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Abstract: A model predictive controller based on a novel structure selection criterion for the vapor compression cycle (VCC) of

refrigeration process is proposed in this paper. Firstly, those system variables are analyzed which exert significant influences on the

system performance. Then the structure selection criterion, a trade-off between computation complexity and model performance, is

applied to different model structures, and the results are utilized to determine the optimized model structure for controller design. The

controller based on multivariable model predictive control (MPC) strategy is designed, and the optimization problem for the reduced

order models is formulated as a constrained minimization problem. The effectiveness of the proposed MPC controller is verified on the

experimental rig.
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1 Introduction

To meet the ever-increasing demand for modeling ac-

curacy, the models of large-scale systems are high-order,

computationally complex, and with complex nonlinearities.

However, these characteristics greatly limit the develop-

ment of effective control strategies. In order to make a

trade-off between the modeling accuracy and the conve-

nience in controller design, model structure design plays an

important role and draw intensive research interests over

the last two decades[1, 2].

Vapor compression cycle (VCC) is a core element in the

heating, ventilating, and air-conditioning (HVAC) systems.

The VCC system is a high dimensional system that has

obviously nonlinear thermodynamic coupling characteris-

tics and time-varying dynamics characteristics. As a result,

direct numerical simulation for such a large scale system

becomes an intractable task. Through model reduction

to choose appropriate model structure is an approach to

overcome this problem[3]. It aims to approximate a large

scale system by low dimensional models that have similar

response characteristics as the original system so that the

feasible controllers can be designed.

There are a number of systematic strategies for model

reduction proposed in recent year. One of the most com-

mon model reduction schemes is balanced truncation which

was applied in the complex systems by Moore (1981)[4].

Another popular model reduction method is the balanced

residualization introduced by Fernando and Nicholson[5].
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Furthermore, this approach was extended by Rasmussen[6]

to the modeling and controller design of VCC system. The

reduction results of these researches were to some extent

simplified the model but still presented great challenges for

the controller design and implementation. Based on La-

guerre polynomials, Wang and Jiang[7] proposed a model

reduction method for coupled systems in time-domain. Ac-

cording to Laguerre coefficients, projection matrices were

defined, and low order coupled systems were generated to

match a desired number of these coefficients. This method

retained the stability of coupled systems, however, it was

not applied to an actual HVAC system. A novel model

reduction strategy is based on the proper orthogonal de-

composition (POD) technique, with which a reduced order

model was obtained by Guha and Mishra[8] verified by a

nonlinear induction heating system.

For controller design, PI (proportional integration) or

PID (proportion integration differentiation) feedback con-

trol algorithm is widely used in HVAC (heating ventilation

and air conditionig) fields due to its simplicity[9−13]. How-

ever, it is difficult for the multivariable systems to over-

come the coupling effects among each degree of freedom

resulting in poor performance. Neural network control and

robust control have been introduced to deal with nonlinear-

ities or uncertainties in HVAC processes[14−16] . In [17], a

gain-scheduling approach was utilized to handle the nonlin-

earity. The development of model predictive control (MPC)

is considered as the recent major achievement in control lit-

erature, which has been widely accepted as the next gener-
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ation of a practical control technology[18−19]. The appli-

cation of MPC in HVAC systems can be found in the re-

search of Elliott and Rasmussen[20]. He designed a two-

input-two-output MPC controller and a single-input-single-

output PI controller to control a multiple evaporator sys-

tem. Xu et al.[21] presented a linear matrix inequality-based

robust MPC strategy for the temperature control of an air-

conditioning system. An offset-free MPC controller, com-

prising of a Luenberger observer, was implemented on a

VCC system by Wallace to resolve the problem of plant-

model mismatch[18]. Many studies presented different mul-

tivariable control strategies to improve the system energy

efficiency; however, based on the premise of simplifying the

controller complexity, most of them are based on the two-

input-two-output model structure.

In this paper, a structure selection criterion, which can be

used to evaluate the performance of different model struc-

tures and consequently to choose the optimal model struc-

ture for MPC controller design, is proposed. In order to

select the impressionable variables which have main influ-

ence on the system performance, the relationships among

variables of VCC system are analyzed first. According to

the computational results under different low-order mod-

els, the optimized simplified model is determined. Then

MPC based controller is designed for the optimized low-

order model. Experiment results indicate that the proposed

method has high modeling accuracy and great control per-

formance.

The remainder of the paper is organized as follows. Sec-

tion 2 details the dynamic model of the VCC system. Sec-

tion 3 proposes a structure selection criterion which is used

to evaluate the performance of different reduced order mod-

els and choose the optimal simplified model. Section 4 pro-

poses the MPC based controller design. Section 5 presents

the experimental results which justify some of the conclu-

sions discussed in the previous sections. Section 6 summa-

rizes the main conclusions.

2 Dynamic model of VCC system
A typical VCC system is composed of a compressor, a

condenser, an expansion valve, and an evaporator. Fig. 1

illustrates the iterative cycle of VCC system. The refrig-

erant with high pressure and temperature enters the con-

denser and is cooled into subcooled liquid phase by heat

exchange with cold fluid flowing across the coil or tubes.

Then the condensed refrigerant enters the expansion valve

where the pressure is reduced abruptly. The two-phase re-

frigerant at low pressure and temperature exits the expan-

sion valve and routes through the evaporator, in which the

refrigerant evaporates and absorbs the heat from ambient

air. At the outlet of evaporator, the refrigerant is a vapor

at superheat state, and then enters the compressor where it

is further compressed into a superheated vapor which has

high pressure and temperature. After the compression pro-

cess, the circulating refrigerant is routed back into the con-

denser to complete the refrigeration cycle. From the point

of view of energy consumption, the system can be described

as Fig. 2. It displays the relationship between pressure and

enthalpy which is characterized as the energy parameter of

VCC system. The dotted line in Fig. 2 is the saturation

curve of refrigerant. The condensation process and evap-

oration process are considered as isobaric processes, while

the expansion process is considered as isenthalpic process.

Using the lumped-parameter and moving-boundary

method, the dynamic model of each component of VCC

was derived by Rasmussen and Alleyan[6], and is briefed as

below.

Compressor. The dynamics of the compressor are con-

sidered to be much faster than those of heat exchangers,

therefore, its mass flow rate can be modeled as a static

component

ṁk = FkVkρk

(
1 + Ck + Dk

(
Pko

Pki

) 1
n

)
(1)

where ṁk is the mass flow rate of the refrigerant through

the compressor, Fk is the compressor speed, Vk is the ef-

fective displacement volume of the compressor, Ck and Dk

are volumetric efficiency coefficients for the compressor, n is

the polytropic coefficient, Pki and Pko are the inlet pressure

and outlet pressure across the compressor, respectively.

Fig. 1 The schematic diagram of VCC system

Fig. 2 Pressure and enthalpy diagram of VCC system

Condenser. According to the state of refrigerant, the

condenser can be divided into three regions: a subcooled

liquid region, a two-phase region and a superheated vapor



X. H. Yin and S. Y. Li / Model Predictive Control for Vapor Compression Cycle of Refrigeration Process 709

fc (xc, uc) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ṁci (hci − hcg) + Aciαci1
Lc1

LcT
(Tcw1 − Tcr1) −

(
1

2

(
∂ρc1

∂hc1

)
(hc1 − hcg) +

1

2
ρc1

)
AcLc1ḣci

ṁcihcg − ṁcohcf + αci2Aci

(
Lc2

LcT

)
(Tcw2 − Tcr2) −

(
1

2

∂ρc1

∂hc1

)
AchcgLc1ḣci

ṁco(hcf − hco) + Aciαci3
L3

LcT
(Tcw3 − Tcr3)

ṁci − ṁco −
(

1

2

∂ρc1

∂hc1

)
AcLc1ḣci

αcoAco (Tca − Tcw1) − αci1Aci (Tcw1 − Tcr1)

L1

αcoAco (Tca − Tcw2) − αci2Aci (Tcw2 − Tcr2)

L2

αcoAco (Tca − Tcw3) − αci3Aci (Tcw3 − Tcr3)

Lc3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

region. Based on the conservation of the refrigerant mass

and energy, the dynamic equations of condenser can be es-

tablished in a nonlinear state space form with 7 states and

5 inputs, shown as (2)–(4):

Zc (xc, uc) · ẋc = fc (xc, uc) (2)

xc =
[

L̇c1 L̇c2 Ṗc ḣcro Ṫcw1 Ṫcw2 Ṫcw3

]T
(3)

uc =
[

ṁci ṁco hcri Tca ṁca

]T
(4)

where the state variables are: length of the two condensa-

tion regions Lc1 and Lc2; refrigerant pressure Pc; refrigerant

enthalpy at outlet hcro; the wall temperatures in the three

regions Tcw1, Tcw2 and Tcw3, respectively. The input vari-

ables are: mass flow rate of refrigerant at inlet and outlet

ṁci and ṁco; refrigerant enthalpy at inlet hcri; air temper-

ature Tca and air mass flow rate ṁca. The fc (xc, uc) is

expressed as the equation on the top of this page.

Expansion valve. The expansion valve is also modeled

as a static component; its mass flow rate can be calculated

from the orifice equation

ṁv = CvAv [ρv (Pvi − Pvo)]
n (5)

where ṁv is the mass flow rate of the refrigerant through

the expansion valve, Cv is the orifice coefficient, Av is the

opening area, ρv is the refrigerant density, Pvi and Pvo are

the inlet pressure and outlet pressure across the expansion

valve, respectively.

Evaporator. Similar to the condenser model, the evap-

orator can be divided into two regions, i.e., a two-phase

region with a mean void fraction, and a superheated re-

gion. According to the refrigerant mass conservation and

energy balance, it can be formulated by a fifth order non-

linear model:

Ze (xe, ue) × ẋe =⎡
⎢⎢⎢⎢⎢⎢⎢⎣

ṁei(hei − heg) + αei1Aei

(
Le1
LeT

)
(Tew1 − Ter1)

ṁeo(heg − heo) + αei2Aei

(
Le2
LeT

)
(Tew2 − Ter2)

ṁei − ṁeo

αeoAeo(Tea − Tew1) − αei1Aei(Tew1 − Ter1)

αeoAeo(Tea − Tew2) − αei2Aei(Tew2 − Ter2)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
(6)

xe =
[

Le1 Pe heo Tew1 Tew2

]T
(7)

ue =
[

ṁei ṁeo heri Tea ṁea

]T
(8)

where the state variables are: length of two phase flow Le1;

refrigerant pressure Pe; refrigerant enthalpy at outlet hero;

the wall temperatures in the saturated and the superheated

region, Tew1 and Tew2, respectively. The input variables

are: mass flow rate of refrigerant at inlet and outlet, ṁei

and ṁeo; refrigerant enthalpy at inlet heri; air temperature

Tea and air mass flow rate ṁea, respectively.

The combined cyclic model of integrated VCC system

can be obtained by appropriately combining the compo-

nent models according to the relations between the vari-

ables. The manipulated variables and output variables of

the complete model are shown in (9) and (10). Different

model structures can be obtained by different compositions

of the manipulated variables and output variables. For the

purposes of high accuracy and simple calculation, the op-

timized simplified model needs to be chosen for advancing

towards further studies.

u =
[

Fk uv ṁca Tcaiṁea Teai

]T
(9)

y = [ Lc1 Lc2 Pc hcro Twc1 Twc2

Twc3 Tcao Tcro Tcrsc ṁca Le1 Pe hero

Tcrsh Twe1 Twe2 Teao Tero Tesh ṁea]T.

(10)
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3 Structure selection criterion

A structure selection criterion, which is used to evalu-

ate the performance of different reduced order models and

choose the optimal simplified model, is proposed in the fol-

lowing section. The nonlinear VCC system can be repre-

sented by the discretized time-varying state-space model

which can be formulated as

x (k + 1) = A (k) x (k) + B (k) u (k)

y (k) = C (k) x (k)
(11)

where u and y are the inputs and outputs of the VCC sys-

tem, shown as (9)–(10). The dimensions of them are b × 1

and c×1, respectively. A is the system matrix with dimen-

sion a × a, B is the control input matrix with dimension

a× b, C is the output matrix with dimension c×a. k is the

discrete sampling time.

To maintain the model accuracy while reducing the dif-

ficulty of controller design, appropriate model structure se-

lection is an important part of process control. A popular

model reduction method is the proper orthogonal decom-

position (POD) method by which the order of model is re-

duced. The reduced order model can be obtained using

snapshots. Since low order model is simple and easy to be

controlled, the POD algorithm can to some extent simplify

the complex models, but it does not show whether it is the

optimized model for controller design.

According to the POD theory, the states and outputs of

model can be represented by the reduced states and out-

puts:

x (k) = Ω1xn (k)

y (k) = Ω−1
2 yn (k)

(12)

where the Ω1 is formed by a linear combination of the snap-

shots with a dimension of a × n, which are the dominant

eigenvectors of the kernel matrix. Ω2 is the selection ma-

trix which are composed of 0′s and 1′s, with a dimension of

n × c.

Substituting (12) into (11), the reduced order state-space

model is formulated as

xn (k + 1) = An (k) xn (k) + Bn (k) u (k)

yn (k) = Cn (k) xn (k)
(13)

where An (k) = Ω−1
1 A (k) Ω1, Bn (k) = Ω−1

1 B (k), Cn (k) =

Ω2C (k) Ω1. The dimension of An (k), Bn (k), and Cn (k)

are n × n, n × b, and n × n, respectively.

In this section, an analysis on the system variables of

VCC system is carried out first to find which variables have

a significant impact on the refrigeration cycle system. Then

the important variables are selected for the following struc-

ture selection criterion.

Because of the differing units and disparate scaling of

the variables, the inputs and outputs of the system are nor-

malized first. The system is excited with random inputs,

and an experimentally derived linear model is created un-

der selected operating condition. Fig. 3 shows the frequency

responses of four outputs (evaporator pressure, superheat,

condenser pressure, and subcool) derived by step changes

of the compressor speed. Clearly, compressor speed has

a strong effect on all of the four outputs, while it has a

stronger effect on evaporator pressure and superheat than

condenser pressure and subcool especially at lower speeds.

Fig. 3 Normalized frequency responses to step changes in com-

pressor speed

Fig. 4 details the responses to changes in the expansion

valve. Compared to the subcool, the effect is stronger on

the superheat, while the effect is stronger on evaporator

pressure than condenser pressure.

Fig. 4 Normalized frequency responses to step changes in ex-

pansion valve

According to the analysis results, the evaporator pressure

and the superheat of evaporator are chosen in the proposed

criterion as the crucial influencing variables for controller

design of this system. The overall system model is firstly re-

duced from 12th-order to reduced order models using POD

method, and then giving random varying inputs to the full-

order model and the same varying inputs to the reduced

order models, the structure selection criterion is defined as

J(i)=(P̄e(i) − Pe(i))
2 + (T̄esh(i) − Tesh(i))2, i = 1, · · · , Z

(14)

where P̄e and T̄esh are the values of the evaporator pressure

and the superheat of evaporator computed by the full-order
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model, Pe and Tesh are the values of the evaporator pressure

and the superheat of evaporator computed by the reduced

order model. Z is the whole simulation time. This criterion

evaluates the deviations between the full-order model and

the reduced order model at each sample point i.

Denote the cost value J in (14) of the reduced order

model, the dimension of which is n, as Jn. The value of

Jn at time i is obtained from the reduced order model cor-

respondingly, and denoted as Jn(i). Similar to Jn(i), the

value of Jn at time i + 1 is obtained from the reduced or-

der model with dimension n, which is denoted as Jn(i +1).

Then we can define difference over the whole working time

Z as

ΔJn =

Z−1∑
i=1

[
− (Jn(i + 1)Jn(i))2

J2
n(i)

]
. (15)

This criterion is to ensure a smoothly varying profile of

the output variables. The structure selection criterion aims

to find the optimal structure which minimizes the sum of

quadratic partial variances of the evaporator pressure and

the superheat of evaporator. With different dimension n,

different ΔJn can be computed. The model with dimension

n which minimizes ΔJn should be chosen as the optimized

model structure.

Thus, the structure selection criterion algorithm per-

forms the following steps:

Step 1. Reduce the overall system model first from 12th-

order model to a particular low order model using POD

method, and then further reduce from that reduced order

model to 2nd-order model.

Step 2. Give same various random inputs to the full-

order model and the reduced order models, respectively.

Step 3. Compute the criterion J between the reduced

order models and the full-order model as described in (14)

at each sampling time.

Step 4. Calculate the differences ΔJn of the reduced

order models expressed as (15) over the whole simulation

time.

Step 5. Compare the values of ΔJn and choose the

model which minimums ΔJn as the optimized model.

4 MPC controller design

MPC is a control algorithm which computes a sequence

of control inputs based on an explicit prediction of outputs

within some future horizon[22]. One of the most important

advantages of MPC is that it accounts for the constraints

of input and output variables that can be inherent to the

real industrial systems, e.g., a valve cannot open past 100%

open or close past 0% open. Another advantage of MPC

is that additional constraints can be defined by the user

to keep the system operating in a safe range, e.g., keeping

evaporator superheat above a desired minimum.

The performance of MPC depends on a number of de-

sign parameters, such as length of the control time interval,

the number of future moves for the manipulated variable,

and the number of time intervals in the output prediction.

In order to define how well the predicted process tracks the

set points, an objective function JMPC(k) for the predictive

control needs to be optimized as

JMPC(k) =
P∑

i=1

{
(w(k + i) − y(k + i))T Q (w(k + i) − y(k + i))

}
+

M∑
i=1

{
(Δu(k + i − 1))T RRR (Δu(k + i − 1))

}
(16)

where k is the current sampling interval, k + i is the fu-

ture sampling interval, P is the prediction horizon, Q is the

weight matrix of outputs, w(k + i) is the desired output at

instant k + i, y(k + i) is the actual output at instant k + i,

M is the control horizon, RRR is the weight matrix of inputs

and Δu(k + i− 1) is the predicted adjustment of input u at

future instant k + i − 1.

Equation (16) computes the weighted sum of squared de-

viations of the outputs from the set points and the weighted

sum of squared incremental manipulated variables.

The optimization algorithm searches for values of Δu

over the control horizon that minimize the objective func-

tion. Although M control moves are calculated, only the

first move is implemented. At the next sampling time, the

weights are updated and the optimization is done again.

Input and output values have a limited range to operate,

therefore Δu, u and y are subjected to constraints intro-

duced as (17)–(19).

Δumin ≤ Δu(k) ≤ Δumax (17)

umin ≤ u(k) ≤ umax (18)

ymin ≤ y(k) ≤ ymax. (19)

The objective function JMPC(k) in (16) is for the inte-

grated model of VCC system, which is not suitable for the

reduced order models. Therefore, the objective function for

the reduced order model with dimension n is formulated as

follows:

JMPC,n(k) =

P∑
i=1

{
(w(k + i) − yn(k + i))T Ω−T

2

QΩ−1
2 (w(k + i) − yn(k + i))

}
+

M∑
i=1

{
(Δun(k + i − 1))T RRR (Δun(k + i − 1))

}
(20)

Δumin,n ≤ Δun(k) ≤ Δumax,n

umin,n ≤ un(k) ≤ umax,n

ymin,n ≤ yn(k) ≤ ymax,n (21)

where JMPC,n(k) is the objective function for the reduced

order model with dimension n. w(k + i) is the desired out-

put for the reduced order model, while yn(k+i) is the actual

output for the reduced order model.

The MPC control algorithm for VCC system is as follows:
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Step 1. Compute the objective function JMPC(k) or

JMPC,n(k) as (16) or (20) by iteratively modifying Δu (k).

Step 2. Calculate the best control signal u(k) or un(k).

Step 3. Apply u(k) or un(k) to the VCC models and

calculate the actual value of outputs.

Step 4. At the next sampling time, go back to calculate

Δu.

5 Experiment results

The experimental platform used in this research is devel-

oped at the process instrumentation laboratory of Nanyang

Technological University of Singapore. The photograph and

schematic diagram of the experimental platform are shown

in Figs. 5 and 6.

Fig. 5 Photograph of the experimental platform in this research

Fig. 6 Schematic of the experimental platform in this research

The system includes a variable speed compressor, an elec-

tronic expansion valve, an air-cooled condenser and evapo-

rator, a liquid receiver after the condenser, an accumulator

after the evaporator, and the fans of condenser and evap-

orator with variable frequency. In addition, the pressure

measurement devices are installed on the system, and the

measurement range and measuring error of these devices are

0∼1600 kPa and ±0.5%. The temperature sensors are also

installed with the measurement range of −40◦ ∼ 200◦ and

measuring error of ±0.3◦. The locations of their installation

are shown in Fig. 6. The R134a is selected as the refriger-

ant in this research. The measuring error of the refrigerant

mass flow in this system is ±1.6%.

5.1 Simulation results of the model struc-
ture selection

To verify that the structure selection criterion can choose

optimized model structure effectively, a comparison study

has been carried out. The model has been firstly linearized

around a steady state operating point indicated in Table 1.

Then with the POD method, the system model is reduced

to 4th-order model with the selection of input variables

as u4 =
[

Fk uv ṁca ṁea

]T
and output variables

as y4 =
[

Pc Tcrsc Pe Tesh

]T
. While the 4th-order

model is still complicated to control, according to the Step

1 of structure selection criterion, it is further reduced to

3rd-order and 2nd-order model with the selection of input

variables as u3 =
[

Fk uv ṁca

]T
, u2 =

[
Fk uv

]T
and output variables as y3 =

[
Pc Pe Tesh

]T
, y2 =[

Pe Tesh

]T
, respectively.

Table 1 The steady state operating conditions for the model

linearization

State variables Units Value

Condensing pressure kPa 933

Evaporating pressure kPa 342

Air temperature at the condenser inlet ◦C 29

Air temperature at the evaporator inlet ◦C 23

Air mass flow rate through the condenser kg/s 0.45

Air mass flow rate through the evaporator kg/s 0.19

Compressor speed rpm 1100

EEV opening % 11.8

The ΔJn among the 4th-order, 3rd-order, and 2nd-order

models are compared in this section. The same square wave

variations in compressor speed within a certain range from

1100 rpm to 1150 rpm are firstly given to the full-order

model and three reduced order models. Then the system

outputs profiles are shown in Figs. 7 and 8, which compare

the outputs performance among the four model structures

under the same variations of compressor speed.

Through the simulation, the structure selection criteria

of the three simplified structures are calculated according

to (14)–(15) respectively, and the corresponding structure
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selection criteria are shown in (22)–(24).

J2(i)=(P̄e(i) − Pe2(i))
2 + (T̄esh(i) − Tesh2(i))

2

ΔJ2 =
Z−1∑
i=1

[
(J2(i + 1) − J2(i))

2

J2
2 (i)

]
i = 1, · · · , Z (22)

J3(i)=(P̄e(i) − Pe3(i))
2 + (T̄esh(i) − Tesh3(i))

2

ΔJ3 =
Z−1∑
i=1

[
(J3(i + 1) − J3(i))

2

J2
3 (i)

]
i = 1, · · · , Z (23)

J4(i)=(P̄e(i) − Pe4(i))
2 + (T̄esh(i) − Tesh4(i))

2

ΔJ4 =
Z−1∑
i=1

[
(J4(i + 1) − J4(i))

2

J2
4 (i)

]
i = 1, · · · , Z (24)

where Pe2, Pe3, Pe4, Tesh2, Tesh3, Tesh4, J2, J3, J4, ΔJ2,

ΔJ3, ΔJ4 are the evaporator pressure, superheat, crite-

rion and criterion difference computed with the 2nd-order

model, 3th-order model, and 4th-order model, respectively.

P̄e and T̄esh are evaporator pressure and superheat of evap-

orator computed by the full-order model. Z is simulation

time and i is the sample instant.

The results of the proposed structure selection criteri-

ons are shown in Table 2 which indicate that the 3rd-order

model structure has the minimum structure selection crite-

rion. Thus the 3rd-order model structure is finally chosen

as optimal model structure, which is convenient to the con-

troller design of the VCC system. The coefficient matrices

of the 3rd-order model are expressed as (25).

Table 2 The structure selection criterion

Control 2nd-order 3rd-order 4th-order

structure structure structure structure

Selection criterion 40.304 8 14.352 5 15.339 4

Fig. 7 Pressure of evaporator for random variations in compres-

sor speed

Fig. 8 Superheat of the evaporator for random variations in

compressor speed

A3=

⎡
⎢⎣ −0.152 5 −0.010 6 0.046 6

−0.000 0 −0.171 8 0.244 1

−0.000 0 −0.128 1 −0.010 3

⎤
⎥⎦

B3=

⎡
⎢⎣ −0.007 2 0.131 5 2.233 9

−0.011 5 3.810 7 −4.729 4

0.018 9 −0.507 7 −1.412 1

⎤
⎥⎦

C3=

⎡
⎢⎣ 3.416 6 −1.365 6 −1.998 3

0.937 6 0.173 5 −1.145 9

−0.069 0 0.273 5 0.522 1

⎤
⎥⎦

D3=

⎡
⎢⎣

0 0 0

0 0 0

0 0 0

⎤
⎥⎦ . (25)

5.2 Experimental results of MPC con-
troller

In this section, the MPC controller for the proposed

3rd-order model is designed based on objective function

JMPC,3(k) computing by (20). The condenser pressure,

evaporator pressure, and superheat are the regulated out-

puts, and the compressor speed, expansion valve opening,

and the air mass flow rate through the condenser are con-

trollable inputs of the 3rd-order model. In the MPC con-

troller, weights of 1, 1 and 100 are placed on the condenser

pressure, evaporator pressure and superheat, respectively.

Rate weights of 0.1, 0.01 and 0.001 are placed on the com-

pressor speed, expansion valve opening and the air mass

flow rate through the condenser, respectively. A control

interval of 1 s, a control horizon of 15 intervals, and a pre-

diction horizon of 50 intervals are determined as the tuning

parameters of the MPC controller.

To demonstrate the effectiveness of the designed control

system, an MPC controller for the 2nd-order model is de-

signed as follows: the evaporator pressure and superheat

are the system outputs, meanwhile the compressor speed,

expansion valve opening are inputs. The weight of 1 and
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100 are placed on the evaporator pressure and superheat,

and rate weights of 0.1 and 0.01 on the compressor speed,

expansion valve in MPC controller, respectively. Other tun-

ing parameters are the same with controller for 3rd-order

model. The performance comparison between the two con-

trollers are carried out, and the output and input profiles

are shown in Figs. 9 and 10.

Fig. 9 shows the output performance in response to the

disturbances due to the changes in the air mass flow rate

of evaporator at 1000s. The 3rd-order controller tracks the

setting value faster than the 2nd-order controller when the

disturbance occurs, which demonstrate that the proposed

control system has satisfactory tracking performance and

robustness against disturbance.

The corresponding input variables are given as Fig. 10.

When the disturbance is changed, the compressor speed

and the expansion valve opening respond to change quickly

in order to reject the disturbance and keep the superheat

and pressure as before.

Fig. 9 Outputs comparison of VCC system under the two MPC

controllers

Fig. 10 Inputs comparison of VCC system under the two MPC

controllers

6 Conclusions

This paper presented a model predictive control system

based on a structure selection criterion which is used to sim-

plify model and select the optimal reduced order model for

MPC controller. The overall system model is reduced from

12th-order to reduced order models using POD method,

and the model which minimizes the cost value is chosen

as the optimized simplified model. Based on the proposed

model, the MPC based controller is designed, and the ob-

jective function for the simplified model is optimized. To

validate the effectiveness of the proposed control system,

comparison experiments have been carried out, and the ex-

perimental results indicate that the proposed controller has

excellent advantages of tracking performance and distur-

bance rejection.
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