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Abstract: Due to the prevalence of social network services, more and more attentions are paid to explore how information diffuses and
users affect each other in these networks, which has a wide range of applications, such as viral marketing, reposting prediction and social
recommendation. Therefore, in this paper, we review the recent advances on information diffusion analysis in social networks and its ap-
plications. Specifically, we first shed light on several popular models to describe the information diffusion process in social networks,
which enables three practical applications, i.e., influence evaluation, influence maximization and information source detection. Then, we
discuss how to evaluate the authority and influence based on network structures. After that, current solutions to influence maximiza-
tion and information source detection are discussed in detail, respectively. Finally, some possible research directions of information diffu-

sion analysis are listed for further study.
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1 Introduction

Recent years have witnessed a rapid development of
social network services (SNS), such as Twitter!, Face-
book2, and Sina Weibo3. More and more users are taking
them to share information with friends. For example, in
Facebook, there are over 2.01 billion monthly active users
all over the world during June 20170, These social net-
works have the characteristics of openness (i.e., every one
can join and keep in touch with the outside world), inter-
action (i.e., users can interact with friends about a movie
or an accident by replying or reposting) and timeliness
(i.e., a user can update status messages at any time)[2 3.

Users' participations generate tremendous data in so-
cial networks. In Twitter, on average, 500 million tweets
are posted per day* This data contains various informa-
tions. For example, people may tweet their opinions on
breaking news; or may just update messages to tell
friends what have happened in their daily life. Compan-
ies may hire influential users to promote new products
such as movies and electronic goods. Besides, those in-
formation are flowing and can diffuse among users. Once
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users see something interesting, they can repost or for-
ward these contents to their friends. If their friends also
like the contents, they can further share them with their
own friends, which thus causes information diffusion in
the network, i.e., the so-called effect of word-of-mouth.
Those users who adopt the information are called influ-
enced or active.

However, how the information diffuses through net-
works is usually unknown. Understanding the diffusion
mechanism behind massive information is important for a
wide range of applications, such as viral marketing4 6, so-
cial behavior predictionl™ 9, social recommendation/l0-12],
and community detection[!3-15, This issue has attracted
researchers from various fields including epidemiology,
computer science, and sociology. They proposed different
kinds of information diffusion models to describe and sim-
ulate this process, such as the independent cascade (IC)
modell'%], linear threshold (LT) modell!” 4 and epidemic
models(!8. Most models are contagious and assume that
the information starts to diffuse from a source (or seed)
node set, and other nodes can access the information only
from their neighbors.

The discovered diffusion models have been applied to
many practical applications. For example, first, by evalu-
ating users’ influence, we can identify influential spread-
ersll% 20l and find experts/2123], Second, by choosing seed
users and solving the so-called influence maximization
problemll, we can maximize the number of influenced
users. This is significant to promote new products
through the word-of-mouth effectl! or place sensors to
quickly detect contaminants in the water distribution net-
work in a city?% 251, Third, after the information diffuses

@ Springer


https://www.twitter.com/
https://www.facebook.com/
https://www.weibo.com/
http://www.internetlivestats.com/twitter-statistics/

378 International Journal of Automation and Computing 15(4), August 2018

from a set of source nodes for a period of time, it will in-
fluence more nodes. We can infer the source nodes ac-
cording to these observed influenced nodes, which is
called information source detection. It can help to pre-
vent the outbreak of an epidemic(26-28] and trace the ru-
mor source in social networks[29 301,

Therefore, we will review the recent development of
information diffusion analysis in social networks and its
applications. Fig.1 gives an overview of this paper. The
rest parts are organized as follows. We start with some
preliminaries of social networks in Section 2. Section 3 in-
troduces three basic kinds of information diffusion mod-
els. Then we list methods which are used to evaluate the
authority and influence in Section 4. Sections 5 and 6
show the solutions to influence maximization and inform-
ation source detection, respectively. Finally, we conclude
some possible directions for further study in Section 7.

2 Preliminaries

A social network can be denoted as G(V,E,W),
where V'is the node set of size n, F is the edge set of size
m, and W = [w;;]. Edge e;; indicates the direction of in-
formation flow from node i to 7 with a propagation prob-
ability w;; € [0,1]. Undirected networks can be converted
into directed ones by w;; = wj;. Fig.2 shows a toy social
network with 10 nodes, and the edges indicate possible
directions of information flows. Lots of real-world net-
works can be viewed as instances of social networks, such
as

1) Microblogging networks. Nodes represent users or
organizations. For example, in Twitter, if user v is a fol-
lower of user w, there will be an edge from u to v, and
Wy 1S the probability u affects v and can be learned from
historical actions[31.

2) Citation networks. Nodes represent papers and

edge e,, indicates paper v has cited u. A simple ap-
proach to determine the propagation probability e, from
u to v is sharing u's influence among its neighbors, i.e.,

Cur = 7 where d,(u) is the out-degree of w.

o(u)
3) Collaboration networks. Nodes represent authors

and ey, indicates author u and v have collaborated on at
least one paper. The propagation probability is propor-
tional to the number of papers that two authors has col-
laborated on.

4) Email networks. Edge ey, indicates user u has sent
at least a email to v. The propagation probability is pro-
portional to the number of emails between two users.

Different kinds of information can spread in a social
network, such as innovations, contagion, opinions about
specific events. Note that a node is influenced if it adopts
the information. An influenced node will further propag-
ate the information to its neighbors, i.e., word-of-mouth,
which causes information diffusion in the network. Thus,
except for specific explanation, every node has two states:
active (i.e., infected/influenced) and inactive. For example,
in Twitter, users reposting a funny tweet are active, while
others are inactive.

Datasets. There are many websites providing open

(DL

Fig.2 A toy social network where edges indicate the directions
of information flows
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datasets of social networks for research. Here we list some
of them for easy reference.

1) Stanford large network dataset collection®. It is a
collection of more than 50 large network datasets from
tens of thousands of nodes and edges to tens of millions of
nodes and edges, including social networks, web graphs,
road networks, Internet networks, citation networks, col-
laboration networks, and communication networks.

2) AminerS. It provides a repository of external data-
sets for social network analysis, including microblogging
networks, patent dataset from Patentminer.org, know-
ledge linking dataset, mobile dataset and other online so-
cial networks.

3) Social computing data repository’. It hosts data-
sets from many different social media sites, most of which
have blogging capacity, such as BlogCatalog, Twitter,
MyBlogLog, Digg, StumbleUpon, del.icio.us, MySpace,
LiveJournal, The Unofficial Apple Weblog (TUAW),
Reddit, etc.

4) KONECTS. Koblenz Network Collection (KONECT)
is a project to collect large network datasets for research-
ing in network science and related fields. It includes sev-
eral hundred network datasets of various types, including
directed, undirected, bipartite, weighted, unweighted,
signed and rating networks.

3 Information diffusion models

How the information diffuses through networks is un-
known and has been studied by researchers from various
fields including epidemiology!!8l, computer sciencell6l, and
sociology32. They proposed different kinds of informa-
tion diffusion models to describe and simulate this pro-
cess. Most of them are contagious and follow two rules
below:

Rule 1. Every piece of information diffusion starts
from several source nodes.

For example, John is a movie star and posts a tweet
on Twitter to promote his new movie. This may cause a
hot discussion among his fans, and thus he is the source
node initializing this diffusion.

Rule 2. Every disseminator can access the informa-
tion only from its neighbors.

In the above example, Alice is a fan of John, and she
can only read the tweet from John or other fans' retweet-
ing.

All information diffusion models are consistent with
Rule 2, but achieve Rule 2 in different ways. They can be
divided into two categories: 1) progressive models where
nodes can switch from being inactive to being active, but
do not switch in the other direction and 2) non progress-
ive models where nodes can switch in both directions and
Shttps://snap.stanford.edu/data/
Shttps://cn.aminer.org/data-sna
Thttp://socialcomputing.asu.edu/pages/home
8http://konect.uni-koblenz.de/

allow to be activated for many times. In the next part,
we will introduce three basic information diffusion mod-
els, namely independent cascade (IC) model, linear
threshold (LT) model and Epidemic models, which are
widely used and are fundamental for personal influence
evaluation, influence maximization, etc. More diffusion
models can be found herel33].

3.1 Independent cascade model

Independent cascade (IC) model was proposed by
Goldenberg et al.l16] in 2001. It describes a diffusion like
Domino and assumes the information starts from a set of
active seed nodes Ap, which follows Rule 1. For viral
marketing, Ao are the users who have discounts and
would like to promote the products among their friends.
Every active node cannot switch back to being inactive.

As time goes by, inactive nodes can receive informa-
tion from active ones. Specifically, at time t, A; are the
set of current active nodes. For node u € Ay, it have only
one chance to affect its inactive adjacent node v with the
probability wy,. If successful, v becomes active and will
try to affect its own neighbors in the next time-stamp
t+1, otherwise v keeps inactive and uw has no chance to
affect v any more. If node v has more than two active in-
neighbors, they will affect v independently. The above ex-
plains how the IC model interprets Rule 2. This process
continues to unfold until no more nodes become active.
Note that the independent cascade model is progressive
and stochastic, thus the final active nodes A, may
change when the information starts from different seed
nodes Ap.

3.2 Linear threshold model

Linear threshold (LT) model was proposed by Gran-
ovetterll”l in 1978. It assumes that each node v has a spe-
cific threshold 6, uniformly sampled from the interval [0,
1], and ZuEV Wyy < 1. Given the initial seed nodes Ao,
the diffusion process will unfold deterministically in dis-
crete steps. Specifically, in step ¢, nodes which were act-
ive in previous step will remain active, and an inactive
node v becomes active if

Z Wyy > 0. (1)

UEN; 5, (v)

where N;,(v) is a set of v's active in-neighbors. This
process continues to unfold until no more nodes become
active. We can see the probability that an inactive node
becomes active, increases monotonically as more of its
neighbors become active. What's more, v's threshold can
be considered as a weighted fraction of v's neighbors that
must become active in order to successfully affect v.

In summary, there are two main differences between

@ Springer


https://snap.stanford.edu/data/
https://cn.aminer.org/data-sna
http://socialcomputing.asu.edu/pages/home
http://konect.uni-koblenz.de/

380 International Journal of Automation and Computing 15(4), August 2018

LT and IC models. First, active nodes in the LT model
have more than one chance to affect their inactive neigh-
bors. Second, node v's active neighbors will affect v to-
gether in the L'T model, while v's active neighbors only
have one chance to independently affect v in the IC mod-
el. However, Kempe and McKendrick[!8] proposed a gen-
eral threshold model and a general cascade model, and
have proven their equivalence. Besides, both LT and IC
models are special cases of the triggering modell!8], where
each node v independently chooses a random triggering
set T, according to some distribution over subsets of its
neighbors, and v is active if it has a neighbor in its
chosen T,.

3.3 Epidemic models

Some researchers adopt the epidemic models to simu-
late the infection and recovery processes of nodes in net-
works[3% 35, which are originally describing how a disease
spreads within a population in epidemiology[!8l. The in-
formation or disease also starts from a set of infected seed
nodes Ag. The simplest is the susceptible-infected (SI)
modelB% 36] which assumes each node has two possible
states: susceptible and infected. When a node is in the
susceptible state, it can potentially get infected by the in-
formation. Once a node w is infected, it will remain infec-
ted forever and spreads the information to its susceptible
adjacent node v with a probability of w,,. Note that dif-
fusions along edges are supposed to be independent. The
susceptible-infected-susceptible (SIS) model3 is similar
to the SI model, except that an infected node uw can be-
come susceptible again with a probability of .

Susceptible-infected-recovered (SIR) modell'8l general-
izes the SI model, and assumes a node has three states:
susceptible, infected and recovered. When a node u is in-
fected, it has a probability of 7u to recover and becomes
immune to the disease, which means u will not get infec-
ted any more. Its other settings are similar to the SI
model. Another epidemic model, i.e., susceptible-infected-
recovered-susceptible (SIRS)B6 extends the SIR model
and also assumes a node has the above three states. But
after node u recovers from being infected, it can become
susceptible again with a probability of \,, Fig.3 shows
the possible state changes of a node in the above four epi-
demic models.

Indeed, there are other epidemic models, such as sus-
ceptible exposed infected recovered (SEIR)B7, maternal
susceptible infected recovered (MSIR)B8l, susceptible ex-
posed infected recovered susceptible (SEIRS)[B9. Readers
can refer to the workl% for more details. How to exploit
these models for information diffusion analysis is under-
explored.

4 Authority and influence evaluation

Based on the above diffusion models, we can evaluate
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Fig.3 Node state transition diagrams for four epidemic
models: (a) SI, (b) SIS, (c) SIR, (d) SIRS, where ¥ and A is the
transition probability

the influence or authority of an individual in social net-
works, which is important for influential spreader identi-
fication!% 20, 41] and expert findingl42 2122, A user's influ-
ence and authority seem to be different at a first glance,
because “influence” measures the impact that it has on
others through out-links (e.g., persuading them to buy a
product) while “authority” is the endorsement received
from its followers through in-links. However, some
works[43; 44 have realized that they have a close relation-
ship because an individual earns its authority by influen-
cing others. In the next, we will show how to evaluate the
influence and authority.

4.1 Authority evaluation

In this subsection, we focus on the solutions to au-
thority evaluation which only exploit the network struc-
ture, such as centrality based and PageRank. Readers can
find other methods by referring to the work[45].

4.1.1 Centrality based

There are many ways to compute the centrality of a
node and its larger value means more influential. The
first and simplest way is degree centrality, which equals
to the number of links upon a node. In a directed net-
work, we can use outdegree and indegree to measure the
centrality, respectively. For a node u, outdegree can eval-
uate its importance as information senders, while inde-
gree measures its gregariousness. That's to say, the lar-
ger u's outdegree is, the more users u will affect. While
the larger u's indegree is, the closer w is to others.

For degree centrality, it considers nodes with more
connections to be more influential. In fact, the influence
of a node should be determined by its neighbors. Eigen-
vector centrality provides another way to measure indi-
vidual influence with this fact. Let A be the adjacency
matrix, i.e., ay, = 1 if node wu is linked to node v, other-
wise au, = 0. Formally, u's eigenvector centrality, c.(u),
can be computed by

colw) = 5 3 v X ce(o) (2)

veV
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where )\ is a fixed constant. This equation can be
rewritten in vector notation as

Ae. = A'c. (3)
where c. = (ce(v1), ce(v2), - ,ce(vn))T. Thus, we can see
c. is an eigenvector of A, which corresponds to the
largest according to
theorem.

The third way to compute centralities is based on the
distance between nodes. 1) Node u's closeness centralityl46],
ce(u), is defined as the reciprocal of the average shortest

eigenvalue Perron-Frobenius

distance between u and others. Formally,

1
ce(u) = S du,v) (4)
veV

where d(u,v) is the shortest distance between node v and
v, computed by the topological distance or weights along
the path. 2) wu's betweenness centrality[d”, c,(u), counts
the number of shortest paths among others which pass
through u. Formally,

cp(u) =

Y o) 6

ag
sFEuUALEV st

where o5 is the number of shortest paths between s and
t, and ost(u) is the number of shortest paths between s
and t passing through w. 3) w's Jordan centralityl48],
¢j(u), is defined as the reciprocal of the maximum
distance between u and other nodes. Formally,

1

ei(u) = max{d(u,v)lv € V}’

(6)

Note that the closeness and Jordan centralities as-
sume authoritative nodes can send information to others
as fast as possible, while betweenness centrality shows
how important a node is in connecting others as a pivot.

When comparing nodes of graphs with different sizes,
we can normalize the aforementioned centralities by
things like the number of nodes. Readers can find more
details in the workI36l,

4.1.2 PageRank

PageRank[ is originally used for evaluating authorit-
ies of Web pages and as the cornerstone of Google's
search engine?. It is also an extension of the normal eigen-
vector centrality discussed above. The general PageRank
values & = (x(v1), z(v2), - - - ,2(vn)) T of nodes in G can be
defined as

r=dWex+ (7

where d € [0,1] is a decay factor, n is the number of
nodes, and e is a vector fully filled with ones. This

9https://www.google.com/

equation could be solved by the power iteration. Please
refer to the work(5% for more details.

The random surfer model®? can explain PageRank
vividly. A user starts surfing on a web page and then
clicks current links randomly. He will continue clicking
until stopping at a desired page. PageRank assumes that
the surfer is more likely to stop at important pages.
When d = 1, * = Wx shows that x is the stationary dis-
tribution of a random walk with W as the transition
matrix. But in real scenarios, many pages have no out-
link or are in a small loop of web pages, and thus the
surfer will be stuck. To overcome this problem, the surfer
can randomly open a new page and keeps surfing. The
second term on the right side of (7) tells this strategy: If
the surfer is stuck, he will click a page with a probability
of l

n

Haveliwalal®ll considered more personalized know-
ledge and proposed a topic-sensitive PageRank. The uni-
form personalization vector e in (7) is replaced by a
nonuniform g whose i-th element equals to 1 if it belongs
to the target topic, otherwise it would be 0. Kleinberg/>?]
designed a similar algorithm, called HITS. It computes
the authority weight and hub weight in a subgraph simul-
taneously. Besides, Weng et al.[53] proposed TwitterRank,
an extension of PageRank, to measure the influence of
users in Twitter. It takes both the topical similarity
between users and the link structure into account to
measure the influence.

Due to its simplicity and effectiveness, PageRank has
been applied to complete many tasks, such as influential
spreaders identification!9 and link predictionll in social
networks, item recommendation®¥ and expert finding22l.

4.2 Influence evaluation

Someone's influence can be considered as the ability to
affect others. Kempe et al.l4 defined the influence of a
node set A to be the expected number of active nodes at
the end of the process, which is also named influence
spread, given that A is the initial active set. Many meth-
ods have been designed to compute this value efficiently
and effectively.

4.2.1 Monte Carlo simulation

Kempe et al.ll proposed to run Monte Carlo (MC)
simulations to estimate the influence spread under the IC
model or LT model. The MC simulation is a process: un-
der the IC or LT model, we diffuse a piece of informa-
tion from a node set A in the network, and can get the
number of active nodes at the end of this diffusion.
Therefore, the influence spread of a node set A, denoted
as f(A) can be estimated by

F(A) = = 3 8(w) (8)

where R is the count of MC simulations, and d(v) is an
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indicator. é(v) =1 if node v is active at the end,
otherwise it would be 0. Each MC simulation is
independent, and thus the law of large numbers ensures
that (8) converges to the real value as long as R is large
enough. However, this method 1is time-consuming,
especially for large-scale networks. The authors left it as
an open question to compute the influence spread.
4.2.2 Approximation methods

Chen et al.l53] further studied this problem, and got
the following depressing result. Given a node set A, com-
puting its influence spread f(A) is #P-hard under the IC
or LT model.5% 56 Thus some researchers try to design
approximation methods to estimate the influence spread.
SteadyState-
Spread, to determine the expected information spread of

Aggarwal et al.b7 proposed a method,

a given starting set of nodes A. They first computed the
steady-state probability (i) that node ¢ assimilates the
information by solving the following system of nonlinear
equations.

1, ificA
1= [] = wjir(h),

JEV

(i) =

otherwise. (9)

That means in order to let node ¢ assimilate the in-
formation, it must receive the information from at least
one of its neighbors. Then, the sum of steady-state assim-
ilation probabilities of all nodes can reach the desired in-
fluence spread.

Yang et al.58] noted that (9) is not strictly applied to
some situations. For example, it is invalid when the net-
work has structural-defect node pairs. More importantly,
there are some difficulties in solving systems of nonlinear
equations, such as convergence and multiple solutions.
They illustrated an observation that influence propaga-
tion probabilities in real-world social networks are usu-
ally quite small. Then, they represented the steady-state
probability approximation by a linear system defined as

m(i) = D wiim(j). (10)

JEV

They also proposed a simple iterative algorithm to
solve the linear system problem. We can see (10) is simil-
ar to (2). This indicates that the influence and authority
should have a latent relationship, which we will discuss in
the next subsection.

However, in many scenarios, the network where diffu-
sions take place is in fact implicit or even unknown. For
example, in viral marketing settings, we only observe
people purchasing products without explicitly knowing
who was the influencer that caused the purchases. Thus,
Yang and Leskovecl® studied modeling information diffu-
sion in implicit networks. They focused on modeling the
global influence of a node on the rate of diffusion through
the (implicit) network over time. Every node u has a par-

@ Springer

ticular non-negative influence function I,,(I) which can be
considered as the number of followup mentions [ time
units after v adopted the information. Then the volume,
V(t), the number of nodes that mention the information
at time t, is the sum of properly aligned influence func-
tions of nodes.

V()= > Lu(t—tu) (11)

u€A(t)

where A(t) denotes the set of already active nodes that
got activated prior to time ¢, i.e., t, < t. They proposed a
non-parametric approach to implement the influence
function.

More methods to estimate the influence spread when
dealing with the influence maximization problem will be
introduced in Section 5.2.

4.2.3 PageRank with prior

Xiang et al.l44 60 further understood PageRank from
the perspective of influence propagation to explore the re-
lationship between authority and influence. Specifically,
they first proposed a linear social influence computation
model as follows.

Definition 1. Denote the influence from node 7 to j
by fi—)j, then

fini=ai, ;>0 (12)

1
fims = T+

7 1<k<n

wy; fisk, forj#i  (13)

where «a; is a prior probability value and \; € [0, +00) is
a damping factor[44].

Equestion (13) shows that the influence from node ¢ to
j is proportional to the linear combination of its influ-
ence on j's neighbors. That's to say, if ¢ wants to affect 7,
he can successfully affect k£ and then k will affect j with a
probability of wg;. a; can be considered as the prior prob-
ability for node i to propagate the information. For ex-
ample, in viral marketing, a; = 1 means node ¢ is a seed
node and agrees to promote the product. A; indicates how
much the influence will be blocked by node j. For simpli-
city, the authors set A\; = X for each node j. When A\; =0
and a; =1, (13) degrades into a linear approximation
method for the IC modell®8]. Besides, the authors said the
above model can also approximate the non-linear
stochastic influence modell5l by setting A; € [0,1] and
a; = 1 carefully.

The authors noticed that PageRank is actually a spe-
cial case of the linear social influence model in Definition 1
with an appropriate priority. This shows the reasonable-
ness of taking PageRank as a baseline in social influence
related applicationsl®7 54, 611, Moreover, the authors found
individual influence fiv = ZjEV fim; has an upper
bound under their model, which can be exploited to accel-
erate the selection of top-K influential nodes, even for the
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topic-sensitive task[44. Based on the influence computa-
tion model in Definition 1, they further proposed inde-
pendent social influence and group PageRank, which will
be shown in the next two subsection.
4.2.4 Independent social influence

Actually, influences of different nodes may have over-
laps that affect the same part of other nodes. For in-
stance, in a social network, users u and v are adjacent,
and u is one of the most influential users. If affecting u
successfully, v can affect more others with the help of wu,
and thus its observed influence is much larger than the
real value. Liu et al.[2 noted this scenario and tried to
compute the independent social influence based on the
linear model in Definition 1. They introduced the follow-
ing definition of independent social influence.

Definition 2. Denote the influence from node i € S
S\i

to j (independent from other nodes in S) by f;’,}, then
S\i
=1 (14)
=0, jesS\ (15)
R =d Y wifion, §¢S (16)

1<k<n

where d € (0, 1] is a damping factor(62],
From the difference with Definition 1, we can see that
\i
5

i is essentially the influence of i on the network when
other nodes in S are “removed” from the diffusion. Thus,
the “removed” nodes will stop receiving and forwarding
the information from ¢. The authors found the proposed
independent influence has two interesting properties: 1)
The influence of a set of nodes is actually the sum of each
node's independent influences. This is consistent with our
intuition. 2) Someone's independent influence has an up-
per bound. Based on these two properties, they also
demonstrated two practical applications: rank the seeds
according to their independent influence to figure out the
contribution of each selected seed, and quickly find the
top- K influential nodes from the seed nodes S.
4.2.5 Group PageRank

Liu et al.l63] provided a bounded linear approach for
influence computation, called Group PageRank. They
first extended Definition 1 of influence to a set on anoth-
er node.

Definition 3. Denote the influence from a node set S
to node j by fs—j, then

fsoj=1, ifjes (17)
fsoj=d Z W fs—k, otherwise (18)
1<k<n

where d € (0, 1] is a damping factor(63].

Then they found that the influence from S to T,
fsor = ZZET fs—i has a upper bound GPR(S,T), which
is called Group PageRank.

Fsor < % SO - d S ) PR 2 GPR(S,T) (19)

€S kesS

where fPR; is the PageRank value of node ¢ and can be
computed by (7). They have several interesting conclusions.
First, Group PageRank is also a generalization of
PageRank because when |S|=1, GPR(S,T) is
proportional to fPR;. Second, GPR(S,T) is essentially
the sum of each single PageRank of nodes in S with a
“discount”. That means the mutual influences between
the nodes in S are removed when estimating the influence
spread of S. Third, GPR(S,T) only depends on fPR;. If
computing fPR; for each node in advance, we can
quickly get Group PageRank for every node set in
O(ISP).

In summary, getting the exact value of influence is
hard, and thus many approximate methods have been
proposed to simplify the computation process and im-
prove the efficiency.

5 Influence maximization

In this section, we will show how to solve the influ-
ence maximization problem based on information diffu-
sion models and influence evaluation.

In a social network such as Twitter, which users
should be selected to offer discounts and then let them
promote a new product through the word-of-mouth ef-
fect? Given the water distribution network in a city,
where should we place sensors to quickly detect contam-
inants? Both of them can be formalized as the influence
maximization (IM) problem that selects a set of seed
nodes to maximize the expected number of active nodes
at the end of diffusion process. It was first noted by
Richardson and Domingoes(f! when they mined know-
ledge-sharing sites for viral marketing. Then Kempe et
al.l formulated it as the following discrete optimization
problem.

Problem 1 (Influence manimization).

In a social network G(V, E), influence maximization is
to select a seed node set S of size K such that

S:argrsnca‘)/(f(S), st. |S|=K
where f(S) is the influence spread of S in this network[4.

There are two intuitive solutions: one is enumerating
and selecting the subset with the maximal influence
spread. This will lead to combinatorial explosion and is
not applicable to large-scale networks. The other is select-
ing top-K nodes with maximal influences, but different
individual influences may overlap with each other so that
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their collective influence is not the maximal. Kempe et
al.l claimed that influence maximization is NP-hard un-
der the independent cascade (IC) model and linear
threshold (LT) model. Therefore, many researchers focus
on this problem due to its wide applications and propose
various approximation methods to speed up the solutions,
which can be divided into four categories: greedy, heurist-
ic, reverse sampling and other algorithms.

5.1 Greedy algorithms

Kempe et al.l noted that the influence spread func-
tion f under the IC and LT model is monotone and sub-
modular.

Definition 4 (Monotonicity). A set function f : 2V —
R is monotone if f(S) < f(T) such that S C T C V1.

Definition 5 (Submeodularity). A set function
f:2Y = R is submodular if it satisfies

fsu{u}) -

for any w and S C TH.

For a non-negative, monotone and submodular func-
tion f, let S be a set of size k obtained by selecting ele-
ments one at a time which provides the maximal margin-
al increase of the function value. Let S* be the optimal
set that maximizes the value of f over all k-element sets.
Nembhauser et al.[04] have shown that

f(8) = F(TUfu}) = (T)

f(8) =2 (1= -)f(57) (20)

e

i.e., S provides a (1 — %)-approximation.
Algorithm 1. Framework of the greedy algorithm
Input:
G(V, E,W) — the network with W = [w;;]
K — the number of seed nodes
Output:
S — the seed set
1) s
2) whlle |S| # K do
3)  u=argmax,evs(f(SU{}) — £(S)
4) S =5SU{u}
5) end while
6) return S
Therefore, Kempe et al.[4 proposed a framework of the
greedy algorithm to select seed nodes one by one and its
pseudo codes are listed in Algorithm 1. It starts with an
empty seed set. In each iteration, we compute the mar-
ginal influence gain for each node, and then the node
which provides the largest marginal influence gain is se-
lected into the set (i.e., Lines 3 and 4).
Definition 6 (Marginal influence gain). Given a
node set, the marginal influence gain of node u, A, (S), is
the increase value of influence spread of S if u is added

into S, i.e., Au(S) = F(SU{u}) — F(S)A4.
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This simple algorithm provides an amazing perform-
ance guarantee that it can approximate the problem with

1
a ratio of (1 — =), as long as the influence spread func-
e

tion f has the two properties (i.e., monotonicity and sub-
modularity) at the same time. That's to say, the influ-
ence spread of the outputted seed set of Algorithm 1 is

provably within (1 — 1) of the optimal value.
e

We can see the bottleneck of Algorithm 1 is to evalu-
ate the influence spread of a seed set (i.e., the value of f).
Kempe et al. ran Monte Carlo (MC) simulations for R
times to estimate its value under the IC or LT model, as
described in Section 4.2.1. Thus, the Monte Carlo simula-
tion will be executed KR|V| times in total so that the
above greedy algorithm is time-consuming and prohibit-
ive for large-scale networks.

5.1.1 Lazy evaluation

Leskovec et al.24 exploited the submodularity to
avoid unnecessary recalculations of the marginal influ-
ence gains in each iteration, and developed an efficient al-
gorithm, namely cost-effective lazy forward (CELF) selec-
tion. It is based on the diminishing returns property that
the earlier a node is selected into the seed set, the larger
marginal influence gain it can achieve. That means for a
node u € V and Sk C Sip41 CV:

Au(Sk) = Au(Sk+1) (21)

where S} is the seed set after the k-th iteration.
Algorithm 2. Cost-effective lazy forward (CELF)[33]
Input:

G(V, E,W) — the network with W = [w;;]

K — the number of seed nodes
Output:

S—the seed set

wmig = Au(S) = £(S U {u}) — £(S)
u.round =0
add u to @ in the decreasing order of *.mig

)
)
)
)
)
6) end for
)
)
)
0

8 u = the first element in Q

9 Q=Q—{u}

10) if w.round == |S| then

11) S =SU{u}

12) else

13)  wmig = Au(S) = f(SU{u}) — £(5)

14) u.round = |S|

15) add v to @ again in the decreasing order of
*.Mmig

16) end if

17) end while

18) return S

Its pseudo codes are shown in Algorithm 2. Specific-
ally, it initializes each node's marginal influence gain (i.e.,
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*x.mig in Algorithm 1), which are added into a list @ in
the decreasing order of x.mig. In each iteration, assum-
ing node u has the largest .mig in @, we recompute its
real marginal influence gain relative to the current seed
set S by Monte Carlo simulations. Then, we can adopt
the lazy evaluation strategy: If u's new gain is still larger
than other nodes' in @, we can select w into S and jump
into the next iteration, which thus avoids unnecessary re-
calculations of other nodes’ marginal influence gains. Oth-
erwise, we update u.mig with the new gain and repeat
the above steps.

Eventually, CELF not only keeps the performance

with a ratio of (1 — =), but also achieves 700 times spee-
e

dup, compared with the basic one in Algorithm 1. Goyal
et al.l6%] further optimized Algorithm 2 based on the sub-
modularity property of the spread function in influence
propagation models, and introduced CELF++ which has
an improvement of CELF by 17%—61%.

Besides, Liu et al.l63] explored Group PageRank in
Section 4.2.5 as the influence spread and adopted the
greedy framework to solve this problem. In the (k+1)-st
iteration, node wu's marginal influence gain is A,(Sk) =
GPR(SxU{u},V) — GPR(Sk,V), where GPR(S,V) is
defined by (19) and only depends on fPR;. After we get
fPR; for each node in the initialization, GPR(S,V) can
be quickly obtained by looking up the buffer. The au-
thors have shown that this gain also follows (21) and has
the diminishing returns property. Therefore, they applied
the above lazy evaluation into practice and the experi-
mental results show their method is more efficient than
two heuristic algorithms, namely influence ranking and
influence estimation (IRIE)6 and prefix excluding max-
imum influence arborescence (PMIA)B3 which will be dis-
cussed in the next subsection.

5.2 Heuristic algorithms

Although aforementioned methods exploit the lazy
evaluation to speed up the greedy algorithm, their run-
ning time on large-scale networks is still very high.
Therefore, many researchers start to develop heuristic al-
gorithms to further improve the efficiency of influence
spread evaluation according to properties of specific diffu-
sion models.

5.2.1 Shortest path

Due to the hardness of getting an exact calculation or
a good estimate of influence spread, Kimura and Saitol67]
proposed two models, shortest-path model (SPM) and
shortest-path-1 model (SP1M), to simplify the IC model
and to efficiently obtain good approximate solutions to
the influence maximization problem, when the propaga-
tion probabilities through links are small. In SPM, each
node v has the chance to become active only at step
t = d(S,v), where d(S,v) is the topological distance from
S to v. That means each node is activated only through
the shortest paths from an initial active set. Namely,

SPM is a special type of the IC model where only the
most efficient information can spread. While in SP1M,
each node v has a chance to become active only at steps
t =d(S,v) and t = d(S,v) + 1. They showed that the ex-
act value of influence spread in SPM and SP1M can be
computed efficiently.

More importantly, adopting the greedy framework in
Algorithm 1 can guarantee the output with a ratio of

(1- %) in the SPM and SP1M diffusion models. But a

critical drawback of SPM and SP1M is that they ignore
the influence probabilities among users and only consider
the topological structure.
5.2.2 Degree discount

When selecting the seed nodes one by one, Chen et
al.[68] explored the effect of the selected seed nodes on the
rest nodes. They adopted the node degree to estimate its
influence and proposed two degree discount heuristics to
diminish that effect.

1) SingleDiscount: Each neighbor of a newly selected
seed will discount its degree by one. This heuristic can be
applied to all information diffusion models.

2) DegreeDiscountIC: This is a more accurate degree
discount heuristic for the IC model with a small propaga-
tion probability p. When selecting v into the seed set, the
increase of the expected number of active nodes is

L+ (do — 2ty — (do — to)tep +0(ts)) x p  (22)

where d, is the degree of v, and ¢, is the number of v's
neighbors that are already selected as seeds. The larger t,
is, the more discount d, will get.

They have shown that the above degree discount
heuristics achieve much larger influence spread than clas-
sic degree and centrality-based heuristics. What's more,
DegreeDiscountIC achieves almost equal influence thread
with the greedy algorithm when tuned for a specific influ-
ence cascade model. However, they have no performance
guarantee for general graphs.

5.2.3 Maximum influence path

Chen et al.[5%l extended SPM and SP1M by consider-
ing maximum influence paths (MIP) instead of shortest
paths, to approximate the actual expected influence with-
in the social network. Its main idea is to use local arbor-
escence structures of each node to approximate the influ-
ence propagation.

Specifically, a maximum influence path between node
u and v is the path with the maximum propagation prob-
ability from u to v. They first computed maximum influ-
ence paths between every pair of nodes in the network
via a Dijkstra shortest-path algorithm, and ignore MIPs
with probabilities smaller than an influence threshold 6,
which can effectively restrict the influence computation
into a local region. Then they aggregated MIPs starting
or ending at each node into the arborescence structures,
which represent the local influence regions of each node.
Different values of 6 control the size of these local influ-
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ence regions. Thus this heuristic method is able to
achieve tunable balance between efficiency (in terms of
running time) and effectiveness (in term of influence
spread). The authors only considered the influence
propagated through these local arborescences, and re-
ferred to this model as the maximum influence arbores-
cence (MIA) modell5).

When the graph is sparse and the propagation prob-
abilities on edges are small, to improve the efficiency,
they provided a variant of MIA, called prefix excluding
MIA (PMIA) with a batch updatel55. When selecting the
next seed, for every node v, PMIA recomputes its in-ar-
borescence so that every seed candidate w € V\S has a
path to v while not passing through any seed in S. As a
result, all selected seeds form a sequence S according to
the selection order, so that any seed s in S has alternat-
ive paths to all nodes v that do not pass through any
seed in the prefix of S proceeding s.

Moreover, they have proved that the influence spreads
in the MIA and PMIA models are submodular and mono-
tonel53l. Therefore, adopting the greedy algorithm in pre-

vious subsection under the MIA and PMIA model can

1
also approximate the problem with a ratio of (1 — ).

Results from extensive simulations on several real-world
and synthetic networks demonstrate that their algorithm
was the best scalable solution to the influence maximiza-
tion problem at that time.

After that, many works try to further extend the
above algorithm, e.g., IRIE[0 local directed acyclic
graph (LDAG)PS and simple path (SIMPATH)].
IRIE integrates a new message passing based influence
ranking (IR), and influence estimation (IE) methods for
influence maximization in both the independent cascade
(IC) model and its extension IC-N that involves negative
opinion propagations. In each round of selecting a seed
node, the greedy algorithm uses Monte Carlo simulations
while PMIA uses more efficient local arborescence based
heuristics to estimate the influence spread of every pos-
sible candidate. This is especially slow for the first round
where the influence spread of every node needs to be es-
timated. Therefore, Jung et al.[?2l proposed a novel glob-
al influence ranking (IR) method derived from a belief
propagation approach, which uses a small number of iter-
ations to generate a global influence ranking for the nodes
and then selects the highest ranked node as the first seed.
To avoid the overlapping influence, they integrated IR
with a simple influence estimation (IE) method, so that
after one seed is selected, they can estimate additional in-
fluence impact of this seed to other nodes in the network,
and then use the results to adjust next round computa-
tion of influence ranking. IE is much faster than directly
estimating marginal influence gain of many seed candid-
ates. When combining IR and IE together, we obtain the
fast IRIE algorithm.

On the other hand, LDAGS] and SIMPATHI® are
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tailored for the LT model. LDAG exploits the fact that
computing influence spread in directed acyclic graphs
(DAGS) can be done in linear time. It constructs a local
DAG surrounding every node v in the network, and re-
stricts the influence to v within the local DAG structure.
This makes influence computation tractable and fast on a
small DAG. Then the authors combine the greedy al-
gorithm with a fast scheme that updates the incremental
influence spread of every node. While SIMPATH builds
on the fact that the spread of a set of nodes can be calcu-
lated as the sum of spreads of each node in the set on ap-
propriate induced subgraphs under the LT model. It iter-
atively selects seeds in a lazy forward manner like CELF.
Instead of using expensive MC simulations to estimate
the spread, it can be computed by enumerating the
simple paths starting with the seed nodes within a small
range of neighborhood, where the majority of the influ-
ence flows since probabilities of paths diminish rapidly as
they get longer.

In general, these heuristic algorithms are more effi-
cient for large-scale networks through properties of specif-
ic diffusion models, but few of them can keep the per-
formance guarantees under the standard IC and LT mod-
els described in Section 3.

5.3 Reverse sampling algorithms

Recently, Borgs et al.’0)/ made a theoretical break-
through and inspired many researchers to solve the influ-
ence maximization problem from a quite different per-
spective of reverse sampling, which has approximation
guarantees and is even more efficient than the above
heuristic algorithms.

We first introduce two concepts for better explana-
tion.

Definition 7 (Reversa reachable set). Let v be a
node in G, and g be a graph obtained by removing each
edge e in G with 1 — w. probability. The reverse reach-
able (RR) set for v in g is the set of nodes in g that can
reach v (That is, for each node u in the RR set, there is a
directed path from u to v in g.)l.

Definition 8 (Random RR set). Let G be the dis-
tribution of g induced by the randomness in edge re-
movals from G. A random RR set is an RR set gener-
ated on an instance of g randomly sampled from G, for a
node selected uniformly at random from g(71l.

Borgs et al.l’"fl proposed a reverse influence sampling
(RIS) method under the IC model. It runs in two steps:

1) Generate a certain number of random RR sets from
G.

2) Use the standard greedy algorithm for the maxim-
um coverage problem[™ to select k nodes to cover the
maximum number of RR sets generated.

Its main idea is if a node u appears in a large number
of RR sets, then it should have a high probability to ac-
tivate many other nodes under the IC model; in that
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case, u's influence spread should be large. More import-
antly, RIS can return a (1 — P €)-approximate solution
with at least 1 —n~' probability in O(kI*(m + n)log?
n, .. .- . .

6—3) time. They also shown it is near-optimal since any
other algorithm guarantees the same approximation rate
and succeeds with at least a constant probability must
run in 2(m + n) time (i.e., the lower bound).

However, RIS has a large hidden constant factor in its
time complexity so that its practical efficiency is rather
unsatisfactory. Tang et al.ll borrowed ideas from RIS
and proposed a two-phase influence maximization (TIM)
algorithm. It first computes a lower-bound of the maxim-
um expected influence spread among all size-k node sets
and then uses the lower-bound to derive a parameter 6.
Then it samples § random RR sets from G, and derives a
size-k node set that covers a large number of RR sets like

1
RIS. It can return a (1 — — — €)-approximate solution
e

with at least 1 — n =" probability in O((k 4 )(m + n)loge%)
expected time. TIM* improves TIM by adding an inter-
mediate step that heuristically refines 6 into a tighter
lower bound and leads to higher efficiency. After that,
Tang et al.[3 designed another method, influence maxim-
ization via martingales (IMM) to further improve the effi-
ciency. It has the same performance guarantees with TIM
and TIMT, but offers significantly improved empirical ef-
ficiency and can be extended to a larger class of diffusion
models. The experimental results show IMM is often
faster in orders of magnitude than the states of the art in
terms of computation efficiency, including heuristic al-
gorithms such as IRIEWS and SIMPATHI. Meanwhile,
Cohen et al.[™¥ designed a sketch-based influence maxim-
ization (SKIM) algorithm.

Nguyen et al[™ designed two novel sampling al-
gorithms SSA and D-SSA, aiming to achieve minimum
number of RIS samples. However, Huang et al.["dl revised
their work and discovered inaccuracies in previously re-
ported technical results on the accuracy and efficiency of
SSA and D-SSA, which was set right by then. They
presented a revised version of SSA, dubbed SSA-Fix that

1 . . .
restores (1 — —)-approximation at the cost of increased
e

computation overheads. The experimental results show
that SSA and D-SSA are more efficient than IMM when
k is large under the IC and LT models. They suggested
that there exists opportunities for further scaling up influ-
ence maximization with approximation guarantees.

5.4 Other algorithms

There are various other algorithms for influence max-
imization, and here we demonstrate four typical methods
which may bring us new perspectives.

First, now that evaluating influence spread on the
whole network is time-consuming, can we just deal with

it on the community-level? A community is a densely
connected subset of nodes that are only sparsely linked
with the remaining network(l®l. Wang et al.l’”l noted this
idea and proposed a community-based greedy algorithm
(CGA), for mining top-K influential nodes in mobile so-
cial networks, following the divide-and-conquer principle.
Specifically, they first extended a community detection
method so that it can divide the network into communit-
ies based on information diffusion models. Then they pro-
posed a dynamic programming method to incrementally
choose the communities to be processed. Within a com-
munity, we can adopt any existing algorithm to detect in-
fluential nodes, such as PageRank and CELF. Besides,
they have proved that CGA obtains a (1 — e_m)—ap—
proximation, where 6 is the threshold used in the com-
munity detection and Ad is the maximal difference
between the number of nodes affected by a node in the
network and that in a community. When 6 = 0, the num-
ber of generated communities will be 1, which means all
communities will be combined into one, CGA is the same
as the original greedy algorithm with (1 — %)—approxima—
tion.

Second, Wang et al.[™8 noticed that influence maxim-
ization finds some influential nodes whose influences can
cover the whole network, which is similar to selecting
some informative rows to reconstruct a matrix. Thus,
they proposed a novel framework, named data reconstruc-
tion for influence maximization (DRIM), from the per-
spective of data reconstruction. They first constructed an
influence matrix, each row of which is the influence of a
node on other nodes. Instead of using time-consuming
Monte Carlo simulations to estimate the influence spread,
they turn to the linear social influence model in Definition 1,
which gives us a closed-form solution to the influence of
each node. Then, they selected the most informative k
rows to reconstruct the matrix and their corresponding
nodes are the seed nodes which could maximize the influ-
ence spread. The experimental results show that the pro-
posed framework is at least as effective as the traditional
greedy algorithml4. However, this framework has no per-
formance guarantee and its time complexity is too high.

Third, Jiang et al.["¥ proposed a totally different ap-
proach based on simulated annealing (SA) to the influ-
ence maximization problem. Simulated annealing simu-
lates the process of metal annealing and optimizes the
solutions to a number of NP-hard problems. The pro-
posed SA based algorithm for influence maximization
problem will converge towards optimum as the iteration
number grows larger. SA can escape the local optimum
and is able to learn to improve the influence spread of
solution set automatically. They also designed two heur-
istic methods to accelerate the convergence process of SA,
and a new method of computing influence to speed up the
proposed algorithm.

Finally, indeed, users’ influences and the network
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structure are dynamic over time. The previous works are
done only in static networks. Rodriguez and Schélkopf(sd]
focused on influence maximization in continuous time dif-
fusion networks. They described how continuous time
Markov chains allow us to analytically compute the aver-
age total number of nodes reached by a diffusion process
starting in a set of seed nodes. They also showed that se-
lecting a set of most influential source nodes in the con-
tinuous time influence maximization problem is NP-hard,
and developed an efficient approximation algorithm with
provable near-optimal performance. Wang et al.l] stud-
ied the incremental influence maximization for dynamic
social networks. They designed an incremental algorithm,
dynamic influence maximization (DIM), for the linear
threshold model. It consists of two phases: initial seeding
and seeds updating. They also proposed two pruning
strategies for the seeds updating phase to further reduce
the running time. While Wang et al.®l tried to track the
influential nodes in dynamic networks. They modeled a
dynamic network as a stream of edge weight updates,
which embraces many practical scenarios as special cases,
such as edge and node insertions, deletions as well as
evolving weighted graphs. Their key idea is to use the
polling-based methods and maintain a sample of random
RR sets so that we can approximate the influence of
nodes with provable quality guarantees.

5.5 Variants of influence maximization

There have been many variants of the classical influ-
ence maximization for different applications. Here we will
briefly discuss some of them and hope to attract more
readers for further study.

First, try to generalize the influence maximization
problem or add more constrains to the original formula-
tion in Problem 1. For example, budgeted influence max-
imization (BIM) is identifying a small set of influential
individuals who can influence the maximum number of
members within a limited budget. It was formally de-
scribed by Kempe et al.¥l and attracted much attention
later[82, 83, While Yang et al.84 took a step further and
proposed the continuous influence maximization (CIM)
problem. It deals with a real-world scenario: Imagine we
are introducing a new product through a social network,
in which we can get the purchase probability curve with
respect to discount for each user in the network. Based
on that, it can be decided what discount should be
offered to those social network users so as to maximize
purchases under a predefined budget. We can see CIM is
a generalization of influence maximization (IM) and BIM.
Besides, Aslay et al.[8% studied the revenue maximization
problem in incentivized social advertising. It is to alloc-
ate advertisements to influential users with the rational
goal of maximizing its own revenue. They consider the
propensity of advertisements for viral propagation, and
carefully apportion the monetary budget of each of the
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advertisers between incentives to influential users and ad-
engagement costs.

Second, in many real-world cases, marketers usually
target certain products at particular groups of customers.
For example, a cosmetic company would want its
products to attract more women than men. Li et al.[80]
formulated the above as a labeled influence maximiza-
tion problem, which aims to find a set of seed nodes to
trigger the maximum spread of influence on the target
customers in a labeled social network. The label informa-
tion is widely available in current social networks, by
which users describe their personal interests, graduated
colleges, hometown, age, skills, etc. Tang et al.l87 con-
sidered the magnitude of influence and the diversity of
the influenced crowd at the same time, and formulated it
as the diversified influence maximization problem. An ob-
vious case is that this could reduce the risk of marketing
campaigns, as the proverb goes: “Don't put all your eggs
in one basket”. Besides, Liu et al.88] combined targeted
marketing with viral marketing to build a better and
stronger marketing business. Targeted marketing identi-
fies typical customers and concentrates marketing efforts
on these customers, which could make the promotion of
items much easier and more cost-effective. They studied
the problem of maximizing information awareness in vir-
al marketing with constrained targets.

Third, Wang et al.® considered both active nodes
and informed nodes that are aware of the information
when they study the coverage of information propagation
in a network. They proposed a new problem called in-
formation coverage maximization that aims to maximize
the expected number of both active nodes and informed
ones, and showed this problem is NP-hard and submodu-
lar in the IC model. After that, they further studied the
activity maximization problem(® which selects a set of
seed users to maximize the expected total amount of ex-
citements for a piece of new information. It is substan-
tially different from the renowned influence maximiza-
tion problem and cannot be tackled with the existing ap-
proaches. In a social network, the excitements among dif-
ferent users even at the same information are different.
They aim to find an optimal set of seed users under a giv-
en budget, and start information propagation from the
seed users so as to gather the maximum sum of activity
strengths among the influenced users.

Finally, sometimes, more than one type of informa-
tion such as different information about competitive
products is spreading in social networks. He et al.l%l fo-
cused on the blocking maximization problem under the
competitive linear threshold (CLT) model, which states
that one entity would try to block the influence propaga-
tion of its competing entity as much as possible by stra-
tegically selecting a number of seed nodes that could ini-
tiate the propagation by themselves. They extended LD-
AGDPS and designed an efficient algorithm competitive
local directed acyclic graph (CLDAG) which utilizes the



B. Chang et al. / Study on Information Diffusion Analysis in Social Networks and Its Applications 389

properties of the CLT model, to address this issue. Be-
sides, it is supposed that one of the competitors could en-
hance its influence by creating new links. A natural ques-
tion is, when the number of new links is limited due to
limited resource, how to add these links so as to maxim-
ize the influence of the given competitor over the others
(called competitiveness). Zhao et al.’¥ formulated it as a
competitiveness maximization problem on complex net-
works. They take two cases into consideration: maximize
the number of supporters of the competitor and maxim-
ize the total supporting degree of normal agents toward
the competitor. Besides, many individuals also care about
the influence of themselves and want to enhance the in-
fluence. Thus, Ma et al.%] considered an individual influ-
ence maximization problem that maximizing the target
individual influence by recommending new links.

6 Information source detection

The purpose of influence maximization is to find a
small set of seed nodes to maximize the expected number
of activated users. But when observing which nodes are
active after a piece of information has diffused in the net-
work, can we infer the source or seed nodes triggering this
observed diffusion result? For example, after a rumor has
spread among the network, we want to find the rumor
source nodes to stop its dissemination. This problem is
called information source detection (or patient-zero),
which can be considered as the reverse process of inform-
ation diffusion. It also has attracted many researchers to
study, due to its wide range of applications such as epi-
demic outbreak prevention26-28) and rumor source tra-
cing in social networks[30; 291,

After the information starts to spread in the network
G from an unknown source node set S at time to, there
will be many nodes being infected till time ¢(¢ > t¢). Note
that we assume every node usually has three possible
states: infected (i.e., active), susceptible (i.e., inactive)
and recovered, like epidemic models. Let G denote the
infected subgraph G;(Vr, Er) which consists of infected
nodes V7 and their inter-edges Fr. P(G|S) represents the
likelihood to observe Gy if the information starts to dif-
fuse from the node set S. Information source detection
aims to identify the source nodes initiating the diffusion
process based on the observed node states and the net-
work structure, which can be formally defined as follows:

Problem 2 (Information source detection). Giv-
en graph G(V,E) and the infected subgraph G;(Vr, Er)
observed at time ¢(¢ > to), information source detection is
to select set of source nodes S such that
S = argmax P(Gy|S), i.e., the largest likelihood to ob-
serve the infected subgraph. to is the unknown time the
information started to spread.

For example, in Fig.4, we observe seven infected
nodes and want to identify the source node. This prob-
lem is challenging due to many aspects. First, we often
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Fig. 4 Information diffusion in a toy social network, where the
orange node 5 is the source node and gray nodes are infected,
while others are susceptible. Edges indicate the directions of
information flows. Color versions of the figures in this paper are
available online.

observe only one snapshot of the network and get the
states of some nodes, which is just a part of the whole
diffusion process. That means we just know which nodes
are infected, but cannot distinguish the propagation paths
that indicate who infects who and when they are infected.
Second, the actual information diffusion laws are un-
known, which cannot be comprehensively described by
the models in Section 3. Third, information diffusion is
highly dynamic and has a great variety of patterns when
initiated from different sources. For instance, a photo will
be shared for many times if it is posted by a celebrity in
social networks. Forth, there are usually multiple source
nodes in real-world scenarios, while the number is un-
known. Finally, the time-stamp to when the information
started to diffuse and how long it has lasted, are also un-
available.

Shah and ZamanB are among the first to consider
this problem. After that, many efforts have been devoted
to different cases, which can be divided into three cat-
egoriesl% according to the observed node states: com-
plete observation partial observation sensor observation.
Fig.5 shows three examples of observed diffusion results
for each category. In the next part, we will briefly de-
scribe the corresponding solutions to detect the source
nodes of the observed three categories in recent years.

6.1 Detection with complete observation

In this subsection, we introduce some detection meth-
ods with the complete observation. It means when ob-
serving the diffusion at time t after the information has
spread, we will get the complete states of all nodes in the
whole network. That's to say that we can identify which
nodes are infected, and which are recovered or still sus-
ceptible.

6.1.1 Rumor center

When noticing the source detection problem in their
seminal work, Shah and ZamanB3% provided a systematic
study on finding the source of a computer virus in a net-
work. They assumed there is only one source node and
described the virus spreading in a network with the SI
model, a variant of the popular SIR model. Then they
constructed the following maximum likelihood estimator
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Fig.5 Three examples® of observed diffusion results corresponding to three categories of observation for information source detection

in a network, whose edges between nodes are hidden for brevity

for the virus source.

9 = arg max P(Gr|v" = v) (23)

veEV]

where ¢ and v* are the detected source node and actual
source node respectively. They showed that in a regular
tree, the above estimator equals to select a node with the
maximal rumor centrality, R(v,Gr), which is the number
of permitted permutations of nodes that result in a
spanning tree T of G; and begin with node v € V;. A
permitted permutation is a permutation of the nodes in
Vi subjected to the ordering constraints set by the
network structure. Thus, the detected source node ¥ is
called a rumor center.

Luckily, they found the rumor centrality R(v,Gr) of
node v has a simple expression for trees:

R(v,Gr) =vi| I] Ti (24)

uevy ~ Y

where T, is the number of nodes in the subtree rooted at
node u with node v as the source. They also designed an
efficient message-passing algorithm to compute the rumor
centrality for each node, running in O(|V;|) time.
However, they further noted that permitted permutation
is also known as a linear extension of the poset, while
counting its number falls in the complexity class #P-
complete in general graphsiB. To extend their method to
general graphs, they assumed the virus spreads from node
v along a breadth first search (BFS) tree rooted at w,
Tyts(v), and detected the rumor center with the maximal
rumor centrality R(v, Tprs(v)). Besides, they proved that
the rumor center is equivalent to the distance center on a
tree. What's more, on trees which grow faster than a line,
the estimator in (23) always has non-trivial detection
probability, whereas on trees that grow like a line, the
detection probability will go to 0 as the network grows.
Their method has several limitations in some aspects.
First, it is only applicable for the case when there is one
source node. Second, it only considers the infected sub-
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graph and neglects other uninfected nodes which are also
important for detecting the source. Third, rumor central-
ity assumes that the probabilities of all permitted per-
mutation are equal for general graphs.

After that, some researchers tried to improve this
method. Dong et al.[%] constructed a maximum a posteri-
ori (MAP) estimator to detect a single source from many
suspect nodes under the SI model. A priori knowledge
will indicate the set of suspect nodes Vs in different cases.
For example, Vs with cardinality k forms a connected
subgraph of G, or V; contains only two suspect nodes sep-
arated by their shortest path distance. Then they pro-
posed a local rumor center, which is a generalized rumor
centrality, to identify the source from suspects. For regu-
lar tree-type networks with node degree, they also charac-
terized the correct detection probability of the source es-
timator upon observing some infected nodes, in both the
finite and asymptotic regimes. Inspired by the derivation
of rumor center, Chang et al.[26] proposed a greedy meth-
od to estimate the likelihood P(G[|S). Its basic idea is to
find the upper bound of the probability of permitted per-
mutations that start with the same node.

Besides, Wang et al.l% addressed the problem of
single rumor source detection with multiple independent
observations under the SI model by joint rumor center.
Suppose k different rumors originate from a common
node in the network, which can be regarded as k times in-
dependent rumor spreading with the same rumor source.
For each rumor spreading, we can observe a correspond-
ing infected subgrpah. For regular tree graphs, they
showed the detected source is a node that maximizes the
product of its rumor centralities in each infected sub-
grpah. They found even with two observations, the detec-
tion probability at least doubles that of a single observa-
tion. Luo et al.’7 considered the problem of estimating
the multiple infection sources and the infection regions
(subsets of nodes infected by each source) in a network.
They exploited the Voronoi partition to estimate the in-
fection regions and combined two regions to find two
source nodes with their source estimation method, an ex-
tension of rumor centrality. They proved that if there are
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at most two infection sources in a geometric tree, their
estimator identifies the true source nodes with a probabil-
ity going to one as the number of infected nodes in-
creases. However, this method can hardly be used in the
real world, especially on large-scale networks due to its
high time complexity.
6.1.2 Eigenvector center

The second kind of source detection methods is based
on the eigenvector center, which exploits the adjacent
matrix analysis. For example, Fioriti and Chinnicil7 pre-
dicted the multiple sources of an outbreak with a spec-
tral technique. They proposed to use the node dynamical
importance (DI) which is the reduction of the largest ei-
genvalue of the adjacency matrix after a node has been
removed, to assess the most prominent nodes of a net-
work. They noted that a large reduction after the elimin-
ation of a node implies the node is relevant to the aging
of an infection network. Dynamical importance (i.e., dy-
namic age) of node v is defined by

|>\:Lnew _ )\m‘
DI, = —————
Am

(25)
where A\, and A" are the maximum eigenvalues of the
adjacency matrix and the one after v is removed,
respectively. The detected source nodes are those with
the highest DI values. Results show that the spectral
technique is able to identify the source nodes if the graph
approximates a tree sufficiently.

Besides, based on the minimum description length
(MDL) principle, Prakash et al.28l proposed a novel
method, NETSLEUTH, under the SI model. The total de-
scription length of a diffusion consists of two parts: cost
of the model to identify the source nodes S and cost of
describing the infected subgraph Gy given a source set S.
NETSLEUTH can identify the set of seed nodes and vir-
us propagation ripple which starts with those nodes and
best describes the given snapshot. They showed we can
easily optimize the description length of the virus
propagation ripple for a given seed set by greedily max-
imizing the likelihood. For single source node, the likeli-
hood has an upper bound, which can be maximized by
finding the smallest eigenvalue of the Laplacian submat-
rix corresponding to the infected graph G;. To find the
next source node, they first remove the previous selected
source node from the infected subgraph. Then, they re-
peat the above steps on the remaining subgraph until the
MDL cost function stops decreasing. As a result, it can
identify the best set of seed nodes in a principled manner,
without choosing k, the number of seed nodes in advance.
However, the computation of eigenvalues at each step
makes this method not applicable for large-scale net-
works.

6.1.3 Sampling methods

The third kind of source detection methods is based

on sampling to estimate the likelihood of observing the

infected subgraph for each node. Different with previous
methods, they focus on the stochastic diffusion models,
such as the independent cascade (IC) model and linear
threshold (LT) model. For example, Zhai et al.l% de-
signed a Markov chain Monte Carlo (MCMC) algorithm
to find the single source of a cascade given the snapshot
under the IC model. They formulated the detection as a
source inference problem with maximum likelihood estim-
ation like Problem 2, and proved its #P-completeness.
Note that the generation of infected subgraphs corres-
ponds to a specific distribution G;. Because calculating
the exact value of likelihood is #P-hard, they proposed to
use the Metropolis algorithm to sample G in a Markov
chain. When the MCMC chain converges, the stationary
distribution will be G. After that, they counted the in-
fected subgraphs which equals to the observed one of
each node, and selected a node with the maximal value as
the source node. However, this method is time-consum-
ing when the number of infected nodes is large, and it is
hard to judge the convergence of MCMC to stop the
sampling. Zhang et al.® further extended this method
for source detection under the LT model.

Besides, Nguyen et al.[l%] proposed a new approach to
identify multiple infection sources by searching for a seed
set S that minimizes the symmetric difference between
the cascade from S and Vi, a set of observed infected
nodes. They designed an approximation algorithm,
sampling-based infection sources identification (SISI), to
identify infection sources without the prior knowledge on
the number of source nodes. Inspired by other works[70: 7],
SISI contains two key components: an efficient truncated
reverse infection sampling (TRIS) to compute the object-
ive with high accuracy and confidentiality, and an innov-
ative transformation of the studied problem into a sub-
modular cost covering problem to provide high quality
solutions with performance guarantees. Note that SISI
works for most progressive diffusion models, and has

provable guarantee for the problem in general graphs.
6.1.4 Diffusion kernel

A diffusion kernel can represent diffusion processes in
a given network, but computing this kernel is computa-
tionally challenging in general. Feizi et al.!0Y proposed a
path-based network diffusion kernel which considers edge-
disjoint shortest paths among pairs of nodes in the net-
work, and can be computed efficiently for both homogen-
eous and heterogeneous continuous-time diffusion models.
They used this network diffusion kernel to solve the in-
verse diffusion problem, named network infusion (NI)
with both likelihood maximization and error minimiza-
tion. They applied this framework to both single-source
and multi-source diffusion, and single-snapshot and multi-
snapshot observations, using both uninformative and in-
formative prior probabilities for candidate source nodes.

Pena et al.[l02] casted the problem of source localiza-
tion on graphs as the simultaneous problem of sparse re-
covery and diffusion kernel learning (SR-DKL). A [ regu-
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larization term enforces the sparsity constraint while they
recover the sources of diffusion from a single snapshot of
the diffusion process. The diffusion kernel is estimated by
assuming the process to be as generic as the standard
heat diffusion.
6.1.5 Others

Zhu and Ying[l%3 presented a new source localization
algorithm under the independent cascade (IC) model,
called the short-fat tree (SFT). Loosely speaking, the al-
gorithm selects a node as the source such that the
breadth-first search (BFS) tree from the node has the
minimum depth but the maximum number of leaf nodes.
They also established the performance guarantees of SFT
for both tree networks and the Erdos-Renyi (ER) ran-
dom graph. On tree networks, SFT is the maximum a
posterior (MAP) estimator.

6.2 Detection with partial observation

In some scenarios, we can only observe the states of
partial nodes at a given time ¢. Jiang et al."] summar-
ized them as four cases.

1) Nodes reveal their states with probability p if they
have been infected.

2) We can identify all infected nodes, but cannot dis-
tinguish susceptible or recovered nodes, because some in-
fected nodes may recover from the disease with a probab-
ility such as in the SIR model.

3) Only the nodes infected at time ¢ are observed,
while the states of other nodes infected before time ¢ are
missing. For example, the observed black nodes in the
ring in Fig.5 are infected at time t.

4) We only observe a part of nodes at time ¢t due to
some limitations such as financial and human resources.
Note that some observed nodes may be infected before
time ¢.

In the next part, we will introduce some typical solu-
tions to different cases.

6.2.1 Jordan center

This kind of methods selects a Jordan center as the
detected source node, which has the maximal Jordan
centrality defined in (6). That means Jordan center is a
node minimizing the maximum distance with other nodes.
Zhu and Ying(l%4 studied the source detection problem
under the popular Susceptible-Infected-Recovered (SIR)
model. Given a snapshot of the network, we know all in-
fected nodes but cannot distinguish the susceptible nodes
and recovered nodes. The network is assumed to be an
undirected graph and each node in the network has three
possible states: susceptible (S), infected (I), and re-
covered (R). Nodes in state S can be infected and change
to state I, and nodes in state I can recover and change to
state R.

They formalized this problem with maximum likeli-
hood estimation (MLE). To solve it, we need to consider
all possible infection sample paths, which is impossible for
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large-scale networks with unknown initial infection time
to. To overcome this difficulty, they proposed to find the
sample path which most likely leads to the observed
snapshot, and viewed the first node associated with that
sample path as the information source. They proved that
for infinite-trees, the estimator is a node that minimizes
the maximum distance to the infected nodes, i.e., the
Jordan center. A reverse-infection algorithm was pro-
posed to find such estimator in general graphs. In the al-
gorithm, each infected node broadcasts its identity in the
network, and then the node who is the first to collect all
identities of infected nodes declares itself as the informa-
tion source. Ties are broken based on the sum of dis-
tances to the infected nodes. They showed it can output a
node within a constant distance from the actual source
with a high probability, independent of the number of in-
fected nodes and the time the snapshot is taken.

Zhu and Ying[l%% further extended this method for
source detection under the heterogeneous SIR model with
sparse observations. They assumed that a small subset of
infected nodes are reported. The heterogeneous SIR mod-
el allows different infection probabilities along edges and
different recovery probabilities at different nodes. Besides,
Luo et al.ll96: 107 explored the sample path based ap-
proach for source detection under SI and SIS models.
They obtained the same conclusion as under the SIR
model: the detected source is a Jordan center. However,
the Jordan center method is designed for tree-like net-
works, which are very different from real-world networks.
6.2.2 Message passing methods

The second kind of methods is based on message
passing. Lokhov et al.[l%8 took the infected and uninfec-
ted nodes to detect the source node under the SIR model.
They introduced an effective inference algorithm based on
dynamic message passing (DMP) equations. Let P&(t),
Pj(t) and Pj(t) denote the marginal probabilities that
node ¢ is susceptible (5), infected (I), and recovered (R)
at time t, respectively. They first used the following DMP
equations to estimate the marginal probabilities of a giv-
en node.

Ps(t+1)=Ps(0) [ 0" (t+1)

Pp(t+1) = Pr(t) + piPy(t)
Pi(t+1)=1—Pi(t+1)— Pi(t+1) (26)

where 6"7(t+1) is the probability that the infection
signal has not been passed from node k£ to ¢ up to time
t+1, and p; is the recovery probability of node i. Then
they exploited a mean-field-type approach to approximate
the likelihood of the observed states as a product of the
marginal probabilities. A node maximizing the likelihood
is selected to be the source. Importantly, DMP remains
efficient in the case where the snapshot sees only a part
of the network. Hu et al.l09 extended DMP to the
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susceptible-infected-recovered-infected (SIRI) model and
proposed an algorithm known as the heterogeneous
infection spreading source (HISS) estimator to infer the
infection source. It is able to incorporate side information
(if any) of the observed states of a subset of nodes at
different times, and of the prior probability of each
infected or recovered node to be the infection source.

As noted by the authors, DMP has two drawbacks.
First, the space of initial conditions considered must be
explored exhaustively. Second, DMP relies on a further
assumption of single-site factorization of the likelihood
function, which is not necessarily consistent with the
more accurate underlying approximation. Altarelli et
al.[110] realized these and conducted Bayesian inference for
this problem on a factor graph under the SIR model.
They derived belief propagation (BP) equations for the
probability distribution of system states conditioned on
some observations, which is more accurate than DMP.
Besides, BP can be used to identify the origin of an epi-
demic outbreak in the SIR, SI, and similar models, even
with multiple infection seeds and incomplete or hetero-
geneous information. They further generalized the analys-
is to more realistic cases in which observations are imper-
fect11ll, They said it also can give accurate predictions
about the future evolution of an outbreak from which
only a partial observation (noisy and/or incomplete) of
the current state is available.

DMP and BP have been shown to perform better than
centrality based methods, such as Jordan center and ru-
mor center in previous sections. However, DMP and BP
are too time-consuming for large-scale networks, because
they need to run on the whole network which may have
large number of nodes.

6.2.3 Diffusion reconstruction

Some methods are based on diffusion reconstruction
which recover the states or propagation paths of un-
known nodes. For example, Zang et al.[l!2] presented a
multi-source locating method based on a given snapshot
of partially and sparsely observed infected nodes in the
network. They first introduced a reverse propagation
method to detect recovered and unobserved infected
nodes in the network, and then used community cluster
algorithms to change the multi-source locating problem
into a bunch of single source locating problems. At the
last step, they identified the nodes with the largest likeli-
hood as the source nodes in the infected clusters.

Gundecha et al.29 tried to seek the provenance (i.e.,
sources or originators) of information for a few known re-
cipients by recovering the information propagation paths
in social media. The proposed method exploits easily
computable node centralities of a large social media net-
work. Feng et al.l3] studied the problem of recovering
other unknown recipients and seeking the provenance of
information based on a few known recipients. They ex-
ploited the property of frequent pattern and node central-
ity measures to find important nodes.

6.2.4 Others

Karamchandani and Franceschettil4 extend