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Abstract: To identify systems with non-uniformly sampled input data, a recursive Bayesian identification algorithm with covariance

resetting is proposed. Using estimated noise transfer function as a dynamic filter, the system with colored noise is transformed into

the system with white noise. In order to improve estimates, the estimated noise variance is employed as a weighting factor in the

algorithm. Meanwhile, a modified covariance resetting method is also integrated in the proposed algorithm to increase the convergence

rate. A numerical example and an industrial example validate the proposed algorithm.
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1 Introduction

For decades, many efforts have been devoted to system

identification, and lots of results have been reported[1−3].

This paper considers the identification of non-uniformly

sampled data (NUSD) systems, whose sampling intervals

for the input and/or output channels are non-equidistant

in time[4]. NUSD systems can be found in many industrial

processes, such as induction motors, continuous stirred tank

heater systems, filter bank transceivers, transmultiplexers,

bioreactors, etc[5−9]. The identification of NUSD systems

has attracted much attention[10−15].

To identify systems with colored noise, many techniques,

such as bias compensation[16−18] and data-filtering[19, 20],

have been used. Owing to their easy implementation and

high efficiency, filter based algorithms have been reported

extensively[21−23]. Using the estimated noise transfer func-

tion, Xie et al.[24] proposed a filter based least square algo-

rithm. For the identification of multi-rate NUSD systems,

Liu et al.[25] gave an auxiliary model based recursive least

squares algorithm, and analyzed the convergence properties

of the proposed algorithm. For identification of continuous

time systems with NUSD, Goodwin and Cea[26] formulated

the problem in the context of nonlinear filtering, and ap-

plied minimum distortion filtering to identify these systems.

Based on the Kalman filtering principle, Wang et al.[27] de-

rived the state filtering algorithm by minimizing the esti-
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mation error covariance matrix, and further calculated the

state estimates of the original systems by using the inverse

transformation. To obtain the optimal state estimate for

multi-rate dynamic system with NUSD, Yan et al.[28] pro-

posed a modified Kalman filter.

Although the algorithms mentioned above work well,

there are still some problems. For example, in the filter

based algorithms, the data filter was used to alleviate the

computational burden of the identification algorithms, but

the noise variance was not integrated into the algorithms

to improve the estimates. In the Kalman filter based algo-

rithms, the Kalman filter was used to estimate the unknown

states and parameters of the state-space models. However

the means and variances of the process noise and the out-

put noise must be known a priori. In order to achieve

high-accuracy estimates of the time-domain models with

less computation, a filter based recursive Bayesian (RB)

algorithm is proposed in this paper. To improve the con-

vergence rate, a novel covariance resetting (CR) method is

employed into the proposed algorithm.

This paper is organized as follows. The NUSD model

is introduced in Section 2, and the algorithm is derived in

Section 3. After the convergence analysis in Section 4, a

numeric example and an industrial application are given in

Section 5. At last, main conclusions are given in Section 6.

2 Problem description

Consider the following system with non-uniformly sam-

pled input data, as depicted in Fig. 1.

Fig. 1 Systems with non-uniformly sampled input data
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The system includes a zero-order hold Hτ , a linear

continuous-time invariant process Pc and a sampler ST .

u(t), x(t) and y(t) are the input, noise-free output and out-

put with additive noise respectively, w(t) is an autoregres-

sive noise. u(kT + ti) and y(kT + T ) are the discrete-time

input and output, where T is output sampling period. Ir-

regular input sampling intervals τi(i = 0, 1, · · · , r) satisfy

τ0 = 0 and T =
∑r

i=0 τi. So the equivalent formulation in

Fig. 1 using lifting technique[4,24] is as

y(t) = x(t) + w(t) (1)

with
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ui(k) = u(kT +

i−1∑

j=0

τj)

x(t) =

r∑

i=1

Bi(z
−1)

A(z−1)
ui(k)

w(t) =
1

C(z−1)
v(t)

A(z−1) = 1 + a1z
−1 + · · · + anaz−na

B1(z
−1) = b1,0 + b1,1z

−1 + · · · + b1,nbz
−nb

Bi(z
−1) = bi,1z

−1 + · · · + bi,nbz
−nb , i = 2, 3, · · · , r

C(z−1) = 1 + c1z
−1 + c2z

−2 + · · · + cncz−nc (2)

where na, nb, nc and r are assumed to be known and v(t)

is a Gaussian white noise (v(t)∼N(0, σ2
v)).

The parameter vector θ is defined as

θ =
[
θT

s , θT
n

]T
∈ Rn×1 (3)

where
⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

θs = [a1, a2, · · · , ana , b1,0, b1,1, · · · , b1,nb , b2,1, b2,2, · · · ,

b2,nb , · · · , br,1, br,2, · · · , br,nb ]
T ∈ Rns×1

θn = [c1, c2, · · · , cnc ]T ∈ Rnc×1

ns = na + rnb + 1

n = ns + nc.

The information vector ϕ is defined as

ϕ(k) =
[
ϕT

s (k), ϕT
n (k)

]T
∈ Rn×1

where
⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

ϕs = [−x(k − 1),−x(k − 2), · · · ,−x(k − na), u1(k),

u1(k − 1), · · · , u1(k − nb), u2(k − 1), u2(k − 2),

u2(k − nb), · · · , ur(k − 1), ur(k − 2), · · · ,

ur(k − nb)]
T ∈ Rns×1

ϕn = [w(k − 1), w(k − 2), · · · , w(k − nc)]
T ∈ Rnc×1.

At t = kT , (1) can be rewritten as

y(k) = ϕT
s (k)θs + w(k) (4)

or

y(k) = ϕT(k)θ + v(k). (5)

Then, the challenge is to estimate the parameter vector

only using collection D(k) = {u(i), y(i)}k
i=1.

3 Filter based recursive Bayesian algo-

rithm with modified covariance reset-

ting

3.1 Recursive Bayesian algorithm

Based on the observations, the recursive Bayesian esti-

mate for (5) is obtained by maximizing the following pos-

terior probability density function (PDF) of parameters:

θ̂ = arg max
θ

p(θ|D(k)). (6)

Using Bayesian theory, the posterior PDF of parameters

is expressed as

p(θ|D(k)) =
p(y(k)|θ, D(k−1))p(θ|D(k−1))

p(y(k)|D(k−1))
(7)

where p(y(k)|θ,D(k−1))is the prior PDF of y(k) given θ and

D(k−1).

It can be seen that p(θ|D(k)) cannot be calculated by

(7) because both p(y(k)|θ,D(k−1)) and p(θ|D(k−1)) are un-

known. A feasible assumption is that p(θ|D(k−1)) satisfies

a Gaussian distribution with mean θ̂(k − 1) and variance

P (k − 1), i.e.,

p
(
θ|D(k−1)

)
=

η exp

{

−1

2
(θ−θ̂(k−1))

T
P−1(k−1)(θ−θ̂(k−1))

}

(8)

where η = 1

(2π)
n
2 |P (k−1)|

1
2

, and n is the dimension of pa-

rameter vector θ.

Considering (5) and v(k)̃ N(0, σ2
v), y(k) satisfies

y(k)̃ N(ϕT(k)θ, σ2
v), then

p(y(k)|θ,D(k−1)) =

1

(2π)
1
2 σv

exp

{

−1

2

(
y(k)−ϕT(k)θ̂(k−1)

σv

)2}

. (9)

Thus, p(θ|D(k)) is formulated as

p(θ|D(k)) =
p(y(k)|θ,D(k−1))p(θ|D(k−1))

p(y(k) |D(k−1))
=

δ exp

{

− 1

2

(
y(k) − ϕT(k)θ̂(k − 1)

σv

)2

−

1

2

(
θ − θ̂(k − 1)

)T

P−1(k − 1)
(
θ − θ̂(k − 1)

)
}

(10)

where δ = η

p(y(k)|D(k−1))(2π)
1
2 σv

is irrelevant to θ.

It is well known that maximizing the PDF of θ and max-

imizing the logarithmic PDF of θ is equivalent. So let

∂ log p(θ|D(k))

∂θ

∣
∣
∣θ=θ̂(k) = 0
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then

(θ − θ̂(k))
T
P−1(k)(θ − θ̂(k)) = 0 (11)

where
⎧
⎪⎪⎨

⎪⎪⎩

θ̂(k) = θ̂(k − 1) +
1

σ2
v

P (k)ϕ(k)[y(k) − ϕT(k)θ̂(k − 1)]

P−1(k) = P−1(k − 1) +
1

σ2
v

ϕ(k)ϕT(k).

(12)

According to the matrix inversion theorem, P−1(k) can

be written as

P (k) =

[

I − P (k − 1)ϕ(k)ϕT(k)

σ2
v + ϕT(k)P (k − 1)ϕ(k)

]

P (k − 1). (13)

Set L(k) = 1
σ2

v
P (k)ϕ(k), the recursive Bayesian algo-

rithm is summarized as
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

θ̂(k) = θ̂(k − 1) + L(k)[y(k) − ϕT(k)θ̂(k − 1)]

L(k) =
P (k − 1)ϕ(k)

σ2
v + ϕT(k)P (k − 1)ϕ(k)

P (k) = [I − L(k)ϕT(k)]P (k − 1). (14)

There are two problems in the RB algorithm:

1) The x(k− i) in ϕ(k) is unknown, w(k− i) and v(k− i)

are unmeasurable.

2) The σ2
v is unknown.

A good solution to issue 1) is to adopt the auxiliary model

principle[1−2], i.e.,
⎧
⎪⎨

⎪⎩

x(k − i) =̂ x̂(k − i)

w(k − i) =̂ ŵ(k − i)

v(k − i) =̂ v̂(k − i).

In other words, the unknown variables are replaced by

their estimates respectively, and this replacement does not

affect the convergence of the algorithm[29] .

Define

ϕ̂(k) =

[
ϕ̂s(k)

ϕ̂n(k)

]

∈ Rn×1 (15)

where
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ϕ̂s(k) = [−x̂(k − 1),−x̂(k − 2), · · · ,−x̂(k − na), u1(k),

u1(k − 1), · · · , u1(k − nb), u2(k − 1), u2(k − 2),

· · · , u2(k − nb), · · · , ur(k − 1), ur(k − 2), · · · ,

ur(k − nb)]
T ∈ Rns×1

ϕ̂n(k) = [−ŵ(k−1),−ŵ(k−2), · · · ,

−ŵ(k−nc)]
T ∈ Rnc×1.

(16)

Considering (4) and (5), x̂(k), ŵ(k) and v̂(t) are calcu-

lated as ⎧
⎪⎪⎨

⎪⎪⎩

x̂(k) = ϕ̂T
s (k)θ̂s(k)

ŵ(k) = y(k) − x̂(k)

v̂(k) = y(k) − ϕ̂T(k)θ̂(k).

The variance of the noise is estimated

simultaneously[30, 31]:

σ̂2
v(k) =

1

k − n

[
(k − n − 1)σ̂2

v(k − 1) + v̂2(k)]. (17)

In (17), v̂2(k) is unknown when θ is being estimated, so

σ̂2
v(k) cannot be calculated directly, and thus it is substi-

tuted by σ̂2
v(k−1). Then, the recursive Bayesian algorithm

for (5) becomes

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

θ̂(k) = θ̂(k − 1) + L(k)[y(k) − ϕ̂T(k)θ̂(k − 1)]

L(k) =
P (k − 1)ϕ̂T(k)

σ̂2
v(k − 1) + ϕ̂T(k)P (k − 1)ϕ̂(k)

P (k) = [In − L(k)ϕ̂T(k)]P (k − 1). (18)

It can be seen that the RB algorithm is a weighted

least squares (WLS) algorithm with time-variant weight-

ing factor 1
σ̂2

v(k−1)
. Similar to traditional WLS algo-

rithm, this weighting does not affect the convergence of the

algorithm[32] .

Another form of estimate for θ is as[14]

θ̂(L) =

[
L∑

i=1

1

σ2
v(i − 1)

ϕ̂(i)ϕ̂T(i)

]−1 L∑

i=1

1

σ2
v(i − 1)

ϕ̂(i)y(i).

(19)

It is supposed the inverse [·]−1 in (19) exists, and L is the

number of the samples.

Using (4) and (19),

[
L∑

i=1

1

σ2
v(i − 1)

ϕ̂(i)ϕ̂T(i)

]
[
θ̂(L) − θ0

]
=

[
L∑

i=1

1

σ2
v(i − 1)

ϕ̂(i)y(i)−

L∑

i=1

1

σ2
v(i − 1)

ϕ̂(i)(y(i) − v(i))

]

=

[
L∑

i=1

ϕ̂(i)v(i)

]

(20)

where θ0 is the true value of parameter θ.

By the assumption of stationary ergodicity, i.e.,

lim
L→∞

1
L

∑L
k=1 ϕ̂(k)v(k) = E [ϕ̂(k)v(k)] with probability one,

where E(·) is the expectation operator. So

lim
L→∞

{
θ̂(L) − θ0

}
= C−1E (ϕ̂(k)v(k)) (21)

where

C = lim
L→∞

{
1

L

L∑

k=1

ϕ(k)ϕT(k)

}

.

The RB estimate obtained by (19) is unbiased when

E (ϕ̂(k)v(k)) = 0. In other words, unbiased estimate can

be obtained when ϕ̂(k) is uncorrelated with v(k). If v(k) is

a white noise, the condition is satisfied. Though the algo-

rithm in (18) can give unbiased estimate for (5) when v(k)

is a white noise, the computational cost of (18) is heavy

with 4n2 flops.
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The RB algorithm for (4) is as

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

θ̂s(k) = θ̂s(k − 1) + Ls(k)[y(k) − ϕ̂T
s (k)θ̂s(k − 1)]

Ls(k) =
Ps(k − 1)ϕ̂T

s (k)

σ̂2
v(k − 1) + ϕ̂T

s (k)Ps(k − 1)ϕ̂T
s (k)

Ps(k) = [Ins − Ls(k)ϕ̂T
s (k)]Ps(k − 1). (22)

So

lim
L→∞

{
θ̂s(L) − θs0

}
= C−1

s E (ϕ̂s(k)w(k)) (23)

where Cs = lim
L→∞

{
1
L

∑L
k=1 ϕ̂s(k)ϕ̂T

s (k)
}

and θs0 is the true

value of θs.

It can be seen from (23) that the estimate θ̂s(L) obtained

by (22) is biased because of the colored noise w(k).

3.2 Filter based recursive Bayesian algo-
rithm

In order to obtain unbiased estimate with less compu-

tation, filter technique is employed to whiten the colored

noise. Multiply both sides of (4) by C(z−1)

yf (k) = ϕT
f (k)θs + v(k) (24)

where
{

yf (k) = C(z−1)y(k)

ϕf (k) = C(z−1)ϕs(k). (25)

Applying the RB algorithm to (24) gives the filter based

RB (F-RB) algorithm:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

θ̂s(k) = θ̂s(k − 1) + Ls(k)
[
yf (k) − ϕ̂T

f (k)θ̂s(k − 1)
]

Ls(k) =
Ps(k − 1)ϕ̂f (k)

σ̂2
v(k − 1) + ϕ̂T

f (k)Ps(k − 1)ϕ̂f (k)

Ps(k) = [Ins − Ls(k)ϕ̂T
f (k)]Ps(k − 1)

(26)

where σ̂2
v(k − 1) is the estimate of σ2

v at (k − 1)T . For the

noise w(k) = 1
C(z−1)

v(k), the RB algorithm is used again

to estimate the coefficients of C(z−1):

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

θ̂n(k) = θ̂n(k − 1) + Ln(k)[ŵ(k) − ϕ̂T
n(k)θ̂n(k − 1)]

Ln(k) =
Pn(k − 1)ϕ̂n(k)

σ̂2
v(k − 1) + ϕ̂T

n (k)Pn(k − 1)ϕ̂n(k)

Pn(k) = [Inc − Ln(k)ϕ̂T
n(k)]Pn(k − 1).

(27)

where

⎧
⎪⎪⎨

⎪⎪⎩

θ̂n(k) = [ĉ1(k), ĉ2(k), · · · , ĉnc(k)]T ∈ Rnc×1

θ̂n(k − 1) = [ĉ1(k − 1), ĉ2(k − 1), · · · , ĉnc (k − 1)]T

ϕ̂n = [ŵ(k − 1), ŵ(k − 2), · · · , ŵ(k − nc)]
T ∈ Rnc×1.

The C(z−1) in (25) at t = kT is unknown. A feasible

way is to replace it by its estimate at t = (k − 1)T , i.e.,

Ĉ(k − 1, z−1). So (25) is rewritten as

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ŷf (k) = Ĉ(k − 1, z−1)y(k) =

y(k) + ĉ1(k − 1)y(k − 1) + · · ·+
ĉnc (k − 1)y(k − nc)

ϕ̂f (k) = Ĉ(k − 1, z−1)ϕ̂s(k) =

ϕ̂s(k) + ĉ1(k − 1)ϕ̂s(k − 1) + · · ·+
ĉnc (k − 1)ϕ̂s(k − nc). (28)

It is easy to find that if the colored noise is not an autore-

gressive noise, what we need to change is the form of the

filter. In other words, this algorithm can be used to identify

systems with autoregressive, moving average or autoregres-

sive moving average noise.

3.3 F-RB algorithm with modified covari-
ance resetting

For faster convergence, the covariance matrix resetting

technique is employed. Although there are many resetting

techniques, the aims of these operations are to obtain good

tracking of time-varying parameters, so the diagonal ele-

ments of the covariance matrix after resetting tend to be

constant, rather than zero. This resetting algorithm im-

proves the estimator′s sensitivity to the noise and leads to

frequent jitters of estimates inevitably. In order to increase

the speed of convergence, a modified covariance resetting

method for time-invariant systems is proposed.

1) For filtered system:

Ps(k) =

⎧
⎨

⎩

λs,kI, 0 < Δs(k) <
ns

n
γ

Ps(k), Δs(k) ≥ ns

n
γ (29)

with
{

Δs(k) = tr(Ps(k − 1)) − tr(Ps(k))

0 < λmin(Ps(k)) ≤ λs,k ≤ λmax(Ps(k))

where γ is a positive number specified by user, λmin(·) and

λmax(·) are the minimum and maximum eigenvalues of cor-

responding matrices respectively, tr(·) denotes the trace of

a matrix.

2) For noise,

Pn(k) =

⎧
⎨

⎩

λn,kI, 0 < Δn(k) <
nc

n
γ

Pn(k), Δn(k) ≥ nc

n
γ (30)

with

{
Δn(k) = tr(Pn(k − 1)) − tr(Pn(k))

0 < λmin(Pn(k)) ≤ λn,k ≤ λmax(Pn(k)).

The F-RB with CR (F-RB-CR) algorithm is summarized

as follows and its flowchart is shown in Fig. 2.



S. X. Jing et al. / Recursive Bayesian Algorithm for Identification of Systems with Non-uniformly Sampled Input Data 339

Fig. 2 Flowchart of the F-RB-CR algorithm

Step 1. Set ui(k) = 0, y(k) = 0, x̂(k) = 0, ŵ(k) = 0,

v̂(k) = 0, σ̂2
v(k) = 1 for k ≤ 0. Set Ps(0) = p0Ins ,

θs(0) =
1ns
p0

; Pn(0) = p0Inc , θn(0) =
1nc
p0

; where p0 = 106;

1ns ∈ Rns×1, 1nc ∈ Rnc×1, whose elements are all 1. Set

k = 1.

Step 2. Collect ui(k) and y(k)

Step 3. Calculate ŷf (k) and ϕ̂f (k) by (28)

Step 4. Estimate θ̂s(k) by (26)

Step 5. Reset Ps(k) by (29) if needed

Step 6. Estimate θ̂n(k) by (27)

Step 7. Reset Pn(k) by (30) if needed

Step 8. Calculate σ̂2
v(k) by (17)

Step 9. Let k = k + 1, if k < L, go to Step 2, else save

the estimate and terminate.

4 Convergence analysis

Equation (26)−(28) are converted into the following

equivalent forms:
⎧
⎪⎪⎨

⎪⎪⎩

θ̂(k)= θ̂(k−1)+
1

σ̂2
v(k−1)

P̄ (k)ϕ̄(k)[y(k)−ϕ̄T(k)θ̂(k−1)]

P̄−1(k)= P̄−1(k − 1) +
1

σ̂2
v(k − 1)

ϕ̄(k)ϕ̄T(k)

(31)

where ⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

P̄ (k) =

[
Ps(k) 0

0 Pn(k)

]

ϕ̄(k) =

[
ϕs(k)

ϕn(k)

]

.

The matrices Ps(k) and Pn(k) are symmetric and posi-

tive definitive, so λmin(Ps(k)) ≤ λs,k ≤ λmax(Ps(k)) and

λmin(Pn(k)) ≤ λn,k ≤ λmax(Pn(k)), where λmin(·) and

λmax(·) are the minimum and maximum eigenvalues of the

corresponding matrices. It is well known that the CR op-

eration does not affect the convergence tendency of the

estimator[33], but only has effect on the convergence rate.

So Theorem 1 can be gotten.

Theorem 1. Consider algorithm (31) subject to a white

noise sequence {v(k)|v(k)∼N(0, σ2
v)}. And assume that

σ̂2
v(k) is bounded, there exist positive α, β, which make the

following excitation:

αEn ≤ 1

k

k∑

j=1

ϕ̄(j)ϕ̄T(j) ≤ βEn (32)

where En = blockdiag [Ens , Inn ] ∈ Rn×n is a block diag-

onal matrix, Ens ∈ Rns×ns is a symmetric and positive

definite matrix, and Inn is an identity matrix. Then,

lim
k→∞

θ̂(k) = θ0 (33)

where θ0 is the true value.

Proof. Subtract θ0 from both sides of first equation of

(31) and replace y(k) by (ϕT(k)θ0 + v(k)):

θ̃(k) =θ̃(k − 1) + P̄ (k)S(k) + P̄ (k)R(k)−
P̄ (k)K(k) (34)

where
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

θ̃(k) = θ̂(k) − θ0

θ̃(k − 1) = θ̂(k − 1) − θ0

S(k) =
1

σ̂2
v(k − 1)

ϕ̄(k)[ϕ(k) − ϕ̄(k)]Tθ0

R(k) =
1

σ̂2
v(k − 1)

ϕ̄(k)v(k)

K(k) =
1

σ̂2
v(k − 1)

ϕ̄(k)ϕ̄T(k)θ̃(k − 1).

Multiply (34) by P̄−1(k), and consider second equation
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of (31):

P̄−1(k)θ̃(k) =P̄−1(k − 1)θ̃(k − 1) + S(k) + R(k) =

P̄−1(0)θ̃(0) +

k∑

j=1

S(j) +

k∑

j=1

R(j). (35)

Multiply (35) by P̄ (k),

θ̃(k) = P̄ (k)P̄−1(0)θ̃(0) + P̄ (k)
k∑

j=1

S(j) + P̄ (k)
k∑

j=1

R(j).

(36)

Consider lim
k→∞

P̄ (k) = 0, and P̄−1(0)θ̃(0) is a constant de-

termined by the user, then lim
k→∞

P̄ (k)P̄−1(0)θ̃(0) = 0. As-

sume that [ϕ(k)− ϕ̄(k)] is bounded, consider lim
k→∞

P̄ (k) = 0

and (31), then

lim
k→∞

P̄ (k)
k∑

j=1

S(j) =

lim
k→∞

P̄ (k)

k∑

j=1

1

σ̂2
v(j − 1)

ϕ̄(j)[ϕ(j) − ϕ̄(j)]Tθ0 = 0

where {ϕ̄(k)} and {v(k)} are irrelevant, so

lim
k→∞

P̄ (k)

k∑

j=1

R(j) =

lim
x→∞

P̄ (k)

k∑

j=1

1

σ̂2
v(j − 1)

ϕ̄(j)v(j) = 0.

Three terms of the right side of (36) tend to be 0 when

k → +∞. That is to say: lim
k→∞

θ̃(k) = 0, and then (32)

follows. �

5 Example

5.1 A numerical example

Consider the following system with non-uniformly sam-

pled input data:

y(k) =
B1(z

−1)

A(z−1)
u1(k) +

B2(z
−1)

A(z−1)
u2(k) +

1

C(z−1)
v(k)

where
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

A(z−1) = 1 − 0.580 3z−1 + 0.829 0z−2

B1(z
−1) = 0.496 7z−1 + 0.102 3z−2

B2(z
−1) = 0.581 0z−1 + 0.273 4z−2

C(z−1) = 1 − 0.286 5z−1.

Using the proposed F-RB-CR algorithm, the result is

shown in Tables 1−2, where the variance of the noise is

0.42 and 0.62 respectively. The estimation error are shown

in Fig. 3. The results using the F-RLS algorithm[11] are

shown in Tables 3 and 4 and taken for comparison. The

estimates of the proposed algorithm versus k are shown

in Fig. 4. Here, the estimation error is defined as δ =
‖θ̂(k)−θ0‖

‖θ0‖ × 100%.

Fig. 3 Estimation errors versus k using the F-RLS and F-RB-

CR

It can be seen that:

1) The estimation errors of the two algorithms become

small when k is increasing.

2) The accuracy of the F-RB-CR is higher than the F-

RLS (see, e.g., Fig. 3).

3) The estimation errors of the two algorithms fall rapidly

in the initial stage of identification, and then descend slowly.

And the curve of the proposed algorithm is steeper than

that of the competitor when k < 100, which means the

proposed algorithm converges quickly than the compared

algorithm.

Table 1 Results using the F-RB-CR (σ2
v = 0.42)

k a1 a2 b11 b12 b21 b22 c1 δ(%)

100 −0.513 5 0.749 7 0.528 8 0.203 9 0.549 6 0.237 6 −0.321 8 12.008 5

200 −0.563 1 0.809 2 0.502 6 0.127 6 0.556 6 0.251 2 −0.273 8 3.832 3

300 −0.562 0 0.833 7 0.507 1 0.118 7 0.560 0 0.246 8 −0.255 5 3.999 9

400 −0.579 2 0.844 5 0.492 1 0.110 4 0.585 3 0.256 8 −0.280 0 1.934 2

500 −0.589 2 0.833 3 0.498 1 0.093 5 0.574 4 0.264 9 −0.264 9 2.070 1

600 −0.585 3 0.838 6 0.500 0 0.092 0 0.579 5 0.261 4 −0.285 4 1.466 1

True values −0.580 3 0.829 0 0.496 7 0.102 3 0.581 0 0.273 4 −0.286 5
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Table 2 Results using the F-RB-CR (σ2
v = 0.62)

k a1 a2 b11 b12 b21 b22 c1 δ (%)

100 −0.411 8 0.651 0 0.552 6 0.193 7 0.600 5 0.300 5 −0.239 4 20.536 2

200 −0.487 3 0.715 2 0.504 9 0.149 3 0.594 5 0.294 8 −0.236 3 12.342 7

300 −0.496 7 0.770 7 0.500 0 0.139 1 0.594 9 0.280 1 −0.238 5 8.975 0

400 −0.549 3 0.790 3 0.478 5 0.127 3 0.614 9 0.286 0 −0.255 8 5.647 8

500 −0.589 7 0.808 6 0.487 4 0.117 2 0.595 7 0.291 8 −0.246 7 4.074 4

600 −0.573 0 0.827 4 0.491 2 0.112 5 0.598 6 0.279 2 −0.267 3 2.254 9

True values −0.580 3 0.829 0 0.496 7 0.102 3 0.581 0 0.273 4 −0.286 5

Table 3 Results using the F-RLS (σ2
v = 0.42)

k a1 a2 b11 b12 b21 b22 c1 δ(%)

100 −0.442 8 0.524 1 0.261 9 0.028 2 0.568 3 0.613 3 −0.615 8 47.263 6

200 −0.571 5 0.731 5 0.318 8 −0.013 8 0.609 9 0.474 4 −0.482 1 27.494 2

300 −0.579 7 0.763 0 0.317 6 −0.034 1 0.593 6 0.446 2 −0.453 4 25.219 6

400 −0.602 7 0.770 7 0.321 4 −0.011 9 0.609 2 0.422 4 −0.431 8 22.737 8

500 −0.625 1 0.847 1 0.341 6 −0.056 6 0.613 1 0.389 2 −0.412 9 21.494 7

600 −0.611 1 0.829 9 0.334 −0.055 2 0.612 5 0.395 8 −0.411 3 21.719 8

True values −0.580 3 0.829 0 0.496 7 0.102 3 0.581 0 0.273 4 −0.286 5

Table 4 Results using the F-RLS (σ2
v = 0.62)

k a1 a2 b11 b12 b21 b22 c1 δ(%)

100 −0.480 5 0.512 7 0.188 7 −0.022 3 0.637 6 0.699 3 −0.533 0 51.214 9

200 −0.563 3 0.679 9 0.223 4 −0.010 1 0.648 2 0.575 3 −0.416 0 35.385 0

300 −0.553 6 0.724 1 0.232 4 0.024 9 0.616 0 0.565 6 −0.391 9 32.303 9

400 −0.564 6 0.734 3 0.238 4 0.072 5 0.630 2 0.548 5 −0.377 0 30.308 1

500 −0.579 4 0.831 3 0.278 3 0.069 6 0.623 9 0.526 0 −0.370 2 26.147 0

600 −0.558 5 0.816 4 0.265 6 0.073 5 0.624 3 0.536 4 −0.372 7 27.405 8

True values −0.580 3 0.829 0 0.496 7 0.102 3 0.581 0 0.273 4 −0.286 5

Fig. 4 Estimates versus k using the F-RB-CR (σ2
v = 0.42)

Fig. 5 Input data

5.2 A gas furnace

The gas furnace was considered firstly by Box and Jenk-

ins, in which air and methane were combined to form a

mixture of gases containing CO2 (carbon dioxide)[34]. The

air feed was kept constant, but the methane feed rate could

be varied, and the resulting CO2 concentration in the off-

gases was measured. The input gas rate (u(k)) is selected

as input variable and the concentration of the output CO2,

i.e, (y(k)), as the output variable.

the concentration of the output CO2, i.e, y(k), as the
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output variable

The original data were modified to NUSD form: the out-

put sampling period is 27 s, and irregular input sampling in-

tervals are τ1 = 9 and τ2 = 18 s. 80 samples were adopted,

among which first 60 were used for modeling and the next

20 were used to validate the model. These samples are de-

picted in Figs. 5 and 6.

Fig. 6 Output data

The selected model structure is of the form

y1(k) =
B1(z

−1)

A(z−1)
u11(k) +

B2(z
−1)

A(z−1)
u22(k) +

1

C(z−1)
v(k)

with
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

A(z−1) = 1 + a1z
−1 + a2z

−2

B1(z
−1) = b1,1z

−1 + b1,2z
−2

B2(z
−1) = b2,1z

−1 + b2,2z
−2

C(z−1) = 1 + c1z
−1

u11(k) = u1(k) − 1

L

L∑

i=1

u1(i)

u22(k) = u2(k) − 1

L

L∑

i=1

u2(i)

y1(k) = y(k) − 1

L

L∑

i=1

y(i).

The estimate obtained by the proposed algorithm is as

[a1, a2, c1] = [−0.2049, 0.0208, −0.9484]

[b1,1, b1,2, b2,1, b2,2] =

[−0.8775,−0.7103, 0.1755,−0.8891] .

The mean square error is 0.061 6. The estimate versus k

is shown in Fig. 7.

The comparison between the observed outputs and pre-

dicted outputs obtained by using the later 20 inputs and

estimated model is shown in Fig. 8.

Fig. 7 Estimates of the gas furnace versus k

Fig. 8 Comparison of the observed output and the predicted

output

6 Conclusions

For the identification of systems with non-uniformly sam-

pled input data, a filter based recursive Bayesian algorithm

with covariance resetting is presented. In this algorithm,

estimated noise transform function is used to whiten the

colored noise, and then the recursive Bayesian algorithm
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is taken to estimate the parameter vector. A modified co-

variance resetting is also integrated into the algorithm for

faster convergence. A numeric example and a gas furnace

data were used to validate the algorithm. The proposed

method can be extended to identify other linear or linear-

in-parameters systems with colored noise.
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