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Abstract: FastSLAM is a popular framework which uses a Rao-Blackwellized particle filter to solve the simultaneous localization and

mapping problem (SLAM). However, in this framework there are two important potential limitations, the particle depletion problem

and the linear approximations of the nonlinear functions. To overcome these two drawbacks, this paper proposes a new FastSLAM

algorithm based on revised genetic resampling and square root unscented particle filter (SR-UPF). Double roulette wheels as the

selection operator, and fast Metropolis-Hastings (MH) as the mutation operator and traditional crossover are combined to form a new

resampling method. Amending the particle degeneracy and keeping the particle diversity are both taken into considerations in this

method. As SR-UPF propagates the sigma points through the true nonlinearity, it decreases the linearization errors. By directly

transferring the square root of the state covariance matrix, SR-UPF has better numerical stability. Both simulation and experimental

results demonstrate that the proposed algorithm can improve the diversity of particles, and perform well on estimation accuracy and

consistency.

Keywords: Simultaneous localization and mapping (SLAM), genetic algorithm, square root unscented particle filter (SR-UPF), fast

Metropolis-Hastings (MH), double roulette wheels.

1 Introduction

Localization and incremental mapping occur simultane-

ously when a mobile robot is navigating in an unknown

environment, the so called simultaneous localization and

mapping[1, 2]. This process is commonly abbreviated as

simultaneous localization and mapping problem (SLAM),

and is also known as concurrent mapping and localization

(CML). The idea of SLAM was introduced at the 1986 IEEE

Robotics and Automation Conference, and is considered by

many to be a key prerequisite for truly autonomous robots.

SLAM has been applied to a number of different applica-

tions, stretching from search and rescue, over reconnais-

sance to commercial products[2]. However, SLAM research

still faces many challenging problems, such as large-scale

and complex environments, reliable data association, non-

linearity, and unknown priori knowledge.

From a probabilistic perspective, SLAM approaches are

divided into two groups: offline and online. Offline SLAM

is introduced by Lu and Milios (1997) and it optimizes the

complete trajectory estimation and map after all data has

been recorded. Batch algorithms such as smoothing and

mapping (SAM)[3] and GraphSLAM[4] are offline methods.

SAM involves not just the most current robot location, but

the entire robot trajectory up to the current time[4]. Graph-
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SLAM transforms the SLAM posterior into a graphical net-

work, representing the log-likelihood of the data[3]. Online

SLAM involves estimating the posterior over the momen-

tary pose along with the map. Probabilistic approaches,

i.e., extended Kalman filters (EKF) and particle filters (PF)

have become dominant in the online SLAM research. EKF

and PF are both mathematical derivations of the recursive

Bayes rule. For computational complexity, EKF-SLAM is

not suitable in real-time and large environments[5]. Fast-

SLAM is an instance of Rao-Blackwellized particle filter

(RBPF), which separates the full SLAM posterior into a

product of a robot path posterior and landmark posteriors

conditioned on the robot path estimation[6]. By the fac-

torization, it needs less memory usage and computational

time. Each particle has its respective map and performs

its own data association in FastSLAM algorithm. This

multi-hypothesis data association ability makes FastSLAM

more robust to data association problems than EKF-SLAM.

There are many successful implementations of FastSLAM

to solve different SLAM applications. In [7], FastSLAM

was chosen to solve the visual SLAM problem. Chen et

al.[8] extended FastSLAM from the single-robot SLAM to

the multi-robot case.

FastSLAM, however, has some drawbacks as well. One

is that FastSLAM linearizes the motion model in the same

manner as EKF-SLAM. Inaccurate approximation of the

nonlinear function leads to filter divergence[9]. To reduce

the linearization errors, unscented particle filter (UPF) was

introduced to estimate the robot pose and landmark esti-

mations in the FastSLAM framework[10, 11]. This method

combines particle filter with unscented Kalman filter (UKF)
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which extracts the sigma points from the Gaussian and

passes these through the nonlinear function. By avoiding

the linearizion based on Taylor series expansion, UKF out-

performs the EKF in accuracy and robustness. More re-

cently, the central difference particle filter and robust iter-

ated sigma point methods were introduced, and they are

both similar to UKF[12, 13].

The other noticeable drawback is the particle depletion.

FastSLAM has been known to degenerate over time, and it

is impossible to be prevented as proven by Kong-Liu-Wong

theorem[6, 14, 15]. Resampling process aims for amending the

particle degeneracy, but it always leads to lose the particle

diversity, the so called particle depletion. A reasonable de-

sign of the resampling process plays an important role, and

avoiding loss of diversity remains an ongoing topic in the

application domain of particle filter such as target track-

ing, SLAM, etc. Liu[16] introduced the effective number

of particles to estimate how well the current particle set

represents the true posterior. After that, most resampling

algorithms use it as an indicator to determine when to re-

sample, and drastically reduce the risk of replacing good

particles[17]. Many resampling approaches have been re-

searched in the field of particle filters, and the most often

encountered algorithms are systematic resampling, resid-

ual resampling, multinomial resampling, stratified resam-

pling. Although they differ mainly in the generation of

ordered sequence of random numbers, all of them simply

replace lower weighted particles with higher weighted par-

ticles[18, 19]. Auxiliary particle filter (APF) and regularized

particle filter (RPF) are another two variants of sequential

importance sampling/resampling (SISR) algorithm, yet the

efficiency of the above methods can further be improved[19].

Some biological evolution algorithms have been newly pro-

posed to keep particle diversity as long as possible. Genetic

resampling, which produces a new particle generation by

selection, crossover and mutation operators, can increase

the diversity of particles in state space and eliminate the

disadvantage of random resampling[20, 21].

Two approaches to increase the performance of the Fast-

SLAM algorithm are presented in this paper.

1) Square-root UKF (SR-UKF) has better numerical

properties and guarantees positive semi-definiteness of the

underlying state covariance. SR-UPF which combines SR-

UKF and particle filter samples particles in a highly accu-

rate manner.

2) A revised resampling technique, which uses a genetic

method based on the fast metropolis-hastings (MH) and

double roulette wheels, reduces the risk of particle depletion

and increases the diversity.

The rest of the paper is organized as follows. In Section 2,

the SLAM problem and FastSLAM2.0 algorithm are pre-

sented in brief. SR-UPF and a revised genetic resampling

method are proposed in Sections 3.1 and 3.2, respectively.

The realizations of the proposed algorithm is presented in

Section 3.3. Section 4 experimentally compares the pro-

posed algorithm with FastSLAM2.0 by using simulation

environment and “Car Park Dataset”. Finally, Section 5

presents the conclusions.

2 Background

2.1 SLAM problem

To describe SLAM, the robot pose at time t is denoted

as xt, and the entire map is denoted as Θ. The control

and observation at time t are represented as ut and zt, re-

spectively. The standard motion and observation models as

nonlinear functions with independent Gaussian noise are as

follows:

xt = g(xt−1, ut) + ε (1)

zt = h(xt, Θ) + δ (2)

where g and h are nonlinear functions, and ε and δ are

Gaussian disturbances with covariance Q and R, respec-

tively.

In the Bayesian probabilistic framework, the online

SLAM problem attempts to estimate the posterior prob-

ability distribution over all possible maps and robot poses

conditioned on the full set of controls and observations at

time t.

p(xt, Θ|z1:t, u1:t). (3)

The following recursive formula, known as the Bayes Fil-

ter, is used to compute the posterior of (3). By using the

Bayes rule, the law of total probability, and the Markov

hypothesis[1], the online SLAM problem can be rewritten

as

p(xt, Θ|z1:t, u1:t)
︸ ︷︷ ︸

The posterior distribution

at time t

∝ p(zt|xt, Θ)
︸ ︷︷ ︸

The observation

model
∫

p(xt|xt−1, ut)
︸ ︷︷ ︸

The motion

model

p(xt−1, Θ|z1:t−1, u1:t−1)
︸ ︷︷ ︸

The posterior distribution

at time t-1

dxt−1

(4)

In general, the integral of (4) cannot be evaluated in

closed form. EKF-SLAM and FastSLAM are simply ap-

proximations of the general Bayes filter[5].

2.2 FastSLAM 2.0 algorithm

The posterior distribution of (4) possesses no closed form

from which we can easily draw samples. FastSLAM 2.0 is

an efficient algorithm based on a straightforward factoriza-

tion. This factorization separates the full SLAM posterior

into a product of a robot path posterior and N landmark

posteriors conditioned on the robot path[6].

p(x1:t, Θ|z1:t, u1:t) = p(x1:t|z1:t, u1:t)p(Θ|z1:t, u1:t) =

p(x1:t|z1:t, u1:t)

N
∏

j=1

p(mj |z1:t, u1:t)

(5)
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where x1:t is the path of the robot from the start to time t.

The decomposed posterior in (5) can be approximated by

a particle filter, with each particle representing a sample of

the robot path[6]. Attached to each particle, N independent

landmark estimations are implemented as EKFs. At time

t, the i-th particle is described by the following equation.

X
[i]
t = < (x

[i]
t , ω

[i]
t ), (μ

[i,1]
t , Σ

[i,1]
t ), (μ

[i,2]
t ,

Σ
[i,2]
t ), · · · , (μ

[i,j]
t , Σ

[i,j]
t ), · · · , (μ

[i,N]
t , Σ

[i,N]
t ) >

(6)

where x
[i]
t is the estimated robot pose of the i-th particle,

and ω
[i]
t is the weight of this particle. (μ

[i,j]
t , Σ

[i,j]
t ) are the

mean and the covariance matrix of the Gaussian represent-

ing the j-th landmark conditioned on this particle.

At time t, the updating flow of each particle is shown in

Fig. 1.

Fig. 1 Flowchart of each particle updating in FastSLAM 2.0

1) Predict

Instead of sampling a new robot pose from the motion

model in FastSLAM 1.0, FastSLAM 2.0 samples a new pose

from the motion model and the most recent observation zt.

x
[i]
t ∼ p(xt | x

[i]
t−1, ut, zt). (7)

A new robot pose is drawn from the motion model and

updated by the most recent observation.

x̂
[i]
t = g(x

[i]
t−1, ut) (8)

where x̂
[i]
t is the predicted pose of the i-th particle from

the motion model at time t. By incorporating the current

observation into the proposal distribution, FastSLAM 2.0

can get better match the posterior, and it is superior to

FastSLAM 1.0 in nearly all respects[6].

2) Data association

Data association is the process of relating landmarks ob-

served in the environment to landmarks in the map.

3) Update the robot pose estimation

In this step, the robot pose will be updated by the most

recent observation zt.

ẑ
[i]
t = h(x̂

[i]
t−1, Θ) (9)

x
[i]
t = x̂

[i]
t + β(zt − ẑ

[i]
t ) (10)

where ẑ
[i]
t is the predicted observation, and β is calculated

from the landmark estimation covariance matrices, Qt, Rt

and the Jacobian matrices.

4) Calculate the importance weight

In the FastSLAM framework, the importance weight is

defined as the ratio of the target distribution over the pro-

posal distribution.

ω
[i]
t =

Target distribution

Proposal distribution
=

p(x
[i]
1:t|z1:t, u1:t)

q(x
[i]
1:t|z1:t, u1:t)

. (11)

The proposal distribution q(x
[i]
1:t|u1:t, z1:t) can be repre-

sented by a recursive form, as

q(x
[i]
1:t|z1:t, u1:t) =

q(x
[i]
t |x[i]

t−1, zt, ut)q(x
[i]
t−1|z1:t−1, u1:t−1, x0). (12)

The Bayes rule is used to calculate the importance
weight, as follows:

ω[i]
t ∝ p(zt|x[i]

t )p(x[i]
t |x[i]

t−1, ut)p(x[i]
t−1|x[i]

1:t−1, z1:t−1, u1:t−1, x0)

q(x[i]
t |x[i]

t−1, zt, ut)q(x
[i]
t−1|z1:t−1, u1:t−1, x0)

=

ω[i]
t−1

p(zt|x[i]
t )p(x[i]

t |x[i]
t−1, ut)

q(x[i]
t |x[i]

t−1, zt, ut)
.

(13)

The choice of the proposal distribution is one of the most

critical issues in the FastSLAM framework. The choice in

FastSLAM 1.0 is the transitional prior.

q(x
[i]
t |x[i]

t−1, zt, ut) = p(x
[i]
t |ut, x

[i]
t−1). (14)

The proposal distribution in FastSLAM 2.0 is as

q(x
[i]
t |x[i]

t−1, zt, ut) = p(x
[i]
t | x

[i]
t−1, ut, zt) (15)

where ω
[i]
t is normalized as

ω̄
[i]
t =

ω
[i]
t

M
∑

k=1

w
[k]
t

(16)

where M is the number of particles.

5) Update landmark estimations

Since the landmark estimations are conditioned on the

robot pose, N EKFs are attached to each particle. In [6],

a landmark estimation updating depends on whether the

landmark is observed at time t. If a landmark is newly

observed, its mean and the covariance are initialized as fol-

lows:

μ
[i,N+1]
t = h−1(zt, x

[i]
t ) (17)

Σ
[i,N+1]
t = HrzRtH

T
rz. (18)
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where the matrix Hrz is the Jacobian of h−1. If the j-th

landmark in the map is not observed, the estimation re-

mains unchanged.

μ
[i,j]
t = μ

[i,j]
t−1 (19)

Σ
[i,j]
t = Σ

[i,j]
t−1 . (20)

If the j-th landmark in the map is observed, the updating

is specified through the following equations.

μ
[i,j]
t = μ

[i,j]
t−1 + Kt(zt − ẑ

[i]
t ) (21)

Σ
[i,j]
t = (I − KtHz)Σ

[i,j]
t−1 (22)

where Kt is the Kalman gain coefficient, and the matrix Hz

is the Jacobian of h.

After all particles are updated, the number of effective

particles is used as a robust indicator to determine when to

resample[18]. The number is defined as

Neff =
1

M
∑

k=1

(ω̄
[k]
t )2

. (23)

When Neff is less than a given threshold, the resampling

process would be performed. After that, all particle weights

are reset to

ω
[j]
t =

1

M
. (24)

3 Combine SR-UPF with the re-

vised genetic resample in FastSLAM

framework

3.1 SR-UPF algorithm

SR-UPF combines the particle filter with square root

unscented Kalman filter (SR-UKF) to sample over robot

paths. In contrast to UPF, SR-UPF can have the added

benefit of numerical stability and guaranteed positive semi-

definiteness of the state covariances[22] . SR-UPF makes

use of three linear algebra techniques[23]. QR decompo-

sition, Cholesky factor updating and efficient least squares

are briefly review below:

1) QR decomposition: A QR decomposition (also called

a QR factorization) is often used to solve the linear least

squares problem, and is the basis for a particular eigenvalue

algorithm, the QR algorithm. The QR decomposition of

matrix of A is given by

AT = QR (25)

where A is an m-by-n matrix, Q is an m-by-m unitary ma-

trix and R is an m-by-n upper triangular matrix. The

shorthand notation qr· to denote a QR decomposition of

a matrix where only R is returned.

2) Cholesky factor updating: The cholesky factor updat-

ing is give by

S1 = cholupdate(S, x,±U) (26)

where S is the original Cholesky factory of P = AAT.

Cholupdate is rank 1 update to Cholesky factorization, and

returns S1 = P ± √
UxxT. This algorithm is available in

Matlab as cholupdate.

3) Efficient least squares: The solution of the equation

(AAT)x = ATb corresponds to the overdetermined least

squares problem Ax = b. The solution can be solved effi-

ciently by a QR decomposition with pivoting which is im-

plemented by the “/” operator in Matlab.

The implementation of SR-UPF is as follows:

1) Initialize

Suppose that x0 and P0 are the mean and the covariance

of the robot pose estimation at the start, the mean, the

square root of the covariance, and a set of scalar weights

are initialized.

x̂0 = x0, S0 = chol(P0) (27)

where the square root of the covariance, S0, is calculated

by a Cholesky factorization which decomposes a symmet-

ric, positive-definite matrix into the product of a lower-

triangular matrix and its transpose.

ωm
0 =

λ

L + λ
, ωc

0 =
λ

L + λ
+ (1 − α2 + β) (28)

ωm
i = ωc

i =
1

2(L + λ)
, i = 1, 2, · · · , L, · · · , 2L (29)

where {ωi} is a set of the scalar weights. L is the dimen-

sion of the state variable, and λ = α2(L + κ) is a scaling

parameter. The constant α determines the spread of the

sigma points around x̂, and β is used to incorporate prior

knowledge of the distribution of state variable (β = 2 is

optimal for Gaussian distribution), and κ is a secondary

scaling parameter.

2) Calculate the sigma points

Xt−1 = [x̂t−1 x̂t−1 + ηSt−1 x̂t−1 − ηSt−1] (30)

where St−1 is the square root of the covariance at time t−1,

and the scaling constant η is calculated from

η =
√

L + λ. (31)

3) Update by the control data

The sigma points are passed through the nonlinear mo-

tion model.

X∗
t = g(Xt−1, ut). (32)

The estimated mean and square root of the covariance

are calculated from the transformed sigma points using

x̂t =
2L
∑

i=0

ωm
i X∗

t,i (33)

Ŝt = qr{[
√

(ωc
i )(X

∗
t,1:2L − x̂t)

√

Q]} (34)

Ŝt = cholupdate{Ŝt, X∗
t,0 − x̂t, ωc

0} (35)

where Q is the covariance matrix of the control noise. Ŝt is

calculated by a QR decomposition in (34), and updated by a
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Cholesky updating operation in (35). Since the weight may

be negative, the subsequent Cholesky updating operation

is necessary.

Xt = [x̂t x̂t + ηŜt x̂t − ηŜt]. (36)

The transformed sigma points are then used to predict

the observation by the nonlinear observation model.

Ẑt = h(Xt, Θ) (37)

ẑt =
2L
∑

i=0

ωm
i Ẑt,i. (38)

4) Update by the observation data

The same two steps, QR decomposition and Cholesky

updating operation are both applied to the calculation of

ŜZt .

ŜZt = qr{[
√

(ωc
1(Ẑt,1:2L − ẑt)

√
R]} (39)

ŜZt = cholupdate{ŜZt , Ẑt,0 − ẑt, ωc
0} (40)

where R is the covariance matrix of the observation noise.

In order to determine how much to adjust the estimated

mean and covariance based on the observation data, the

Kalman gain matrix Kt is calculated

Pxtzt =
2L
∑

i=0

ωc
i (Xt,i − x̂t)(Ẑt,i − ẑt)

T (41)

Kt =
Pxtzt/ŜT

Zt

ŜZt

. (42)

The nested inverse (or least squares) solutions are used

in (42). Since ŜZt is square and triangular, efficient “back-

substitutions” can be used to solve for Kt directly without

the need for matrix inversion.

Finally, the mean and covariance are updated by

xt = X̂t + Kt(zt − ẑt) (43)

U = KtŜZt (44)

St = cholupdate(Ŝt, U,−1). (45)

3.2 Genetic resampling based on fast
metropolis-hastings mutation and
double roulette wheels selection

Genetic algorithm (GA) is an artificial intelligence pro-

cedure. It is based on the theory of natural selection and

evolution. GA evolves to the next generation by genetic op-

erators such as selection, crossover and mutation. GA used

in resampling process can improve the diversity of particles,

but the mutation strategy in genetic resampling process has

an important influence on the quality of new generation par-

ticles. Fast Metropolis-Hastings (MH) mutation can solve

the divergence problem of the traditional mutation and pro-

duce the typical particles to reflect the target density more

quickly[24].

Fig. 2 Flow of the genetic resampling based on fast MH muta-

tion and double roulette wheels selection

The process of the genetic resampling algorithm based

on fast MH mutation and double roulette wheels selection

is described in Fig. 2, where Ps, Pc and Pm are probabilities

of selection, crossover and mutation, respectively. Let Ps

be 0.5, and the values of Pc and Pm depend on the particle

set diversity which is represented as Vd.

Vd =
Ht

Hbest
(46)

Ht =
M
∑

i=1

f2(x
[i]
t ) (47)

f2(x
[i]
t ) =

M
∑

j=1

(
L

∑

k=1

|x[i,k]
t − x

[j,k]
t |) (48)

where L is the dimension of the state variable, and M is

the number of particles. The function f2(x
[i]
t ) is the sum of

the Hamming distance between particle x
[i]
t and the other

particles. Hbest represents maximum value of H from the

start till time t. Pc and Pm are calculated as
⎧

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎩

Pc = 0.8, Pm = 0.2
3

4
< Vd ≤ 1

Pc = 0.6, Pm = 0.4
1

2
< Vd ≤ 3

4

Pc = 0.4, Pm = 0.6
1

4
< Vd ≤ 1

2

Pc = 0.3, Pm = 0.7 0 < Vd ≤ 1

4
.

(49)

1) Selection

Particles which breed a new generation are selected by

a double roulette wheels algorithm. This method requires

the following steps.

Step 1. Sort particles by a fitness function f(xi).

Step 2. Generate a uniform random number r between

[0,
∑M

i=1 Fitness(xi)].

Step 3. Select the particle if qi−1 < r ≤ qi, where qi =
∑i

j=1 Fitness(xj) and q0 = 0.

Step 4. Repeat Steps 2 and 3 until the number of new

particles reaches a given value.

Two different fitness functions are used to build double
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roulette wheels. The first fitness function is the particle

weight which reflects the pros and cons of a path estimation.

f1(x
[i]
t ) = ω

[i]
t . (50)

As a measure of the particle diversity, the function

f2(x
[i]
t ) in (48) is used to improve the particle diversity as

the second fitness function. Two particle sets Xf1 and Xf2

are drawn from the different roulette wheels. The lengths of

two particle sets are both M
4

. If there are repeated particles

between the two particle sets, the double roulette wheels al-

gorithm is used to generate new particles till all the particles

from the two particle sets are different.

2) Crossover

Two subsets X̃f1 and X̃f2 are randomly drawn from Xf1

and Xf2, respectively. The lengths of X̃f1 and X̃f2 are both
PcM

2
. New particles are defined as

xnew
i = αX̃f1,i + (1 − α)X̃f2,i (51)

where α is a uniform random number in [0.3, 0.7].

3) Mutation

New particles are generated by the proposal function

q(x, x̃), which is a spherically symmetric random walk:

q(x, x̃) = q(|x − x̃|) ∝ e
(x−x̃)2

2σ2 (52)

where σ is the jump size, and adjusted by the covariance

of the path estimation. Once the new candidates are gen-

erated, the algorithm keeps or discards them according to

the acceptance ratio a(x, x̃).

a(x, x̃) =
p(z|x̃)q(x, x̃)

p(z|x)q(x̃, x)
. (53)

According to the acceptance ratio, only the first PmM
2

of

new candidates are kept.

3.3 Realization of the proposed Fast-
SLAM algorithm

Compared with FastSLAM 2.0, the proposed algorithm

has two important improvements. One is to use genetic

algorithm based on fast MH mutation and double roulette

wheels selection in resampling process. The other is to use

SR-UPF in sampling process.

The flow of the proposed FastSLAM algorithm is shown

in Fig. 3.

Fig. 3 Comparison between FastSLAM 2.0 and the proposed

algorithm

1) Initialize

According to the particle number and the noise covari-

ance matrices of the control and observation, the initial set

is generated.

2) Update particles

By the following steps, each particle is updated.

Step 1. Predicting the pose. The predicted robot pose

is drawn by (30) – (38).

Step 2. Data association. This paper adopts individual

compatibility nearest neighbor (ICNN) to implement data

association[25] .

Step 3. Updating the pose. The robot pose is updated

by (39) – (45).

Step 4. Calculating the important weight and normal-

izing it.

Step 5. Refreshing the map. The flow is same as that

of FastSLAM 2.0.

3) Resample

The revised genetic resampling would be carried out to

generate a new particle set when Neff drops below a given

threshold of M
2

, where M is the number of particles. After

resampling, all particle weights are reset to 1
M

.

4 Experimental analysis

4.1 Simulation experiment

In the simulation environment, the SLAM state is de-

scribed by the robot pose (position and heading) and land-

mark locations. The state at time t is represented by a joint

state-vector Xt.

Xt = [xt, Θ] = [(xxt , yxt , θxt), (xm1 , ym1), · · · ,

(xmj , ymj ), · · · , (xmN , ymN )]. (54)
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The map Θ does not have time subscript as landmarks

are modeled as stationary. The motion and observation

models are as follows:

xt = g(xt−1, ut) =
⎡

⎢

⎢

⎣

xxt−1 + ΔTVt cos(θxt−1 + αt)

yxt−1 + ΔTVt sin(θxt−1 + αt)

θxt−1 +
ΔTVt sin(αt)

L

⎤

⎥

⎥

⎦
+ ε (55)

zt(mj) =h(xt, mj) = [lt(mj), βt(mj)]
T =

⎡

⎢

⎣

√

(xmj − xxt)
2 + (ymj − yxt)

2

arctan(
ymj − yxt

xmj − xxt

) − θxt

⎤

⎥

⎦ + δ. (56)

The control and the observation are denoted as ut and zt,

respectively. ut includes the velocity Vt and steering angle

αt. While zt(mj) represents the range-bearing observation

from the robot to the j-th landmark, lt(mj) is the distance,

and βt(mj) is the angle from 0 to 2π clockwise. L is the

wheel-base.

The comparison between the proposed algorithm and

FastSLAM 2.0 is based on a Matlab SLAM simulator which

is implemented by Tim Bailey[26]. The simulation environ-

ment is a 250 m×200 m area with 135 landmarks. The robot

moves at a speed of 3 m/s, and the maximum steering an-

gle G is 30◦. The speed noise εv is 0.4m/s, and the angle

noise εβ is 3◦. It equips a range bearing sensor with a 180◦

frontal view and a maximum range of 30m. The range

noise of observations δl is 0.3 m, and the angle noise δβ is

3◦. The control and observation frequency are 40 Hz and

10Hz, respectively.

Fig. 4 Comparison of the distance errors between FastSLAM

2.0 and the proposed algorithm

Fig. 4 shows the comparison of the robot path and land-

mark estimations between FastSLAM 2.0 and the proposed

FastSLAM algorithm with 100 particles. It is noticeable

that the estimated path by the proposed algorithm is al-

most the same as the actual path whereas there are some

errors between the path acquired by FastSLAM 2.0 and the

actual path. Obviously, the proposed FastSLAM algorithm

has higher precision than FastSLAM 2.0 in estimations of

the robot′s motion path and landmark positions.

In the simulation of Fig. 4, the robot is assumed to run for

about 200 s. Fig. 5 shows the comparison of the robot posi-

tion error over times between two algorithms. Two curves

represent the distance varies between the actual robot po-

sition and estimated position. It can be seen that the robot

position error of FastSLAM 2.0 is more than that of the

proposed algorithm. Also, the robot position error of Fast-

SLAM 2.0 increases quickly than that of the proposed al-

gorithm. Fig. 6 shows the comparison of the landmark po-

sition error between two algorithms after the loop is closed.

It can be seen the landmark estimation error of proposed

algorithm is fewer than that of FastSLAM2.0.

Fig. 5 Comparison of the average NEES between FastSLAM 2.0

and the proposed algorithm

Fig. 6 The comparison of the landmark position errors between

FastSLAM 2.0 and the proposed algorithm after the loop is closed

Due to the randomness of the sampling process and

noises, the result of each experiment is different. In order

to get more detailed and accurate evaluation between the

two algorithms, 50 simulation experiments were carried out.

Table 1 shows the result of these experiments, and RMSE

represents root mean square error. The result shows that

the proposed algorithm is more accurate than FastSLAM

2.0 in estimations of the robot pose and landmark loca-

tions, and the running time of the proposed algorithm is
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more than the FastSLAM 2.0 algorithm.

The average normalized estimation error squared

(NEES)[14] over N Monte Carlo runs of the filter is used

to measure filter consistency.

εk = (xt − x̂t)
TP−1

t (xt − x̂t) (57)

where xt and Pt are the estimated mean and covariance of

the robot pose, and x̂t is the real pose.

Given N runs, the average NEES is computed as

εk =
1

N

N
∑

i=1

εik . (58)

Table 1 Comparison of experimental results between

FastSLAM 2.0 and the proposed algorithm

RMSE of the RMSE of the average

Algorithm robot position landmark position running

estimation estimations time(s)

Proposed
3.653 3 3.563 1 34.15algorithm

FastSLAM 2.0 6.284 3 5.779 4 27.83

For the 3-dimensional vehicle pose and N = 50, the two-

sided 95% probability region for ε̂k is bounded by the in-

terval [2.36, 3.72]. If NEES exceeds the upper bound, the

filter is optimistic[27].

The average NEES comparison between two algorithms

is shown in Fig. 7. It shows that FastSLAM 2.0 algorithm

becomes rapidly optimistic, and that the average NEES in

the proposed FastSLAM algorithm maintains low level for

a long time.

Fig. 7 Comparison of the average NEES between FastSLAM 2.0

and the proposed algorithm

Fig. 8 Motion model of the truck

4.2 Experiment with “Car Park Dataset”

The experiments were carried out with “Car Park

Dataset”[28] which is popular in the SLAM research com-

munity. A truck equipped with a GPS, an inertial sensor

and a laser sensor collected the dataset in an open parking

area with artificial beacons. The motion model of the truck

is shown in Fig. 8. The motion and observation models are

as

xt = g(xt−1, ut) =
⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

xxt−1 + ΔTVtcos(θxt−1 + αt)−
tan(αt)

L
(asin(θxt−1 + bcos(θxt−1))

yxt−1 + ΔTVtsin(θxt−1 + αt)−
tan(αt)

L
(bsin(θxt−1 + acos(θxt−1))

θxt−1 +
ΔTVttan(αt)

L

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

+ ε

(59)

Vt =
Vet

1 − H

Ltan(αt)

(60)

where Vt is the velocity of the center of the axle, vet is

the velocity of the rear left wheel, ΔT is the interval of

sampling, αt is the steering angle, and ε is the control noise.

zt(mj) =h(xt, mj) = [lt(mj), βt(mj)]
T

⎡

⎢

⎣

√

(xmj − xxt)2 + (ymj − yxt)2

arctan(
ymj − yxt

xmj − xxt

) − θxt

⎤

⎥

⎦ + δ (61)

where [lt(mj), βt(mj)] are the distance and angle of the

observation between the robot pose and the j-th landmark.

δ is the observation noise.

From Fig. 9, it can be seen that some parts of the esti-

mated path is far away from the GPS path in FastSLAM 2.0

while the proposed algorithm shows more accuracy in the

path estimation. It is reasonable to conclude that the per-

formance of proposed algorithm is more stable and accurate

than FastSLAM 2.0. The maximum and average distance

between the estimated path and the GPS path are reported

in Table 2.

Table 2 Distance errors comparison between FastSLAM 2.0

and the proposed FastSLAM algorithm based on “Car Park

Dataset”

Algorithm
Max Average Running

distance distance time

Proposed
1.534 9 0.362 5 17.48

algorithm

FastSLAM 2.0 2.657 5 0.658 2 14.74
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Fig. 9 Comparison between FastSLAM 2.0 and the proposed

algorithm based on “Car Park Dataset”

5 Conclusions

This paper proposes an improved FastSLAM algorithm

based on revised genetic resample and SR-UPF. In the pro-

posed algorithm, 2 FastSLAM drawbacks are addressed.

One problem is the linear approximations of the nonlin-

ear functions, and the other is the particle depletion which

is mainly caused by resampling process. Instead of approx-

imating the motion nonlinear function by Taylor series ex-

pansion in FastSLAM 2.0, SR-UPF can decrease the lin-

earization errors by passing sigma points through the non-

linear function. Moreover, SR-UPF has better numerical

properties and guaranteed positive semi-definiteness by di-

rectly propagating the square root of the state covariance

matrix. For the depletion problem, the revised genetic re-

sampling algorithm is designed with attention to both the

particle diversity and amending the particle degeneracy. By

using double roulette wheels as the selection operation, not

only the higher weight particles have more opportunity to

breed the new generation, but many lower weight particles

transfer their state to the new generation. So the particle

diversity is improved. As fast MH developed for mutation

operation can produce the particles converge to the target

distribution, the new particle set is more accurate. The ex-

periment results show that the proposed algorithm has more

accurate estimations and less errors than FastSLAM 2.0.
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