |x2|γ−1

(
−2ṙ

r
x2 − 1

r
am +

1

r
at

)
.

(23)

Similarly, in order to avoid singularity, we design the guid-

ance law for the system of (14) as

ãm = r(β−1γ−1sig2−γ(x2)− 2ṙ

r
x2 + k3s + ηsgn(s)). (24)

Theorem 2. For the guidance law of (24), if the term

of variable structure selected is η ≥ k4 + δ, δ = const. > 0,

this guidance law can compensate the target′s maneuver-

ing in the guidance system of (14) effectively, and make the

system to reach the sliding mode manifold in finite time.

On the sliding mode s = 0, the LOS angle will converge

to the desired LOS angle in finite time, and the LOS angle

rate will converge to zero in finite time.

Proof. When the guidance law of (24) is substituted

into (23), we can get

ṡ = βγ |x2|γ−1 (−k3s− ηsgn(s) + g(t)).

Construct Lyapunov function

V1 = s2 (25)

Taking the derivative of (25), we can get

V̇ = 2sṡ =

2βγ |x2|γ−1 s(−k3s− ηsgn(s) + g(t)) ≤
2βγ |x2|γ−1 (−k3s

2 − η|s|+ |g(t)s|) ≤
2βγ |x2|γ−1 (−k3s

2 − (η − δ) |s|) =

−µ1V − λ1V
1
2 ≤ 0

where µ1 = 2k3βγ |x2|γ−1, λ1 = 2(η − δ)βγ |x2|γ−1. The

following proof is the same as that of Theorem 1, so it will

not be repeated. ¤

3.2 Guidance law design considering the
dynamic delay of missile autopilot

Let am = x3, we can get (26) from (4) and (14).




ẋ1

ẋ2

ẋ3


 =




0 1 0

0 −2ṙ

r
−1

r

0 0 − 1

τ







x1

x2

x3


 +




0

0
1

τ


 u +




0
1

r
0


 at. (26)

We select the sliding mode manifold

s1 = k0x1 + x2. (27)

In order to reach the sliding mode manifold in finite time,

as well as to reduce the chattering phenomenon of the con-

trol signal, we design the nonsingular terminal sliding mode

manifold with linear sliding mode s1 and its derivative ṡ1

as

s2 = s1 + β1sig
γ1(ṡ1) (28)

where ṡ1 = k0ẋ1 + ẋ2 = k0x2 + ẋ2,s̈1 = k0ẋ2 + ẍ2.

Taking the derivative of the system of (28), we can get

ṡ2 = ṡ1 + β1γ1 |ṡ1|γ1−1 s̈1 =

ṡ1 + β1γ1|ṡ1|γ1−1

(
k0

(
−2ṙ

r
x2 − 1

r
x3 +

1

r
at

)
+ ẍ2

)

(29)
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ẍ2 =
−2(r̈x2 + ṙẋ2)r + 2ṙ2x2

r2
+

ṙx3 − ẋ3r

r2
+

rȧt − ṙat

r2
.

(30)

When (30) is substituted into (29)

ṡ2 = ṡ1 + β1γ1|ṡ1|γ1−1
(−2r(k0ṙ + r̈) + 6ṙ2

r2
x2+

3ṙ − k0r

r2
x3 +

1

rτ
x3 +

(k0at + ȧt)r − 3ṙat

r2
− 1

rτ
u
)
.

(31)

Let g1(t) =
(k0at + ȧt)r − 3ṙat

r2
, then

|g1(t)| =
∣∣∣∣
(k0at + ȧt)r − 3ṙat

r2

∣∣∣∣ ≤
k0 |at|+ |ȧt|

r0
+

3 |ṙat|
r2
0

=

3A1 |Vt cos(q − φt)− Vm cos(q − φm)|
r2
0

+
k0A1 + A2

r0
≤

k0A1 + A2

r0
+

3A1(|V max
t |+ |V max

m |)
r2
0

≤ ε

where V max
t and V max

m are the target′s maximum speed and

the missile′s maximum speed respectively.

When the target is not maneuvering, at = 0. For the

system of (26), we select rapid power reaching law

ṡ2 = −k5s2 − k6sig
ρ1(s2) (32)

where, k5, k6 > 0, 0 < ρ1 < 1.

We can get from (31) and (32) that

u =rτβ−1
1 γ−1

1 |ṡ1|2−γ1 sgn(ṡ1)−
2k0τ ṙx2 + x3 − 2τ r̈x2 − k0τx3+

3τ ṙ

r
x3 + rτβ−1

1 γ−1
1 |ṡ1|1−γ1 (k5s2 + k6sig

ρ1(s2)). (33)

For the factor β−1
1 γ−1

1 |ṡ1|1−γ1 , when ṡ1 → 0, it will result in

singularity, thus we design the guidance law for the system

of (26) as

u1 =rτβ−1
1 γ−1

1 |ṡ1|2−γ1 sgn(ṡ1)− 2k0τ ṙx2 + x3−

2τ r̈x2 − k0τx3 +
3τ ṙ

r
x3 + rτ(k5s2 + k6sig

ρ1(s2)).

(34)

Theorem 3. For the system of (26), when at = 0, we

can design the guidance law of (34) by selecting the sliding

mode manifolds of (27) – (28) and considering the reaching

law of (32), which allows the system to reach the nonsin-

gular terminal sliding mode manifold s2 = 0 in finite time.

Therefore, for the sliding mode manifold s1 = ṡ1 = 0, we

can get that the system state x1, x2 exponentially converges

to zero, which means that the LOS angle exponentially con-

verges to the desired LOS angle, and the LOS angle rate

exponentially converges to zero.

Proof. When the guidance law of (34) is substituted

into (31), where at = ȧt = 0, we can get

ṡ2 = β1γ1|ṡ1|γ1−1(−k5s2 − k6sig
ρ1(s2)). (35)

Construct Lyapunov function

V2 = s2
2. (36)

Taking the derivative of (36), and substituting (35), we can

get

V̇2 = 2s2ṡ2 =

2β1γ1|ṡ1|γ1−1s2(−k5s2 − k6sig
ρ1(s2)) =

2β1γ1|ṡ1|γ1−1(−k5s
2
2 − k6|s2|ρ1+1) =

−µ2V2 − λ2V
1+ρ1

2
2 ≤ 0

where µ2 = 2k5β1γ1|ṡ1|γ1−1, λ2 = 2k6β1γ1|ṡ1|γ1−1, and

when ṡ1 6= 0, we can get from Lemma 1 that the sys-

tem of (26) reaches the sliding mode manifold s2 = 0 in

finite time. When, ṡ1 = 0, s2 6= 0, we can get s1 6= 0

from (28), but (s1 6= 0, ṡ1 = 0) is not a stable equilibrium

point, which means V̇2 = 0 cannot be maintained; according

to the reaching condition of sliding mode, the system will

reach the stable equilibrium point, and retain the nonsingu-

lar terminal sliding mode state s2 = 0. On the nonsingular

terminal sliding mode manifold s2 = 0, the system state s1,

ṡ1converges to zero in finite time. As s1 = k0x1 + x2 = 0,

ṡ1 = k0ẋ1 + ẋ2 = k0x2 + ẋ2 = 0, we can get that x1, x2

exponentially converges to zero, which means that the LOS

angle exponentially converges to the desired value, and the

LOS angle rate exponentially converges to zero. ¤
When the target is maneuvering, we select an exponential

reaching law for the sliding mode manifold of (28):

ṡ2 = −k7s2 − k8sgn(s2) (37)

where k7, k8 > 0.

For the system of (26), we can design the guidance law

as

u2 = rτβ−1
1 γ−1

1 |ṡ1|2−γ1 sgn(ṡ1)− 2k0τ ṙx2 + x3−
2τ r̈x2 − k0τx3 +

3τ ṙ

r
x3 + rτ(k7s2 + ζsgn(s2))

(38)

where ζ ≥ k8 + ε.

Theorem 4. For the guidance law of (38), when ζ ≥
k8 + ε, ε = const. > 0, this guidance law can compen-

sate the target′s maneuvering in the guidance system of

(26), and make the system reach the sliding mode mani-

fold s2 = 0 in finite time. Therefore, for the sliding mode

manifold s1 = ṡ1 = 0, we can get that the system state

x1, x2 exponentially converges to zero, which means that

the LOS angle exponentially converges to the desired LOS

angle, and the LOS angle rate exponentially converges to

zero.

Proof. When the guidance law of (38) is substituted

into (31), we can get

ṡ2 = β1γ1|ṡ1|γ1−1(−k7s2 − ζsgn(s2) + g1(t)). (39)

Construct Lyapunov function

V3 = s2
2. (40)
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Taking the derivative of (40), and substituting (39), we can

get

V̇3 = 2s2ṡ2 =

β1γ1 |ṡ1|γ1−1 (−k7s2 − ζsgn(s2) + g1(t)) =

2β1γ1 |ṡ1|γ1−1 (−k7s
2
2 − ζ |s2|+ g1(t)s2) ≤

2β1γ1 |ṡ1|γ1−1 (−k7s
2
2 − ζ |s2|+ |g1(t)s2|) ≤

2β1γ1 |ṡ1|γ1−1 (−k7s
2
2 − (ζ − ε) |s2|) =

−µ3V1 − λ3V
1
2

1 ≤ 0

(41)

where µ3 = 2k7β1γ1|ṡ1|γ1−1, λ3 = 2(ζ − ε)β1γ1|ṡ1|γ1−1.

The following proof is the same as that of Theorem 1, so it

will not be repeated. ¤
Remark 2. In practical applications, the rate of relative

range ṙ can be approximately viewed as a constant. There-

fore, we have r̈ ≈ 0. Then, the proposed guidance law (34)

can be rewritten as (42).

u1 = rτβ−1
1 γ−1

1 |ṡ1|2−γ1 sgn(ṡ1)− 2k0τ ṙx2 + x3−
k0τx3 +

3τ ṙ

r
x3 + rτ(k5s2 + k6sig

ρ1(s2)).
(42)

And the proposed guidance law (38) can be rewritten as

(43).

u2 = rτβ−1
1 γ−1

1 |ṡ1|2−γ1 sgn(ṡ1)− 2k0τ ṙx2 + x3−
k0τx3 +

3τ ṙ

r
x3 + rτ(k7s2 + ζsgn(s2)).

(43)

Remark 3. When the target is not maneuvering, we se-

lect rapid power reaching law, which can not only improve

the speed to reach the sliding mode manifold, but also in-

hibit its chattering behavior.

Remark 4. When the target is maneuvering, we select

exponential reaching law, and adjust the term of variable

structure, to compensate the disturbance to the target in

the system. The convergence rate of exponential reaching

law is quite fast, while there will be greater system chatter-

ing when the system state is near sliding mode. High-order

sliding mode can alleviate the chattering resulted from sign

function; however, in order to eliminate chattering, we fur-

ther replace the sign function in the designed guidance law

with the saturation function sat(s), and the resulted form

is as follows:

sat(s) =





1, s > ∆
s

∆
, |s| ≤ ∆

−1, s ≤ −∆

where ∆ is the boundary layer.

4 Numerical simulation

Taking a missile air intercept as an example, in the refer-

ence inertial coordinate system, the velocities of the mis-

sile and target are constants, i.e., 600m/s and 200 m/s,

respectively. The missile′s initial position is xm(0) =

−3 km, ym(0) = 10 km, and its initial flight path angle is

φm(0) = −30◦; the target′s initial position is xt(0) = 0 km,

yt(0) = 0 km, and its initial flight path angle φt(0) = 135◦.
The guidance distance of the seeker is r0 = 100m. The de-

sired LOS angle is qd = −80◦, and the missile acceleration is

limited not to exceed 40g, g=9.8m/s2. Figs. 2(a)–2(d) show

the LOS angular rate, LOS angle, sliding mode surface, and

missile normal acceleration, respectively.

4.1 Not considering the dynamic delay of
missile autopilot

We verify the effectiveness of the proposed guidance law

(20) and guidance law (24), without considering the dy-

namic delay of missile autopilot. During simulation, the

parameters of the guidance law are selected as: β = 5,

γ = 5
3
, k1 = 0.6, k2 = 0.25, ρ = 2

3
, k3 = 2, ∆ = 0.01,

η = 65.

Here, under the proposed guidance law (20), we consider

that the missile intercepts a non-maneuvering target. The

responses of LOS angular rate, LOS angle, sliding mode sur-

face and missile normal acceleration are shown in Figs. 2(a)–

2(d), respectively. From Figs. 2(a) and 2(b), it can be seen

that the LOS angular rate converges to zero fast in finite

time and the LOS angle converges to the desired LOS angle

in finite time. So, the proposed guidance law can guarantee

the missile intercepts the target with the desired LOS angle

successfully. From Fig. 2 (c), we can observe that the slid-

ing mode surface without chattering reaches to zero in finite

time. As shown in Fig. 2 (d), the proposed guidance law can

guarantee the missile normal acceleration converges to zero

fast, and there is no chattering phenomenon. Under the

proposed guidance law, the interception time, miss-distance

and LOS angle error are 15.018 s, 0.328m and 0.235◦, re-

spectively, which are also given to illustrate the effectiveness

of the proposed guidance law (20).

Fig. 2 Responses under the guidance law (20) for non-

maneuvering target

For the case without considering the dynamic delay

of missile autopilot, the simulation results are shown in

Figs. 2(a)–2(d). In practical problems, the dynamic delay of

missile autopilot is not ignorable. Hence, we select τ = 0.5
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to demonstrate the effectiveness of the guidance law (20)

for the case when the dynamic delay of missile autopilot

exists. From Figs. 3(a)–3(d), it can be seen that the guid-

ance law (20) cannot satisfy the requirements of guidance

performance.

To illustrate the performance of the designed guidance

law (24), we consider three different target acceleration pro-

files as given below.

Case 1. Cosine maneuvering 5g cos

(
π

t

4

)
.

Case 2. Step maneuvering 5g.

Case 3. Constant maneuvering 5g.

The miss-distances, LOS angle errors and interception

times are given in Table 1. The curves of LOS angular

rate, LOS angle, sliding mode surface and missile normal

acceleration are shown in Figs. 4(a)–4(d), respectively.

Fig. 3 Responses under the guidance law (20) for considering

the dynamic delay of missile autopilot

Fig. 4 Responses under the guidance law (24) for three cases

Table 1 Corresponding data for the three target acceleration

profiles

Miss-distances (m) LOS angle Interception

errors (◦) times (s)

Case 1 0.055 0.063 15.442

Case 2 0.169 0.040 20.972

Case 3 0.317 0.074 22.321

From Figs. 4(a)–4(c), in the three target acceleration pro-

files, we can see that the LOS angular rates and sliding

mode surfaces converge to zero fast. But, for the three

cases, the curves of the LOS angular rates have peak, which

lead to small peak in the curves of the missile normal accel-

erations shown in Fig. 4 (d). From Fig. 4 (d), we can observe

that there are acceleration saturations before 10 s in all the

three cases, while the accelerations are decreasing corre-

spondingly as the LOS angular rates tend to zero. From

Fig. 4 (b), the proposed guidance law can guarantee the LOS

angles converge to the desired LOS angle. From Table 1,

simulation data verify the high precision guidance perfor-

mance of the proposed guidance law (24).

For the case without considering the dynamic delay of

missile autopilot, the simulation results are shown in Fig. 4

to demonstrate the effectiveness of the guidance law (24).

Further, for the case 1, the parameter τ is chosen as τ = 0.5.

From Figs. 5(a)–5(d), it can be seen that the guidance law

(24) cannot satisfy the requirements of guidance while con-

sidering the dynamic delay of missile autopilot.

Fig. 5 Responses under the guidance law (24) for considering

the dynamic delay of missile autopilot

4.2 Considering the dynamic delay of mis-
sile autopilot

We verify the effectiveness of the designed guidance laws

(42) and (43), considering the dynamic delay of missile au-

topilot. During simulation, the parameters of the guidance

law are selected as: β1 = 5, γ1 = 5
3
, k0 = 3, k5 = 0.5,

k6 = 0.2, ρ1 = 2
3
, ζ = 65, k7 = 3, ∆ = 0.01, τ = 0.5.

For a non-maneuvering target, the proposed guidance law

(42) is applied. The responses of LOS angular rate, LOS
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angle, sliding mode surface and missile normal acceleration

are shown in Figs. 6(a)–6(d), respectively. From Figs. 6(a)–

6(c), it can be seen that the LOS angular rate and sliding

mode surface converge to zero fast. As shown in Fig. 6 (b),

the proposed guidance law can guarantee the LOS angle

converges to the desired LOS angle and the LOS angle er-

ror is zero. As shown in Fig. 6 (d), while considering the

dynamic delay of missile autopilot, the proposed guidance

law can guarantee the missile normal acceleration converges

to zero fast and there is no chattering phenomenon. Un-

der the proposed guidance law (42), the interception time,

miss-distance and LOS angle error are 21.68 s, 0.02 m and

0.05◦. It can be obtained that the guidance precision of the

guidance law (42) is higher than that of guidance law (20).

Fig. 6 Responses under the guidance law (42) for non-

maneuvering target

To verify the performance of the designed guidance law

(43) for the maneuvering target, we also consider the above-

mentioned three different target acceleration profiles. The

miss-distances, LOS angle errors and interception times are

given in Table 2. The curves of LOS angular rate, LOS

angle, sliding mode surface and missile normal acceleration

are shown in Figs. 7(a)–7(d), respectively.

Table 2 Corresponding data for three target acceleration

profiles

Miss-distances (m) LOS angle Interception

errors (◦) times (s)

Case 1 0.042 0.01 14.408

Case 2 0.083 0.02 18.908

Case 3 0.020 0.03 20.241

From the Figs. 7(a) and 7(c), in the three target accelera-

tion profiles, we can see that the LOS angular rates and slid-

ing mode surfaces converge to zero fast. In addition, we can

also observe that the curves of LOS angular rates consid-

ering the missile′s dynamic delay are smoother than those

without considering dynamic characteristics. As shown in

Fig. 7 (d), the saturation times of corresponding missile nor-

mal accelerations are shorter, then these accelerations de-

crease rapidly and there are no chattering phenomenon in

the three cases. From Fig. 7 (b), the proposed guidance law

can guarantee the LOS angles converge to the desired LOS

angle for three cases. From the Table 2, simulation data

verify the high precision guidance performance of the pro-

posed guidance law (43).

4.3 Comparing with the other guidance
laws

At present, much study has been devoted to the guidance

law design about the dynamic delay and impact angle con-

straints. However, there are not many guidance laws which

are designed by applying the non-singular terminal sliding

mode control. In [20], a guidance law based on the non-

linear backstepping method with autopilot lag and impact

angle constraint was proposed, which was expressed as

Ac =
τ

cos θm





(
k1 cos2 θm

R(t)
+ c1k1k2

∣∣∣Ṙ(t)
∣∣∣
)

x1 +


 1

τ
−

(k2 + 2)
∣∣∣Ṙ(t)

∣∣∣
R(t)

− k1 − c1


 x3 cos θm+


cos2 θm

R(t)
+ c1(2 + k2)

∣∣∣Ṙ(t)
∣∣∣ + c1k1R(t) + k1(1 + k2)

∣∣∣Ṙ(t)
∣∣∣ +

(2k2 + 4)
∣∣∣Ṙ(t)

∣∣∣
2

R(t)


 x2+

c1ε1sat(z3)−

 (k2 + 2)

∣∣∣Ṙ(t)
∣∣∣

R(t)
+ k1


 ε1sgnz4





(44)

where z3 = x2 + k1x1,k1 = 3, k2 = 2,c1 = 30, ε1 = 40.

For Case 1, the initial conditions are chosen as the same

as in the previous simulation. Simulation results are shown

in Figs. 8(a)–8(d) for the guidance laws (44) and (43).

From Figs. 8(a) and 8(b), the LOS angular rate and LOS

angle under the guidance law (43) faster converge to their

corresponding desired values than that under the guidance

law (44). In addition, the convergence accuracy under the

guidance law (43) is higher than that under the guidance

law (44). As shown in Fig. 8(c), it can be obtained that

the convergence rate of the guidance law (43) is faster than

that of the guidance law (44). From Fig. 8 (d), although the

missile normal accelerations for the two guidance laws are

similar, the chattering problem of the missile normal accel-
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eration under the guidance law (44) is a little bit serious.

Fig. 7 Responses under the guidance law (43) for three cases

Fig. 8 Responses under the guidance law (43) and guidance law

(44) for Case 1

5 Conclusions

While not considering the missile′s dynamic delay, we

combine the nonsingular terminal sliding mode and cor-

responding reaching law to design a finite-time convergent

guidance law which meets both the impact angle constraints

and zero miss distance. While considering the missile′s dy-

namic delay, we combine the high-order nonsingular termi-

nal sliding mode and corresponding reaching law to design

an exponential convergent guidance law which meets both

the impact angle constraints and zero miss distance. The

numerical simulation is performed for different maneuver-

ing maneuvers of the target, which verifies the effectiveness

of the guidance law designed in this paper.
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