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Abstract: Adaptive motion/force tracking control is considered for a class of mobile manipulators with affine constraints and under-

actuated joints in the presence of uncertainties in this paper. Dynamic equation of mobile manipulator is transformed into a controllable

form based on dynamic coupling technique. In view of the asymptotic tracking idea and adaptive theory, adaptive controllers are

proposed to achieve the desired control objective. Detailed simulation results confirm the validity of the control strategy.
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1 Introduction

Due to the higher performances possessed by mobile ma-

nipulator, such as much larger work space, the better kine-

matic flexibility beyond that of the traditional one, consid-

erable efforts[1−4] have been made to guarantee stability and

robustness for it. However, control design for this mechan-

ical system is still a challenging problem owing to complex

and strongly coupled dynamics of the mobile platform and

the robotic arm.

The motion and force tracking control for mobile

manipulators have been systematically investigated in

literatures[5−9] by state-feedback, output-feedback and neu-

ral network, etc. However, most researches have been done

to investigate mobile manipulators with the full-actuated

joints. The under-actuation in any joint of mobile manipu-

lators may occur in the full-actuated manipulators, and the

effective control of under-actuated robotic system could en-

hance the fault-tolerance if the actuator fails. For these

reasons, great efforts[10−12] have been made to design con-

trollers for the under-actuated mobile manipulators.

A new mobile manipulator shown in Fig. 1, is made up

of a multi-link manipulator with under-actuated joints and

a boat, and is subjected to affine constraints[13−16]. The

traditional control methods are hardly applicable to such

mechanical systems. Therefore, investigating tracking con-

trol problems for such mobile manipulator has theoretical

and practical meanings. Considering the mentioned prob-

lems, this paper considers the tracking control of the affine

constraint mobile manipulators with under-actuated joints,

and addresses mathematical modeling, algorithm design

and theory analysis for practical mechanical systems. Us-

ing the technique of dynamic coupling, dynamic equation
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of mobile manipulator is transformed into a controllable

form. By constructing an appropriate upper bound param-

eter, adaptive control design becomes much easier, and only

one parameter updating law is needed. Hence, the dynamic

order of adaptive controller is reduced to be minimum.

Fig. 1 Manipulators mounted on a boat

2 System description

2.1 Dynamic model

Consider an n-DOF mobile manipulator shown in Fig. 1.

It consists of a mobile boat and a multi-link manipulator.

According to the kinematic analysis of the boat on a run-

ning river[5], the affine constraints can be written as

Ja(qb)q̇b = A(qb) (1)

where qb ∈ R3 = [qb1 , qb2 , qb3 ]T is the coordinates of

the boat, Ja(qb) = [cos qb3 ,− sin qb3 , 0] and A(qb) =

C(qb2) cos qb3 . The affine constraint forces are given by

fa = JT
a (qb)la (2)

where la ∈ Rm is a Lagrangian multiplier corresponding to

m affine constraints.

The manipulator is a series-chain multi-link manipulator,

qa ∈ Rna and qu ∈ Rnu are the coordinates of the active
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and under-actuated joints of the manipulator, respectively.

For convenience, let q = [qT
b , qT

a , qT
u ]T ∈ Rn be the vector

of generalized coordinates of the whole system.

According to Euler-lagrangian formulation, after consid-

ering the affine constraints, dynamic equations of the mobile

manipulator are described by

M(q)q̈ + C(q, q̇)q̇ + G(q) + F = B(q)τ + f (3)

with

M(q) =

⎡
⎢⎣

Mb Mba Mbu

Mba Ma Mau

Mbu Mau Mu

⎤
⎥⎦ , B(q)τ =

⎡
⎢⎣

Bbτb

τa

0

⎤
⎥⎦

C(q, q̇) =

⎡
⎢⎣

Cb Cba Cbu

Cba Ca Cau

Cbu Cau Cu

⎤
⎥⎦ , f =

⎡
⎢⎣

fa

0

0

⎤
⎥⎦

where Mb, Ma and Mu describe the inertia matrices for the

mobile boat and the active links and the passive links, re-

spectively. Mba, Mbu Mau are the coupling inertia matrices

of the boat, the active links and the passive links, respec-

tively. Cb, Ca and Cu denote the Centripetal and Coriolis

torques for the boat, the active links and the passive links.

Cba, Cbu and Cau are the coupling Centripetal and Coriolis

torques of the boat, the active links and the passive links, re-

spectively. G(q) = [Gb, Ga, Gu]T is the gravitational torque

vector. Bb, as input transformation matrix of the boat, is

assumed to be known because it is a function of fixed geom-

etry of the system. τb and τa are the control input vectors

for the mobile boat and the active links, F = [Fb, Fa, Fu]T

denotes the external forces.

2.2 State transformation

For the affine constraints (1), according to our previ-

ous results [13, 14], there exists a known full-rank matrix

S(qb) ∈ Rnb×(nb−m) satisfying

q̇b = S(qb)ż + η(qb) (4)

where z corresponds to the internal state variable of

qb, S(qb) and η(qb) satisfying Ja(qb)S(qb) = 0 and

Ja(qb)η(qb) = A(qb), respectively. As mentioned by Wang

et al.[17], the internal states z(q) and ż(q) possess practical

physical meanings and z(q) can be considered as (n − m)

“output equations” of original system. Substituting (4) into

(3) gives

MHξ̈ + (MḢ + CH)ξ̇ + G + F = τ + JTla (5)

with

ξ =

⎡
⎢⎣

z

qa

qu

⎤
⎥⎦ , H =

⎡
⎢⎣

S 0 0

0 I 0

0 0 I

⎤
⎥⎦ , F =

⎡
⎢⎣

Fb

Fa

Fu

⎤
⎥⎦

G =

⎡
⎢⎣

Mbη̇ + Cbη + Gb

Mbaη̇ + Cbaη + Ga

Mbuη̇ + Cbuη + Gu

⎤
⎥⎦ , τ =

⎡
⎢⎣

Bbτb

τa

0

⎤
⎥⎦ . (6)

If considering the control input τ in the form

τ = τ̂ + JTτ0 (7)

and pre-multiplying HT(q) on both sides of (5), and noting

J(q)H(q) = 0, one can obtain

M̄ξ̈ + C̄ξ̇ + Ḡ + F̄ = τ̄ (8)

where M̄ = HTMH is symmetric and positive definite,

C̄ = HT(MḢ + CH), Ḡ = HTG, F̄ = HTF , τ̄ = HTτ̂ ,

and the force multipliers can be obtained by (5)

la = J∗
(
(MḢ + CH)ξ̇ + G + F − τ̂

)
− τ0 (9)

where J∗ =
(
JM−1JT

)−1
JM−1.

2.3 Dynamic coupling

The state variable of mobile manipulators is partitioned

in quantities related to the active joints, the passive joints,

and the remaining joints as ξ1, ξ3, and ξ2, respectively, such

that the dimension of ξ1 and ξ3 are equal. According to

these partitions, we have the partition structure for (8) as

M̄(q) =

⎡
⎢⎣

M11 M12 M13

M21 M22 M23

M31 M32 M33

⎤
⎥⎦

C̄(q, q̇)ξ =

⎡
⎢⎣

C1

C2

C3

⎤
⎥⎦ =

⎡
⎢⎣

C11ξ̇1 + C12ξ̇2 + C13ξ̇3

C21ξ̇1 + C22ξ̇2 + C23ξ̇3

C31ξ̇1 + C32ξ̇2 + C33ξ̇3

⎤
⎥⎦

Ḡ(q) =

⎡
⎢⎣

G1

G2

G3

⎤
⎥⎦ , F =

⎡
⎢⎣

F1

F2

F3

⎤
⎥⎦ , τ =

⎡
⎢⎣

τ1

τ2

0

⎤
⎥⎦ . (10)

In order to make ξ3 controllable, we assume that matrices

M13 and M31 are not equal to 0 and M−1
11 exists. Consid-

ering the new partition in (10), after some manipulations,

one obtains the following dynamic equations

M11ξ̈1 + M12ξ̈2 + M13ξ̈3 + C1 + G1 + F1 = τ1 (11)

Γ11ξ̈2 + Γ12ξ̈3 + Υ1 + Π1 = τ2 − M21M
−1
11 τ1 (12)

Γ21ξ̈2 + Γ22ξ̈3 + Υ2 + Π2 = −M31M
−1
11 τ1 (13)

where

Γ11 =M22−M21M
−1
11 M12

Γ12 =M23−M21M
−1
11 M13

Γ21 =M32−M31M
−1
11 M12

Γ22 =M33−M31M
−1
11 M13

Υ1 =(C22−M21M
−1
11 C12)ξ̇2 + (C22 − M21M

−1
11 C13)ξ̇3

Υ2 =(C32−M31M
−1
11 C12)ξ̇2 + (C33 − M31M

−1
11 C13)ξ̇3

Π1 =(C21−M21M
−1
11 C11)ξ̇1 + G2 + F2 − M21M

−1
11 (G1 + F1)

Π2 =(C31−M31M
−1
11 C11)ξ̇1 + G3 + F3 − M31M

−1
11 (G1 + F1).

Let y = [ξT
3 , ξT

2 ]T, we can rewrite (12) and (13) as

M1(ξ)ÿ + C1(ξ, ξ̇)ẏ + G1 + F1 = B1u (14)
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where

C1 =

[
C33 − M31M

−1
11 C13 C32 − M31M

−1
11 C12

C23 − M21M
−1
11 C13 C22 − M21M

−1
11 C12

]

M1 =

[
Γ22 Γ21

Γ12 Γ11

]
, G1 =

[
Υ2

Υ1

]
, F1 =

[
Π2

Π1

]

B1 =

[
−M31M

−1
11 0

−M21M
−1
11 I

]
, u =

[
τ1

τ2

]
.

It should be noted that dynamic (14) possesses considerable

properties which are listed as follows:

Property 1. The matrix M1 is symmetric and positive

definite.

Property 2. One can decompose C1 = Ĉ1 + C̃1 such

that the matrix Ṁ1 − 2Ĉ1 is skew symmetric.

In practice, by virtue of structural complexity of the mo-

bile manipulator and pay-load variation from task to task,

the inertia parameters of the system are often unknown.

Hence, we suppose matrix functions M1, C1, G1 and F1 in

system (14) are unknown due to uncertain parameters. B1

is known because input transformation matrix Bb and S(qb)

are all known.

3 Control design and stability analysis

3.1 ξ2 and ξ3 subsystems control

The control objective is specified as: the designed con-

trollers ensure that the tracking errors ey = y − yd =

[ξT
3 − ξT

3d, ξ2 − ξT
2d]T remain within a small neighborhood

of 0, i.e.,

‖ξi − ξid‖ ≤ εi

where ‖ · ‖ denotes the Euclidean norm, i = 2, 3, εi are

arbitrarily small constants, l − ld and ξ are bounded.

Lemma 1[17]. There exist time varying positive func-

tions δ(t) and ι(t) converging to 0 as t → ∞, and they

satisfy
∫ ∞

0

δ(t)dt = ν1 < +∞,

∫ ∞

0

ι(t)dt = ν2 < +∞

where ν1 and ν2 are known non-negative constants.

Lemma 2 [7]. ∀x ≥ 0 and ∀α ≥ 1, one has ln
(
cosh(x)

)
+

α ≥ x.

To this end, the following milder assumptions should be

imposed on the unknown matrix functions of system (14):

Assumption 1. There exist some unknown finite posi-

tive constants σi > 0(i = 1, · · · , 8), such that

‖M1 − MΔ‖ ≤ σ1

‖Ĉ1 − ĈΔ‖ ≤ σ2 + σ3‖ξ̇‖
‖C̃1 − C̃Δ‖ ≤ σ4 + σ5‖ξ̇‖
‖G1 − GΔ‖ ≤ σ6 + σ7‖ξ̇‖
‖F1 − FΔ‖ ≤ σ8

where MΔ, ĈΔ, C̃Δ, GΔ and FΔ, as nominal parameter

matrices, are known exactly.

Assumption 2. The desired reference trajectory ξd is

assumed to be bounded and uniformly continuous, and has

bounded and uniformly continuous derivatives up to the

second order. The desired ld(t) is bounded and uniformly

continuous.

In order to reduce the dynamic order of the designed con-

troller or the number of adaptive updating laws, we choose

Θ = max{σi}(i = 1, · · · , 8). Next, the following filtered

tracking errors are introduced:

⎧⎪⎪⎨
⎪⎪⎩

ẏr = ẏd − Kyey

r = ėy + Kyey

el = lh − lhd

(15)

where Ky = diag{Kyj} is positive diagonal matrix.

Consider the following adaptive control laws given by

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

B1u = −Kr + MΔÿr + C̃Δr + CΔẏr + GΔ + FΔ−
rΘ̂(t)Γ

‖r‖Θ̂(t)Γ + ι(t)

(
ln

(
cosh(Θ̂(t)Γ)

)
+ α

)

τ0 = −lhd + Peλ

(16)

with

˙̂
Θ(t) = −δ(t)Θ̂(t) + γ‖r‖Γ, Θ̂(0) > 0 (17)

where K is positive definite, α is an arbitrary positive con-

stant and must satisfy α ≥ 1, Θ̂(t) ∈ R is the parameter

estimation of Θ and Γ = ‖ÿr‖ + ‖r‖ + ‖ξ̇‖ · ‖r‖ + ‖ẏr‖ +

‖ξ̇‖ · ‖ẏr‖ + ‖ξ̇‖ + 2, δ(t) and ι(t) are defined in Lemma 1,

without loss of generality, let ι(t) = δ(t) = 1
(1+t)2

.

Lemma 3. For the ξ2-subsystem (12) and ξ3-subsystem

(13), considering controllers (16) and (27), then the output

tracking errors ξ2−ξ2d and ξ3−ξ3d asymptotically converge

to 0 and el, τ and all the other signals in the closed-loop

system are bounded.

Proof. In view of (15), system dynamics (14) can be

rewritten as

M1ṙ = B1u − M1ÿr − C1r − C1ẏr − G1 − F1. (18)

Choose a continuously differentiable, positive definite and

radially unbounded function

V1 =
1

2
rTM1r +

1

2γ
Θ̃2 (19)

where Θ̃(t) = Θ− Θ̂(t) represents the parameter estimation

error. Taking the time derivative of V1 and substituting
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(16) and (17) into it, one has

V̇1 = rTM1ṙ +
1

2
rTṀ1r − 1

γ
Θ̃

˙̂
Θ ≤

− rTKr + Θ̂‖r‖Γ − ‖r‖2Θ̂2(t)Γ2

‖r‖Θ̂(t)Γ + ι(t)
+

Θ̃‖r‖Γ + Θ̃
( δ(t)

γ
Θ̂ − ‖r‖Γ

)
≤

− rTKr + ι(t) − δ(t)

γ

(
Θ̂(t) − 1

2
Θ

)2

+
Θ2δ(t)

4γ
≤

− λmin(K)‖r‖2 + ι(t) +
Θ2δ(t)

4γ
. (20)

Obviously, we arrive at V̇1 ≤ −oV +ι(t)+εδ(t). ι(t) and δ(t)

are bounded time varying positive functions converging to 0

as t → ∞ and o is an appropriate constant. Therefore, there

exist t > T and ι(t) + Θ2δ(t)
4γ

< ε, when ‖r‖ ≥
√

ε
λmin(K)

,

V̇1 ≤ 0. Hence, it implies that r converges to a set contain-

ing the origin as t → ∞.

On the other hand, integrating both sides of (20) gives

V1(t) ≤ V1(0) −
∫ t

0

λmin(K)‖r(ς)‖2dς +
Θ2

4γ
ν1 + ν2 < ∞.

Hence, V1 is bounded, which implies r ∈ Ln−k−m
∞ and

Θ̂(t) ∈ Ln−k−m
∞ .

∫ t

0
rTKrdr = V1(0)− V1(t) + Θ2

4γ
ν1 + ν2 ∈

L∞ can be used to show that r ∈ Ln−k−m
2 . r = ėξ + Kξeξ

means ėξ, eξ ∈ Ln−k−m
∞

⋂
Ln−k−m

2 . ξ, ξ̇, ξ̇r, ξ̈r ∈ Ln−k−m
∞

can be further concluded from (15). Therefore, all the

signals on the right-hand side of (17) are bounded. one

can deduce that ṙ and ξ̈ are bounded. Therefore, by

the well-known Barbalat Lemma[18], we immediately get

limt→∞ r = 0 and limt→∞ eξ = 0. Consequently, one has

limt→∞ ėξ = 0.

Finally, substituting the control (16) into dynamic (19)

yields

(I + P )el = J∗
(
(MḢ + CH)ξ̇ + G + F − τ̂

)
. (21)

Since all the signals on the right-hand side of (21) are

bounded, (I + P )el is also bounded. Hence, the size of

el can be adjusted by choosing the proper gain matrix P .

�

3.2 Stability analysis of ξ1 subsystem

Finally, for system (11)− (13) under control laws

(16)− (17), apparently, the ξ1-subsystem (11) can be

rewritten as

χ̇ = g(φ,χ, ϕ) (22)

where χ = [ξT
1 , ξ̇T

1 ]T, φ = [rT, ṙT]T, ϕ = [τT
1 , τT

2 ]T. To

analyse the stability of ξ1-subsystems, we need the following

assumption:

Assumption 3. There exist Lipschitz positive constants

Li, i = 1, · · · , 4 such that

‖C1 + G1 + F1‖ ≤ L1‖ω‖ + L2 (23)

‖Υ2 + Π2‖ ≤ L3‖ω‖ + L4. (24)

Moreover, from the stability analysis of ξ2 and ξ3 sub-

systems, ω converges to a small neighborhood of ωd =

[ξT
2d, ξ̇T

2d, ξT
3d, ξ̇T

3d]T, i.e., ‖ω − ωd‖ ≤ ε1, it is easy to obtain

‖ω‖ ≤ ‖ωd‖+ε1, and similarly, ‖[ξ̈T
2 , ξ̈T

3 ]T‖ ≤ ‖[ξ̈T
2d, ξ̈T

3d]T‖+

ε2, where ε1 and ε2 are small bounded errors.

Lemma 4. The ξ1-subsystem (11) is stable.

Proof. One can choose the following Lyapunov function

candidate as

V2 = V1 + ln(cosh(ξ̇1)). (25)

Differentiating (25) and substituting (13) into it will give

V̇2 = V̇1 + tanh(ξ̇1)ξ̈1 =

V̇1 + tanh(ξ̇1)
(
− M−1

31 (Γ21ξ̈2 + Γ22ξ̈3 + Υ2 + Π2)−

M−1
11 (M12ξ̈2 + M13 ξ̈3 + C1 + G1 + F1)

)
=

V̇1 + tanh(ξ̇1)(−M−1
31 (Υ2 + Π2) − tanh(ξ̇1)M

−1
11 C1−

[
tanh(ξ̇1)M

−1
31 Γ21 + tanh(ξ̇1)M

−1
11 M12

tanh(ξ̇1)M
−1
31 Γ22 + tanh(ξ̇1)M

−1
11 M13

]T [
ξ̈2

ξ̈3

]
.

‖ tanh(ξ̇1)‖ ≤ 1 and the boundedness of M12, M13, M−1
11

and M−1
31 mean that there exist bounded constants �1, i =

1, 2, 3, such that
∥∥∥∥∥∥

[
tanh(ξ̇1)M

−1
31 Γ21 + tanh(ξ̇1)M

−1
11 M12

tanh(ξ̇1)M
−1
31 Γ22 + tanh(ξ̇1)M

−1
11 M13

]T
∥∥∥∥∥∥
≤ �1

‖M−1
11 ‖ ≤ �2, ‖M−1

31 ‖ ≤ �3.

With these in mind and using Assumption 3, we finally get

V̇2 ≤ −λmin(K)‖r‖2 + ι(t) +
Θ2δ(t)

4γ
+ �3(L3(‖ωd‖ + ε1)+

L4) + �2(L1(‖ωd‖ + ε1) + L2)+

�1(‖[ξ̈T
2d, ξ̈T

3d]T‖ + ε2). (26)

Let p = �3(L3(‖ωd‖ + ε1) + L4) + �2(L1(‖ωd‖ + ε1) +

L2) + �1(‖[ξ̈T
2d, ξ̈T

3d]T‖ + ε2), when ‖r‖ ≥
√

2(ε+p)
(λmin(K))

, one

has V̇2 ≤ 0. Furthermore, r can be arbitrarily small by

choosing a proper K. Therefore, the ξ1-subsystem (11) is

stable. �
Theorem 1. Consider the mobile manipulators de-

scribed by (3) with affine constraints (1). Using the adap-

tive control laws (16) and (17), the following are guaranteed:

1) The output tracking errors ey and ėy of ξ2 and ξ3

subsystems converge to 0 as t → ∞.

2) The ξ1-subsystem (11) is stable and el, τ in the closed-

loop system are bounded for all t ≥ 0.

4 Simulation example

In this section, computer simulation is conducted to ex-

amine the performance of the tracking controller for the

mobile manipulator as shown in Fig. 2. According to the

Euler-Lagrangian equations, the following standard form

can be obtained.
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Fig. 2 2-DOF manipulator mounted on boat

qb = [qb1 , qb2 , qb3 ]T, [qu, qa]T = [θ1, θ2]
T

Mb =

⎡
⎢⎣

mb12 0 m12d cos qb3

0 mb12 −m12d sin qb3

m12d cos qb3 −m12d sin qb3 Ib12 + m12d
2

⎤
⎥⎦

Mm =

[
I12 0

0 I2

]
, Mmb =

[
0 0 I12

0 0 0

]
, Mbm = MT

mb

Cb =

⎡
⎢⎣

0 0 −m12q̇b3d sin qb3

0 0 −m12q̇b3d cos qb3

0 0 0

⎤
⎥⎦ , Cmb = 0, CT

bm = Cmb

Gb = 0, Gm = [0, m2gl2 sin θ2]
T, Fb = [fb1 , fb2 , fb3 ]T

Bb =

⎡
⎢⎣

− cos qb3 − cos qb3

sin qb3 − sin qb3

− l
2

l
2

⎤
⎥⎦ , τb =

[
τr

τl

]
, τa = τ1.

where mb12 = mb + m1 + m2, m12 = m1 + m2, Ib12 =

Ib + I1 + I2, I12 = I1 + I2. The parameters used in the

simulation are mb = 500 kg, m1 = 50 kg, l = l1 = l2 =

4m, d = 6m Ib = 50kg · m2, I1 = 10kg · m2, fbi = b̄ sin t

and fmi = m̄ cos t with unknown b̄ and m̄, C(qb2) = qb2 .

Because of the second operating arm with varied pay-load,

one assumes that m2 and I2 are unknown. The system is

subject to the affine constraint:

q̇b1 cos qb3 − q̇b2 sin qb3 = C(qb2 ) cos qb3 .

We select

S(qb) =

⎡
⎢⎣

tan qb3 0

1 0

0 1

⎤
⎥⎦ , η(qb) =

⎡
⎢⎣

qb2

0

0

⎤
⎥⎦ .

Considering the above transformation, the whole system

dynamics are converted as
⎡
⎢⎢⎢⎣

m11 0 0 0

0 m22 m23 0

0 m32 m33 0

0 0 0 m44

⎤
⎥⎥⎥⎦ ζ̈ +

⎡
⎢⎢⎢⎣

c11 c12 0 0

c21 0 0 0

0 0 0 0

0 0 0 0

⎤
⎥⎥⎥⎦ ζ̇+

⎡
⎢⎢⎢⎣

g1

g2

0

g4

⎤
⎥⎥⎥⎦ +

⎡
⎢⎢⎢⎣

f1

f2

f3

f4

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

u1

u2

0

u3

⎤
⎥⎥⎥⎦ .

where ζ = [z1, z2, qu, qa]T, m11 = 550+m2
cos2 qb3

, m22 = 1860 +

36m2 + I2, m23 = 10 + I2 m32 = 10 + I2, m33 = 10 + I2,

m44 = I2, c11 =
(550+m2) sin qb3 q̇b3

cos3 qb3
, c12 = − 6(50+m2)

cos2 qb3
q̇b3 ,

c21 = 6(50+m2)
cos qb3

q̇b3 , g1 = (550 + m2) tan qb3 ż1, g2 = 6(50 +

m2) cos qb3 ż1, g4 = 4m2g sin θ2, f1 = tan qb3fb1 + fb2 , f2 =

fb3 , f3 = fm1 , f4 = fm2 , u1 = −2 sin qb3τr, u2 = −2τr+2τl,

u3 = τ1.

Then the above dynamic equation can be further trans-

formed into the following dynamics:

⎡
⎢⎣

m33 − m32m23
m22

0 0

0 m11 0

0 0 m44

⎤
⎥⎦ ¨̄ζ+

⎡
⎢⎣

0 −m32c11
m22

0

0 c11 0

0 0 0

⎤
⎥⎦ ˙̄ζ+

⎡
⎢⎣

−m32g2
m22

g1 + c12ż2

g4

⎤
⎥⎦ +

⎡
⎢⎣

f3 − m32f2
m22

f1

f4

⎤
⎥⎦ =

⎡
⎢⎣

−m32
m22

0 0

0 1 0

0 0 1

⎤
⎥⎦ ū.

z̈2 =
1

m22
(u2 − c21ż1 − g2 − f2 − m23q̈u)

with ζ̄ = [qu, z1, qa]T, ū = [u2, u1, u3, ]
T. Given the desired

trajectory yd = [qud, z1d, qad]T = [π
4
, sin t + cos t, π

4
(1 −

0.5 sin t)]T, lhd = 10 N. The control objective is to de-

termine an adaptive controller so that the trajectory y =

[qu, z1, qa]T and ẏ follow yd and ẏd, respectively, and z2-

subsystem is stable and l is bounded. We get the actual

controller

B1u =

⎡
⎢⎣

m∗ 0 0

0 m11 0

0 0 m44

⎤
⎥⎦ ÿr +

⎡
⎢⎣

0 −m32c11
m22

0

0 c11 0

0 0 0

⎤
⎥⎦ ẏr+

⎡
⎢⎣

−m32g2
m22

g1 + c12 ż2

g4

⎤
⎥⎦ +

rΘ̂(t)Γ

‖r‖Θ̂(t)Γ + ι(t)
(ln(∗) + 2) − r

with

{
˙̂
Θ = −δ(t)Θ̂(t) + ‖r‖Γ, Θ̂(0) = 2

τ0 = −10 + P (lh − 10)

where m∗ = m33m22−m32m23
m22

, ∗ = (cosh(Θ̂(t)Γ)
)

+ 2), r =

[q̇u +qu− π
4
, ż1 +z1−2 cos t, q̇a +qa + π

8
cos t+ π

8
sin t− π

4
]T,

ÿr = [−q̇u, −ż1 − 2 sin t, −q̇a + π
8

sin t − π
8

cos t]T, ẏr =

[−qu + π
4
, −z1 +2cos t, −qa − π

8
sin t− π

8
cos t+ π

4
]T, ι(t) =

δ(t) = 1
(1+t)2

and Γ = ‖ÿr‖ + ‖r‖ + ‖ξ̇‖ · ‖r‖ + ‖ẏr‖ + ‖ξ̇‖ ·
‖ẏr‖ + ‖ξ̇‖ + 2.
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The position state performances of qu, z1 and qa are il-

lustrated in Figs. 3−5 and the velocity tracking results of

q̇u, ż1 and q̇a are presented in Figs. 6−8. The stability of

z2-subsystem is shown in Fig. 9. The force tracking error of

la− lad becomes arbitrarily small and the parameter updat-

ing laws Θ̂ are bounded as shown in Figs. 10 and 11. The

input torques are all bounded as shown in Fig. 12.

Fig. 3 Trajectories of qu, qud

Fig. 4 Trajectories of z1, z1d

Fig. 5 Trajectories of qa, qad

Fig. 6 Trajectories of q̇u

Fig. 7 Trajectories of ż1, ż1d

Fig. 8 Trajectories of q̇a, q̇ad

5 Conclusions

This paper discusses tracking control of the uncertain

affine constraints mobile manipulator with under-actuated

joints, and mainly discusses mathematical modeling, algo-
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rithm design and theory analysis for it. An adaptive track-

ing controller is proposed. Practical simulation is presented

to illustrate the effectiveness of the control strategy.

Fig. 9 Trajectories of z2, ż2

Fig. 10 Trajectory of λa − λad

Fig. 11 Trajectory of Θ̂

Fig. 12 Trajectories of inputs
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