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Abstract: In this paper, we will present new results on robust finite-time H∞ control for linear time-varying systems with both

time-varying delay and bounded control. Delay-dependent sufficient conditions for robust finite-time stabilization and H∞ control

are first established to guarantee finite-time stability of the closed-loop system via solving Riccati differential equations. Applications

to finite-time H∞ control to a class of linear autonomous time-delay systems with bounded control are also discussed in this paper.

Numerical examples are given to illustrate the effectiveness of the proposed method.
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1 Introduction

Finite-time stability is one of the fundamental concepts

in mathematical control theory, which has been studied by

different approaches and for different kind of systems (see,

e.g., [1−6] and the references therein). In general, the finite-

time stability (FTS) introduced in [7] means that the state

of a system does not exceed some bound during a fixed

time interval. FTS focuses its attention on the transient

behavior of a system response. It is worth pointing out

that finite-time stability and Lyapunov asymptotic stabil-

ity are different concepts, and they are independent of each

other. A system is finite-time stable if its state retains cer-

tain pre-specified bound in the fixed time interval in the case

that the initial bound is given. Often Lyapunov asymptotic

stability is enough for practical applications, but there are

some cases where large values of the state are not accept-

able, for instance in the presence of saturations. In these

cases, we need to check that these unacceptable values are

not attained by the state. Moreover, finite-time stability

analysis for linear time-varying delay systems is more diffi-

cult, because time-varying delay systems have more compli-

cated dynamic behaviors than the systems without delays

or with constant delays. On the other hand, the H∞ con-

trol problem of dynamical control systems has attracted

much attention due to its both practical and theoretical

importance[8]. Traditionally, Lyapunov theory has served
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as a powerful tool for H∞ control design. The idea of a Lya-

punov function was applied in the context of control design

to yield control Lyapunov functions (CLFs). For continu-

ous linear time-invariant systems, there exists a well known

method to construct CLFs, which essentially involves find-

ing a positive definite solution of a Riccati equation. Var-

ious approach have been developed and a great number of

results on finite-time H∞ control for continuous systems

as well as discrete systems have been reported in the lit-

eratures (see, e.g., [9−11]). However, most of the results

in this field relate to stability and performance criteria de-

fined over an infinite-time interval. The finite-time H∞
control concerns with the design of a feedback controller

which ensures the FTS of the closed-loop system and guar-

antees a maximum H∞ performance bound[12−17]. On the

other hand, the problem of stabilization of systems with

control constraints arises not only in mathematical control

theory, but also in many applied areas[18−20] . It is clear

that control constraints on the structure of the feedbacks

and the neglect of geometric constraints on the control are

hardly in accord with present-day requirements for control

systems. Input constraints are ubiquitous in control and

operation of all control systems. These constraints usu-

ally arise due to the physical limitation of control actuators

such as pumps or valves. It is well established that neglect-

ing these constraints while designing controllers can lead

to significant performance deterioration and even closed-

loop instability[21]. Existing attempts for control analysis

of non-autonomous continuous systems are mere extensions

of the approaches for autonomous continuous case. In such

cases, there exists a well known method to design feedback

controllers, which essentially involve finding a positive def-

inite solution of Riccati differential equations (RDEs) or
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differential linear matrix inequalities (DLMIs)[22−24]. Note

that, in general, numerically solving RDEs or DLMIs can

be realiable. This approach also applies to the finite-time

control design for the system with bounded controls[25−28] .

On the other hand, the procedures are derived under the

assumption of unconstrained control action. For linear sys-

tems with bounded control, under appropriate assumptions

on the spectral and controllability property, papers[18, 19, 23]

proposed a nonlinear feedback control to stabilize (in the

Lyapunov sense) the system without delays. It is worth

noting that the approach in these works cannot be readily

applied to the systems with time-varying delays. The main

difficulty is that the investigation of the spectrum of the

time-varying delay matrices is still complicated and there

are no appropriate properties available as in the un-delayed

case. To the best of our knowledge, the issue of robust

finite-time H∞ control for linear time-delay systems with

bounded control has not been investigated. Due to the fact

that the existence of constraints on the control may have

great influence on the finite-time stability of the closed-loop

system[17−19], which increases difficulties for us to discuss

this topic. Consequently, the problem of the finite-time

control of linear non-autonomous systems with both time-

varying delay and bounded control is of interest in its own

right.

In this paper, unlike the previous reported results on

finite-time control of linear non-autonomous systems, prob-

lem of finite-time control is fully investigated without any

spectral and controllability assumption and the derived con-

ditions involve solving a Riccati differential equation. By

exploring an auxiliary control system with time-varying

delay, novel delay-dependent sufficient conditions for ro-

bust finite-time stabilization are proposed via a newly

constructed Riccati differential equation. Applications to

finite-time H∞ control to a class of linear autonomous time-

delay systems with bounded control are also discussed in

this paper. The proposed approach is numerically appeal-

ing for checking finite-time H∞ control conditions of a given

linear time-varying delay system with bounded controls.

The structure of the paper is as follows. Section 2 gives

the necessary background on linear non-autonomous delay

systems with bounded control and some technical proposi-

tions. In Section 3, the nonlinear feedback controller design

for robust finite-time stabilization and solution to H∞ con-

trol problem are presented with some applications to linear

autonomous time-delay systems with bounded control. Nu-

merical examples illustrated the obtained results are given

in Section 4. Section 5 ends with some conclusions.

2 Problem formulation and preliminar-

ies

In this section, we introduce some notations, definitions

and technical propositions. R+ denotes the set of all real

non-negative numbers. Rn denotes the n-dimensional space

with the scalar product xTy. Mn×r denotes the space of

all matrices of (n × r)-dimensions with the spectral norm

||A|| =
√

λmax(ATA). AT denotes the transpose of matrix

A. I denotes the identity matrix. λ(A) denotes the set

of all eigenvalues of A. λmax(A) = max{Reλ, λ ∈ λ(A)}.
xt = {x(t+s) : s ∈ [−h, 0]}, ‖ xt ‖= sups∈[−h,0] ‖ x(t+s) ‖,
C([0, t],Rn) denotes the set of all Rn−valued continuous

functions on [0, t]. L2([0, t],Rm) denotes the set of all the

Rm-valued square integrable functions on [0, t]. Matrix A

is called semi-positive definite (A ≥ 0) if xTAx ≥ 0, for all

x ∈ Rn. A is positive definite (A > 0) if xTAx > 0 for all

x �= 0. A > B means A − B > 0.

Consider a linear non-autonomous time-varying delay

system with bounded control of the form:

ẋ(t) = A(t)x(t) + D(t)x(t − h(t))+

B(t)u(t) + B1(t)w(t)

z(t) = C1(t)x(t) + C2(t)x(t − h(t))

x(t) = ϕ(t), t ∈ [−h, 0] (1)

where x(t) ∈ Rn, u(t) ∈ Rm, w ∈ Rm1 , z(t) ∈ Rm2

are the state, the control, the disturbance and the ob-

servation vector, respectively. A(t),D(t) ∈ Rn×n, B(t) ∈
Rn×m, B1(t) ∈ Rn×m1 , C1(t), C2(t) ∈ Rn×m2 are given

continuous matrix functions. The initial function ϕ(t) ∈
C ([−h, 0], Rn) . The delay function h(t) is continuous and

satisfies

0 ≤ h(t) ≤ h, ḣ(t) ≤ δ < 1, ∀t ≥ 0. (2)

The control u ∈ L2([0, T ], Rm) satisfies

∃r > 0 : ||u(t)|| ≤ r, ∀t ∈ [0, T ]. (3)

The disturbance w(t) ∈ L2([0, T ], Rm1) satisfies

∃d > 0 :

∫ T

0

wT(t)w(t)dt ≤ d. (4)

Once the above assumption on the initial function ϕ(·) and

the matrix data are given, the solution of system (1) is well

defined (see, e.g., [29]).

Definition 1. Robust finite-time stabilization

For given positive numbers T, c1, c2 and a symmetric pos-

itive definite matrix R, the control system (1) is robustly

finite-time stabilizable w.r.t (c1, c2, T, R) if there exists a

state feedback controller u(t) = g(x(t)) satisfying (3) such

that

sup
−h≤s≤0

ϕT(s)Rϕ(s) ≤ c1 ⇒ xT(t)Rx(t) < c2,∀t ∈ [0, T ]

for all disturbances w(t) satisfying (4).

In the above definition, and differently from the definition

of Lyapunov stability, we focus on the input-output behav-

ior of linear systems over a finite time interval. Roughly

speaking, and consistently with the definition of FTS given

in [7], a system is defined bounded if, given a class of norm

bounded input signals over a specified time interval [0, T ] ,

the outputs of the system do not exceed an assigned thresh-

old during [0, T ].
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The objective of this paper is to design a state feedback

controller u(t) = g(x(t)) satisfying (3) such that the result-

ing closed-loop system

ẋ = A(t)x + B(t)g(x) + D(t)x(t − h(t)) + B1(t)w (5)

is finite-time stable for all disturbances w(t) satisfying (4)

and guarantees a maximum H∞ performance. In the fol-

lowing, we define the robust finite-time H∞ controller for a

class of linear control time-varying delay system such that

the corresponding closed-loop system is finite-time stable

with H∞ disturbance attenuation level γ.

Definition 2. Finite-time HHH∞ control

Given γ > 0, the finite-time H∞ control problem for the

systems (1) has a solution if

1) The system (1) is robustly finite-time stabilizable

w.r.t. (c1, c2, T, R).

2) There exists a number c0 > 0 such that

sup

∫ T

0
‖z(t)‖2dt

c0‖ϕ‖2 +
∫ T

0
‖w(t)‖2dt

≤ γ (6)

where the supremum is taken over all ϕ ∈ C([−h, 0], Rn)

and non-zero disturbances w(·) satisfying (4).

Propositions 1 to 4 play an important role in our later

development.

Proposition 1. Cauchy matrix inequality[29]

For any matrices P, Q ∈ Rn×n, Q > 0 is symmetric, the

following inequality holds

2yTPx − yTQy ≤ xTPTQ−1Px, ∀x, y ∈ Rn.

Proposition 2. Let

f(t, x) = r
B(t)BT(t)P (t)x

1 + ‖BT(t)P (t)x‖
b = sup

t∈[0, T ]

||B(t)||, p = sup
t∈[0, T ]

||P (t)||.

Then we have the following assertions:

1) f(t, x) is globally Lipschitz in Rn.

2) ||f(t, x)||2 ≤ r2b2xTP 2(t)x, ∀x ∈ Rn, t ∈ [0, T ].

Proof. Let us denote x1, x2 ∈ Rn and

y1 = BT(t)P (t)x1, y2 = BT(t)P (t)x2.

We have

‖f(t, x1) − f(t, x2)‖ =

r
∥
∥
∥B(t)

[ y1

1 + ‖y1‖ − y2

1 + ‖y2‖
]∥∥
∥ ≤

rb
∥
∥
∥

y1

1 + ‖y1‖ − y2

1 + ‖y2‖
∥
∥
∥ ≤

rb
‖y1 − y2‖ + ‖y2‖y1 − ‖y1‖y2

(1 + ‖y1‖)(1 + ‖y2‖) .

Since

y1‖y2‖ − y2‖y1‖ = y1(‖y2‖ − ‖y1‖) + ‖y1‖(y1 − y2) ≤
‖y1‖(‖y1 − y2‖) + ‖y1‖(‖y1 − y2‖) =

2‖y1‖(‖y1 − y2‖)

and

‖y1 − y2‖
(1 + ‖y1‖)(1 + ‖y2‖) ≤ ‖y1 − y2‖

‖y1‖
(1 + ‖y1‖)(1 + ‖y2‖) ≤ 1

we have

||f(t, x1) − f(t, x2)|| ≤ 3rb||y1 − y2|| ≤ 3rpb2||x1 − x2||

where p = supt∈[0, T ] ||P (t)||.
3) We have

fT(t, x)f(t, x) =

r2

(1 + ‖BT(t)P (t)x‖)2 ‖B(t)BT(t)P (t)x‖2 ≤

r2b4

(1 + ‖BT(t)P (t)x‖)2 xTP 2(t)x ≤

r2b4xTP 2(t)x

because of 1 + ||BT(t)P (t)x|| ≥ 1. �
Proposition 3. Schur complement Lemma[29]

Given matrices X, Y, Z, where Y = Y T > 0, we have

(
X Z

ZT −Y

)

< 0 ⇐⇒ X < 0, X + ZY −1ZT < 0.

Proposition 4. Let P ∈ Mn×n, R ∈ Mn×n be symmet-

ric positive definite matrices. We have

1) λmin(P )(R) > 0, λmax(P )(R) > 0 and

λmin(P )xTx ≤ xTPx ≤ λmax(P )xTx, ∀x ∈ Rn.

2) xTx ≤ λmax(R
−1)xTRx, ∀x ∈ Rn.

3) xTPx ≤ λmax(P )λmax(R
−1)xTRx, ∀x ∈ Rn.

Proof. 1) is obvious. To prove 2), we use the assertion

1) as

xTx = xTR
1
2 R−1R

1
2 x ≤ λmax(R

−1)xTRx.

The assertion 3) is easily followed from 1) and 2). �

3 Main result

In this section, we start by designing the state feedback

controllers for finite-time stabilization and H∞ control. The

approach we use here is the Lyapunov-like function method

in the context of stabilization of linear non-autonomous sys-

tems subject to control constraint. Let us consider the fol-

lowing Riccati differential equation (RDE)

ṖR(t) + AT(t)PR(t) + PR(t)A(t)+

(2 + r2b4 +
b1

γβ2
)P 2

R(t) + (β2 + ζξ)I = 0 (7)
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where

PR(t) = P (t) + R, ζ =
1

1 − δ

b = sup
t∈[0, T ]

||(B(t))||, b1 = sup
t∈[0,T ]

λmax(B
T
1 (t)B1(t))

σ = sup
t∈[0, T ]

λmax(D
T(t)D(t))

c̄i = 2 sup
t∈[0, T ]

λmax(C
T
i (t)Ci(t)), i = 1, 2

β2 = max{c̄1, c̄2}, ξ = σ + β2.

Theorem 1. The finite-time H∞ control problem for

system (1) has a solution if there exist a symmetric matrix

P (t) ≥ 0 of RDE (7) and a positive number η > 0 satisfying

α1c1 + β2γd ≤ c2e
−ηT (8)

where

α1 = λmax(PR(0))λmax(R
−1) + ζhξλmax(R

−1).

Moreover, the state feedback controller is

u(t) =
r

1 + ||BT(t)P (t)x(t)||B
T(t)P (t)x(t). (9)

Proof. Let us consider the bounded feedback control

(9). By Proposition 2, the function

f(t, x) = r
B(t)BT(t)P (t)x

1 + ‖BT(t)P (t)x‖
is globally Lipschitz, hence, the closed-loop system

ẋ = A(t)x + D(t)x(t − h(t)) + B1(t)w) + f(t, x) (10)

has a unique solution. Consider the following non-negative

quadratic function

V (t, xt) = V1(t, xt) + V2(t, xt)

where

V1(·) = eηtxTPR(t)x(t)

V2(·) = eηtζξ

∫ t

t−h(t)

xT(s)x(s)ds.

Since the integral item of V (·) is non-negative and P (t) ≥ 0,

we have

V (t, xt) ≥eηtxT(P (t) + R)x(t) ≥
xT(P (t) + R)x(t) ≥
xT(t)Rx(t). (11)

Using 2) of Proposition 4 for the following estimations

xT(0)x(0) =xT(0)R
1
2 R−1R

1
2 x(0) ≤

λmax(R
−1)xT(0)Rx(0)

∫ 0

−h(0)

xT(s)x(s)ds ≤hλmax(R
−1) sup

−h≤s≤0
ϕT(s)Rϕ(s)

we estimate the value of V (·) at t = 0 to have

V (0, x0) =xT(0)PR(0)x(0) + ζξ

∫ 0

−h(0)

xT(s)x(s)ds ≤

λmax(PR(0))λmax(R
−1)xT(0)x(0)+

ζhξλmax(R
−1)φT(t)Rφ(t) ≤

α1 sup
−h≤s≤0

{ϕT(s)Rϕ(s)} ≤ α1c1. (12)

Moreover, using 3) of Proposition 4, we get the following

estimation

V (0, x0) ≤ α2||ϕ||2 (13)

where

α2 = λmax(PR(0)) + hζξ, ‖ϕ‖ = max
s∈[−h,0]

‖ϕ(s)‖.

Taking the derivative of V1(·) along the solution of the sys-

tem (10), we have

V̇1(t, xt) =ηeηtxT(t)PR(t)x(t)+

eηt[xT(t)ṖR(t)x(t) + 2xT(t)PR(t)ẋ(t)] =

ηeηtxT(t)PR(t)x(t)+

eηt
[
xT[ṖR(t) + AT(t)PR(t) + PR(t)A(t)]x+

2xT(t)PR(t)D(t)x(t− h(t)) + 2xT(t)PR(t)f(·)+
2xT(t)PR(t)B1(t)w(t)

]
.

To get the derivative of V2(·), we apply the differentiation

rule

d

dt

∫ b(t)

a(t)

f(s)ds = ḃ(t)f(b(t)) − ȧ(t)f(a(t))

and have

V̇2(.) = eηtζξ
[
xT(t)x(t)−

[1 − ḣ(t)]xT(t − h(t))x(t− h(t))
]

+ ηV2(.).

Therefore, we obtain

V̇ (·) =eηt
[
xT(t)[ṖR(t) + AT(t)PR(t) + PR(t)A(t)+

ζξ)I ]x(t) + 2xTPR(t)D(t)x(t− h(t))+

2xT(t)PR(t)f(·) + 2xT(t)PR(t)B1(t)w(t)−
(1 − ḣ(t))ζξxT(t − h(t)x(t − h(t))

]
+ ηV (·).

Since

−(1 − ḣ(t)) < −(1 − δ) = −1

ζ

we have

V̇ (·) ≤ eηt
[
[xT(t)ṖR(t) + AT(t)PR(t) + PR(t)A(t)+

ζξI]x(t) + 2xTPR(t)D(t)x(t − h(t))−
ξxT(t − h(t))x(t − h(t)) + 2xT(t)PR(t)f(·)+
2xT(t)PR(t)B1(t)w(t)

]
+ ηV (·).
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Applying Cauchy matrix inequality (Proposition 1) for the

following estimations

2xTPR(t)D(t)xh ≤ σxT
hxh + xTP 2

R(t)x

2xTPRB1w ≤ b1

γβ2
xTP 2

Rx +
γβ2

b1
wTBT

1 B1w ≤
b1

γβ2
xTP 2

Rx + γβ2w
T(t)w.

To get estimation of the value 2xTPRf(·), we use 2) of

Proposition 2:

2xTPR(t)f(·) ≤xTP 2
R(t)x + fT(·)f(·) ≤

(1 + r2b4)xTP 2
Rx.

We now apply the Cauchy matrix inequality (Proposition 1)

to get the value zT(t)z(t) defined from the second equation

of system (1) as

zT(t)z(t) =[C1(t)x(t) + C2(t)x(t − h(t))]T[C1(t)x(t)+

C2(t)x(t− h(t))] =

xT(t)CT
1 (t)C1(t)x(t) + 2xT(t − h(t))×

CT
2 (t)C1(t)x(t) + xT(t − h(t))×

CT
2 (t)C2(t)x(t − h(t)) ≤

2xT(t)CT
1 (t)C1(t)x(t) + 2xT(t − h(t))×

CT
2 (t)C2(t)x(t − h(t)) ≤

β2x
T(t)x(t) + β2x

T(t − h(t))x(t − h(t))

hence, we obtain

V̇ (·) ≤eηt
[
xT(t)[ṖR(t) + AT(t)PR(t) + PR(t)A(t)+

(2 + r2b4 +
b1

γβ2
)P 2

R(t) + (β2 + ζξ)I ]x(t)
]
+

eηtγβ2w
T(t)w(t) + ηV (·) − β2e

ηtzT(t)z(t). (14)

Therefore, from the conditions (7) and (14), it follows that

V̇ (·) ≤ ηV (·) + eηtβ2γwT(t)w(t) − β2e
ηtzT(t)z(t). (15)

Multiplying both sides of (15) with e−ηt, we have

e−ηtV̇ (·) − ηe−ηtV (·) < β2γwT(t)w(t) − β2z
T(t)z(t) (16)

and hence

e−ηtV̇ (·) − ηe−ηtV (·) < β2γwT(t)w(t), ∀t ∈ [0, T ] (17)

because of zT(t)z(t) ≥ 0. Note that

d

dt

[
e−ηtV (·)

]
= e−ηtV̇ (·) − ηe−ηtV (·)

thus integrating both sides of (17) from 0 to t gives

e−ηtV (t, xt) < V (0, x0) + β2γ

∫ t

0

wT(s)w(s)ds

∀t ∈ [0, T ].

Therefore, from the conditions (8), (11) and (12), it follows

that

e−ηtx(t)TRx(t) < V (t, xt) ≤ α1c1 + β2γd, ∀t ∈ [0, T ]

and hence from (8), it follows that

x(t)TRx(t) < (α1c1 + β2γd)eηT ≤ c2

which implies that the closed-loop system is robustly finite-

time stable w.r.t. (c1, c2, T, R).

To complete the proof of the theorem, it remains to show

the γ−optimal level condition (6). For this, we consider the

following relation

∫ T

0

[
β2||z(t)‖2 − γβ2‖w(t)‖2

]
dt =

∫ T

0

[β2‖z(t)‖2−

β2γ||w(t)||2 +
d

dt

(
e−ηtV (t, xt)

)
]dt−

∫ T

0

d

dt

(
e−ηtV (t, xt)

)
dt.

Since V (t, xt) ≥ 0 and from (13), it follows that

−
∫ T

0

d

dt

(
e−ηtV (t, xt)

)
dt =

− e−ηTV (T, xT ) + V (0, x0) ≤ α2‖ϕ‖2.

On the other hand, from (16), we have

β2‖z(t)‖2 − β2γ‖w(t)‖2 +
d

dt

(
e−ηtV (t, xt)

)
< 0

therefore,
∫ T

0

[
β2‖z(t)‖2 − β2γ‖w(t)‖2] dt ≤ α2‖ϕ‖2.

Setting c0 = α2
β2γ

, the above inequality yields

sup

∫ T

0
‖z(t)‖2dt

c0‖ϕ‖2 +
∫ T

0
‖w(t)‖2dt

≤ γ.

This inequality holds for all non-zero disturbances w ∈
L2([0, T ],Rm1), all ϕ ∈ C([−h, 0],Rn), and hence the con-

dition (6) holds. �
Remark 1. Theorem 1 gives sufficient conditions for

H∞ control problem via solving some RDEs. Note that,

the problem of solving RDEs is, in general, still compli-

cated and some effective methods for solving RDEs can be

found, for instance, in [30−32]. However, there is another

useful approach used in [27] to solve RDEs via DLMIs and

LMIs. We first reduce RDE (7) to the following DLMI by

using the Schur complement lemma (Proposition 3):

⎛

⎜
⎝

W (t) PR(t)

PR(t) − γβ2

2γβ2 + r2b4γβ2 + b1
I

⎞

⎟
⎠ < 0

where W (t) = ṖR(t) + AT(t)PR(t) + PR(t)A(t) + ζξI, and

then we recast the DLMI in terms of LMIs which can be

solved by the approach adopted as in [27]. For example,

to recast the above DLMI conditions in terms of LMIs,
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the matrix-valued function P (t) can be assumed piecewise

affine, i.e.,

P (0) = L0
1

P (t) = L0
k + Ls

k(t − (k − 1)Ts)

k ∈ N, k ≤ k̄, t ∈ [(k − 1)Ts, kTs]

P (t) = L0
k̄ + Ls

k̄(t − k̄Ts), t ∈ [k̄Ts, T ]

where k̄ = max{k ∈ N : k < T
Ts

}, and

L0
k = L0

k−1 + Ls
k−1Ts, k = 2, 3, · · · , k̄.

Since in the k-th time interval it is Ṗ (t) = Ls
k, it read-

ily follows that this approximation permits to recast the

proposed DLMI problem into an LMIs feasibility problem

with 2k̄ optimization variables L0
k, Ls

k. Furthermore, such a

piecewise function can approximate a generic continuously

differentiable P (·) with adequate accuracy, provided that

the length of T is sufficiently small. It should be noticed

that a similar approach to solve DLMIs has been adopted

in [33].

Remark 2. In Theorem 1, the condition (8) is an expo-

nential inequality with respect to η, since η includes only

in an exponent term, this inequality always has solutions.

Moreover, since the unknown η > 0 is not included in RDE

(7), we first find the solutions of (7) and then check the

condition (8).

As an application of Theorem 1, we derive sufficient con-

ditions for finite-time H∞ control of the following linear

autonomous time-delay system with bounded control via

Riccati algebraic equations (RAEs):
⎧
⎪⎪⎨

⎪⎪⎩

ẋ(t) = Ax(t) + Dx(t − h(t)) + Bu(t) + B1w(t)

z(t) = C1x(t) + C2x(t − h(t))

x(t) = ϕ(t), t ∈ [−h, 0] (18)

where A, D ∈ Rn×n, B ∈ Rn×m, B1 ∈ Rn×m1 , C1, C2 ∈
Rn×m2 are given constant matrices. The control u(t), the

disturbance w(t) satisfy the following conditions

∃r > 0 : ||u(t)|| ≤ r, ∀t ∈ [0, T ]

∃d > 0 :

∫ T

0

wT(t)w(t)dt ≤ d.

The following result on solving finite-time H∞ control prob-

lem for linear autonomous time-delay system with bounded

control (18) is derived from Theorem 1.

Corollary 1. The finite-time H∞ control problem for

system (18) has a solution if there exist a symmetric positive

definite matrix P and a positive number η > 0 satisfying

the following conditions:

ATPR+PRA+
(
2+r2b4+

b1

γβ2

)
P 2

R+(β2+ζξ)I = 0 (19)

α1c1 + β2γd ≤ c2e
−ηT. (20)

Moreover, the static feedback controller is

u(t) =
r

1 + ||B�Px(t)||B
TPx(t), t ∈ [0, T ].

For the case of considered system (1) with constant delay:

h(t) = h, we choose simple Lyapunov functional

V (t, xt) = eηtxTPR(t)x(t) + eηtξ

∫ t

t−h

xT(s)x(s)ds.

The Riccati equation (19) is then reduced to

ATPR + PRA + (2 + r2b4 +
b1

γβ2
)P 2

R + (β2 + ξ)I = 0

which is, by the Schur complement lemma, Proposition 3,

converted to an LMI w.r.t the solution P > 0 as
⎛

⎝
ATP + PA + 2d̄PR + W (A,R) + (β2 + ξ)I P

P −1

d̄
I

⎞

⎠ < 0

(21)

where d̄ = 2 + r2b4 + b1
γβ2

and

W (A,R) = ATR + RA + d̄R2.

Therefore, we get Corollary 2.

Corollary 2. The finite-time H∞ control problem for

system (18), where h(t) = h, has a solution if there exist a

symmetric positive definite matrix P and a positive number

η > 0 satisfying the LMI (21) and the condition (20), where

α1 = λmax(PR(0))λmax(R
−1) + hξλmax(R

−1).

Moreover, the static feedback controller is

u(t) =
r

1 + ||BTPx(t)||B
TPx(t), t ∈ [0, T ].

4 Numerical examples

In this section, numerical examples are provided to show

the effectiveness of the method developed in this paper.

Example 1. Consider a linear time-varying system with

bounded control described by

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋ1(t) = (−0.5 − 1.625et − 3e−t)x1(t) + x2(t)+

x2(t − h(t)) cos t +
1

t + 1
u1(t) + e−tw1(t)

ẋ2(t) = −x1(t) + (−0.5 − 1.625et − 3e−t)x2(t)+

x1(t − h(t)) sin t + u2(t) + 0.5w2(t)

z1(t) = x1(t) + x1(t − h(t))

z2(t) = e−tx2(t) + e−tx2(t − h(t))

x(t) = [ϕ1(t), ϕ2(t)], t ∈ [−0.25, 0]

where

h(t) = 0.25 sin2 t, r = 1, d = 2, γ = 1.

We have

A =

(
−0.5 − 1.625et − 3e−t 1

−1 −0.5 − 1.625et − 3e−t

)

D =

(
0 1

sin t 0

)

, B =

(
1

t+1
0

0 1

)
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B1 =

(
e−t 0

0 0.5

)

, C1 = C2 =

(
1 0

0 e−t

)

.

We can find that RDE (7) has a solution

P (t) =

(
et − 1 0

0 et − 1

)

≥ 0

and the condition (8) is satisfied with

η =
1

40
, T = 80, c1 = 1, c2 = 50, R = I.

By Theorem 1 the system is robustly finite-time stabilizable

w.r.t (1, 50, 100, I) and the state feedback controller is

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

u1(t) =
−etx1(t)

(1 + t)

(

1 +

√
e2t

(91 + t)4
x2

1(t) + x2
2(t)

)

u2(t) =
−x2(t)

1 +

√
e2t

(91 + t)4
x2

1(t) + x2
2(t)

, t ∈ [0, 80].

Fig. 1 shows the trajectories of x(t)TRx(t) of the closed-loop

system with the initial conditions ϕ(t) = [0.9, 0.4].

Fig. 1 Trajectories of x(t)TQx(t) of system (1)

Example 2. Consider a linear autonomous system with

bounded control described by

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

ẋ1(t) = −5x1(t) + x2(t − h(t)) + w1(t)

ẋ2(t) = −5.875x2(t) + x1(t − h(t)) + u(t) + w2(t)

z1(t) = 0.5x1(t) + 0.5x1(t − h(t))

z2(t) = 0.5x2(t) + 0.5x2(t − h(t))

x(t) = [ϕ1(t), ϕ2(t)], t ∈ [−0.25, 0]

where

h(t) = 0.25 sin2 t, r = d = γ = 1.

We have

A =

(
−5 0

0 −5

)

, D =

(
0 1

1 0

)

B =

(
0

1

)

, B1 =

(
1 0

0 1

)

C1 = C2 =

(
0.5 0

0 0.5

)

.

Note that the control system [A, B] is uncontrollable, but

we can find that the algebraic Riccati equations (ARE) (19)

has a solution

P =

(
1 0

0 2

)

> 0

and the condition (20) is satisfied with

T = 100, η =
1

50
, c1 = 1, c2 = 58, R = I.

By Corollary 1, the system is robustly finite-time stabiliz-

able w.r.t (1, 58, 100, I), and the state feedback controller

is

u(t) =
2x2(t)

1 + 2|x2(t)| , t ∈ [0, 100].

Fig. 2 shows the trajectories of x(t)TRx(t) of the closed-loop

system with the initial conditions ϕ(t) = [0.7,−0.7].

Fig. 2 Trajectories of x(t)TQx(t) of system (12)

Example 3. Consider the following linear system with

constant delay:
⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

ẋ1(t) = 2x1(t) + x2(t) + 0.5x1(t − 2) + u1(t) + w1(t)

ẋ2(t) = −x1(t) + x2(t) + x2(t − 2) + 0.5u2(t) + w2(t)

z1(t) = 0.2x1(t) + x1(t − 2)

z2(t) = 0.5x2(t) + x2(t − 2)

x(t) = [ϕ1(t), ϕ2(t)], t ∈ [−2, 0]

where h = 2, d = 2, r = 1, γ = 2. We have

A =

(
2 1

−1 1

)

, D =

(
0.5 0

0 1

)

B =

(
1 0

0 0.5

)

, B1 =

(
1 0

0 1

)

C1 =

(
0.2 0

0 0.5

)

, C2 =

(
1 0

0 1

)

.
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We can find that the LMI (20) has a solution

P =

(
1 0

0 0

)

> 0

and the condition (20) is satisfied with

T = 80, η =
1

80
, c1 = 1, c2 = 50, R = I.

By Corollary 2, the system is robustly finite-time stabiliz-

able w.r.t (1, 50, 80, I) and the state feedback controller is
⎧
⎪⎨

⎪⎩

u1(t) =
x2

1(t)

1 + x2
1(t)

, t ∈ [0, 80]

u2(t) = 0.

5 Conclusions

In this paper, the problem of finite-time stabilization

and H∞ control for linear time-varying delay systems with

bounded control has been studied. Different from the ex-

isting results, we have obtained new sufficient conditions

for the finite-time stabilization and finite-time H∞ control

problem via nonlinear feedback controller u(t) = g(x(t)).

The solution of the H∞ control problem can be efficiently

solved by means of Riccati differential equations. Appli-

cations to finite-time H∞ control to a class of linear au-

tonomous systems with delays have been presented in this

paper. Our paper raises certain questions that are impor-

tant from the point of view of the bounded stabilization

theory, in particular the construction of output feedback

controllers u(t) = g(z(t)) satisfying condition (3).
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[12] T. Başar, P. Bernhard. H∞-Optimal Control and Related
Minimax Design Problems: A Dynamic Game Approach,
2nd ed., Basel, USA: Birkhauser, 1995.

[13] P. Balasubramaniam, T. Senthilkumar. Delay-dependent
robust stabilization and H∞ control for uncertain stochas-
tic T-S fuzzy systems with discrete interval and distributed
time-varying delays. International Journal of Automation
and Computing, vol. 10, no. 1, pp. 18–31, 2013.

[14] P. Shi, Y. Q. Zhang, M. Chadli, R. K. Agarwal. Mixed
H∞ and passive filtering for discrete fuzzy neural networks
with stochastic jumps and time delays. IEEE Transactions
on Neural Networks and Learning Systems, vol. 27, no. 4,
pp. 903–909, 2016.

[15] Z. R. Xiang, C. H. Qiao, M. S. Mahmoud. Finite-time anal-
ysis and H∞ control for switched stochastic systems. Jour-
nal of the Franklin Institute, vol. 349, no. 3, pp. 915–927,
2012.

[16] Z. Xiang, S. Liu, M. S. Mahmoud. Robust H∞ reliable con-
trol for uncertain switched neutral systems with distributed
delays. IMA Journal Mathematical Control and Informa-
tion, vol. 32, pp. 1–19, 2015.

[17] H. Liu, Y. Shen, X. D. Zhao. Delay-dependent observer-
based H∞ finite-time control for switched systems with
time-varying delay. Nonlinear Analysis: Hybrid Systems,
vol. 6, no. 3, pp. 885–898, 2012.

[18] H. Bounit, H. Hammouri. Bounded feedback stabilization
and global separation principle of distributed parameter
systems. IEEE Transactions on Automatic Control, vol. 42,
no. 3, pp. 414–419, 1997.



P. Niamsup and V. N. Phat / Robust Finite-time H∞ Control of Linear Time-varying Delay Systems with · · · 363

[19] M. Slemrod. Feedback stabilization of a linear control sys-
tem in Hilbert space with an a priori bounded control.
Mathematics of Control, Signals and Systems, vol. 22, no. 3,
pp. 265–285, 1989.

[20] H. J. Sussmann, E. D. Sontag, Y. Yang. A general result on
the stabilization of linear systems using bounded controls.
IEEE Transactions on Automatic Control, vol. 39, no. 12,
pp. 2411–2425, 1994.

[21] M. L. Corradini, A. Cristofaro, F. Giannoni, G. Orlando.
Control Systems with Saturating Inputs: Analysis Tools
and Advanced Design, New York, USA: Springer, 2012.

[22] B. Wang, J. Y. Zhai, S. M. Fei. Output feedback track-
ing control for a class of switched nonlinear systems with
time-varying delay. International Journal of Automation
and Computing, vol. 11, no. 6, pp. 605–612, 2014.

[23] V. N. Phat, P. Niamsup. Stabilization of linear nonau-
tonomous systems with norm-bounded controls. Journal
of Optimization Theory and Applications, vol. 131, no. 1,
pp. 135–149, 2006.

[24] Y. Guo, Y. Yao, S. C. Wang, B. Q. Yang, K. Liu, X.
Zhao. Finite-time control with H∞ constraints of linear
time-invariant and time-varying systems. Journal of Con-
trol Theory and Applications, vol. 11, no. 2, pp. 165–172,
2013.

[25] G. Garcia, S. Tarbouriech, J. Bernussou. Finite-time sta-
bilization of linear time-varying continuous systems. IEEE
Transactions on Automatic Control, vol. 54, no. 2, pp. 364–
369, 2009.

[26] J. J. Hui, H. X. Zhang, X. Y. Kong. Delay-dependent non-
fragile H∞ control for linear systems with interval time-
varying delay. International Journal of Automation and
Computing, vol. 12, no. 1, pp. 109–116, 2015.

[27] F. Amato, R. Ambrosino, C. Cosentino, G. De Tommasi.
Input-output finite time stabilization of linear systems. Au-
tomatica, vol. 46, no. 9, pp. 1558–1562, 2010.

[28] H. Du, C. Qian, M. T. Frye, S. Li. Global finite-time sta-
bilisation using bounded feedback for a class of non-linear
systems. IET Control Theory & Applications, vol. 6, no. 14,
pp. 2326–2336, 2012.

[29] K. Q. Gu, V. L. Kharitonov, J. Chen. Stability of Time-
Delay System, Boston, USA: Birkhauser, 2003.

[30] A. J. Laub. A Schur method for solving algebraic Ric-
cati equations. IEEE Transactions on Automatic Control,
vol. 24, no. 6, pp. 913–921, 1979.

[31] J. S. Gibson. Linear-quadratic optimal control of hereditary
differential systems: infinite dimensional Riccati equations
and numerical approximations. SIAM Journal on Control
and Optimization, vol. 21, no. 1, pp. 95–139, 1983.

[32] W. T. Reid. Riccati Differential Equations, Volume 86, New
York, USA: Academic Press, 1972.

[33] U. Shaked, V. Suplin. A new bounded real lemma represen-
tation for the continuous-time case. IEEE Transactions on
Automatic Control, vol. 46, no. 9, pp. 1420–1426, 2001.

Piyapong Niamsup received the B. Sc.
degree in mathematics from Chiang Mai
University, Thailand in 1992. He also re-
ceived the M. Sc. and Ph.D. degrees in
mathematics from University of Illinois
at Urbana-Champaign, USA in 1995 and
1997, respectively. In 1997, he joined the
Department of Mathematics, Faculty of
Science, Chiang Mai University, Thailand

as a lecturer, where he became an associate professor, in 2006.
He is the author/co-author of 55 refereed journal papers.

His research interests include complex dynamics, stability the-
ory, switched systems, chaos synchronization, and discrete-time
events.

E-mail: piyapong.n@cmu.ac.th
ORICD iD: 0000-0003-2616-8605

Vu N. Phat received the B. Sc. and
Ph. D. degrees in mathematics at the for-
mer USSR Bacu State University, USSR in
1975 and 1984, respectively. He received
the D. Sc. degree in mathematics at the In-
stitute of Mathematics, Polish Academy of
Sciences, Poland in 1995. Currently, he
works as a professor at the Institute of
Mathematics, Vietnam Academy of Science

and Technology, Vietnam. He is the author/co-author of two
monographs and more than 100 refereed journal papers.

His research interests include systems and control theory, op-
timization techniques, stability analysis, and time-delay systems.

E-mail: vnphat@math.ac.vn (Corresponding author)
ORCID iD: 0000-0001-9467-6674


