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Abstract:   This paper models the complex simultaneous localization and mapping (SLAM) problem through a very flexible Markov
random field and then solves it by using the iterated conditional modes algorithm. Markovian models allow to incorporate: any motion
model; any observation model regardless of the type of sensor being chosen; prior information of the map through a map model; maps of
diverse natures; sensor fusion weighted according to the accuracy. On the other hand, the iterated conditional modes algorithm is a
probabilistic optimizer widely used for image processing which has not yet been used to solve the SLAM problem. This iterative solver
has theoretical convergence regardless of the Markov random field chosen to model. Its initialization can be performed on-line and im-
proved by parallel iterations whenever deemed appropriate. It can be used as a post-processing methodology if it is initialized with es-
timates obtained from another SLAM solver. The applied methodology can be easily implemented in other versions of the SLAM prob-
lem, such as the multi-robot version or the SLAM with dynamic environment. Simulations and real experiments show the flexibility and
the excellent results of this proposal.
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1   Introduction

1.1   The problem

Simultaneous localization and mapping (SLAM) is one

of  the  basic  problems  in  mobile  robotics.  SLAM  is  the

dual process of building a consistent and incremental map

of the previously unexplored environment and using this

map to ascertain the robot absolute pose or even the path

traveled  by  the  robot[1–3].  In  order  to  build  a  map  from

the  environment,  the  vehicle  must  be  equipped  with  a

sensory system capable of taking measurements of the rel-

ative location between landmarks and the vehicle itself.

SLAM applications now exist in a wide variety of do-

mains. They include indoor[4], outdoor[5], aerial[6] and sub-

sea[7, 8]. Several vehicle architectures have been used: un-

manned  aerial  vehicle  (UAV)[9, 10], differential  drive  mo-

bile  robots  (DDMR)[11, 12],  or  car-like  vehicles[13].  There

are  different  sensing  modalities  such  as  sonar[14],  range

lasers[15], cameras[16, 17], global positioning systems (GPS)[18]

or combinations thereof[13].  There exist generalizations of

the  SLAM  problem  such  as  SLAM  with  dynamic

objects[19] or  the  multiple-robot  SLAM  problem[20, 21].

Some  recent  publications  tackle  the  problem  by  using

multiple maps, or sub-maps that are lately used to build

a larger global map[22].

The interdependence  between  localization  and  map-

ping converts to the SLAM in a complex problem that re-

quires the precise resolution of two problems at the same

time. Speed and consistency in the resolution are the two

main  issues  in  the  SLAM research  community[23, 24].  The

main  sources  of  uncertainty  in  SLAM  are  three:  sensor

noise, association  data  and  the  accumulated  errors  dur-

ing the navigation.

The robot sensors are classified into exteroceptive and

proprioceptive.  Among  the  exteroceptive  sensors,  it  is

possible  to  find:  sonar,  range  lasers,  cameras  and  GPS.

All of these sensors are noisy and have limited range cap-

abilities. In addition, only local views of the environment

can be obtained using the first three aforementioned sensors.

On the other hand, GPS data are not always available.

Proprioceptive  sensors,  such  as  encoders  and  inertial

measurement  units,  allow  the  robot  to  obtain  velocity,

position changes  and  acceleration  measurements.  En-

coders, for  instance,  allow  obtaining  an  incremental  es-

timate  of  the  vehicle  movements  by  means  of  a  dead

reckoning  navigation  method  (also  known  as  deduced-

reckoning),  but  due  to  cumulative  errors,  they  are  not

precise enough to have an accurate estimation of the posi-

tion all the time.
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The most fundamental key topic related to all SLAM

solutions  is  the  data  association  problem,  which  arises

when  landmarks  and  observations  cannot  be  uniquely

matched, and due to this, the number of possible associ-

ations may grow exponentially,  making the SLAM abso-

lutely unviable for large areas[25]. Traditional methodolo-

gies  assume  that  the  matching  problem  is  solved  by  an

external procedure and it is not explicitly incorporated in

the estimation process.

Recently,  a  methodology based on random finite  sets

(RFSs) was introduced, which incorporates the matching

problem  in  the  optimization  process  circumventing  the

necessity for  any  fragile  data  association  and  map  man-

agement heuristics[26]. The article solves the SLAM prob-

lem  by  using  the  Bayesian  set-based  estimator  PHD

(probability hypothesis density) filter. However, its imple-

mentation is computationally expensive.

Navigation errors  are  caused  by  the  inevitable  diver-

gence  between  the  assumed  motion  model  for  the  robot

and its actual motion. This divergence can lead to an ac-

cumulative  error  in  the  estimated  pose  of  the  robot  as

well as aggravate the data association problem.

Then, the correct resolution of the SLAM problem re-

quires a model that allows efficiently to incorporate sens-

ory data of any kind, to optimize matchings observation-

object,  and  to  incorporate  complex  motion  models  (dy-

namic or highly nonlinear) for the vehicle.

State-of-the-art approaches to SLAM typically formu-

late  the  inference  problem  as  a  sparse  high-dimensional

nonconvex M-estimation[27],  and  then  apply  general  first

or second  order  smooth  optimization  methods  to  estim-

ate a critical point of the objective function. The papers[1, 3

] provide a survey of classical methods to solve the SLAM

problem with its advantages and disadvantages.

Solutions to the SLAM problem involve finding an ap-

propriate  representation  for  both  the  observation  model

and motion model[1, 2]. By far,  the most common repres-

entation is in the form of a state-space model with addit-

ive  Gaussian  noise,  leading  to  the  use  of  the  extended

Kalman  filter  (EKF)  to  solve  the  SLAM  problem[28, 29].

One  important  alternative  representation  is  to  describe

the  vehicle  motion  model  as  a  set  of  samples  of  a  more

general  non-Gaussian probability distribution. This leads

to the use of the Rao-blackwellized particle filter, or Fast-

SLAM algorithm[30], to solve the SLAM problem. An im-

proved FastSLAM algorithm based on revised genetic res-

ampling  and  square  root  unscented  particle  filter  (SR-

UPF)  is  presented  in  [31]. While  EKF-SLAM and  Fast-

SLAM  are  the  two  most  important  solution  methods,

newer alternatives, which offer much potential, have been

proposed in the graphical model context[32–35].

The optimization methods that solve the SLAM prob-

lem are  usually  only  able  to  guarantee  convergence  to  a

first-order critical point of the objective (i.e, local minim-

um  or  saddle  point),  rather  than  the  globally  optimal

solution[36]. The  most  serious  limitation  is  that  the  solu-

tion  to  which  any  such  method  converges  is  determined

by its initialization. This is particularly damaging in the

context of SLAM, in which the combination of a high-di-

mensional state space and significant nonlinearities in the

objective  function  can  give  rise  to  complex  cost  surfaces

containing many local minima in which smooth optimiza-

tion  methods  can  become  entrapped[37].  Together,  these

uncertainties  culminate  into  a  complex  SLAM  problem,

which some behaviorists believe is not worth solving[38].

1.2   Related works

Graph theory allows intuitively illustrating the states

of  a  model  with  their  probabilistic  interdependencies.  A

node is  assigned  to  each  state  and  correlations  are  ex-

pressed in terms of direct (edges) and indirect (paths) de-

pendencies. For more details on graph theory and probab-

ilistic models defined on graphs, see [39].

Folkesson  and  Christensen  introduced  the

GraphSLAM system  which  finds  the  best  robot  traject-

ory  using  a  nonlinear  optimization technique[40].  Dellaert

and  Kaess  exploited  the  inherent  sparsity  of  the  SLAM

problem  to  make  the  process  more  efficient[33].  For  this,

the problem is formulated through a belief net representa-

tion,  which  is  a  directed  acyclic  graph  that  encodes  the

conditional  independence  structure  of  a  set  of  variables,

where each variable directly depends only on their prede-

cessors in the graph[39].  The SLAM problem is solved by

optimizing  the  posterior  probability  with  the  large  and

sparse  standard  least-squares  method.  This  requires  a

specific  methodology,  which  is  called  square  root  SAM

(square root smoothing and mapping information) and is

based  on  an  optimization  process  that  reduces  edges  to

optimize  the  amount  of  calculations.  In  [41],  the  SLAM

problem is modeled through a directed acyclic graph and

various techniques  are  exposed  in  order  to  solve  it.  Un-

like  previous  work,  the  observations  and  control  actions

are incorporated as model states in the graph.

On the other hand, in [32, 42], the SLAM problem is

modeled through  undirected  graph,  i.e.,  the  interconnec-

tions between the states are bidirectional without a caus-

al order. Topologically, a node for the robot pose at each

sampling period and a node for each landmark are gener-

ated.  Then,  these  nodes  are  linked according to  whether

in certain sampling period a landmark is observed or not.

Later, potential  functions  are  defined  according  to  as-

sumptions  of  Gaussianity  (and  linearity  in  the  case  of

[32])  of  the  motion  and  observation  models.  Finally,  a

procedure for  solving  the  problem  SLAM is  used  to  op-

timize topologically  the  graph  in  question  avoiding  un-

feasible computational costs.

Dissanayake et al.[43] showed that it is  possible to re-

move a large percentage of the landmarks from the map

without making the map building process statistically in-

consistent.  Since  then  many  works  tried  to  reduce  the

graph complexity[44–48].
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A random field is Markovian (MRF) if the condition-

al probabilities of the model are consistent with the topo-

logical structure of the graph[49]. The potentiality of work-

ing in the MRF context has been reported in [33].  Also,

Jadaliha and Choi[34] investigate a fully Bayesian way to

solve the simultaneous localization and spatial prediction

(SLAP)  problem  by  using  a  Gaussian  Markov  random

field (GMRF) model with satisfactory results.

1.3   Proposal

From the  beginning  of  the  century,  the  SLAM prob-

lem  is  studied  through  graph  models[32, 33, 41].  Similarly,

over  the  last  several  decades,  these  Markovian  models

have  been  used  in  the  image  processing  context,  and an

endless  number of  useful  tools  to  solve  various  problems

have been developed[50]. One of them, is the iterated con-

ditional modes (ICM) methodology[51], which has not yet

been implemented for the SLAM problem. ICM is used to

find the state configuration that,  given the observations,

locally maximizes the posterior probability of a Markovi-

an model.

This  paper  proposes  to  model  the  SLAM  problem

through a  very  flexible  MRF,  that  allows  to  incorporate

an observation model (regardless of the sensor type used

and the nature of the data acquired), a motion model (re-

gardless of the robotic architecture), a map model (incor-

porating any possible  definition of  map) and that allows

the  sensory  fusion  preserving  theoretical  convergence,

among other benefits. Then, the SLAM problem is solved

through the  particularization  of  ICM to  the  SLAM con-

text. ICM is an iterative algorithm that is initialized with

an estimate of the map and the robot trajectory. Next, it-

eration-by-iteration, corrects these estimates until it con-

verges to  a  sub-optimal  map  and  a  sub-optimal  traject-

ory. These sub-optimal results are better than the initial

estimates,  and  therefore,  it  can  be  used  to  improve  the

output of any SLAM procedure. ICM has good potential

to  work  with  initializations  of  intermediate  quality,  but

its  results  are  better  if  it  is  correctly  initialized.  In  this

paper, we propose an ICM initialization that can be run

on-line  and  improved  through  ICM iterations  performed

at appropriate times. Therefore, the main contributions of

this paper are firstly the proposition of ICM to solve the

SLAM problem modelled through an MRF and secondly

its on-line associated initialization.

In  Section  2,  the  necessary  concepts  of  MRF  theory

and  ICM to  develop  this  paper  are  formally  defined.  In

Section  3,  the  SLAM  problem  is  modeled  in  the  MRF

context,  and it is  solved by using ICM. In Section 4, an

example  of  application  is  shown,  which  is  simulated  in

Section  5  and  is  experimented  in  a  real  environment  in

Section 6. Conclusions are given in Section 7.

2   Markov random fields

2.1   Definitions

V

X = {Xv : v ∈ V }
Xv

Ωv Ω =
∏

v∈V Ωv

RFX

Given a finite set , whose elements are called nodes,

a random field (RF) is an array , where

each  is a random variable (RV) that takes values in a

set of possible states . Thus,  is the set of

all the possible realizations of the .

XA Xv

v ∈ A ⊂ V A = V − {v}
X−v ωA ∈

∏
v∈A Ωv

ω ∈
∏

v∈V Ωv A

Let  be  the  RF  composed  by  the  RVs ,  with

.  In  the  particular  case  that ,  it

will  be denoted with . With , it is de-

noted the entry subset of  defined over .

P Ω P (ω)

RFX ω

Xv

v ∈ V ∂v ⊂ V

v /∈ ∂v v′ ∈ ∂v ⇔ v ∈ ∂v′

Let  be the probability defined on , where  is

the probability that the  takes the value . In prin-

ciple,  each  variable  depends  probabilistically  on  all

other RV.  This  can  be  reduced  through  the  neighbor-

hood concept between nodes,  which determines the radi-

us of conditional dependence of each variable. That is, for

each  node ,  a  non-empty  neighborhood  is

defined, so that  and  (see Fig. 1).

G = (V, E)
E ⊆ V × V

In  this  way,  a  graph  is  defined,  where

 is  the  set  of  edges  composed  of  all  pairs  of

neighboring nodes.

X P
G

A random field  with  associated probability  and

defined on a graph  is a MRF (Markov random field) if

P (ωv|ω−v) = P (ωv|ω∂v), ∀v ∈ V.

ωvThat  is,  if  the  conditional  probability  of  observing 

given the value in the rest of the nodes can be calculated

with only knowing the state of their neighbors.

C ⊆ V #C = 1

C C

C ∈ C

A subset  is a clique if  or if all pairs of

nodes in  are neighbors (see Figs. 1(b) and 1(c)). Let 

be  the  set  of  all  the  cliques  of  the  graph.  Given ,

 

υ

∂υ

X3X1

X4

X5

X6X2

X3X1

X4

X5

X6X2

(a) Example of neighborhood (b) Examples of subsets that are cliques (c) Examples of subsets that are not cliques

Fig. 1     Diagram of topological concepts defined
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ωC

Φ = {ΦC : C ∈ C}
ΦC :

∏
v∈CΩv → R

ΦC(ωC) >ΦC(ω
′
C) ωC

ω′
C

according to the problem to be modeled, there are config-

urations  that are observed more frequently and there-

fore should be enhanced or privileged over other configur-

ations. To this  end,  and in order to define the probabil-

ity P that  best  explains  the  problem  to  be  modeled,  a

family  of  potentials  is  defined ,  where

each  is a function which verifies that

 when  the  configuration  is  more

common than the configuration .

H : Ω → RThe function of total energy of the model 

is defined as

H(ω) = −
∑
C∈C

ΦC(ωC).

Note  that  energy  is  lower  in  the  most  common

configurations of the model.

P Ω
X

Then, from the Theorem of Hammersley-Clifford[52, 49],

the probability or Gibbs measure  over  associated to

the MRF  is

P (ω) =
1

Z
exp

{
−H(ω)

T

}
(1)

Z =
∑

ω∈Ω exp
{

−H(ω)
T

}
T > 0

T

where  is  a  normalizing constant

and  is a constant called system temperature. Note

that  the  lower  the  temperature,  the  greater  the  gap

between  the  probability  of  desirable  configurations  over

undesirable  configurations.  Strictly  speaking,  the

temperature  should  be  incorporated  from  the  potential

definitions  and should not  appear  out  of  nowhere  in  the

Gibbs measure. However, for clarity in future derivations,

it is desirable that  appears explicitly in (1).

Then,  from (1)  and algebraic  steps,  it  can  be  proved

that the conditional probabilities are

P (ωv|ω−v) ∝ exp

{
1

T

∑
C∈C:v∈C

ΦC(ωC)

}
(2)

ωC ωv

ω−v

where  is composed of the corresponding entries of 

and .

2.2   Gibbs sampler and simulated anneal-
ing

#Ω

X

X

X

Since  is  generally  very  large,  direct  sampling

methods of the MRF  turn out to be expensive compu-

tationally.  Therefore,  it  must  be  resorted  to  iterative

methods which  have  the  theoretical  property  of  conver-

ging to a realization of . In practice, since this theoret-

ical convergence is asymptotic, a reasonable number of it-

erations  are  performed.  This  number  depends  on  the

model in  question  and  the  final  configuration  is  con-

sidered a realization of .

Gibbs sampler (GS) is the most used iterative sampler

of Gibbs measures[53]. GS is applicable when the joint dis-

tribution is explicitly unknown or it is difficult to sample

from  the  joint  distribution  directly,  but  the  conditional

distribution of each variable is known and is easy (or at

least,  easier)  to sample from. The GS algorithm updates

the  state  of  each  variable  according  to  its  conditional

probability given  the  current  values  of  the  other  vari-

ables. It can be shown (see, i.e., [54]) that the sequence of

samples constitutes a Markov chain, whose stationary dis-

tribution  is  just  the  desired  joint  distribution.  Gibbs

sampling is particularly well-adapted to sampling the pos-

terior distribution of a Bayesian network, since Bayesian

networks are  typically  specified  as  a  collection  of  condi-

tional distributions.

Then, the general GS algorithm is summarized as

Algorithm 1. Gibbs sampler

ω(0) ∈ Ω

1) Choose arbitrarily an initial configuration of states

.

V

2) Generate a visit scheme, i.e., to sort arbitrarily the

elements of .

ωv Ωv

P (·|ω−v)

3) Perform a sweep, i.e.,  to visit the nodes in the or-

der  specified  in  2),  and  to  replace  randomly  the  actual

state  by  a  state  of  according  to  the  probabilities

.

4) Repeat 3) as often as wished.

X

ω ∈ Ω

P (ω)

This procedure converges  asymptotically  to  a  realiza-

tion of [54]. In many problems, such as SLAM, the ob-

jective is to find the state configurations  that max-

imizes  instead of sampling the Gibbs distribution.

P
P (·|ω−v)

Ωv

P

Then,  if  the  system temperature  is  decreased in  each

iteration of GS according to a particular cooling scheme,

it is  expected that  the algorithm converges  to  a  maxim-

um of .  This is  because the probability of the mode of

 is increasingly  prevalent  over  the  other  ele-

ments of . This iterative procedure is called simulated

annealing (SA), and its theoretical convergence to a glob-

al maximum of  is proved if the cooling scheme satisfies

a certain bound[55, 56]. The ideal cooling rate cannot be de-

termined  beforehand,  and  should  be  adjusted  for  each

particular  application.  Thus,  SA  convergence  could  be

very slow and several algorithms were proposed to optim-

ize its computational cost.

This lock on the cooling scheme produces a very slow

convergence of SA, and therefore there exists in the liter-

ature several algorithms that seek to optimize their com-

putational cost. The method is an adaptation of the Met-

ropolis-Hastings algorithm, a Monte Carlo method to gen-

erate sample states of a thermodynamic system.

2.3   Iterated conditional modes

In statistics,  iterated conditional modes (ICM)[51] is  a

deterministic  algorithm  for  obtaining  the  configuration

that  locally  maximizes  the  joint  probability  of  an  MRF.

It  operates  by  iteratively  maximizing  the  probability  of

each variable conditioned on the rest. Note that the cool-

ing  scheme  increases  the  probability  to  choose  the  state

J. Gimenez et al. / Iterated Conditional Modes to Solve Simultaneous Localization and Mapping in … 313

 



ωv P (ωv|ω−v)

P (·|ω−v)

P

P

 that maximizes  in each visit of SA, where-

as  the  ICM  algorithm  directly  chooses  the  mode  of

. Then, the convergence of ICM to a global max-

imum of  may not happen. However, ICM converges to

the  local  maximum of  closest to  the  initial  configura-

tion  with  a  computational  cost  and  a  rate  much  slower

than that required by SA. In many applications, this loc-

al  maximum  gives  very  satisfactory  results  if  the  initial

configuration is properly chosen. In Section 3, the SLAM

problem is  presented  in  the  MRF  context  and  its  solu-

tion by using ICM is shown.

3   Simultaneous localization and
mapping

t = 0, 1, · · · , Tf

xt x0

ut

t = 0, 1, · · · , Tf

xt = g(xt−1, ut−1)

g(xt−1, ut−1) xt

Consider  a  vehicle  whose  state  at  each  discretized

time  is completely  determined  by  a  vec-

tor .  In  this  paper,  it  is  assumed that  is  known.  If

this was not so, the final estimates of the map and the ro-

bot path turn out to be a translation and rotation of the

actual  results,  which  is  logical  if  it  does  not  have  other

prior  knowledge  of  the  environment.  We  denote  with 

the  control  actions  applied  to  the  robot  at  time

.  In  general,  the  control  actions  are  the

motor torques, or their velocities.  If  the robot has a dis-

turbance-free  movement  and  a  perfect  tracking  of  the

control  actions,  then  there  is  a  relationship  functional

 that  predicts  its  future  state  for  all

possible  state  and  control  action  of  the  previous  time.

However,  this  is  unreal,  and  only  it  is  usually  expected

that  is an estimation of .

L ml

l = 1, 2, · · · , L

t = 0, 1, · · · , Tf

nt

zt = {zt,i : i = 1, 2, · · · , nt}

ml = h(xt, zt,i)

i t l

ct = {ct,i : i = 1, 2, · · · , nt} ct,i = l

zt,i i t l

h(xt, zt,i)

mct,i

Suppose  that  in  the  operation  space  of  the  vehicle,

there  are  landmarks  with  locations ,  where

.  Consider  that  the  robot  is  equipped with

sensors  capable  of  detecting  landmarks  in  an  operating

range  (dependent  on  sensor  characteristics),  and  that  at

each  time , this  information  can  be  syn-

thesized  in  a  vector  of  observations

. Assume that if these observa-

tions were acquired without any noise,  then there would

be a geometric relationship ,  provided the

-th observation at the time  corresponds to the label .

These  landmark-observation matchings  are  contemplated

in  a  vector ,  where  if

 ( -th observation at time ) corresponds to the label .

However, the  observations  are  always  noisy,  and  there-

fore it can only be expected that  be a geomet-

ric estimation of .

x m c z u

xt ml ct zt ut

Let , , ,  and  be the vectors  whose compon-

ents are the variables , , ,  and , respectively.

P (x,m, c|z,u)
P

The  SLAM problem consists  of  the  autolocation  of  a

robot while the environment in which it operates is being

mapped. This is translated into maximizing ,

where  is the  probability  distribution  which  character-

izes the model. Subsequently, the SLAM problem will be

modeled in the MRF context, and it will be resolved via

ICM.

3.1   SLAM in MRF context

xt ∈ Xt t ≥ 1

ct ∈ Ct = {1, · · · , L}nt t ≥ 0

m ∈ M x0

Ω = M ×
∏Tf

t=1 Xt ×
∏Tf

t=0 Ct zt

ut xt

In order to give a solution for the SLAM problem in a

MRF context,  the graph and the potentials  that charac-

terize it must be defined. Regarding the graph, it is con-

sidered  a  node  for  each , ;  for  each

, ;  and  a  single  node  for  the

map . The initial state  is a known fixed input.

Then,  the  set  of  all  possible  states  is  defined  by

.  The  observations ,  the

control actions , and the odometry data  are also ex-

ternal inputs  to  the  model,  since  they  are  constant  dur-

ing the optimization process.

The  graph  edges  are  contemplated  according  to  the

probabilistic  dependence  existing  on  the  model.  The

graph  selected  in  this  paper  to  contextualize  the  SLAM

problem in the MRF theory is  diagramed in Fig. 2.  This

graph  was  built  following  two  premises:  that  it  contains

the fewest amount possible of edges; and that it contains

{xt−1, xt} t ≥ 2 {xt,m, ct}
t ≥ 1 {m, c0}

the  cliques  of  the  form  ( ), 

( ), and the initial .

{m} {xt} t ≥ 1

These cliques allow to include a motion model and an

observation model to the SLAM problem. In addition, the

cliques  and  ( ) are considered to include a

prior  probabilistic  model  of  the  map and sensory  fusion,

respectively.

xΣ =
√
xTΣx x ∈ Rn

Σ ∈ Rn×n

Although the methodology works independently of the

chosen norm  or  distance,  it  is  considered  the  Mahalan-

obis  norm  defined  as  for  all ,  with

 as a positive definite matrix.

The  potentials  that  include  the  motion  model  in  the

MRF model are defined by

Φ{x1} (x1) =−∥g (x0, u0)− x1∥2R
Φ{xt−1,xt} (xt−1, xt)=−∥g (xt−1, ut−1)− xt∥2R , t ≥ 2

(3)

R > 0

(xt−1, xt)

where  is  a  design  matrix.  These  potentials  link

vehicle  states  of  consecutive  sampling  periods,

highlighting  pairs  of  state  vectors  that  best

match with the control actions and the motion model in

ideal  conditions.  Note  that  kinematic  and  dynamic
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Fig. 2     SLAM graph in MRF context
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models can be used as the basis for their definitions.

x̂t

xt

t ≫ 0 x̂t

xt

xt − xt−1

x̂t − x̂t−1

Other  sensory  information  that  can  be  incorporated

are  the  odometry  data , which  are  defined  in  this  pa-

per as an estimate of  based on the proprioceptive sens-

ory information. In practice, when  is large,  is not

a good estimate of , due to the cumulative odometry er-

ror.  However,  can  be  estimated  by  using

, which can be helpful in time intervals in which

there  are  few  useful  observations  that  feed  back  the

SLAM process. This information can be included through

the following redefinition of the potentials (3)

Φ{x1} (x1) = −∥g (x0, u0)− x1∥2R − ∥x1 − x̂1∥2S
Φ{xt−1,xt} (xt−1, xt) = −∥g (xt−1, ut−1)− xt∥2R −

∥xt − xt−1 − x̂t + x̂t−1∥2S , t ≥ 2 (4)

S > 0where  is a design matrix.

On the other side, the potentials that characterize the

observation model are

Φ{xt,m,ct}(xt,m, ct)=−
nt∑
i=1

∥∥h (xt, zt,i)−mct,i

∥∥2

Q
, t ≥ 1

Φ{m,c0} (m, c0) = −
n0∑
i=1

∥∥h (x0, z0,i)−mc0,i

∥∥2

Q

Q > 0

(xt,m, ct)

where  is  a  design  matrix.  These  potentials

prioritize  configuration  linkages  that  best

match with the observation model under ideal conditions.

R Q SThe  matrices ,  and  allow  granting  greater  or

lesser influence to the potentials according to the confid-

ence degree of the involved sensors.

Φ{m}(m)

0

Finally,  in  many  applications,  it  is  desirable  to  give

greater  weight  to  maps  with  certain  characteristics.  For

example, it can be boosted maps in which the landmarks

are at least at a predetermined distance, or maps without

landmarks  in  certain  regions.  Such  specifications  can  be

included in a probabilistic model defined on the space of

all possible environment maps. To this end, it is defined a

potential  function  that  assigns,  for  example,  a

very  large  value  to  the  desirable  maps  and  (a  null

value)  to  the  undesirable  maps.  This  way,  any  prior

available  information  about  the  map  can  be  included  in

the map model.

xt ml ct
zt

ut

R Q S

∥ · ∥R ∥ · ∥Q ∥ · ∥S

All these potentials are responsible for making prevail

those states , locations , and matchings , that best

explain the observations ,  that best suit  to the control

actions ,  and  that  best  fit  to  the  odometry  data.  The

potentials  for  the  remaining  cliques  are  defined  equal  to

null  potential,  because  it  is  not  desired to  use  them. By

definition,  they  will  allow  that ,  or  to  be  null

matrices.  In this case,  although ,  or  are

not  norms,  the  potentials  are  defined  as  nulls  and  their

associated data are ignored by the model.

Then,  the  Gibbs  probability  associated  to  the  SLAM

problem is given by

P (x,y, c|z,u) ∝ exp

Φ{x1}(x1)+

Tf∑
t=2

Φ{xt−1,xt}(xt−1, xt) + Φ{m,c0}(m, c0)+

Tf∑
t=1

Φ{xt,m,ct}(xt,m, ct) + Φ{m}(m)

 . (5)

This modeling procedure allows to define potentials in

many ways,  providing  great  flexibility  to  exploit  specific

characteristics  that  are  desired  to  be  highlighted  in  the

model.

m

m

m

In the paper, it is considered that  is a vector with

the coordinates of  the map landmarks.  This  definition is

not the only possible since, for example,  can be an ar-

rangement that assigns to each possible coordinate of the

map  a  probability  of  locating  a  landmark.  This  infinite

dimensional arrangement  could  be  characterized,  for  ex-

ample, by the means and covariances of a Gaussian mix-

ture model, whose peaks represent the locations with the

highest probability  of  observing  a  landmark.  Alternat-

ively,  can contain centers, lengths and orientations of

a segment set. This can be useful for indoor applications.

This methodology  allows  also  to  include  sensory  fu-

sion in a very natural  way.  In addition to the odometry

data,  the  available  GPS  information  can  be  included

through the following potentials:

Φ{xt}(xt) = −1T (t) ∥ρ(xt)− x̆t∥2K

Φ{xt}(xt) =

{
−∥ρ(xt)− x̆t∥2K , t ∈ T
0, t /∈ T

K > 0 T ⊆ {1, 2, · · · , Tf}
x̆t 1T

T ρ(xt)

xt

where  is a design matrix,  is the

time subset in which the GPS data  is available,  is

the  indicator  function  of ,  and  is  the  robot

position,  which  is  supposed  to  be  a  subarray  of .

However,  the  GPS information is  not  considered here  in

order  to  highlight  the  ICM  ability  to  solve  SLAM

problems regardless of the GPS data availability.

m

mt

t

mt−1 mt

mt−1 mt

vt = {vt,l : l = 1, · · · , L} L

t

This modeling methodology also admits the incorpora-

tion of dynamic objects. To this end, the variation of 

over time should be allowed by firstly creating a node 

for  each , and  secondly  by  creating  the  nodes  corres-

ponding  to  and . This  linkage  allows  the  loca-

tions given in  to be similar to those given in  ac-

cording to the objects motion model, smoothing this way

the errors  introduced  by  bad  measurements.  Further-

more, a method should be incorporated that estimates the

velocity  vector  of  the  objects

for any time , and defines new potentials given by

Φ{mt−1,mt}(mt−1,mt) = −
L∑

l=1

∥mt,l−γ (mt−1,l,vt−1,l)∥22
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γwhere  is a function that kinematically characterizes the

object motion in the absence of disturbances.

x
(i)
t i = 1, · · · , n

x
(i)
t x

(j)
t

t

The multi  robot SLAM problem can also be modeled

by MRF. To this end, additional states , ,

should be generated by creating links between the states

 and  when one of  the robots observe other robot

at  time . These  links  lead to  the  modeling  of  cooperat-

ive multi-robot SLAM problem.

3.2   ICM in SLAM problem

In this Section, the ICM iterative procedure is particu-

larized to solve the SLAM problem defined in Section 3.1.

From (2),  the  following conditional  probabilities  are  cal-

culated:

P (xt|x−t,m, c,z,u) = P (xt|xt−1, xt+1,m, ct, zt, ut) ∝

exp

{
−∥g(xt−1, ut−1)− xt∥2R − ∥g(xt, ut)− xt+1∥2R −

∥xt − xt−1 − x̂t + x̂t−1∥2S − ∥xt+1 − xt − x̂t+1 + x̂t∥2S −
nt∑
i=1

∥∥h (xt, zt,i)−mct,i

∥∥2

Q

}
(6)

P (ct|x,m, c−t,z,u) =

nt∏
i=1

P (zt,i|xt,mct,i , ct,i) ∝

exp

{
−

nt∑
i=1

∥∥h (xt, zt,i)−mct,i

∥∥2

Q

}
(7)

P (m|x, c,z,u) ∝

exp

Φ{m}(m)−
Tf∑
t=0

nt∑
i=1

∥∥h (xt, zt,i)−mct,i

∥∥2

Q

 .

(8)

The solution to the SLAM problem by using the iter-

ative method ICM that is proposed in this paper is sum-

marized  in  Algorithm  2.  Superscripts  are  used  in  the

notation in order to distinguish the states of different it-

erations. The Algorithm 2 consists of two steps: initializa-

tion (iteration 0) and ICM iterations.

x
(0)
t m(0)

c
(0)
t

t+ 1

In the initialization step, an initial state configuration

for  all  the  nodes  is  chosen.  The  initial  states , 

and  can be selected randomly, although the sensitiv-

ity of ICM to the initial point requires a more appropri-

ate choice.  One option is to choose the maximum of the

conditional probabilities (6) to (8) in a time order ignor-

ing  the  terms  that  require  information  at . This  al-

lows  to  include  an  on-line  initialization  in  such  a  way

that  the  process  resembles  an  ICM iteration  as  close  as

possible.

m(0) = {m(0)
l : l = 1, · · · , L}

m
(0)
l

Having  a  prior  estimation  of  the  map  provides  the

ideal  opportunity  to  choose .

If  this  is  not  the  case,  each  must  be  selected  more

m
(0)
l lfinely.  The  locations  are  initialized  when  the -th

landmark is first seen with the mean of the estimated po-

sitions. The numbering of the landmarks is performed ac-

cording to the appearance order.

c
(0)
t,i

x
(0)
t

x
(0)
t

c
(0)
t,i x0 c

(0)
0,i

l ml

h(x0, z0,i)

c
(0)
1,i x

(0)
1

g(x0, u0) x
(0)
1

t = 1

x
(0)
1 x

(0)
2

t = 1 c
(0)
t,i x

(0)
t

t

Note  that  the  initialization  of  the  matchings  re-

quires  the knowledge of ,  as  well  as  the initialization

of  requires  the  knowledge  of  these  same  matchings

.  At this  point,  only  is  known.  Hence,  each  is

initialized with the label  if the location  is the closest

to  the  estimated  location  (see (9)).  Analog-

ously,  cannot be initialized since  is still unknown.

One possible choice is to consider  instead of 

(see  (10)  for ).  Finally,  an  alternative  to  initialize

 according  to  (6)  but  without  is  by  using  (11)

with . All variables  and  are initialized by re-

peating  this  recursive  procedure  at  time  instant  (see

(10) and (11)).

g h

Note that certain required minimizations can be expli-

citly  computed by setting  to  zero  the  partial  derivatives

(if these exist) of  and .

N

Then, ICM iterations are performed in the step 2) of

Algorithm 1.  In this  step,  each node is  visited according

to a  visit  scheme,  and  the  corresponding  states  are  up-

dated maximizing the respective conditional probabilities

(6)–(8). This procedure has a great similarity with the re-

cursive procedure of variable initialization (see (12)–(15)).

The number  of ICM iterations is as large as necessary,

and depends on the quality of the initialization.

t+ 1

t

As it will  be shown in Sections 5 and 6, Algorithm 2

has a very good performance although the starting point

moderately  differs  from  the  configuration  that  optimizes

the posterior probability of  the SLAM model.  Algorithm

2 is by definition an algorithm to be run off-line, because

data at time  are needed to update states of the time

 in its step 2).

However,  in  order  to  run  the  algorithm  on-line,  it  is

proposed  to  run  on-line  the  initialization  step  1),  and

then  perform  the  ICM  updates  at  key  moments,  which

can be among others: at the end; and in each closed loop,

i.e.,  each  time  the  robot  revisits  a  key  area  and  looks

again the landmarks that it had left behind.

Algorithm 2. ICM-SLAM

1) Initialization: (on-line)

m
(0)
l la) Each location  is initialized when the -th land-

mark is first seen.

c
(0)
0,i i = 1, · · · , n0b) Calculate , , with

c
(0)
0,i = argmin

l

∥∥∥h (x0, z0,i)−m
(0)
l

∥∥∥2

Q
(9)

t = 1 : Tfc) for 

i) Calculate c
(0)
t,i , i = 1, · · · , n1

c
(0)
t,i = argmin

l

∥∥∥h(g(xt−1, ut−1), zt,i)−m
(0)
l

∥∥∥2

Q
(10)
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ii) Calculate x
(0)
t with

x
(0)
t = argmin

x

{
∥g(xt−1, ut−1)− x∥2R +

∥x− x̂t∥2S +

nt∑
i=1

∥∥∥∥h (x, zt,i)−m
(0)

c
(0)
t,i

∥∥∥∥2

Q

}
(11)

end for

2) ICM iterations: (at key moments)

c0 c1 x1 c2 x2 · · ·
cTf xTf m

a)  The  visit  scheme  chosen  is: , , , , , ,

,  and .

n = 1 : Nb) for 

i) Calculate c
(n)
0,i , i = 1, · · · , nt,with

c
(n)
0,i = argmin

l

∥∥∥h (x0, z0,i)−m
(n−1)
l

∥∥∥2

Q
(12)

t = 1 : Tfii) for 

Calculate c
(n)
t,i , i = 1, · · · , nt,with

c
(n)
t,i = argmin

l

∥∥∥h(x(n−1)
t , zt,i)−m

(n−1)
l

∥∥∥2

Q
(13)

Calculate x
(n)
t with

x
(n)
t = argmin

x

{∥∥∥g(x(n)
t−1, ut−1)− x

∥∥∥2

R
+∥∥∥g(x, ut)− x

(n−1)
t+1

∥∥∥2

R
+∥∥∥x− x

(n)
t−1 − x̂t + x̂t−1

∥∥∥2

S
+∥∥∥x(n−1)

t+1 − x− x̂t+1 + x̂t

∥∥∥2

S
+

nt∑
i=1

h(x, zt,i)−m
(n−1)2Q

c
(n)
t,i

}
(14)

end for

m(n)iii) Calculate  with

m(n) = argmin
m

{
−Φ{m}(y)+

Tf∑
t=0

nt∑
i=1

∥∥∥∥h(
x
(n)
t , zt,i

)
−m

c
(n)
t,i

∥∥∥∥2

Q

 (15)

end for

4   Example of SLAM problem

xt = [xt,x, xt,y, xt,θ]
T (xt,x, xt,y)

∈ R2 xt,θ ∈ [0, 2π)

t

This section presents the specific SLAM problem that

will  be  used  to  simulate  and  experience  Algorithm  2.

Consider  a  differential  drive  mobile  robot  (DDMR)  as

shown in Fig. 3. The pose of the DDMR is characterized

by the state vector , where 

 is its location and  is its orientation at

time .  Consider also a kinematic model  for the DDMR,

ut = [νt, ωt] νt
ωt

in which the control  action is ,  where  and

 are the linear and angular reference velocities.

Then, the  function  that  characterizes  the  robot  mo-

tion model is given by

g(xt−1, ut−1) = xt−1 +∆t


νt−1 cos(xt−1,θ)

νt−1 sin(xt−1,θ)

ωt−1


∆t > 0where  is a fixed sampling period.

L

ml ∈ R2

It  is  assumed  that  in  the  environment,  there  are 

landmarks located at  as indicated in Fig. 4.

t

zt = {zt,i : i = 1, · · · , nt}
zt,i = [zt,i,d, zt,i,θ] zt,i,d

ct,i zt,i,θ

0 π

The DDMR is equipped with a laser range finder that

estimates the distance and direction to the landmarks loc-

ated in the observation range (see Fig. 4). Suppose that at

time ,  this  sensory  information  can  be  synthesized

through ,  where  each

 contains the distance  from the ro-

bot  to  the  landmark ,  and  the  direction  from

which  the  landmark  was  observed.  This  direction  takes

values between  (right side of the robot) and  (left side

of  the  robot).  Then,  the  function  that  characterizes  the

observation model is

h(xt, zt,i) =

[
xt,x

xt,y

]
+ zt,i,d

 cos
(
zt,i,θ + xt,θ −

π

2

)
sin

(
zt,i,θ + xt,θ −

π

2

)
 .

 

xt, y

xt, θ

xt, x

 
Fig. 3     Diagram of a DDMR

 

 

 
Fig. 4     SLAM simulation setting
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x̂t − x̂t−1 xt − xt−1

x̂t−1,θ = xt−1,θ

τ(θ)

In addition,  DDMR  estimates  its  pose  through  en-

coders. In this context, the odometry information can be

introduced  into  the  potentials  (4)  more  efficiently.  Note

that  is  a  good  estimator  of  if

, but if this is not the case, it is needed to

properly rotate these vectors in order to obtain better ap-

proximations.  To this  aim,  let  be the rotation mat-

rix given by

τ(θ) =


cos θ sin θ 0

− sin θ cos θ 0

0 0 1

 .

τ(x̂t−1,θ)(x̂t − x̂t−1)

τ(xt−1,θ)(xt − xt−1)

Then,  is  a  good  estimator  of

, and  the  potentials  (4)  can  be  re-

defined by

Φ{xt−1,xt}(xt−1, xt) = −∥g(xt−1, ut−1)− xt∥2R −

∥τ(xt−1,θ)(xt−xt−1)−τ(x̂t−1,θ)(x̂t−x̂t−1)∥2S ,

t ≥ 2.
(16)

Φ{m}(m) = 0

ϑ > 0 Φ{m}(m) ≫ 0

Different labels  are  occasionally  assigned  to  observa-

tions of the same landmark. The locations of these labels

tend to  be  similar  when  the  number  of  observations  in-

creases.  In  order  to  solve  this  problem  and  to  formalize

this  fusion,  it  is  defined  a  potential  function

 for  the  maps  that  include  at  least  two

landmarks inside a region defined by a certain threshold

. Additionally,  values are assigned to

the other maps, i.e., the potential of feasible maps is con-

stant and large enough allowing to always choose some of

these maps as optimal.

The  particularization  of  Algorithm 2  begins  with  the

selection of an appropriate method to perform the compu-

tations  of  the  discrete  optimizations  (9),  (10),  (12)  and

(13)  whereas  minimizations  (11)  and  (14)  are  performed

by  numerical  methods  (see  Section  5  for  more  details).

Equation (15)  is  solved  by  considering  a  three  step  pro-

cedure. First, the map locations are updated as follows:

m
(n)
l =

1
Tf∑
t=1

#{i : c(n)
t,i = l}

Tf∑
t=1

∑
i:c

(n)
t,i =l

h(x
(n)
t , zt,i). (17)

Second,  the  label  set  is  partitioned  according  to  the

distances between their locations by following two rules:

l1 l2

∥m(n)
l1

−m
(n)
l2

∥ < ϑ

1) Two labels  and  must belong to the same com-

ponent of the partition if .

l1

∥m(n)
l1

−m
(n)
l2

∥ ≥ ϑ l2

2) A label  cannot belong to a component in which

 for all labels  of the component.

Third,  the  matchings  are  redefined  by  grouping  the

observations with labels in the same component, and the

locations are recalculated by using (17) again.

ζ > 0

ml

∑Tf

t=1

∑nt
i=1 δl(ct,i) < ζ

δl(ct,i) = 1 ct,i = l δl(ct,i) = 0

m

This procedure is also performed to finish the step 1)

of Algorithm 2. Notice that this procedure assigns labels

to objects seen only once. In practice, it is impossible to

ignore the  presence  of  sensing  errors  due  to  the  appear-

ance of many kinds of external objects. These errors pro-

duce false landmarks in the map that should be filtered.

One way to do this is deleting the objects that were ob-

served  an  amount  of  time  less  than  a  certain  threshold

.  This  threshold  should  be  chosen  well  below  than

the  mean of  the  number  of  times  that  each landmark is

expected to be seen during experimentation. This can eas-

ily be done by defining a counter through which the map

locations  are  removed  if ,  with

 if ,  and  in  other  case.  This

post-filtering can be applied each time  is updated.

5   Simulations

C++

This section presents simulation results for the SLAM

problem described in Section 4.  In order to simulate the

proposal, Matlab is used for calculations, and MobileSim

program is  used to simulate the dynamic model  of  a  ro-

bot Pioneer p3dx-sh (http://robots.mobilerobots.com/wiki/

MobileSim). For the connection between Matlab and Mo-

bileSim,  a  interface based  on  shared  memory  re-

source is used, which allows to read the laser range sensor

and generate on-line control commands. The PC used to

perform the simulation has a Processor Intel@CoreTM i7-

4790 3.60 GHz and 16 GB of RAM. The numerical resolu-

tion  of  (11)  and  (14)  is  performed  by  using  the  Matlab

function fminunc, with  initial  point  setting  by  the  kin-

ematic model and default options. The optimizations (9),

(10), (12) and (13) are solved by using the Matlab optim-

ization functions named cluster, linkage and pdist2.

The initial  pose  of  DDMR  and  the  landmarks  con-

sidered  are  shown  in Fig. 4.  A  control  method  to  allow

the  robot  to  follow  an  irregular  path  was  implemented.

While the robot navigated, it acquired laser observations

of distances and directions (with respect to robot) of the

landmark in the operation radius. In order to reduce the

stored  information,  maximum  range  observations  were

eliminated,  since  the  achievement  of  this  value  indicates

that there are not landmarks in these directions. In addi-

tion, isolated observations were eliminated, i.e., those ob-

servations that were not accompanied by a similar obser-

vation in the contiguous directions. This was done based

on the fact that any observed landmark to a logical dis-

tance  produces  at  least  two  measurements  in  adjacent

orientations,  and  that  isolated  observations  generally

come from  sensing  errors.  Adjacent  observations  are  in-

troduced to  the  algorithm  as  different  observations.  Re-

garding  the  parameters  of  the  model,  it  is  considered

that:

R Q1)  and  are identity matrices to give equal weight
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to the motion and observation models,

S2)  is the null matrix because the odometry error in

MobileSim is almost negligible over short distances and it

makes no sense to show the ICM virtues using these data.

ϑ = 1 ζ = 5003)  meter and  observations.

∆t = 0.1

Note that 500 is small since there are multiple obser-

vations  for  each  landmark  at  each  sampling  period  of

.

Results  of  the  first  simulation  are  summarized  in

Fig. 5. The circles show the landmarks real locations, and

the path  reconstructed  by  using  odometric  data  is  plot-

ted  in  dash-dot  line.  In Fig. 5(a), the  estimated  traject-

ory appears in solid line whereas the points show the es-

timated locations of the landmarks at the end of step 1)

of  Algorithm  2.  These  are  the  initial  estimates  of  ICM,

and based on them, the ICM iterations  are  produced.  It

can be observed that the estimated trajectory is not per-

fectly followed with estimated landmarks on the sides of

such path. In Figs. 5(b), 5(c) and 5(d), the outputs of the

ICM iterations 10, 20 and 30 are shown. Note how itera-

tion by iteration ICM corrects the deviation of the initial

estimate  of  the  path  until  it  converges  to  a  trajectory

very  similar  to  the  actual  one.  At  the  same  time,  it  is

shown  how  the  algorithm  corrects  the  locations  until  it

reaches very good estimates of the sensed landmarks.

In order to calculate the errors, it is measured the dis-

tance  between  each  estimated  landmark  and  its  nearest

real  location.  The  minimum,  maximum and mean errors

with  respect  to  the  observed  landmark  are  plotted  in

Fig. 6(c). The final mean error is 0.148 m. The estimated

errors in  the  first  iterations  are  underestimations,  be-

cause there are very bad estimates of a landmark A that

coincides  with  the  real  location  of  another  landmark  B.

This  estimation  has  null  error  in  the  error  computation,

but in fact the error is much greater. However, this error

calculation methodology is the simplest and most general,

allowing to measure errors in extreme situations as shown

in Fig. 6(a) and to evidence the ICM convergence.

Another  peculiarity  to  consider  is  that  the maximum

errors  are  observed  in  estimations  of  landmark  locations

that are not in the adjacencies of the robot paths. If the

mean error is calculated based solely on the estimated po-

sition of the landmarks of the three adjacent rows to the

robot trajectory, then the mean error is 0.112 m. It can be

seen  that  in  the  iteration  27,  the  algorithm  already

reached  the  convergence,  requiring  a  total  time  of

432.24 s.  Most  of  the  computational  cost  is  consumed  in

the iterative  resolution of  (11)  and (14).  Note  that  ICM

converges  much  faster  if  odometry  data  are  used  (see

Fig. 5(f)).

One of the main sources of error comes from using the

maximum amplitude of the laser range, producing the ini-

tial estimates shown in Fig. 5(a). It is observed that redu-

cing this  range  produces  better  initial  maps,  and  there-

fore  fewer  ICM iterations  to  correct  initial  mistakes  are

required. Fig. 7(a) shows the ICM initialization output for

a maximum laser value of 10 m; whereas the outputs con-

vergence for the ICM iteration 10 appears in Fig. 7(b). It
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is  noted  that  ICM  converges  close  to  its  initialization,

producing  little  change  in  subsequent  iterations.  In

Fig. 7(d), the  error  evolution  when  considering  the  odo-

metry data through the identity matrix S is shown. Also

in  this  case,  the  inclusion  of  odometric  data  accelerates

the algorithm convergence.

In both simulations, ICM converges to a local maxim-

um of  the  posterior  probability  of  Gibbs  that  character-

izes  the  SLAM  problem.  This  local  maximum  is  the

closest to  the  set  of  initial  estimates,  and  therefore  re-

quires good  initial  estimates  to  optimize  the  ICM  per-

formance. However, ICM works well despite being initial-

ized with the estimates showed in Simulation 1. Fig. 6 re-

ports the outcomes when the ICM is initialized with the

t

kinematic estimates (see Fig. 6(a), i.e., instead of using a

numerical  optimizer  to  solve  (11)  and  its  equivalent  at

time , the vehicle  poses  are  initialized by using its  kin-

ematic  model  only.  With  respect  to  the  ICM sensitivity

to very bad initializations, it can be observed the import-

ant  role  of  the  vehicle  pose  numerical  updates  at  each

ICM iteration.

6   Experiment

An experiment was carried out in order to verify the

performance of the proposed algorithm. A Pioneer 3At ro-

bot  from  ActiveMedia  equipped  with  an  outdoor  laser

range-finder sensor from Sick (see Fig. 8(a)) was teleoper-
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ated in an open field setting. The environment consists of

11 static reference points: a teleoperator, a videographer,

8 cones that form a regular octagon with a radius of 7.12 m,

and a cone on the center of the octagon (see Fig. 8(b)).

The parameters fixed for the experiment are:

R Q S1) ,  and  are  identity  matrices  to  give  equal

weight to the motion model, observation models, and the

odometry data.

ϑ = 1 ζ = 5002)  meter and  observations.

The experimentation results  are  shown in Fig. 9.  The

odometry path is shown with dashed lines, the trajectory

estimations are shown with solid lines, and the estimated

location of the landmarks are shown with asterisks mark-

ers. In Fig. 9(a), the initial ICM estimates are shown, and

in Figs. 9(b) and 9(c), the ICM estimates in its iterations

10  and  100  are  displayed  respectively.  In Fig. 9(d),  the

evolution of the average norm of the changes in the map

estimations from one iteration to another is shown. Note

that the estimates practically converge in the first  itera-

tions.

The  computation  time of  the  initial  ICM estimations

is  about  10.8 s  for  the  complete  dataset  (see Fig. 9(a)).

Taking into account that the data acquisition lasted 183 s
with a sample time of 0.1 s, this gives an average time of

approximately  6  milliseconds  per  sample  time  dedicated

to obtain  the  initial  estimation.  This  shows  that  the  al-

gorithm  can  be  initialized  on-line.  On  the  other  hand,

each ICM iteration also required approximately 10.8 s. As

shown in Fig. 9(d), the maximum change from the initial

estimation is  less  than  35  millimeters.  This  clearly  ex-

poses the good performance of the initial estimation. Ad-
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ditionally,  few  ICM  iterations  are  required  in  order  to

achieve that  errors  converge.  This  shows  that  initial  er-

rors can be quickly corrected through ICM iterations.

7   Conclusions

In this paper, the complex SLAM problem is modeled

through  a  very  flexible  MRF,  which  can  be  used  as  a

global  framework  for  particular  applications.  Among  the

potentialities of the methodology, it can be mentioned: It

allows  to  incorporate  an  observation  model  regardless  of

the type of  sensor being chosen.  It  allows to incorporate

any motion model. It allows to incorporate prior informa-

tion of the map through a map model. It allows to work

with  maps  of  diverse  natures.  It  allows  to  incorporate

sensor fusion weighted according to the accuracy thereof.

It allows to incorporate multiple robots. It allows to work

with dynamic environments.

Later,  it  is  proposed  to  use  the  ICM  algorithm  to

solve the SLAM problem through a probabilistic optimiz-

ation. Among the characteristics of ICM, it can be men-

tioned:  It  has  theoretical  convergence  regardless  of  the

MRF chosen to model the SLAM problem and the nature

of the  multiple  observations  and  measurements  con-

sidered. It can be used as a post-processing methodology

if  it  is  initialized  with  estimates  obtained  with  another

SLAM solver. It can be initialized on-line and be iterated

in  parallel  to  correct  the  initial  estimates  whenever

deemed appropriate. It is robust to initialization of inter-

mediate quality.

Simulations  and  experiments  show the  flexibility  and

the excellent results of the proposal.
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