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Abstract:   The search efficiency of differential evolution (DE) algorithm is greatly impacted by its control parameters. Although many
adaptation/self-adaptation techniques can automatically find suitable control parameters for the DE, most techniques are based on pop-
ulation information which may be misleading in solving complex optimization problems. Therefore, a self-adaptive DE (i.e., JADE) us-
ing two-phase parameter control scheme (TPC-JADE) is proposed to enhance the performance of DE in the current study. In the TPC-
JADE, an adaptation technique is utilized to generate the control parameters in the early population evolution, and a well-known empir-
ical guideline is used to update the control parameters in the later evolution stages. The TPC-JADE is compared with four state-of-the-
art DE variants on two famous test suites (i.e., IEEE CEC2005 and IEEE CEC2015). Results indicate that the overall performance of
the TPC-JADE is better than that of the other compared algorithms. In addition, the proposed algorithm is utilized to obtain optimal
nutrient and inducer feeding for the Lee-Ramirez bioreactor. Experimental results show that the TPC-JADE can perform well on an ac-
tual dynamic optimization problem.

Keywords:   Differential evolution (DE) algorithm, evolutionary computation, dynamic optimization, control parameter adaptation,
chemical processes.

 

1   Introduction

Differential evolution  (DE)  algorithm,  which  was  in-

troduced by Storn and Price[1], is a simple yet competit-

ive  meta-heuristic  algorithm.  Although  DE  has  been

widely utilized to deal with a large number of benchmark

test  functions  and  industrial  application  problems,  the

search  behavior  of  DE  is  mainly  determined  by  three

main  parameters  (i.e.,  mutation  control  parameter F,

crossover control parameter CR, and population size NP)

and two strategies  (i.e.,  mutation and crossover)[2, 3].  To

improve DE performance,  researchers  have  proposed dif-

ferent  empirical  guidelines  to  set  control  parameters  in

the  previous  studies[4–6].  However,  the  above  guidelines

lack sufficient experimental justifications[7] since they are

achieved through some particular experiments.

Subsequently,  a  large  number  of  researchers  focus  on

the  adaptation  or  self-adaptation  of  control  parameters

and strategies to enhance the search capability of DE and

reduce manual tuning. For example, Liu and Lampinen[8]

proposed a fuzzy adaptive DE, in which fuzzy logic con-

trollers are utilized to produce F and CR. A DE with self-

adaptive parameter control (jDE) is presented by Brest et

al.[9].  In  the  jDE, F and CR are  generated  by  a  normal

distribution  function.  Moreover,  each  individual  in  the

population has its own F and CR. In [7],  a self-adaptive

DE (SaDE)  is  introduced.  In  the  SaDE,  suitable  muta-

tion strategy  and  control  parameters  can  be  automatic-

ally achieved during the run. Zhang and Sanderson[10] in-

troduced  a  novel  DE  (JADE)  which  uses  an  improved

DE/current-to-best/1 mutation strategy and adjusts con-

trol  parameters  in  an  adaptive  fashion.  In  [11], an  en-

semble  of  mutation  strategies  and  control  parameters

with DE algorithm (EPSDE) is proposed. In the EPSDE,

some  combinations  of  mutation  strategy  and  control

parameters  are  employed.  Wang  et  al.[12] presented  a

composite  DE  (CoDE)  wherein  three  fixed  parameter

combinations were  combined  with  three  selected  muta-

tion strategies randomly. In [13], a novel DE (CoBiDE) is

proposed to improve the performance of DE, in which the

covariance  matrix  learning  and  the  bimodal  distribution

parameter setting are used. Fan and Yan[14] introduced a

DE  with  self-adaptive  mutation  strategy  and  control

parameters (SSCPDE),  in  which  suitable  control  para-

meters  and  mutation  strategy  can  be  simultaneously

achieved  in  different  stages  of  the  evolution.  Recently,

Fan and Yan[15] proposed a self-adaptive DE with zoning
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evolution  of  control  parameters  and  adaptive  mutation

strategy (ZEPDE), in which F and CR can be automatic-

ally generated in their own zones and the suitable muta-

tion  strategy can be  self-adaptively  obtained in  different

phases of the evolution. In [16], a DE with dynamic para-

meters selection (DE-DPS) is proposed, in which the best

performing control  parameter  combination  can  be  auto-

matically found in different evolution stages.

Besides  the  above  studies,  many  methods  have  also

been introduced to improve the search performance of the

DE. For instance, in [17], an opposition-based learning is

utilized  to  enhance  the  global  search  capability  of  the

DE, the  experimental  results  demonstrate  that  the  ap-

proach is  effective.  Gong et  al.[18] introduced a crossover

rate  repair  method  to  enhance  the  performance  of  other

self-adaptive DE algorithms.  Recently,  Gong et  al.[19] in-

troduced  an  adaptive  ranking  mutation  operator  (AR-

MOR) for the DE algorithm, which is  used to deal  with

the  constrained  optimization  problems  introduced  in

CEC2006  and  CEC2010.  Yang  et  al.[20] introduced  an

auto-enhanced population  diversity  (AEPD)  that  is  em-

ployed to improve the population diversity when the pop-

ulation  is  stagnant  and  premature.  Fan  et  al.[21] intro-

duced an auto-selection mechanism (ASM) to automatic-

ally  choose a suitable  algorithm from an algorithm pool.

The results  indicate  that  the  ASM  can  improve  the  al-

gorithm robustness. In [22], an eigenvector-based crossov-

er  strategy  is  used  to  improve  the  search  ability  of  the

DE. For more related studies, interested readers can refer

to [23–31].

Although  various  adaptation  techniques  can  improve

the performance of  the DE effectively,  most of  them are

based on the population information. In most cases,  this

information  may  be  deceptive  or  misleading  in  complex

optimization  environment[32], thus  a  well-known empiric-

al  guideline is  incorporated into the JADE (called TPC-

JADE) to improve the search efficiency of DE in the cur-

rent study. In the TPC-JADE, the parameter adaptation

technique  used  in  the  JADE  is  employed  to  search  the

promising region in  the  early  evolution stages,  while  the

empirical guideline is  utilized to enhance the search effi-

ciency  of  the  JADE  in  the  later  evolution  stages.  The

main  reason  is  that  the  fitness  landscape  of  the  current

population may be not very complex in the later  phases

of the  search.  The  performance  of  the  proposed  al-

gorithm  is  compared  with  that  of  four  DE  variants  on

two  widely  used  test  suites,  i.e.,  IEEE  CEC2005[33] and

IEEE  CEC2015[34].  The  experimental  results  reveal  that

the TPC-JADE is competitive among all competitors.

Several  problems  in  chemical/biochemical  processes

can be  described  as  a  set  of  nonlinear  differential  equa-

tions, which  are  named  as  dynamic  optimization  prob-

lems.  To  solve  these  dynamic  optimization  problems,

three main approaches[35, 36], which include dynamic pro-

gramming (DP) methods,  indirect optimization methods,

and direct optimization methods, have been introduced.

For the DP, it is based on Bellman′s optimality condi-

tions[37] and is a promising approach to solve dynamic op-

timization problems.  However,  DP  is  not  always  avail-

able  for  solving  high-dimensional  dynamic  optimization

problems. Subsequently, Luus[38] proposed an iterative dy-

namic programming (IDP) to overcome the defects of the

DP, in which the coarse grid points and search region re-

duction  strategy  are  utilized.  The  results  indicate  that

the  IDP  is  able  to  improve  the  solution  accuracy  and

computation efficiency when compared with the DP.

In indirect methods,  a dynamic optimization problem

is  converted  into  a  boundary  value  problem  (BVP),

which can be addressed by some methods[36, 39, 40]. In fact,

these approaches are very effective, but they are difficult

to be used in solving dynamic optimization problems due

to the active inequality constraints[41].

For  direct  methods,  a  dynamic  optimization  problem

can be usually transcribed into a nonlinear programming

(NLP)  problem  and  is  addressed  by  parameterization,

which  can  be  classified  into  two  different  techniques[42],

namely, control vector parameterization (CVP) and com-

plete parameterization.  In  the  CVP,  only  control  vari-

ables  are  discretized,  whereas  complete  parameterization

discretizes both control variable and state variable. In the

current study, the CVP and the TPC-JADE are used to

solve  actual  dynamic  optimization  problems.  The results

show that the TPC-JADE is competitive when compared

with the other approaches.

2   Differential evolution

A minimization problem can be expressed as follows:

f(x∗) = min
xi∈Ω

f(xi), xi ∈ P0 =

D∏
j=1

[Lj , Uj ] (1)

xi = [xi,1 · · · xi,D]

x∗

Lj Uj

j = 1, · · ·, D
xi P0

where f denotes the objective function; 

and  are  the D-dimensional  vector  and  the  global

optimum  solution  of  problem,  respectively;  and 

( ) are the lower and upper bounds of the j-th

variable  of  respectively;  and  is  the  feasible  search

space.

xG
i = [xG

i,1 · · · xG
i,D] XG = {xG

1 , · · ·, xG
NP }

DE is  a  population-based  stochastic  optimization  ap-

proach.  and 

denote  the i-th  target  vector  and  the  population  at  the

G-th generation, respectively.

The  procedure  of  executing  DE  is  described  as

follows[43]:

Gmax
x0

i (i = 1, · · ·, NP ) P0

1)  Initialization:  Determine F, CR, NP, and  maxim-

um  number  of  generations .  The  initial  individuals

 are  generated  randomly  in .  The

current generation G is set as 0.

xG
i vG

i

2)  Mutation:  After  initialization  operation,  for  each

, the mutant vector  is produced by mutation oper-

ation.  Some  of  the  most  frequently  used  mutation

strategies are given as follows:
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“DE/rand/1”

vG
i = xG

r1+F×(xG
r2−xG

r3)
(2)

“DE/rand/2”

vG
i = xG

r1+F×(xG
r2−xG

r3)+F×(xG
r4−xG

r5)
(3)

“DE/current-to-best/1”

vG
i = xG

i +F×(xG
best−xG

i )+F×(xG
r1−xG

r2)
(4)

“DE/current-to-best/2”

vG
i = xG

i +F×(xG
best−xG

i )+F×(xG
r1−xG

r2+xG
r3−xG

r4)
(5)

“DE/rand-to-best/1”

vG
i = xG

r1+F×(xG
best−xG

i )+F×(xG
r2−xG

r3)
(6)

r1 r2 r3 r4 r5

r1 ̸= r2 ̸= r3 ̸= r4 ̸= r5 ̸= i

xG
best

where , , ,  and  are mutually exclusive integers

randomly  chosen  within  the  range  [1, NP],  and  are  also

different from the index i (i.e., );

 is  the  target  vector  with  the  best  fitness  value  at

the G-th generation.

xG
i uG

i3)  Crossover:  For  each ,  trial  vector  is gener-

ated as follows:

uG
ij =

{
vGij , if Rj ≤ CR or j = jrand

xG
ij , otherwise

j = 1, 2, · · ·, D

(7)

Rj

jrand

where  is  a  uniform random number  within  the  range

[0,  1]  and  is  a  randomly chosen integer  within  the

range [1, D], respectively.

uG
i

xG
i

4)  Selection:  The  trial  vector  competes  with  its

target  vector  and  the  better  one  of  them is  selected

for the next generation:

xG+1
i =

{
uG

i , if f(uG
i ) ≤ f(xG

i )

xG
i , otherwise.

(8)

5) G = G + 1.

6) Implement Steps 2 to 5 repeatedly until  the num-

ber of generations is equal to Gmax.

3   JADE using two-phase parameter
control scheme

For most  evolutionary  algorithms,  it  is  generally  be-

lieved to be a good idea to encourage the global search in

the  early  stages  of  the  evolution  and  ensure  the  local

search  in  the  later  evolution  phases[44],  thus  the  above

view can be considered as the empirical guideline. For the

DE algorithm, a large value of F can provide good explor-

ation capability,  whereas a small  value of F can acceler-

ate the convergence speed[3].  Meanwhile, a large value of

CR can  provide  good  exploitation  capability[45].  In  the

current study, this empirical guideline can be used to im-

prove the search efficiency of  the DE in the later  evolu-

tion  stages.  Namely,  the  value  of F gradually  decreases

and  the  value  of CR gradually increases  during  the  en-

tire evolutionary process.

The adaptation technique can enable control paramet-

ers  to  make timely adjustment when compared with the

empirical  guideline.  In  other  words,  the  adaptability  of

the control  parameters  produced  by  the  adaptation  ap-

proach is better than that of the control parameters gen-

erated by  the  empirical  guideline.  Additionally,  the  fit-

ness landscape of the population is usually very complex

in  the  early  stages  of  the  search since  individuals  in  the

current  population  may  be  distributed  in  the  entire

search  space,  but  individuals  may  gather  in  a  small

search region in the later phases of  the evolution.  Based

on  the  above  introduction,  the  parameters  of  JADE are

adjusted through two different approaches in the current

study. Namely,  the  parameter  adaptation  method  pro-

posed  in  JADE[10] is  used  in  the  early  evolution  stages

and the empirical guideline is utilized to guide the evolu-

tion of control parameters in the later phases of the evol-

ution. The main target is  to take advantages of  the two

different parameter control approaches.

3.1   Evolution of control parameters

gs×GmaxIf G < ,  the F value  of  each  individual  is

produced in [10]; otherwise, the F value of each individu-

al is generated as follows:

FG+1
i = Cauchy

((
0.6− 0.5× G− gs×Gmax

(1− gs)×Gmax

)
, σ1

)
i = 1, · · ·, NP

(9)

σ1 = 0.6

where Cauchy is  a  Cauchy  distribution  function,

, gs =  0.6.  It  can  be  seen  from  (9)  that  TPC-

JADE  has  good  local  search  ability  in  the  later  search

stages  since  Cauchy  distribution  function  with  a  low

location  parameter  tends  to  generate  a  small  value  of F

(i.e.,  promoting  exploitation).  Moreover,  the  location

parameter  of  Cauchy  distribution  function  is  within  the

range of [0.1, 0.6].

gs×GmaxIf G < ,  the CR value of  each individual  is

generated  in  [10];  otherwise,  the CR value of  each  indi-

vidual is generated as follows:
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CRG+1
i = N

((
1− 0.5×

(
1− G− gs×Gmax

(1− gs)×Gmax

))
, σ2

)
i = 1, · · ·, NP

(10)

σ2 = 0.6where N is  a  normal  distribution function, .  We

can observe from (10) that a large CR value generated by

a normal distribution function with large mean value can

speed  up  convergence  in  the  later  phases  of  the  search.

Moreover, the mean value of normal distribution function

is within the range of [0.5, 1].

Based  on  the  above  descriptions,  it  can  be  observed

that the empirical guideline can provide a good exploita-

tion capability for the DE algorithm. Therefore, it is use-

ful  to  improve  the  search  efficiency  of  DE  in  the  later

search  process.  Additionally,  the  parameter  adaptation

approach  used  in  the  early  evolution  stages  can  help  to

locate  the  promising  search  region.  This  is  because  the

adaptation technique  based  on  the  population  informa-

tion  can  automatically  adjust  the  control  parameters

when the fitness landscape of the population is very com-

plex.

3.2   Overall implementation of TPC-JADE

1) Initialization

P 0
1

P0

Determine the population size NP and maximal num-

ber of generation Gmax. Initialize a population  that is

generated  randomly  within  the  feasible  search  space .

Set the current generation G = 0, gs = 0.6.

2) Population evolution

xG
i vG

iMutation operation: For each , a mutant vector 

is generated as follows[10]:

vG
i = xG

i + Fi × (xG
pbest − xG

i ) + Fi × (xG
r1 − xG

r2) (11)

xG
pbestwhere  is  randomly  selected  from  the  best  100p%

individuals in the current population, and p is within the

range (0, 1].

uG
i .

Crossover operation: Equation (7) is used to generate

a trial vector 

3) Control parameters adaptation

The  more  detailed  descriptions  can  be  seen  in

Section 3.1.

4) G = G + 1.

5) Steps 2 to 4 are repeated until the maximum num-

ber of generations is equal to Gmax.

The framework of the proposed algorithm is shown in

Fig. 1.

4   Experimental results

In  this  section,  two  famous  test  suites  (i.e.,  IEEE

CEC2005 and IEEE CEC2015) are utilized to assess the

performance of  the  TPC-JADE.  Moreover,  the  perform-

ance  of  the  TPC-JADE  is  compared  with  that  of  four

state-of-the-art  DE  variants,  namely,  jDE[9],  SaDE[7],

JADE[10],  and  CoBiDE[13].  All  the  compared  algorithms

are coded  in  Matlab  (Matlab  R2012a)  and  run  on  Win-

dows 7 operating system (64 bit). For each test function,

the  maximum  numbers  of  fitness  evaluations  are  set  to

300 000  for  30-dimensional  functions  and  500 000  for  50-

dimensional functions. Since each DE variant has its own

suitable NP, recommended NP from their  literatures  are

utilized, namely, 100 for jDE, JADE, and TPC-JADE, 50

for SaDE, and 60 for CoBiDE. Furthermore, to compare

the  performance  of  all  the  algorithms,  the  Wilcoxon′s
rank  sum  test[46] at  the  0.05  significance  level  and  the

Friedman′s  test[47] are  utilized.  For  the  Wilcoxon′s  rank

sum  test,  the  “+”,  “−”  and  “≈”  signs  denote  that  the

search performance of  the proposed algorithm is  signific-

antly better than, worse than, and almost similar to that

of the other compared algorithms in a statistically signi-

ficant way, respectively.

4.1   Comparison with four DE variants on
30-dimensional CEC2005 functions

In this part, twenty-five 30-dimensional CEC2005 test

functions  are  used  to  evaluate  the  performance  of  the

TPC-JADE.  Each  test  function  is  independently  run  30

times. The results are presented in Table 1. For unimod-

al test functions F1CEC2005−F5CEC2005, as shown in Table 1,

the overall performance of TPC-JADE is better than that

of  jDE,  SaDE,  and  CoBiDE  since  TPC-JADE  uses  a

greedy  mutation  strategy  which  is  the  same  as  JADE.

JADE significantly outperforms TPC-JADE on three test

functions. The main reason may be that the evolution in-

formation produced by unimodal test function is less mis-

 

No

Initialization

G = G + 1

Mutation operator

Crossover operator

G ≤ gs×Gmax G > gs×Gmax

Yes

Control parameters are 

generated by reference [10]

Control parameters are 

generated by (9) and (10)

Selection 

G < Gmax

End

 
Fig. 1     Framework of the proposed algorithm
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leading. Therefore,  the  adaptation  technique  is  more  ef-

fective than the empirical guideline. For multimodal test

functions  F6CEC2005−F14CEC2005,  jDE  and  JADE  cannot

perform  better  than  TPC-JADE  on  any  test  functions.

Moreover, SaDE and CoBiDE perform better than TPC-

JADE  on  one  and  two  test  functions,  respectively.

However,  the  performance  of  TPC-JADE is  significantly

better  than  that  of  SaDE  and  CoBiDE  on  six  and  four

test functions,  respectively.  Therefore,  the  average  per-

formance of TPC-JADE is the best among five compared

algorithms on multimodal test functions. For hybrid com-

position functions F15CEC2005−F25CEC2005, jDE, SaDE, and

JADE cannot  outperform  TPC-JADE  on  any  test  func-

tions since the adaptation technique can help TPC-JADE

to adapt complex environment in the early stages of the

evolution  and  the  empirical  guideline  can  improve  the

search efficiency of the DE in the later evolution phases.

Moreover, the CoBiDE performs better than TPC-JADE

on one test function. However, the performance of TPC-

JADE is significantly better than that of CoBiDE on six

test functions.

Based  on  the  above  comparisons,  it  can  be  observed

from Table  1 that  the  average  performance  of  TPC-

JADE is the best among five compared DE variants, the

adaptation technique can assist DE to find optimal/near

search region in the early evolution stages, while the em-

pirical guideline can enhance the local search capability of

DE at later phases of the search.

4.2   Comparison with four DE variants on
50-dimensional CEC2005 functions

In  this  section,  twenty-five  50-dimensional  CEC2005

test  functions are employed to verify the performance of

 

Table 1    Results of five DE variants on 30-dimensional CEC2005 test functions

Function jDEMean (Std) SaDEMean (Std) JADEMean (Std) CoBiDEMean (Std) TPC-JADEMean (Std)

Unimodal
functions

F1CEC2005 0.00E+00(0.00E+00)≈ 0.00E+00(0.00E+00)≈ 0.00E+00(0.00E+00)≈ 0.00E+00(0.00E+00)≈ 0.00E+00(0.00E+00)

F2CEC2005 4.78E–07(6.58E–07)+ 1.12E–05(2.35E–05)+ 8.15E–29(9.14E–29)+ 1.19E–12(2.04E–12)+ 1.86E–29(4.74E–29)

F3CEC2005 2.03E+05(1.32E+05)+ 5.35E+05(2.30E+05)+ 8.18E+03(6.86E+03)− 7.80E+04(5.03E+04)+ 1.20E+04(8.25E+03)

F4CEC2005 3.44E–02(1.04E–01)+ 1.45E+02(1.98E+02)+ 8.39E–16(3.08E–15)− 8.88E–04(1.93E–03)+ 1.09E–13(4.29E–13)

F5CEC2005 4.46E+02(3.67E+02)+ 3.13E+03(4.95E+02)+ 4.86E–07(2.35E–06)− 3.71E+01(5.26E+01)+ 5.64E–05(1.70E–04)

Basic
multimodal
functions

F6CEC2005 2.25E+01(2.41E+01)+ 4.01E+01(3.54E+01)+ 2.58E+00(7.46E+00)≈ 1.66E–01(7.23E–01)+ 2.72E–01(9.64E–01)

F7CEC2005 1.16E–02(9.04E–03)≈ 1.84E–02(1.80E–02)+ 9.36E–03(9.02E–03)≈ 3.68E–03(8.30E–03)− 9.19E–03(7.11E–03)

F8CEC2005 2.09E+01(7.51E–02)≈ 2.09E+01(3.67E–02)≈ 2.09E+01(1.43E–01)≈ 2.07E+01(4.05E–01)≈ 2.08E+01(2.06E–01)

F9CEC2005 0.00E+00(0.00E+00)≈ 9.95E–02(3.04E–01)≈ 0.00E+00(0.00E+00)≈ 0.00E+00(0.00E+00)≈ 0.00E+00(0.00E+00)

F10CEC2005 5.79E+01(9.38E+00)+ 4.48E+01(1.25E+01)+ 2.43E+01(5.23E+00)+ 4.34E+01(1.40E+01)+ 2.09E+01(4.71E+00)

F11CEC2005 2.83E+01(1.25E+00)+ 1.65E+01(2.94E+00)− 2.53E+01(1.29E+00)+ 5.67E+00(2.36E+00)− 2.17E+01(2.76E+00)

F12CEC2005 1.20E+04(9.44E+03)+ 2.17E+03(1.82E+03)+ 6.68E+03(4.17E+03)+ 2.96E+03(2.60E+03)+ 1.31E+03(1.39E+03)

Expanded
multimodal
functions

F13CEC2005 1.66E+00(1.28E–01)+ 3.90E+00(4.64E–01)+ 1.48E+00(1.26E–01)+ 2.64E+00(1.08E+00)+ 1.25E+00(1.75E–01)

F14CEC2005 1.30E+01(2.69E–01)+ 1.26E+01(2.86E–01)+ 1.23E+01(2.96E–01)≈ 1.22E+01(5.32E–01)≈ 1.22E+01(3.87E–01)

Hybrid
composition
functions

F15CEC2005 3.18E+2(1.19E+02)≈ 3.74E+2(6.42E+01)≈ 3.76E+02(8.97E+01)≈ 4.10E+02(5.47E+01)+ 3.71E+02(6.91E+01)

F16CEC2005 8.49E+01(3.59E+01)+ 7.71E+01(2.74E+01)+ 9.63E+01(1.08E+02)+ 8.42E+01(6.31E+01)+ 6.84E+01(8.67E+01)

F17CEC2005 1.39E+02(1.25E+01)+ 8.70E+01(8.49E+01)+ 1.02E+02(6.68E+01)+ 6.82E+01(2.05E+01)+ 6.86E+01(4.05E+01)

F18CEC2005 9.04E+02(7.96E–01)+ 8.78E+02(6.06E+01)≈ 9.04E+02(7.92E–01)+ 9.04E+02(9.98E–01)+ 9.04E+02(6.16E–01)

F19CEC2005 9.04E+02(7.69E–01)≈ 8.60E+02(6.13E+01)≈ 9.04E+02(9.94E–01)+ 9.04E+02(8.62E–01)≈ 9.04E+02(7.44E–01)

F20CEC2005 9.04E+02(9.216E–01)+ 8.73E+02(6.14E+01)≈ 9.04E+02(5.93E–01)+ 9.04E+02(5.47E–01)+ 9.04E+02(5.41E–01)

F21CEC2005 5.00E+02(1.96E–13)+ 5.43E+02(1.65E+02)+ 5.10E+02(5.48E+01)≈ 5.00E+02(1.75E–13)≈ 5.00E+02(1.76E–13)

F22CEC2005 8.67E+02(1.87E+01)≈ 9.36E+02(1.88E+01)+ 8.64E+02(2.57E+01)≈ 8.54E+02(2.46E+01)≈ 8.59E+02(2.19E+01)

F23CEC2005 5.34E+02(2.98E–04)+ 5.69E+02(1.34E+02)+ 5.34E+02(2.17E–04)+ 5.34E+02(4.70E–07)+ 5.34E+02(3.11E–13)

F24CEC2005 2.00E+02(2.89E–14)≈ 2.00E+02(2.89E–14)≈ 2.00E+02(2.89E–14)≈ 2.00E+02(2.89E–14)≈ 2.00E+02(2.89E–14)

F25CEC2005 2.11E+02(7.01E–01)≈ 2.13E+02(1.39E+00)+ 2.11E+02(8.53E–01)+ 2.10E+02(5.65E–01)− 2.11E+02(5.98E–01)

+ 16 16 12 14

− 0 1 3 3

≈ 9 8 10 8
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the proposed  algorithm.  For  each  test  function,  the  set-

ting of run times is the same as in Section 4.1. The simu-

lation and statistical  analysis  results  are shown in Table

2.  For  unimodal  test  functions  F1CEC2005−F5CEC2005, Ta-

ble  2 indicates  that  the  TPC-JADE outperforms  all  the

compared  algorithms  except  for  JADE.  However,  JADE

performs better than our proposed algorithm on only one

test function. Based on the results shown in Table 1, we

can find that the local search capability of TPC-JADE is

not  getting  worse  with  the  increasing  of  the  dimension

when compared  with  JADE.  For  multimodal  test  func-

tions F6CEC2005−F14CEC2005, as shown in Table 2, jDE can-

not  perform  better  than  the  proposed  algorithm  on  any

test functions.  SaDE,  JADE,  and  CoBiDE  perform  bet-

ter  than  TPC-JADE  on  one  test  function,  respectively.

However, TPC-JADE performs better than SaDE, JADE,

and CoBiDE  on  seven,  five,  and  six  test  functions,  re-

spectively.  Therefore,  the  optimization  performance  of

TPC-JADE  is  the  best  among  these  selected  algorithms

on the  multimodal  test  functions.  For  hybrid  composi-

tion  functions  F15CEC2005−F25CEC2005,  JADE  and  SaDE

cannot perform better than TPC-JADE on any test func-

tions. The  performance  of  jDE  and  CoBiDE  is  signific-

antly better than that of TPC-JADE on one and four test

functions, respectively.  However,  TPC-JADE  signific-

antly performs better than jDE and CoBiDE on four and

five  test  functions,  respectively.  Therefore,  the  average

performance of TPC-JADE is similar as that of CoBiDE

on  complex  functions  and  is  better  than  that  of  jDE,

SaDE, and JADE.

Based  on  the  above  analyses,  the  statistical  analysis

results  shown  in Table  2 indicate that  the  overall  per-

formance of TPC-JADE is better than that of other com-

petitors on twenty-five 50-dimensional CEC2005 functions.

 

Table 2    Results of five DE variants on 50-dimensional CEC2005 test functions

Function jDEMean (Std) SaDEMean (Std) JADEMean (Std) CoBiDEMean (Std) TPC-JADEMean (Std)

Unimodal
functions

F1CEC2005 0.00E+00(0.00E+00)≈ 3.36E–30(1.28E-29)≈ 0.00E+00(0.00E+00)≈ 0.00E+00(0.00E+00)≈ 0.00E+00(0.00E+00)

F2CEC2005 8.35E–03(9.43E–03)+ 8.03E–02(7.62E–02)+ 3.97E–27(2.00E–027)− 1.39E–06(1.77E–06)+ 9.05E–24(1.42E–23)

F3CEC2005 4.78E+05(1.99E+05)+ 9.31E+05(2.63E+05)+ 1.77E+04(9.43E+03)≈ 2.47E+05(1.00E+05)+ 2.26E+04(1.17E+04)

F4CEC2005 4.33E+02(3.21E+02)+ 5.88E+03(2.52E+03)+ 2.21E+00(7.63E+00)≈ 2.30E+02(1.97E+02)+ 8.43E–01(1.65E+00)

F5CEC2005 3.25E+03(7.18E+02)+ 8.31E+03(1.56E+03)+ 1.53E+03(4.76E+02)≈ 2.60E+03(6.25E+02)+ 1.58E+03(4.09E+02)

Basic
multimodal
functions

F6CEC2005 4.32E+01(2.85E+01)+ 9.48E+01(4.81E+01)+ 6.64E–01(1.51E+00)− 2.89E+01(2.33E+01)+ 4.81E+00(1.31E+01)

F7CEC2005 4.18E–03(9.89E–03)+ 5.08E–03(9.98E–03)+ 5.33E–03(8.76E–03)≈ 4.92E–03(7.25E–03)+ 3.19E–03(8.68E–03)

F8CEC2005 2.11E+01(3.53E–02)+ 2.11E+01(3.44E–02)+ 2.10E+01(3.56E–01)+ 2.08E+01(5.26E–01)≈ 2.05E+01(3.41E–01)

F9CEC2005 0.00E+00(0.00E+00)≈ 1.46E+00(1.25E+00)+ 0.00E+00(0.00E+00)≈ 8.52E–13(3.14E–12)+ 0.00E+00(0.00E+00)

F10CEC2005 1.05E+02(1.72E+01)+ 1.30E+02(2.42E+01)+ 4.94E+01(8.04E+00)+ 8.51E+01(2.04E+01)+ 4.21E+01(5.48E+00)

F11CEC2005 5.42E+01(2.07E+00)+ 3.92E+01(4.78E+00)− 5.16E+01(2.36E+00)+ 1.89E+01(4.43E+00)− 4.82E+01(4.07E+00)

F12CEC2005 1.59E+04(1.34E+4)≈ 1.58E+04(1.10E+04)≈ 1.56E+04(1.14E+04)≈ 1.68E+04(1.79E+04)≈ 1.25E+04(1.07E+04)

Expanded
multimodal

F13CEC2005 3.05E+00(2.19E–01)+ 9.90E+00(1.08E+00)+ 2.75E+00(1.39E–01)+ 4.36E+00(1.33E+00)+ 2.37E+00(2.05E–00)

F14CEC2005 2.25E+01(2.13E–01)+ 2.23E+01(2.88E–01)+ 2.17E+01(5.07E–01)+ 2.19E+01(4.06E–01)+ 2.15E+01(4.43E–01)

Hybrid
composition
functions

F15CEC2005 3.20E+02(9.97E+01)≈ 3.64E+02(8.01E+01)+ 3.49E+02(8.74E+01)+ 3.87E+02(5.07E+01)+ 2.74E+02(9.36E+01)

F16CEC2005 8.69E+01(2.07E+01)+ 9.29E+01(5.96E+01)+ 8.06E+01(9.15E+01)+ 8.48E+01(6.33E+01)+ 4.25E+01(6.68E+00)

F17CEC2005 1.83E+02(4.92E+01)+ 8.23E+01(1.49E+01)+ 1.58E+02(1.27E+02)+ 7.82E+01(2.97E+01)+ 6.17E+01(6.58E+01)

F18CEC2005 9.20E+02(2.45E+00)≈ 9.91E+02(1.58E+01)+ 9.22E+02(2.74E+00)≈ 9.18E+02(2.80E+00)− 9.20E+02(6.45E+00)

F19CEC2005 9.20E+02(3.59E+00)≈ 9.79E+02(3.72E+01)+ 9.24E+02(3.51E+00)+ 9.14E+02(2.17E+01)− 9.21E+02(3.60E+00)

F20CEC2005 9.20E+02(3.17E+00)− 9.84E+02(1.49E+01)+ 9.21E+02(4.01E+00)≈ 9.18E+02(2.73E+00)− 9.22E+02(4.04E+00)

F21CEC2005 6.85E+02(2.47E+02)≈ 6.39E+02(2.82E+02)+ 5.51E+02(1.55E+02)+ 5.50E+02(1.53E+02)+ 5.00E+02(7.61E–13)

F22CEC2005 9.00E+02(9.42E+00)≈ 9.85E+02(1.27E+01)+ 9.00E+02(2.30E+01)≈ 8.86E+02(2.80E+01)≈ 8.91E+02(2.20E+01)

F23CEC2005 8.39E+02(2.32E+02)+ 7.36E+02(3.06E+02)≈ 6.34E+02(1.92E+02)≈ 6.17E+02(1.79E+02)≈ 5.87E+02(1.43E+02)

F24CEC2005 2.00E+02(1.56E–12)+ 6.29E+02(4.87E+02)+ 2.00E+02(1.51E–12)+ 2.00E+02(1.56E–12)+ 2.00E+02(5.99E–13)

F25CEC2005 2.16E+02(1.39E+00)≈ 2.24E+02(3.94E+00)+ 2.19E+02(2.76E+00)+ 2.16E+02(1.13E+00)− 2.17E+02(1.40E+00)

+ 15 21 12 15

− 1 1 2 5

≈ 9 3 11 5
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4.3   Comparison with four DE variants on
30-dimensional CEC2015 functions

In this experiment, fifteen 30-dimensional functions in-

troduced in  IEEE  CEC2015  are  employed  to  demon-

strate the performance of TPC-JADE. For each function,

the run times are set to be 30, and the mean and stand-

ard deviation values are presented in Table 3. Addition-

ally, the  statistical  analysis  results  obtained by the  Wil-

coxon′s rank sum test are also shown in Table 3.

According to the results summarized in Table 3, it can

be observed that the performance of TPC-JADE is signi-

ficantly better  than that  of  jDE,  SaDE, JADE, and Co-

BiDE on ten,  twelve,  nine,  and seven functions,  respect-

ively.  Note  that  jDE,  SaDE,  and  JADE  cannot  provide

significantly better results than TPC-JADE on any func-

tions. We can find that the control parameters guided by

the empirical  guideline can improve the search efficiency

of JADE. It can be also seen from Table 3 that CoBiDE

significantly  outperforms  TPC-JADE  on  four  functions.

This is because the covariance matrix learning is used in

the  DE.  Overall,  TPC-JADE  provides  the  best  average

performance among all compared algorithms on 15 30-di-

mensional IEEE CEC2015 functions.

5   Parameter analysis

In this  part,  25  30-dimensional  CEC2005  test  func-

tions  are  utilized  to  investigate  the  effect  of σ,  which  is

selected from the set (0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8).

The  maximum  number  of  function  evaluations  and  run

times are set to be 300 000 and 30, respectively.

The statistical analysis results achieved by the Fried-

man′s  test  are  plotted  in Fig. 2.  As  shown  in Fig. 2,  we

can  find  that  the  overall  performance  of  TPC-JADE  is

susceptible  to  the  value  of  sigma  and  is  the  best  when

σ =  0.6.  Therefore, σ =  0.6  is  chosen  in  our  proposed

algorithm.

6   Case study

A typical  dynamic  optimization  problem  can  be  for-

mulated as follows[39, 48]:

min J(u(t)) = G(x(tf )) +

∫ tf

t0

F (x,u)dt

s.t. dx(t)
dt = f(x(t),u(t)), x(0) = x0

0 ≤ t ≤ tf , umin < u < umax (12)

where J denotes the performance index; x and u are the

state  and  control  vectors,  respectively; G and F are  the

terminal  time  performance  index  and  integrated

performance, respectively; t0 is the initial time and tf is the

final time; umin and umax are the lower and upper bounds

of u, respectively.

6.1   Feeding-rate optimization for Lee-
Ramirez bioreactor

In this  section,  TPC-JADE is  utilized  to  solve  a  dy-

 

Table 3    Results of all compared algorithms on 15 30-dimensional CEC2015 test functions

Function jDEMean (Std) SaDEMean (Std) JADEMean (Std) CoBiDEMean (Std) TPC-JADEMean (Std)

F1CEC2015 3.43E+04(2.25E+04)+ 5.40E+05(3.33E+05)+ 1.42E+01(4.73E+01)≈ 6.04E+03(5.15E+03)+ 1.38E+01(2.65E+01)

F2CEC2015 2.90E–09(8.29E–09)+ 1.22E+03(1.51E+03)+ 3.12E–14(8.67E–15)≈ 5.68E–15(1.37E–14)− 2.74E–14(5.18E–15)

F3CEC2015 2.03E+01(2.95E–02)+ 2.05E+01(4.01E–02)+ 2.03E+01(2.79E–02)+ 2.04E+01(2.54E–01)+ 2.01E+01(9.66E–02)

F4CEC2015 4.64E+01(5.09E+00)+ 4.00E+01(9.60E+00)+ 2.55E+01(4.33E+00)≈ 4.09E+01(1.46E+01)+ 2.33E+01(4.54E+00)

F5CEC2015 2.59E+03(1.88E+02)+ 3.20E+03(7.59E+02)+ 1.80E+03(2.63E+02)+ 1.81E+03(5.07E+02)+ 1.46E+03(2.75E+02)

F6CEC2015 2.32E+03(1.95E+03)+ 1.36E+04(1.26E+04)+ 1.10E+03(3.76E+02)+ 2.16E+02(1.97E+02)− 8.48E+02(3.71E+02)

F7CEC2015 8.34E+00(8.19E–01)+ 6.81E+00(1.38E+00)+ 8.00E+00(8.07E–01)+ 3.16E+00(9.88E–01)+ 2.61E+00(5.12E–01)

F8CEC2015 1.48E+02(1.11E+02)≈ 5.77E+03(5.41E+03)+ 1.07E+04(3.37E+04)+ 7.72E+01(8.08E+01)− 1.55E+02(1.18E+02)

F9CEC2015 1.02E+02(9.72E–02)≈ 1.03E+01(2.10E–01)≈ 1.03E+02(1.60E–01)+ 1.03E+02(1.84E–01)≈ 1.03E+02(1.68E–01)

F10CEC2015 8.01E+02(2.08E+02)≈ 8.66E+03(7.95E+03)+ 4.69E+03(1.48E+04)≈ 4.17E+02(1.47E+02)− 8.03E+02(2.96E+02)

F11CEC2015 3.84E+02(5.49E+01)≈ 4.62E+02(1.39E+02)≈ 4.26E+02(5.92E+01)≈ 3.57E+02(6.44E+01)≈ 4.08E+02(3.49E+01)

F12CEC2015 1.06E+02(4.21E–01)+ 1.06E+02(5.34E–01)+ 1.05E+02(5.43E–01)+ 1.06E+02(5.96E–02)+ 1.05E+02(4.28E–01)

F13CEC2015 1.01E+02(3.20E+00)+ 1.09E+02(3.07E+00)+ 9.65E+01(2.81E+00)+ 9.88E+01(4.83E+00)+ 9.37E+01(5.16E+00)

F14CEC2015 3.25E+04(9.22E+02)+ 3.32E+04(8.00E+02)+ 3.22E+04(9.05E+02)+ 3.17E+04(9.45E+02)≈ 3.16E+04(5.92E+02)

F15CEC2015 1.00E+01(8.50E–14)≈ 1.00E+01(8.50E–14)≈ 1.00E+01(7.22E–14)≈ 1.00E+01(7.22E–02)≈ 1.00E+02(7.22E–14)

+ 10 12 9 7
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namic  optimization  problem  proposed  by  Lee  and

Ramirez[49].  Additionally,  the  direct  method  adopted  in

[50] is employed. This dynamic optimization problem can

be described as follows:

dx1

dt = u1 + u2, x1(0) = 1

dx2

dt = µx2 −
u1 + u2

x1
x2, x2(0) = 0.1

dx3

dt =
u1

x1
Cnf − u1 + u2

x1
x3 − Y −1µx2, x3(0) = 40

dx4

dt = Rfpx2 −
u1 + u2

x1
x4, x4(0) = 0

dx5

dt =
u2

x1
Cif − u1 + u2

x1
x5, x5(0) = 0

dx6

dt = −k1x6, x6(0) = 1

dx7

dt = k2(1− x7), x7(0) = 0

0 ≤ u1, u2 ≤ 0.01
(13)

x1 x2 x3 x4 x5

x6

x7 u1

u2

Cnf Cif µ Rfp

k1 k2

where  (L),  (g/L),  (g/L),  (g/L) and  (g/L)

are  the  reaction  volume,  cell  density,  nutrient

concentration, foreign protein concentration, and inducer

concentration, respectively;  is inducer shock factor and

 is  inducer  recovery  factor  on the  cell  growth rate; 

(L/h) is the glucose feed rate, and  (L/h) is the inducer

feed rate; Y,  (g/h),  (g/h),  (1/h), and  (1/h)

are the growth yield coefficient, nutrient concentration in

the  nutrient  feed,  inducer  concentration  in  the  inducer

feed, specific growth rate, and foreign protein production

rate,  respectively;  is  the  shock  parameter  and  is

recovery parameter.

In (13), some parameters can be defined as follows:

µ =
0.407x3

0.108 + x3 + x2
3

14 814.8

(
x6 +

0.22

0.22 + x3
x7

)

k1 = k2 =
0.09x5

0.034 + x5

Rfp =
0.095x3

0.108 + x3 + x2
3

14 814.8

(
0.005 + x5

0.022 + x5

)

Cif = 4, Cnf = 100, Y = 0.51.

For the  above  fed-batch  production  of  induced  for-

eign  protein,  the  objective  is  to  maximize  the  economic

benefit of this fed-batch system. Therefore, the objective

function can be defined as

maxJ(u1,u2) =x1(tf )x4(tf )−Q

∫ tf

0

u2(t)dt (14)

where Q = 5 and tf = 10 h.

For  this  dynamic  optimization  problem,  researchers

have  introduced  various  methods  to  obtain  satisfactory

results,  which  are  0.814 9[51],  0.816 7[52],  0.815 8[53] and

0.816 4[54].

GmaxIn  this  experiment, NP and  of  TPC-JADE are

set to be 100 and D×10 000, respectively. Moreover, three

different  discrete  time  degrees  (i.e., D)  are  discussed  as

follows.

1) The value 0.816 43 is achieved by TPC-JADE when

D is set to be 10. It can be seen that our result is better

than  the  results  achieved  by  Roubos  et  al.[51],  Zhang  et

al.[53],  and Fan et al.[54] respectively.  However,  the result

of  TPC-JADE is  slightly  worse  than the  result  obtained

by  Sarkar  and  Modak[52].  The  main  reason  may  be  that

Sarkar and Modak[52] consume much more computational

resources and the discrete time length is smaller than our

proposal. In addition, the curves of two control variables

(i.e., u1 and u2) are plotted in Figs. 3 and 4, respectively.

2) Let D = 20, the value 0.816 47 is achieved by using

TPC-JADE.  Clearly,  the  result  achieved  by  TPC-JADE

is better than the other competitors except for the result

obtained by Sarkar and Modak[52]. This is because Sarkar
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and Modak consume more computational resources when

compared with the proposed algorithm. Moreover, the ob-

tained result is better than the result obtained by TPC-

JADE when D = 10. It means that the solution precision

is directly  influenced  by  the  discrete  time  degree.  Addi-

tionally,  the  curves  of  the  optimal  glucose  feed rate  and

inducer feed rate are presented in Figs. 5 and 6, respect-

ively.

3)  In  this  experiment, D is  set  to  be  30.  The  value

0.816 48 is achieved by the proposed algorithm. Although

the result is slightly worse than Sarkar and Modak[52], the

obtained  result  is  better  than  the  results  reported  by

Roubos et al.[51], Zhang et al.[53] and Fan et al.[54], respect-

ively.  The obtained result  is  also  better  than the results

achieved  by  TPC-JADE  when D = 20.  It  can  be  ob-

served from the obtained result that TPC-JADE is a very

competitive optimization  tool  for  solving  a  complex  dy-

namic  optimization  problem.  The  curves  of  optimal u1

and u2 are shown in Figs. 7 and 8, respectively.

Based on the above simulation results, it can be con-

cluded that the solution precision is highly influenced by

the  dimensionality  of  the  problem  and  the  TPC-JADE

can perform well when the dimensionality of the problem

is increasing. It should be noted that the value 0.816 7 is

achieved  by  Sarkar  and  Modak[52] when  the  number  of

function evaluations is more than 2 000 000. For our pro-

posal,  the  maximum  number  of  function  evaluations  is

300 000; therefore, the proposed algorithm is very compet-
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Fig. 3     Optimal control profile of glucose feed rate (D = 10)
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Fig. 4     Optimal control profile of inducer feed rate (D = 10)
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Fig. 5     Optimal control profile of glucose feed rate (D = 20)
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Fig. 8     Optimal control profile of inducer feed rate (D = 30)
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itive for  solving this  dynamic optimization problem. Ad-

ditionally, from Figs. 3–8, it can be observed that the nu-

trient can be neglected when Q = 5. This is because gluc-

ose feed rate is maintained at zero during the entire peri-

od of operation.

7   Conclusions

In  the  current  study,  a  self-adaptive  DE  using  two-

phase parameter  control  scheme  (TPC-JADE)  is  pro-

posed  to  improve  the  search  efficiency  of  DE.  In  the

TPC-JADE,  the  adaptation  technique  and  empirical

guideline  are  used  to  produce  the  control  parameters  in

the early evolution phases and later evolution stages, re-

spectively. Therefore, TPC-JADE can adapt to the com-

plex optimization environment and improve the search ef-

ficiency of DE in two different stages of the search. The

search performance of TPC-JADE is compared with that

of  jDE,  SaDE,  JADE,  and  CoBiDE  on  two  well-known

test  suites.  Moreover,  the  Wilcoxon′s  rank  sum  test  is

utilized to distinguish the performance difference between

TPC-JADE and its competitors. The simulation and stat-

istical analysis results indicate that TPC-JADE performs

better than jDE, SaDE, JADE, and CoBiDE on these se-

lected test functions, and the empirical guideline can en-

hance the search efficiency of DE.

The sensitivity of sigma in TPC-JADE is analyzed by

twenty-five  30-dimensional  CEC2005  test  functions.  The

results  indicate  that  the  average  performance  of  TPC-

JADE is influenced by the value of σ, i.e., a large value of

σ can provide better performance when compared with a

small value  of  sigma.  Additionally,  TPC-JADE  is  em-

ployed  to  solve  the  dynamic  optimization  problem,  the

experimental results present that TPC-JADE is an effect-

ive and efficient tool in dealing with complex dynamic op-

timization problems.
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