
International Journal of Automation and Computing 14(5), October 2017, 503-519

DOI: 10.1007/s11633-017-1054-2

Why and When Can Deep-but Not Shallow-networks
Avoid the Curse of Dimensionality: A Review

Tomaso Poggio1 Hrushikesh Mhaskar2, 3 Lorenzo Rosasco1 Brando Miranda1 Qianli Liao1

1Center for Brains, Minds, and Machines, McGovern Institute for Brain Research,
Massachusetts Institute of Technology, Cambridge, MA 02139, USA

2Department of Mathematics, California Institute of Technology, Pasadena, CA 91125, USA
3Institute of Mathematical Sciences, Claremont Graduate University, Claremont, CA 91711, USA

Abstract: The paper reviews and extends an emerging body of theoretical results on deep learning including the conditions under

which it can be exponentially better than shallow learning. A class of deep convolutional networks represent an important special case

of these conditions, though weight sharing is not the main reason for their exponential advantage. Implications of a few key theorems

are discussed, together with new results, open problems and conjectures.

Keywords: Machine learning, neural networks, deep and shallow networks, convolutional neural networks, function approximation,

deep learning.

1 A theory of deep learning

1.1 Introduction

There are at three main sets of theory questions about

deep neural networks. The first set of questions is about the

power of the architecture – Which classes of functions can

it approximate and learn well? The second set of questions

is about the learning process: Why is stochastic gradient

descent (SGD) so unreasonably efficient, at least in appear-

ance? The third, more important question is about gen-

eralization. Overparametrization may explain why minima

are easy to find during training but then why does overfit-

ting seems to be less of a problem than for classical shallow

networks? Is this because deep networks are very efficient

algorithms for hierarchical vector quantization?

In this paper, we focus especially on the first set of ques-

tions, summarizing several theorems that have appeared on-

line in 2015[1−3] and 2016[4, 5]. We then describe additional

results as well as a few conjectures and open questions. The

main message is that deep networks have the theoretical

guarantee, which shallow networks do not have, that they

can avoid the curse of dimensionality for an important class

of problems, corresponding to compositional functions, i.e.,

functions of functions. An especially interesting subset of

such compositional functions are hierarchically local compo-

sitional functions where all the constituent functions are lo-

cal in the sense of bounded small dimensionality. The deep

networks that can approximate them without the curse of

Review
Special Issue on Human-inspired Computing
Manuscript received November 3, 2016; accepted December 12,

2017; published online March 14, 2017
This work was supported by the Center for Brains, Minds and Ma-

chines (CBMM), NSF STC award CCF (No. 1231216), and ARO (No.
W911NF-15-1-0385).
Recommended by Associate Editor Hong Qiao
c©The Author(s) 2017

dimensionality are of the deep convolutional type (though

weight sharing is not necessary).

Implications of the theorems likely to be relevant in prac-

tice are:

1) Certain deep convolutional architectures have a the-

oretical guarantee that they can be much better than one

layer architectures such as kernel machines.

2) The problems for which certain deep networks are

guaranteed to avoid the curse of dimensionality (see for a

nice review[6]) correspond to input-output mappings that

are compositional. The most interesting set of prob-

lems consists of compositional functions composed of a

hierarchy of constituent functions that are local: An ex-

ample is f(x1, · · · , x8) = h3(h21(h11(x1, x2), h12(x3, x4)),

h22(h13(x5, x6), h14(x7, x8))). The compositional function

f requires only “local” computations (here with just di-

mension 2) in each of its constituent functions h.

3) The key aspect of convolutional networks that can

give them an exponential advantage is not weight sharing

but locality at each level of the hierarchy.

2 Previous theoretical work

Deep learning references start with Hinton′s backprop-

agation and with Lecun′s convolutional networks (see

for a nice review[7]). Of course, multilayer convolutional

networks have been around at least as far back as the

optical processing era of the 1970s. The Neocognitron[8]

was a convolutional neural network that was trained to

recognize characters. The property of compositionality was

a main motivation for hierarchical models of visual cortex

such as HMAX which can be regarded as a pyramid of

AND and OR layers[9], that is a sequence of conjunctions

and disjunctions. Several papers in the 1980s focused

on the approximation power and learning properties of

504 International Journal of Automation and Computing 14(5), October 2017

one-hidden layer networks (called shallow networks here).

Very little appeared on multilayer networks[10−12], mainly

because one hidden layer nets performed empirically as

well as deeper networks. On the theory side, a review by

Pinkus in 1999[13] concludes that “· · · there seems to be

reason to conjecture that the two hidden layer model may

be significantly more promising than the single hidden layer

model· · · ”. A version of the questions about the importance

of hierarchies was asked in [14] as follows: “A comparison

with real brains offers another, and probably related, chal-

lenge to learning theory. The “learning algorithms” we have

described in this paper correspond to one-layer architec-

tures. Are hierarchical architectures with more layers justi-

fiable in terms of learning theory? It seems that the learning

theory of the type we have outlined does not offer any gen-

eral argument in favor of hierarchical learning machines for

regression or classification. This is somewhat of a puzzle

since the organization of cortex – for instance visual cortex

– is strongly hierarchical. At the same time, hierarchical

learning systems show superior performance in several en-

gineering applications.” Because of the great empirical suc-

cess of deep learning over the last three years, several papers

addressing the question of why hierarchies have appeared.

Sum-Product networks, which are equivalent to polynomial

networks (see [15, 16]), are a simple case of a hierarchy that

was analyzed[17] but did not provide particularly useful in-

sights. Montufar et al.[18] showed that the number of linear

regions that can be synthesized by a deep network with rec-

tified linear unit (ReLU) nonlinearities is much larger than

by a shallow network. However, they did not study the

conditions under which this property yields better learning

performance. In fact, we will show later that the power of a

deep network cannot be exploited in general but for certain

specific classes of functions. Relevant to the present review

is the work on hierarchical quadratic networks[16], together

with function approximation results[13,19] . Also relevant is

the conjecture by Cohen et al.[20] on a connection between

deep learning networks and the hierarchical Tucker repre-

sentations of tensors. In fact, our theorems describe for-

mally the class of functions for which the conjecture holds.

This paper describes and extends results presented in [4, 21–

24] which derive new upper bounds for the approximation

by deep networks of certain important classes of functions

which avoid the curse of dimensionality. The upper bound

for the approximation by shallow networks of general func-

tions was well known to be exponential. It seems natural

to assume that, since there is no general way for shallow

networks to exploit a compositional prior, lower bounds for

the approximation by shallow networks of compositional

functions should also be exponential. In fact, examples of

specific functions that cannot be represented efficiently by

shallow networks have been given very recently by [25, 26].

We provide in Theorem 5 another example of a class of

compositional functions for which there is a gap between

shallow and deep networks.

3 Function approximation by deep net-

works

In this section, we state theorems about the approxima-

tion properties of shallow and deep networks.

3.1 Degree of approximation

The general paradigm is as follows. We are interested

in determining how complex a network ought to be to the-

oretically guarantee approximation of an unknown target

function f up to a given accuracy ε > 0. To measure the

accuracy, we need a norm ‖ · ‖ on some normed linear space

X. As we will see the norm used in the results of this paper

is the sup norm in keeping with the standard choice in ap-

proximation theory. Notice, however, that from the point

of view of machine learning, the relevant norm is the L2

norm. In this sense, several of our results are stronger than

needed. On the other hand, our main results on composi-

tionality require the sup norm in order to be independent

from the unknown distribution of the input data. This is

important for machine learning.

Let VN be the set of all networks of a given kind with

complexity N which we take here to be the total number of

units in the network (e.g., all shallow networks with N units

in the hidden layer). It is assumed that the class of networks

with a higher complexity include those with a lower com-

plexity; i.e., VN ⊆ VN+1. The degree of approximation is

defined by

dist(f, VN) = inf
P∈VN

‖f − P‖. (1)

For example, if dist(f, VN) = O(N−γ) for some γ > 0, then

a network with complexity N = O(ε
− 1

γ) will be sufficient to

guarantee an approximation with accuracy at least ε. Since

f is unknown, in order to obtain theoretically proved upper

bounds, we need to make some assumptions on the class of

functions from which the unknown target function is cho-

sen. This apriori information is codified by the statement

that f ∈ W for some subspace W ⊆ X. This subspace is

usually a smoothness class characterized by a smoothness

parameter m. Here, it will be generalized to a smoothness

and compositional class, characterized by the parameters m

and d (d = 2 in the example of Fig. 1, is in general the size

of the kernel in a convolutional network).

3.2 Shallow and deep networks

This section characterizes conditions under which deep

networks are “better” than shallow network in approximat-

ing functions. Thus we compare shallow (one-hidden layer)

networks with deep networks as shown in Fig. 1. Both types

of networks use the same small set of operations – dot prod-

ucts, linear combinations, a fixed nonlinear function of one

variable, possibly convolution and pooling. Each node in

the networks we consider usually corresponds to a node in

the graph of the function to be approximated, as shown

in Fig. 1. In particular each node in the network contains a

certain number of units. A unit is a neuron which computes

T. Poggio et al. / Why and When Can Deep-but Not Shallow-networks Avoid the Curse of Dimensionality: A Review 505

Fig. 1 The top graphs are associated to functions, each of the bottom diagrams depicts the network approximating the function above.

(a) shows a shallow universal network in 8 variables and N units approximates a generic function of 8 variables f(x1, · · · , x8); (b) shows

a binary tree hierarchical network at the bottom in n = 8 variables, which approximates well functions of the form f(x1, · · · , x8) =

h3(h21(h11(x1, x2), h12(x3, x4)), h22(h13(x5, x6), h14(x7, x8))) as represented by the binary graph above. In the approximating network

each of the n − 1 nodes in the graph of the function corresponds to a set of Q = N

n−1
ReLU units computing the ridge function

∑ Q
i=1 ai(〈vvvixxx〉 + ti)+, with vvvi, xxx ∈ R2, ai, ti ∈ R. Each term in the ridge function corresponds to a unit in the node (this is somewhat

different from todays deep networks, see text and note in Section 7). In a binary tree with n inputs, there are log2n levels and a total

of n − 1 nodes. Similar to the shallow network, a hierarchical network is universal, i.e., it can approximate any continuous function,

the text proves that it can approximate a compositional functions exponentially better than a shallow network. No invariance – that is

weight sharing – is assumed here. Notice that the key property that makes convolutional deep nets exponentially better than shallow

for compositional functions is the locality of the constituent functions – that is their low dimensionality. Weight sharing corresponds

to all constituent functions at one level to be the same (h11 = h12, etc.); (c) shows a different mechanism that can be exploited by

the deep network at the bottom to reduce the curse of dimensionality in the compositional function at the top: leveraging different

degrees of smoothness of the constituent functions, see Theorem 6 in the text. Notice that in (c) the input dimensionality must be ≥ 2

in order for deep nets to have an advantage over shallow nets. The simplest examples of functions to be considered for (a), (b) and (c)

are functions that are polynomials with a structure corresponding to the graph at the top.

(〈x,w〉 + b)+ (2)

where w is the vector of weights on the vector input x. Both

t and the real number b are parameters tuned by learning.

We assume here that each node in the networks computes

the linear combination of r such units

r∑

i=1

ci(〈x, ti〉 + bi)+. (3)

Notice that for our main example of a deep network cor-

responding to a binary tree graph, the resulting architecture

is an idealized version of the plethora of deep convolutional

neural networks described in the literature. In particular,

it has only one output at the top unlike most of the deep

architectures with many channels and many top-level out-

puts. Correspondingly, each node computes a single value

instead of multiple channels, using the combination of sev-

eral units (see (3)). Our approach and basic results apply

rather directly to more complex networks (see the third

note in Section 7). A careful analysis and comparison with

simulations will be described in the future work.

The logic of our theorems is as follows:

1) Both shallow (a) and deep (b) networks are universal,

i.e., they can approximate arbitrarily well any continuous

function of n variables on a compact domain. The result for

shallow networks is classical. Since shallow networks can be

viewed as a special case of deep networks, it is clear that

for any continuous function of n variables, there exists also

a deep network that approximates the function arbitrarily

well on a compact domain.

2) We consider a special class of functions of n variables

on a compact domain that is a hierarchical composition of

local functions such as

f(x1, · · · , x8) = h3(h21(h11(x1, x2), h12(x3, x4)),

h22(h13(x5, x6), h14(x7, x8))). (4)

The structure of the function in (4) is represented by a

graph of the binary tree type. This is the simplest example

of compositional functions, reflecting dimensionality d = 2

for the constituent functions h. In general, d is arbitrary but

fixed and independent of the dimensionality n of the com-

positional function f . In our results, we will often think of

506 International Journal of Automation and Computing 14(5), October 2017

n increasing while d is fixed. In Section 4, we will consider

the more general compositional case.

3) The approximation of functions with a compositional

structure can be achieved with the same degree of accuracy

by deep and shallow networks but that the number of pa-

rameters are much smaller for the deep networks than for

the shallow network with equivalent approximation accu-

racy. It is intuitive that a hierarchical network matching

the structure of a compositional function should be “bet-

ter” at approximating it than a generic shallow network but

universality of shallow networks asks for non-obvious char-

acterization of “better”. Our result makes clear that the

intuition is indeed correct.

In the perspective of machine learning, we assume that

the shallow networks do not have any structural information

on the function to be learned (here its compositional struc-

ture), because they cannot represent it directly and cannot

exploit the advantage of a smaller number of parameters.

In any case, in the context of approximation theory, we will

exhibit and cite lower bounds of approximation by shal-

low networks for the class of compositional functions. Deep

networks with standard architectures on the other hand do

represent compositionality in their architecture and can be

adapted to the details of such prior information.

We approximate functions of n variables of the form of

(4) With networks in which the activation nonlinearity is

a smoothed version of the so called ReLU, originally called

ramp by Breiman and given by σ(x) = |x|+ = max(0, x) .

The architecture of the deep networks reflects (4) with each

node hi being a ridge function, comprising one or more neu-

rons.

Let In = [−1, 1]n, X = C(In) be the space of all continu-

ous functions on In, with ‖f‖ = maxx∈In |f(x)|. Let SN,n

denote the class of all shallow networks with N units of the

form

x �→
N∑

k=1

akσ(〈wk, x〉 + bk)

where wk ∈ Rn, bk, ak ∈ R. The number of trainable pa-

rameters here is (n + 2)N . Let m ≥ 1 be an integer, and

W n
m be the set of all functions of n variables with contin-

uous partial derivatives of orders up to m < ∞ such that

‖f‖+
∑

1≤|k|1≤m ‖Dkf‖ ≤ 1, where Dk denotes the partial

derivative indicated by the multi-integer k ≥ 1, and |k|1 is

the sum of the components of k.

For the hierarchical binary tree network, the analogous

spaces are defined by considering the compact set W n,2
m to

be the class of all compositional functions f of n variables

with a binary tree architecture and constituent functions

h in W 2
m. We define the corresponding class of deep net-

works DN,2 to be the set of all deep networks with a binary

tree architecture, where each of the constituent nodes is in

SM,2, where N = |V |M , V is the set of non–leaf vertices

of the tree. We note that in the case when n is an integer

power of 2, the total number of parameters involved in a

deep network in DN,2, i.e., weights and biases, is 4N .

Two observations are critical to understand the meaning

of our results:

1) Compositional functions of n variables are a subset

of functions of n variables, i.e., W n
m ⊇ W n,2

m . Deep net-

works can exploit in their architecture the special structure

of compositional functions, whereas shallow networks are

blind to it. Thus, from the point of view of shallow net-

works, functions in W n,2
m are just functions in W n

m, this is

not the case for deep networks.

2) The deep network does not need to have exactly the

same compositional architecture as the compositional func-

tion to be approximated. It is sufficient that the acyclic

graph representing the structure of the function is a sub-

graph of the graph representing the structure of the deep

network. The degree of approximation estimates depend on

the graph associated with the network and are thus an up-

per bound on what could be achieved by a network exactly

matched to the function architecture.

Theorems 1 and 2 estimate the degree of approximation

for shallow and deep networks.

3.3 Shallow networks

Theorem 1 is about shallow networks.

Theorem 1. Let σ : R → R be infinitely differentiable,

and not a polynomial. For f ∈ W n
m, the complexity of

shallow networks that provide accuracy at least ε is

N = O(ε−
n
m) and is the best possible. (5)

In Theorem 2.1 of [27], the theorem is stated under the

condition that σ is infinitely differentiable, and there exists

b ∈ R such that σ(k)(b) = 0 for any integer k ≥ 0. It is

proved in [28] that the second condition is equivalent to σ

not being a polynomial. The proof in [27] relies on the fact

that under these conditions on σ, the algebraic polynomials

in n variables of (total or coordinatewise) degree < q are in

the uniform closure of the span of O(qn) functions of the

form xxx �→ σ(〈w,x〉 + b) (see the Appendix of [29], Section

“Neural networks: polynomial viewpoint”). The estimate

itself is an upper bound on the degree of approximation by

such polynomials. Since it is based on the approximation of

the polynomial space contained in the ridge functions imple-

mented by shallow networks, one may ask whether it could

be improved by using a different approach. The answer re-

lies on the concept of nonlinear n-width of the compact set

W n
m

[4, 30]. The n-width results imply that the estimate in

Theorem 1 is the best possible among all reasonable[30]

methods of approximating arbitrary functions in W n
m. The

estimate of Theorem 1 is the best possible if the only a

priori information we are allowed to assume is that the tar-

get function belongs to f ∈ W n
m. The exponential depen-

dence on the dimension n of the number ε−
n
m of parameters

needed to obtain an accuracy O(ε) is known as the curse

of dimensionality. Note that the constants involved in O in

the theorems will depend upon the norms of the derivatives

of f as well as σ.

A simple but useful corollary follows from the proof of

Theorem 1 about polynomials (which are a smaller space

than spaces of Sobolev functions). Let us denote with P n
k

T. Poggio et al. / Why and When Can Deep-but Not Shallow-networks Avoid the Curse of Dimensionality: A Review 507

the linear space of polynomials of degree at most k in n

variables.

Corollary 1. Let σ : R → R be infinitely differen-

tiable, and not a polynomial. Every f ∈ P n
k can be realized

with an arbitrary accuracy by shallow network with r units,

r =
(

n+k
k

) ≈ kn.

3.4 Deep hierarchically local networks

Theorem 2 is about deep networks with smooth activa-

tions and is recent (preliminary versions appeared in [2–4]).

We formulate it in the binary tree case for simplicity but

it extends immediately to functions that are compositions

of constituent functions of a fixed number of variables d

instead than of d = 2 variables as in the statement of the

theorem (in convolutional networks d corresponds to the

size of the kernel).

Theorem 2. For f ∈ W n,2
m , consider a deep network

with the same compositional architecture and with an acti-

vation function σ : R → R which is infinitely differentiable,

and not a polynomial. The complexity of the network to

provide approximation with accuracy at least ε is

N = O((n − 1)ε−
2
m). (6)

Proof. To prove Theorem 2, we observe that each of the

constituent functions being in W 2
m, (1) applied with n = 2

implies that each of these functions can be approximated

from SN,2 up to accuracy ε = cN− m
2 . Our assumption that

f ∈ W N,2
m implies that each of these constituent functions is

Lipschitz continuous. Hence, it is easy to deduce that, e.g.,

if P , P1, P2 are approximations to the constituent func-

tions h, h1, h2, respectively within an accuracy of ε, then

since ‖h − P‖ ≤ ε, ‖h1 − P1‖ ≤ ε and ‖h2 − P2‖ ≤ ε,

then ‖h(h1, h2) − P (P1, P2)‖ = ‖h(h1, h2) − h(P1, P2) +

h(P1, P2) − P (P1, P2)‖ ≤ ‖h(h1, h2) − h(P1, P2)‖ +

‖h(P1, P2) − P (P1, P2)‖ ≤ cε by Minkowski inequality.

Thus,

‖h(h1, h2) − P (P1, P2)‖ ≤ cε

for some constant c > 0 independent of the functions in-

volved. This, together with the fact that there are (n − 1)

nodes, leads to (6). �
Also in this case the proof provides the following corollary

about the subset T n
k of the space P n

k which consists of com-

positional polynomials with a binary tree graph and con-

stituent polynomial functions of degree k (in 2 variables).

Corollary 2. Let σ : R → R be infinitely differentiable,

and not a polynomial. Let n = 2l. Then, f ∈ T n
k can be

realized by a deep network with a binary tree graph and a

total of r units with r = (n − 1)
(
2+k
2

) ≈ (n − 1)k2.

It is important to emphasize that the assumptions on

σ in the theorems are not satisfied by the ReLU function

x �→ x+, but they are satisfied by smoothing the function

in an arbitrarily small interval around the origin. This sug-

gests that the result of Theorem 2 should be valid also for

the non-smooth ReLU. Section 4 provides formal results.

Stronger results than the theorems of this section[5] hold

for networks where each unit evaluates a Gaussian non–

linearity; i.e., Gaussian networks of the form

G(x) =
N∑

k=1

ake−|x−wk|2 , x ∈ Rd (7)

where the approximation is on the entire Euclidean space.

In summary, when the only a priori assumption on the

target function is about the number of derivatives, then to

guarantee an accuracy of ε, we need a shallow network with

O(ε−
n
m) trainable parameters. If we assume a hierarchical

structure on the target function as in Theorem 2, then the

corresponding deep network yields a guaranteed accuracy of

ε with O(ε−
2
m) trainable parameters. Note that Theorem 2

applies to all f with a compositional architecture given by

a graph which correspond to, or is a subgraph of, the graph

associated with the deep network – in this case the graph

corresponding to W n,d
m . Theorem 2 leads naturally to the

notion of effective dimensionality that we formalize in the

next section.

Definition 1. The effective dimension of a class W of

functions (for a given norm) is said to be d if for every ε > 0,

any function in W can be recovered within an accuracy of

ε (as measured by the norm) using an appropriate network

(either shallow or deep) with ε−d parameters.

Thus, the effective dimension for the class W n
m is n

m
, that

of W n,2
m is 2

m
.

4 General compositionality results:

functions composed by a hierarchy

of functions with bounded effective

dimensionality

The main class of functions we considered in previous

papers consists of functions as in Fig. 1 (b) that we called

compositional functions. The term “compositionality” was

used with the meaning it has in language and vision, where

higher level concepts are composed of a small number of

lower level ones, objects are composed of parts, sentences

are composed of words and words are composed of sylla-

bles. Notice that this meaning of compositionality is nar-

rower than the mathematical meaning of composition of

functions. The compositional functions we have described

in previous papers may be more precisely called functions

composed of hierarchically local functions.

Here we generalize formally our previous results to the

broader class of compositional functions (beyond the hier-

archical locality of Figs. 1 (b), 1 (c) and 2) by restating for-

mally a few comments of previous papers. Let begin with

one of the previous examples. Consider

Q(x, y) = (Ax2y2 + Bx2y + Cxy2 + Dx2 +

2Exy + Fy2 + 2Gx + 2Hy + I)2
10

.

Since Q is nominally a polynomial of coordinatewise degree

211, Lemma 3.2 of [27] shows that a shallow network with

508 International Journal of Automation and Computing 14(5), October 2017

211 + 1 units is able to approximate Q arbitrarily well on

I2. However, because of the hierarchical structure of Q,

Lemma 3.2 of [27] shows also that a hierarchical network

with 9 units can approximate the quadratic expression, and

10 further layers, each with 3 units can approximate the

successive powers. Thus, a hierarchical network with 11

layers and 39 units can approximate Q arbitrarily well. We

note that even if Q is nominally of degree 211, each of the

monomial coefficients in Q is a function of only 9 variables,

A, · · · , I .

A different example is

Q(x, y) = |x2 − y2|. (8)

This is obviously a Lipschitz continuous function of 2 vari-

ables. The effective dimension of this class is 2, and hence,

a shallow network would require at least cε−2 parameters to

approximate it within ε. However, the effective dimension

of the class of univariate Lipschitz continuous functions is

1. Hence, if we take into account the fact that Q is a com-

position of a polynomial of degree 2 in 2 variables and the

univariate Lipschitz continuous function t �→ |t|, then it is

easy to see that the same approximation can be achieved

by using a two layered network with O(ε−1) parameters.

To formulate our most general result that includes the

examples above as well as the constraint of hierarchical lo-

cality, we first define formally a compositional function in

terms of a directed acyclic graph. Let G be a directed acyclic

graph (DAG), with the set of nodes V . A G–function is de-

fined as follows. Each of the source node obtains an input

from R. Each in-edge of every other node represents an in-

put real variable, and the node itself represents a function

of these input real variables, called a constituent function.

The out-edges fan out the result of this evaluation. We

assume that there is only one sink node, whose output is

the G-function. Thus, ignoring the compositionality of this

function, it is a function of n variables, where n is the num-

ber of source nodes in G.

Theorem 3. Let G be a DAG, n be the number of

source nodes, and for each v ∈ V , let dv be the number

of in-edges of v. Let f : Rn �→ R be a compositional G-

function, where each of the constituent function is in W dv
mv

.

Consider shallow and deep networks with infinitely smooth

activation function as in Theorem 1. Then deep networks

– with an associated graph that corresponds to the graph

of f – avoid the curse of dimensionality in approximating f

for increasing n, whereas shallow networks cannot directly

avoid the curse. In particular, the complexity of the best

approximating shallow network is exponential in n

Ns = O(ε−
n
m) (9)

where m = minv∈V mv, while the complexity of the deep

network is

Nd = O(
∑

v∈V

ε−
dv
mv). (10)

Following Definition 1, we call dv
mv

the effective dimension

of function v. Then, deep networks can avoid the curse

of dimensionality if the constituent functions of a composi-

tional function have a small effective dimension, i.e., have

fixed, “small” dimensionality or fixed, “small” roughness.

A different interpretation of Theorem 3 is the following.

Proposition 1. If a family of functions f : Rn �→ R

of smoothness m has an effective dimension < n
m

, then the

functions are compositional in a manner consistent with the

estimates in Theorem 3.

Notice that the functions included in Theorem 3 are func-

tions that are either local or the composition of simpler

functions or both. Fig. 2 shows some examples in addition

to the examples at the top of Fig. 1.

Fig. 2 The figure shows the graphs of functions that may have

small effective dimensionality, depending on the number of units

per node required for good approximation.

As before, there is a simple corollary for polynomial func-

tions:

Corollary 3. Let σ : R → R be infinitely differentiable,

and not a polynomial. Let Sn
k ∈ P n

k be the family of com-

positional polynomial with a total number of monomials

which is non-exponential, e.g., it is O(kn). Then, f ∈ Sn
k

can be represented by a deep network with a a total of r

units which is at most polynomial in n.

Notice that polynomials in Sn
k are sparse with a number

of terms which is not exponential in n, i.e., it is not O(kn)

but linear in n (that is O(nk)) or at most polynomial in n.

4.1 Approximation results for shallow and
deep networks with (non-smooth) Re-
LUs

The results we described so far use smooth activation

functions. We already mentioned why relaxing the smooth-

ness assumption should not change our results in a funda-

mental way. While studies on the properties of neural net-

works with smooth activation abound, the results on non-

smooth activation functions are much more sparse. Here

we briefly recall some of them.

In the case of shallow networks, the condition of a smooth

activation function can be relaxed to prove density (see

Proposition 3.7 of [13]):

Proposition 2. Let σ =: R → R be in C0, and not a

polynomial. Then shallow networks are dense in C0.

T. Poggio et al. / Why and When Can Deep-but Not Shallow-networks Avoid the Curse of Dimensionality: A Review 509

In particular, ridge functions using ReLUs of the form
∑r

i=1 ci(〈wi, x〉+bi)+, with wi, x ∈ Rn, ci, bi ∈ R are dense

in C.

Networks with non-smooth activation functions are ex-

pected to do relatively poorly in approximating smooth

functions such as polynomials in the sup norm. “Good”

degree of approximation rates (modulo a constant) have

been proved in the L2 norm. Define B the unit ball

in Rn. Call Cm(Bn) the set of all continuous functions

with continuous derivative up to degree m defined on the

unit ball. We define the Sobolev space W m
p as the com-

pletion of Cm(Bn) with respect to the Sobolev norm p

(see page 168 of [13] for detail). We define the space

Bm
p = {f : f ∈ W m

p , ‖f‖m,p ≤ 1} and the approximation

error E(Bm
2 ; H ; L2) = infg∈H ‖f − g‖L2 . It is shown in

Corollary 6.10 in [13] that

Proposition 3. For Mr : f(x) =
∑r

i=1 ci(〈wi, x〉+ bi)+,

it holds E(Bm
2 ; Mr; L2) ≤ Cr−

m
n for m = 1, · · · , n+3

2
.

These approximation results with respect to the L2 norm

cannot be applied to derive bounds for compositional net-

works. Indeed, in the latter case, as we remarked already,

estimates in the uniform norm are needed to control the

propagation of the errors from one layer to the next, see

Theorem 2. Results in this direction are given in [31],

and more recently in [32] and [5] (see Theorem 3.1). In

particular, using a result in [32] and following the proof

strategy of Theorem 2, it is possible to derive the following

results on the approximation of Lipshitz continuous func-

tions with deep and shallow ReLU networks that mimics

our Theorem 2.

Theorem 4. Let f be a L-Lipshitz continuous function

of n variables. Then, the complexity of a network which is

a linear combination of ReLU providing an approximation

with accuracy at least ε is

Ns = O
((ε

L

)−n
)

where that of a deep compositional architecture is

Nd = O
((

n − 1)(
ε

L

)−2
)

.

Our general Theorem 3 can be extended in a similar way.

Theorem 4 is an example of how the analysis of smooth ac-

tivation functions can be adapted to ReLU. Indeed, it shows

how deep compositional networks with standard ReLUs can

avoid the curse of dimensionality. In the above results, the

regularity of the function class is quantified by the magni-

tude of Lipshitz constant. Whether the latter is best notion

of smoothness for ReLU based networks, and if the above

estimates can be improved, are interesting questions that

we defer to a future work. A result that is more intuitive

and may reflect what networks actually do is described in

the Appendix of [29] (Section “Non-smooth ReLUs: how

deep nets may work in reality”). Though the construction

described there provides approximation in the L2 norm but

not in the sup norm, this is not a problem under any dis-

cretization of real number required for computer simula-

tions (see the Appendix of [29]).

Fig. 3–6 provide a sanity check and empirical support for

our main results and for the claims in the introduction.

4.2 Lower bounds and gaps

So far we have shown that there are deep networks –

for instance of the convolutional type – that can avoid the

curse of dimensionality if the functions they are learning are

blessed with compositionality. There are no similar guaran-

tee for shallow networks: for shallow networks approximat-

ing generic continuous functions the lower and the upper

bound are both exponential[13]. From the point of view of

machine learning, it is obvious that shallow networks, unlike

deep ones, cannot exploit in their architecture the reduced

number of parameters associated with priors corresponding

to compositional functions. In past papers we listed a few

examples, some of which are also valid lower bounds from

the point of view of approximation theory:

1) The polynomial considered earlier

Q(x1, x2, x3, x4) = (Q1(Q2(x1, x2), Q3(x3, x4)))
1 024

which can be approximated by deep networks with a

smaller number of parameters than shallow networks is

based on polynomial approximation of functions of the type

g(g(g())). Here, however, a formal proof of the impossibil-

ity of good approximation by shallow networks is not avail-

able. For a lower bound, we need at one case of a compo-

sitional function which cannot be approximated by shallow

networks with a non-exponential degree of approximation.

Fig. 3 The figure shows on the top the graph of the function

to be approximated, while the bottom part of the figure shows

a deep neural network with the same graph structure. The left

and right node inf the first layer has each n units giving a to-

tal of 2n units in the first layer. The second layer has a total

of 2n units. The first layer has a convolution of size n to mir-

ror the structure of the function to be learned. The composi-

tional function we approximate has the form f(x1, x2, x3, x4) =

h2(h11(x1, x2), h12(x3, x4)) with h11, h12 and h2 as indicated in

the figure.

510 International Journal of Automation and Computing 14(5), October 2017

Fig. 4 An empirical comparison of shallow versus 2-layers binary tree networks in the approximation of compositional functions. The

loss function is the standard mean square error (MSE). There are several units per node of the tree. In our setup here the network

with an associated binary tree graph was set up so that each layer had the same number of units and shared parameters. The number

of units for the shallow and binary tree neural networks had the same number of parameters. On the left, the function is composed

of a single ReLU per node and is approximated by a network using ReLU activations. On the right, the compositional function is

f(x1, x2, x3, x4) = h2(h11(x1, x2), h12(x3, x4)) and is approximated by a network with a smooth ReLU activation (also called softplus).

The functions h1, h2, h3 are as described in Fig. 3. In order to be close to the function approximation case, a large data set of 60 K

training examples was used for both training sets. We used for SGD the Adam[33] optimizer. In order to get the best possible solution,

we ran 200 independent hyper parameter searches using random search[34] and reported the one with the lowest training error. The

hyper parameters search was over the step size, the decay rate, frequency of decay and the mini-batch size. The exponential decay

hyper parameters for Adam were fixed to the recommended values according to the original paper[33]. The implementations were based

on TensorFlow[35].

Fig. 5 Another comparison of shallow versus 2-layers binary tree networks in the learning of compositional functions. The set up of

the experiment was the same as in the one in Fig. 4 except that the compositional function had two ReLU units per node instead of only

one. The right part of the figure shows a cross section of the function f(x1, x2, 0.5, 0.25) in a bounded interval x1 ∈ [−1, 1], x2 ∈ [−1, 1].

The shape of the function is piece wise linear as it is always the case for ReLUs networks.

2) Such an example, for which a proof of the lower bound

exists since a few decades, consider a function which is a

linear combination of n tensor product Chui–Wang spline

wavelets, where each wavelet is a tensor product cubic

spline. It is shown in [11, 12] that is impossible to imple-

ment such a function using a shallow neural network with

a sigmoidal activation function using O(n) neurons, but a

deep network with the activation function (|x|+)2 can do

so. In this case, as we mentioned, there is a formal proof of

a gap between deep and shallow networks. Similarly, Eldan

and Shamir[36] show other cases with separations that are

exponential in the input dimension.

3) As we mentioned earlier, Telgarsky proves an exponen-

tial gap between certain functions produced by deep net-

works and their approximation by shallow networks. The

theorem[25] can be summarized as saying that a certain fam-

ily of classification problems with real-valued inputs can-

not be approximated well by shallow networks with fewer

than exponentially many nodes whereas a deep network

achieves zero error. This corresponds to high-frequency,

sparse trigonometric polynomials in our case. His upper

bound can be proved directly from our Theorem 2 by con-

sidering the real-valued polynomials x1x2 · · ·xd defined on

the cube [−1, 1]d which is obviously a compositional func-

tion with a binary tree graph.

T. Poggio et al. / Why and When Can Deep-but Not Shallow-networks Avoid the Curse of Dimensionality: A Review 511

Fig. 6 We show that the main advantage of deep convolutional networks (convNets) comes from “hierarchical locality” instead of

weight sharing. We train two 5-layer ConvNets with and without weight sharing on CIFAR-10. ConvNet without weight sharing

has different filter parameters at each spatial location. There are 4 convolutional layers (filter size 3×3, stride 2) in each network.

The number of feature maps (i.e., channels) are 16, 32, 64 and 128 respectively. There is an additional fully-connected layer as a

classifier. The performances of a 2-layer and 5-layer fully-connected networks are also shown for comparison. Each hidden layer of the

fully-connected network has 512 units. The models are all trained for 60 epochs with cross-entropy loss and standard shift and mirror

flip data augmentation (during training). The training errors are higher than those of validation because of data augmentation. The

learning rates are 0.1 for epoch 1 to 40, 0.01 for epoch 41 to 50 and 0.001 for rest epochs. The number of parameters for each model

are indicated in the legends. Models with hierarchical locality significantly outperform shallow and hierarchical non-local networks.

4) We exhibit here another example of a compositional

function that can be approximated well by deep networks

but not by shallow networks.

Let n ≥ 2 be an integer, B ⊂ Rn be the unit ball of

Rn. We consider the class W of all compositional functions

f = f2 ◦ f1, where f1 : Rn → R, and
∑

|k|≤4 ‖Dkf1‖∞ ≤ 1,

f2 : R → R and ‖D4f2‖∞ ≤ 1. We consider

Δ(AN) := sup
f∈W

inf
P∈AN

‖f − P‖∞,B

where AN is either the class SN of all shallow networks with

N units or DN of deep networks with two layers, the first

with n inputs, and the next with one input. In both cases,

the activation function is a C∞ function σ : R → R that is

not a polynomial.

Theorem 5. There exist constants c1, c2 > 0 such that

for N ≥ c1,

Δ(SN) ≥ c2. (11)

In contrast, there exists c3 > 0 such that

Δ(DN) ≤ c3N
− 4

n . (12)

The constants c1, c2, c3 may depend upon n.

Proof. The estimate (12) follows from the estimates al-

ready given for deep networks. In the remainder of this

proof, c will denote a generic positive constant depending

upon n alone, but its value may be different at different

occurrences. To prove (11), we use Lemma 3.2 in [12]. Let

φ be a C∞ function supported on [0, 1], and we consider

fN (x) = φ(|4Nx|2). Note that ‖fN‖1 ≥ C, with C inde-

pendent of N . Then, it is clear that each fN ∈ W , and

‖fN‖1 ≥ c. Clearly,

Δ(SN) ≥ c inf
P∈SN

∫

B

|fN (x) − P (x)|dx. (13)

512 International Journal of Automation and Computing 14(5), October 2017

We choose P ∗(x) =
∑N

k=1 σ(〈w∗
k, x〉 + b∗k) such that

inf
P∈SN

∫

B

|fN (x) − P (x)|dx ≥
1

2

∫

B

|fN (x) − P ∗(x)|dx. (14)

Since fN is supported on {x ∈ Rn : |x| ≤ 4−N}, we may

use Lemma 3.2 in [12] with g∗
k(t) = σ(t + b∗k) to conclude

that

∫

B

|fN (x) − P (x)|dx ≥

inf
gk∈L1

loc
, wk∈Rn, ak∈R

∫

B

|fN (x) − ∑
akgk(〈wk, x〉)|dx≥c.

Together with (13) and (14), this implies (11).

So by now plenty of examples of lower bounds exist show-

ing a gap between shallow and deep networks. A particu-

larly interesting case is the product function, that is the

monomial f(x1, · · · , xn) = x1x2 · · ·xn which is, from our

point of view, the prototypical compositional functions.

Keeping in mind the issue of lower bounds, the question

here has to do with the minimum integer r(n) such that the

function f is in the closure of the span of σ(〈wk, x〉 + bk),

with k = 1, · · · , r(n), and wk, bk ranging over their whole

domains. Such a proof has been published for the case

of smooth ReLUs, using unusual group techniques and is

sketched in the Appendix of [37]:

Proposition 4. For shallow networks approximating the

product monomial f(x1, · · · , xn) = x1x2 · · · xn, the mini-

mum integer r(n) is r(n) = O(2n).

Notice, in support of the claim, that assuming that a shal-

low network with (non-smooth) ReLUs has a lower bound

of r(q) = O(q) will lead to a contradiction with H̊astad the-

orem by restricting xi from xi ∈ (−1, 1) to xi ∈ {−1, +1}.
H̊astad theorem[38] establishes the inapproximability of the

parity function by shallow circuits of non-exponential size.

In fact, H̊astad′s theorem can be used to prove Proposition

4 by approximating the product function using the binary

representation of xi. This requires combining a number

of products of Boolean variables: H̊astad result applies to

each of the products. The upper bound for approximation

by deep networks of ReLUs can be obtained following the

arguments of Proposition 7 in the Appendix of [29] (Section

“Non-smooth ReLUs: how deep nets may work in reality”).

4.3 Messy graphs and densely connected
deep networks

As mentioned already, the approximating deep network

does not need to exactly match the architecture of the com-

positional function as long as the graph or tree associated

with the function is contained in the graph associated with

the network. This is of course good news: The composi-

tionality prior embedded in the architecture of the network

does not reflect exactly the graph of a new function to be

learned. We have shown that for a given class of com-

positional functions characterized by an associated graph,

there exists a deep network that approximates such a func-

tion better than a shallow network. The same network ap-

proximates well functions characterized by subgraphs of the

original class.

The proofs of our theorems show that linear combina-

tions of compositional functions are universal in the sense

that they can approximate any function and that deep net-

works with a number of units that increases exponentially

with layers can approximate any function. Notice that deep

compositional networks can interpolate if they are over-

parametrized with respect to the data, even if the data re-

flect a non-compositional function (see Proposition 8 in the

Appendix of [29], Section “Optimization of compositional

functions and Bezout theorem”).

As an aside, note that the simplest compositional func-

tion – addition – is trivial in the sense that it offers no ap-

proximation advantage to deep networks. The key function

is multiplication which is for us the prototypical composi-

tional functions. As a consequence, polynomial functions

are compositional – they are linear combinations of mono-

mials which are compositional.

As we mentioned earlier, networks corresponding to

graphs that include the graph of the function to be learned

can exploit compositionality. The bounds, however, will de-

pend on the number of parameters r in the network used

and not the parameters r∗ (r∗ < r) of the optimal deep

network with a graph exactly matched to the graph of the

function to be learned. As an aside, the price to be paid

in using a non-optimal prior depend on the learning algo-

rithm. For instance, under sparsity constraints, it may be

possible to pay a smaller price than r (but higher than r∗).
In this sense, some of the densely connected deep net-

works used in practice – which contain sparse graphs possi-

bly relevant for the function to be learned and which are still

“smaller” than the exponential number of units required to

represent a generic function of n variables – may be capable

in some cases of exploiting an underlying compositionality

structure without paying an exorbitant price in terms of

required complexity.

5 Connections with the theory of

Boolean functions

The approach followed in our main theorems suggest the

following considerations (see the Appendix of [29], Section

“Boolean Functions” for a brief introduction). The struc-

ture of a deep network is reflected in polynomials that are

best approximated by it – for instance generic polynomi-

als or sparse polynomials (in the coefficients) in d variables

of order k. The tree structure of the nodes of a deep net-

work reflects the structure of a specific sparse polynomial.

Generic polynomial of degree k in d variables are difficult

to learn because the number of terms, trainable parameters

and associated VC-dimension are all exponential in d. On

the other hand, functions approximated well by sparse poly-

nomials can be learned efficiently by deep networks with a

T. Poggio et al. / Why and When Can Deep-but Not Shallow-networks Avoid the Curse of Dimensionality: A Review 513

tree structure that matches the polynomial. We recall that

in a similar way several properties of certain Boolean func-

tions can be “read out” from the terms of their Fourier ex-

pansion corresponding to “large” coefficients, that is from

a polynomial that approximates well the function.

Classical results[38] about the depth-breadth tradeoff in

circuits design show that deep circuits are more efficient

in representing certain Boolean functions than shallow cir-

cuits. H̊astad proved that highly-variable functions (in the

sense of having high frequencies in their Fourier spectrum),

in particular the parity function cannot even be decently ap-

proximated by small constant depth circuits[39]. A closely

related result follow immediately from Theorem 2 since

functions of real variables of the form x1x2 · · ·xd have the

compositional form of the binary tree (for d even). Restrict-

ing the values of the variables to −1, +1 yields an upper

bound:

Proposition 5. The family of parity functions

x1x2 · · ·xd with xi ∈ {−1, +1} and i = 1, · · · , xd can be

represented with exponentially fewer units by a deep than

a shallow network.

Notice that H̊astad′s results on Boolean functions have

been often quoted in support of the claim that deep neural

networks can represent functions that shallow networks can-

not. For instance, Bengio and LeCun[40] write “We claim

that most functions that can be represented compactly by

deep architectures cannot be represented by a compact shal-

low architecture.”

Finally, we want to mention a few other observations on

Boolean functions that show an interesting connection with

our approach. It is known that within Boolean functions

the AC0 class of polynomial size constant depth circuits

is characterized by Fourier transforms where most of the

power spectrum is in the low order coefficients. Such func-

tions can be approximated well by a polynomial of low de-

gree and can be learned well by considering only such coef-

ficients. There are two algorithms[41] that allow learning of

certain Boolean function classes:

1) the low order algorithm that approximates functions

by considering their low order Fourier coefficients

2) the sparse algorithm which learns a function by ap-

proximating its significant coefficients.

Decision lists and decision trees can be learned by the

first algorithm. Functions with small L1 norm can be ap-

proximated well by the second algorithm. Boolean circuits

expressing DNFs can be approximated by the first one but

even better by the second. In fact, in many cases a function

can be approximated by a small set of coefficients but these

coefficients do not correspond to low-order terms. All these

cases are consistent with the notes about sparse functions

in Section 7.

6 Generalization bounds

Our estimate of the number of units and parameters

needed for a deep network to approximate compositional

functions with an error εG allow the use of one of several

available bounds for the generalization error of the network

to derive sample complexity bounds. As an example con-

sider Theorem 16.2 in [42] which provides the following sam-

ple bound for a generalization error εG with probability at

least 1−δ in a network in which the W parameters (weights

and biases) which are supposed to minimize the empirical

error (the theorem is stated in the standard ERM setup)

are expressed in terms of k bits:

M(εG, δ) ≤ 2

ε2G

(
kW log 2 + log

(2

δ

))
. (15)

This suggests the following comparison between shallow

and deep compositional (here binary tree-like networks).

Assume a network size that ensures the same approxima-

tion error ε .

Then in order to achieve the same generalization error

εG, the sample size Mshallow of the shallow network must

be much larger than the sample size Mdeep of the deep net-

work:

Mdeep

Mshallow
≈ εn. (16)

This implies that for largish n, there is a (large) range

of training set sizes between Mdeep and Mshallow for which

deep networks will not overfit (corresponding to small εG)

but shallow networks will (for dimensionality n ≈ 104 and

ε ≈ 0.1, (16) yields Mshallow ≈ 10104
Mdeep).

A similar comparison is derived if one considers the best

possible expected error obtained by a deep and a shallow

network. Such an error is obtained finding the architecture

with the best trade-off between the approximation and the

estimation error. The latter is essentially of the same order

as the generalization bound implied by (15), and is essen-

tially the same for deep and shallow networks, i.e.,

rn√
M

(17)

where we denoted by M the number of samples. For shal-

low networks, the number of parameters corresponds to r

units of n dimensional vectors (plus off-sets), whereas for

deep compositional networks the number of parameters cor-

responds to r units of 2 dimensional vectors (plus off-sets)

in each of the n−1 units. Using our previous results on de-

gree of approximation, the number of units giving the best

approximation/estimation trade-off is

rshallow ≈
(√

M

n

) n
m+n

and rdeep ≈
(√

M
) 2

m+2

(18)

for shallow and deep networks, respectively. The corre-

sponding (excess) expected errors E are

Eshallow ≈
(

n√
M

) m
m+n

(19)

for shallow networks and

Edeep ≈
(

1√
M

) m
m+2

(20)

514 International Journal of Automation and Computing 14(5), October 2017

for deep networks. For the expected error, as for the gen-

eralization error, deep networks appear to achieve an ex-

ponential gain. The above observations hold under the

assumption that the optimization process during training

finds the optimum parameters values for both deep and

shallow networks. Taking into account optimization, e.g.,

by stochastic gradient descent, requires considering a fur-

ther error term, but we expect that the overall conclusions

about generalization properties for deep versus shallow net-

works should still hold true.

Notice that independently of considerations of generaliza-

tion, deep compositional networks are expected to be very

efficient memories – in the spirit of hierarchical vector quan-

tization – for associative memories reflecting compositional

rules (see the Appendix of [29], Section “Vector quantiza-

tion and hierarchical vector quantization” and [43]). Notice

that the advantage with respect to shallow networks from

the point of view of memory capacity can be exponential (as

in the example after (16) showing Mshallow ≈ 10104
Mdeep).

6.1 Generalization in multi-class deep net-
works

Most of the successful neural networks exploit com-

positionality for better generalization in an additional

important way[44]. Suppose that the mappings to be

learned in a family of classification tasks (for instance

classification of different object classes in Imagenet)

may be approximated by compositional functions such

as f(x1, · · · , xn) = hl(· · · (h21(h11(x1, x2), h12(x3, x4)),

h22(h13(x5, x6), h14(x7, x8) · · ·)) · · ·), where hl depends on

the task (for instance to which object class) but all the other

constituent functions h are common across the tasks. Un-

der such an assumption, multi-task learning, that is train-

ing simultaneously for the different tasks, forces the deep

network to “find” common constituent functions. Multi-

task learning has theoretical advantages that depends on

compositionality: The sample complexity of the problem

can be significantly lower[45]. The Maurer′s approach is in

fact to consider the overall function as the composition of

a preprocessor function common to all task followed by a

task-specific function. As a consequence, the generalization

error, defined as the difference between expected and em-

pirical error, averaged across the T tasks, is bounded with

probability at least 1 − δ (in the case of finite hypothesis

spaces) by

1√
2M

√

ln|H| + ln|G| + ln(1
δ
)

T
(21)

where M is the size of the training set, H is the hypothe-

sis space of the common classifier and G is the hypothesis

space of the system of constituent functions, common across

tasks.

The improvement in generalization error because of the

multitask structure can be in the order of the square root

of the number of tasks (in the case of Imagenet with its

1 000 object classes, the generalization error may therefore

decrease by a factor ≈ 30). It is important to emphasize

the dual advantage here of compositionality, which 1) re-

duces generalization error by decreasing the complexity of

the hypothesis space G of compositional functions relative

the space of non-compositional functions and 2) exploits the

multi task structure, that replaces ln|G| with ln|G|
T

.

We conjecture that the good generalization exhibited by

deep convolutional networks in multi-class tasks such as Ci-

FAR and Imagenet are due to three factors:

1) SGD has a regularizing effect.

2) The task is compositional.

3) The task is multiclass.

7 Notes on a theory of compositional

computation

The key property of the theory of compositional func-

tions sketched here is that certain deep networks can learn

them avoiding the curse of dimensionality because of the

blessing of compositionality via a small effective dimension.

We state here several comments and conjectures.

1. General comments

1) Assumptions of the compositionality type may have

more direct practical implications and be at least as effec-

tive as assumptions about function smoothness in counter-

ing the curse of dimensionality in learning and approxima-

tion.

2) The estimates on the n-width imply that there is some

function in either W n
m (Theorem 1) or W n,2

m (Theorem 2)

for which the approximation cannot be better than that

suggested by the theorems.

3) The main question that may be asked about the rele-

vance of the theoretical results of this paper and networks

used in practice has to do with the many “channels” used

in the latter and with our assumption that each node in the

networks computes a scalar function – the linear combina-

tion of r units (3). The following obvious but interesting

extension of Theorem 1 to vector-valued functions says that

the number of hidden units required for a given accuracy in

each component of the function is the same as in the scalar

case considered in our theorems (of course the number of

weights is larger):

Corollary 4. Let σ : R → R be infinitely differen-

tiable, and not a polynomial. For a vector-valued function

f : Rn → Rq with components fi ∈ W n
m, i = 1, · · · , q, the

number of hidden units in shallow networks with n inputs,

q outputs that provide accuracy at least ε in each of the

components of f is

N = O(ε−
n
m). (22)

The demonstration follows the proof of Theorem 1, see

also the Section “Neural networks: polynomial viewpoint”

in the Appendix of [29]. It amounts to realizing that the

hidden units (or linear combinations of them) can be equiv-

alent to the monomials of a generic polynomial of degree k

in n variables that can be used by a different set of coef-

ficients for each of fi. This argument of course does not

T. Poggio et al. / Why and When Can Deep-but Not Shallow-networks Avoid the Curse of Dimensionality: A Review 515

mean that during learning this is what happens; it provides

one way to synthesize the approximation and an associated

upper bound. The corollary above leads to a simple argu-

ment that generalizes our binary tree results to standard,

multi-channel deep convolutional networks by introducing a

set of virtual linear units as outputs of one layer and inputs

of the next one.

4) We have used polynomials (see the Appendix of [29],

Section “Non-smooth ReLUs: how deep nets may work in

reality”) to prove results about complexity of approxima-

tion in the case of neural networks. Neural network learning

with SGD may or may not synthesize polynomial, depend-

ing on the smoothness of the activation function and on

the target. This is not a problem for theoretically estab-

lishing upper bounds on the degree of convergence because

results using the framework on nonlinear width guarantee

the “polynomial” bounds are optimal.

5) Both shallow and deep representations may or may

not reflect invariance to group transformations of the in-

puts of the function[22, 46]. Invariance – also called weight

sharing – decreases the complexity of the network. Since

we are interested in the comparison of shallow versus deep

architectures, we have considered the generic case of net-

works (and functions) for which invariance is not assumed.

In fact, the key advantage of deep versus shallow network

– as shown by the proof of the theorem – is the associated

hierarchical locality (the constituent functions in each node

are local that is have a small dimensionality) and not in-

variance (which designates shared weights that is nodes at

the same level sharing the same function). One may then

ask about the relation of these results with i-theory[47]. The

original core of i-theory describes how pooling can provide

either shallow or deep networks with invariance and selec-

tivity properties. Invariance of course helps but not expo-

nentially as hierarchical locality does.

6) There are several properties that follow from the the-

ory here which are attractive from the point of view of neu-

roscience. A main one is the robustness of the results with

respect to the choice of nonlinearities (linear rectifiers, sig-

moids, Gaussians, etc.) and pooling.

7) In a machine learning context, minimization over

a training set of a loss function such as the square loss

yields an empirical approximation of the regression func-

tion p(y/x). Our hypothesis of compositionality becomes

an hypothesis about the structure of the conditional prob-

ability function.

2. Spline approximations, Boolean functions and

tensors

1) Consider again the case of Section 4 “General compo-

sitionality results” in the Appendix of [29] of a multivariate

function f : [0, 1]d → R. Suppose to discretize it by a

set of piecewise constant splines and their tensor products.

Each coordinate is effectively replaced by n Boolean vari-

ables. This results in a d-dimensional table with N = nd

entries. This in turn corresponds to a boolean function

f : {0, 1}N → R. Here, the assumption of compositional-

ity corresponds to compressibility of a d-dimensional table

in terms of a hierarchy of (d − 1) two-dimensional tables.

Instead of nd entries there are (d − 1)n2 entries. This has

in turn obvious connections with hierarchical vector quan-

tization (HVQ), discussed in the Appendix of [29], Section

“Vector quantization and hierarchical vector quantization”.

2) As the Appendix of [29], Section “Non-smooth ReLUs:

how deep nets may work in reality” shows, every function

f can be approximated by an epsilon-close binary function

fB . Binarization of f : Rn → R is done by using k par-

titions for each variable xi and indicator functions. Thus,

f �→ fB : {0, 1}kn → R and sup|f − fB | ≤ ε, with ε de-

pending on k and bounded Df .

3) fB can be written as a polynomial (a Walsh decom-

position) fB ≈ pB. It is always possible to associate a pb

to any f , given ε.

4) The binarization argument suggests a direct way to

connect results on function approximation by neural nets

with older results on Boolean functions. The latter are spe-

cial cases of the former results.

5) One can think about tensors in terms of d-dimensional

tables. The framework of hierarchical decompositions of

tensors – in particular the hierarchical tucker format – is

closely connected to our notion of compositionality. Inter-

estingly, the hierarchical tucker decomposition has been the

subject of recent papers on deep learning[20]. This work, as

well more classical papers[48], does not characterize directly

the class of functions for which these decompositions are ef-

fective. Notice that tensor decompositions assume that the

sum of polynomial functions of order d is sparse (see equa-

tion at the top of page 2 030 of [48]). Our results provide

a rigorous grounding for the tensor work related to deep

learning. There is obviously a wealth of interesting connec-

tions with approximation theory that should be explored.

Notice that the notion of separation rank of a tensor is

very closely related to the effective r in (32) of the Appendix

of [29] (Section “Neural networks: polynomial viewpoint”).

3. Sparsity

1) We suggest to define binary sparsity of f , in terms of

the sparsity of the Boolean function pB. Binary sparsity

implies that an approximation to f can be learned by non-

exponential deep networks via binarization. Notice that

if the function f is compositional, the associated Boolean

functions fB is sparse. The converse is not true.

2) In may situations, Tikhonov regularization corre-

sponds to cutting high order Fourier coefficients. Spar-

sity of the coefficients subsumes Tikhonov regularization

in the case of a Fourier representation. Notice that as an

effect, the number of Fourier coefficients is reduced, that

is trainable parameters, in the approximating trigonomet-

ric polynomial. Sparsity of Fourier coefficients is a general

constraint for learning Boolean functions.

3) Sparsity in a specific basis. A set of functions may be

defined to be sparse in a specific basis when the number of

parameters necessary for its ε-approximation increases less

than exponentially with the dimensionality. An open ques-

tion is the appropriate definition of sparsity. The notion

of sparsity we suggest here is the effective r in (32) of the

516 International Journal of Automation and Computing 14(5), October 2017

Appendix of [29] (Section “Neural networks: polynomial

viewpoint”). For a general function r ≈ kn, we may define

sparse functions those for which r � kn in

f(x) ≈ P ∗
k (x) =

r∑

i=1

pi(〈wi, x〉) (23)

where P ∗ is a specific polynomial that approximates f(x)

within the desired ε. Notice that the polynomial P ∗
k can

be a sum of monomials or a sum of, for instance, orthog-

onal polynomials with a total of r parameters. In general,

sparsity depends on the basis and one needs to know the

basis and the type of sparsity to exploit it in learning, for

instance with a deep network with appropriate activation

functions and architecture.

There are function classes that are sparse in every bases.

Examples are compositional functions described by a binary

tree graph.

4. Theory of computation, locality and composi-

tionality

1) From the computer science point of view, feedforward

multilayer networks are equivalent to finite state machines

running for a finite number of time steps[49, 50]. This result

holds for almost any fixed nonlinearity in each layer. Feed-

forward networks are equivalent to cascades without loops

(with a finite number of stages) and all other forms of loop

free cascades (i.e., McCulloch-Pitts nets without loops, per-

ceptrons, analog perceptrons, linear threshold machines).

Finite state machines, cascades with loops, and difference

equation systems which are Turing equivalent, are more

powerful than multilayer architectures with a finite num-

ber of layers. The latter networks, however, are practically

universal computers, since every machine we can build can

be approximated as closely as we like by defining sufficiently

many stages or a sufficiently complex single stage. Recur-

rent networks as well as differential equations are Turing

universal.

2) Approximation properties can be related to the no-

tion of connectivity of a network. Connectivity is a key

property in network computations. Local processing may

be a key constraint also in neuroscience. One of the natu-

ral measures of connectivity that can be introduced is the

order of a node defined as the number of its distinct inputs.

The order of a network is then the maximum order among

its nodes. The term order dates back to the Perceptron

book[50, 51]. From the previous observations, it follows that

a hierarchical network of order at least 2 can be universal.

In the Perceptron book, many interesting visual computa-

tions have low order (e.g., recognition of isolated figures).

The message is that they can be implemented in a single

layer by units that have a small number of inputs. More

complex visual computations require inputs from the full

visual field. A hierarchical network can achieve effective

high order at the top using units with low order. The net-

work architecture of Fig. 1 (b) has low order: Each node in

the intermediate layers is connected to just 2 other nodes,

rather than (say) all nodes in the previous layer (notice that

the connections in the trees of the figures may reflect linear

combinations of the input units).

3) Low order may be a key constraint for cortex. If it

captures what is possible in terms of connectivity between

neurons, it may determine by itself the hierarchical architec-

ture of cortex which in turn may impose compositionality

to language and speech.

4) The idea of functions that are compositions of

“simpler” functions extends in a natural way to recur-

rent computations and recursive functions. For instance,

h(f (t)(g(x))) represents t iterations of the algorithm f (h

and g match input and output dimensions to f).

8 Why are compositional functions so

common or important?

First, let us formalize the requirements on the algorithms

of local compositionality is to define scalable computations

as a subclass of nonlinear discrete operators, mapping vec-

tors from Rn into Rd (for simplicity we put in the following

d = 1). Informally, we call an algorithm Kn : Rn �→ R

scalable if it maintains the same “form” when the input

vectors increase in dimensionality, i.e., the same kind of

computation takes place when the size of the input vector

changes. This motivates the following construction. Con-

sider a “layer” operator H2m : R2m �→ R2m−2 for m ≥ 1

with a special structure that we call “shift invariance”.

Definition 2. For integer m ≥ 2, an operator H2m is

shift-invariant if H2m = H ′
m ⊕ H ′′

m where R2m = Rm ⊕
Rm, H ′ = H ′′ and H ′ : Rm �→ Rm−1. An operator

K2M : R2M → R is called scalable and shift invariant if

K2M = H2 ◦ · · · ◦H2M where each H2k, 1 ≤ k ≤ M , is shift

invariant.

We observe that scalable shift-invariant operators K :

R2m �→ R have the structure K = H2 ◦H4 ◦H6 ◦ · · · ◦H2m,

with H4 = H ′
2 ⊕ H ′

2, H6 = H ′′
2 ⊕ H ′′

2 ⊕ H ′′
2 , etc.

Thus, the structure of a shift-invariant, scalable opera-

tor consists of several layers. Each layer consists of iden-

tical blocks. Each block is an operator H : R2 �→ R: see

Fig. 7. We note also that an alternative weaker constraint

on H2m in Definition 2, instead of shift invariance, is mirror

symmetry, i.e., H ′′ = R ◦ H ′, where R is a reflection. Ob-

viously, shift-invariant scalable operator are equivalent to

shift-invariant compositional functions. Obviously the defi-

nition can be changed in several of its details. For instance

for two-dimensional images, the blocks could be operators

H : R5 → R mapping a neighborhood around each pixel

into a real number.

The final step in the argument uses the results of previ-

ous sections to claim that a nonlinear node with two inputs

and enough units can approximate arbitrarily well each of

the H2 blocks. This leads to conclude that deep convolu-

tional neural networks are natural approximators of scal-

able, shift-invariant operators.

T. Poggio et al. / Why and When Can Deep-but Not Shallow-networks Avoid the Curse of Dimensionality: A Review 517

Fig. 7 A shift-invariant, scalable operator. Processing is from

the bottom (input) to the top (output). Each layer consists of

identical blocks, each block has two inputs and one output; each

block is an operator H2 : R2 �→ R. The step of combining two

inputs to a block into one output corresponds to coarse-graining

of a Ising model.

Let us provide a couple of very simple examples of compo-

sitional functions. Addition is compositional but degree of

approximation does not improve by decomposing addition

in different layers of network; all linear operators are com-

positional with no advantage for deep networks; multiplica-

tion as well as the AND operation (for Boolean variables)

is the prototypical compositional function that provides an

advantage to deep networks.

This line of arguments defines a class of algorithms that

is universal and can be optimal for a large set of problems.

It does not however explain why problems encountered in

practice should match this class of algorithms. Though we

and others have argued that the explanation may be in

either the physics or the neuroscience of the brain, these

arguments (see the Appendix of [29], Section “Does physics

or neuroscience imply compositionality?”) are not (yet) rig-

orous. Our conjecture is that compositionality is imposed

by the wiring of our cortex and is reflected in language.

Thus, compositionality of many computations on images

many reflect the way we describe and think about them.

Acknowledgement

The authors thank O. Shamir for useful emails that

prompted us to clarify our results in the context of lower

bounds.

Open Access This article is distributed under the terms

of the Creative Commons Attribution 4.0 International

License (http://creativecommons.org/licenses/by/4.0/),

which permits unrestricted use, distribution, and repro-

duction in any medium, provided you give appropriate

credit to the original author(s) and the source, provide

a link to the Creative Commons license, and indicate if

changes were made.

References

[1] F. Anselmi, L. Rosasco, C. Tan, T. Poggio. Deep Convolu-
tional Networks are Hierarchical Kernel Machines, Center
for Brains, Minds and Machines (CBMM) Memo No. 035,
The Center for Brains, Minds and Machines, USA, 2015.

[2] T. Poggio, L. Rosasco, A. Shashua, N. Cohen, F. Anselmi.
Notes on Hierarchical Splines, DCLNs and i-theory, Center

for Brains, Minds and Machines (CBMM) Memo No. 037,
The Center for Brains, Minds and Machines, USA, 2015.

[3] T. Poggio, F. Anselmi, L. Rosasco. I-theory on Depth
vs Width: Hierarchical Function Composition, Center for
Brains, Minds and Machines (CBMM) Memo No. 041, The
Center for Brains, Minds and Machines, USA, 2015.

[4] H. Mhaskar, Q. L. Liao, T. Poggio. Learning Real and
Boolean Functions: When is Deep Better than Shallow,
Center for Brains, Minds and Machines (CBMM) Memo
No. 045, The Center for Brains, Minds and Machines, USA,
2016.

[5] H. N. Mhaskar, T. Poggio. Deep Vs. Shallow Networks:
An Approximation Theory Perspective, Center for Brains,
Minds and Machines (CBMM) Memo No. 054, The Center
for Brains, Minds and Machines, USA, 2016.

[6] D. L. Donoho. High-dimensional data analysis: The curses
and blessings of dimensionality. Lecture – Math Challenges
of Century, vol. 13, pp. 178–183, 2000.

[7] Y. LeCun, Y. Bengio, G. Hinton. Deep learning. Nature,
vol. 521, no. 7553, pp. 436–444, 2015.

[8] K. Fukushima. Neocognitron: A self-organizing neural net-
work model for a mechanism of pattern recognition unaf-
fected by shift in position. Biological Cybernetics, vol. 36,
no. 4, pp. 193–202, 1980.

[9] M. Riesenhuber, T. Poggio. Hierarchical models of object
recognition in cortex. Nature Neuroscience, vol. 2, no. 11,
pp. 1019–1025, 1999.

[10] H. N. Mhaskar. Approximation properties of a multilayered
feedforward artificial neural network. Advances in Compu-
tational Mathematics, vol. 1, no. 1, pp. 61–80, 1993.

[11] C. K. Chui, X. Li, H. Mhaskar. Neural networks for local-
ized approximation. Mathematics of Computation, vol. 63,
no. 208, pp. 607–623, 1994.

[12] C. K. Chui, X. Li, H. N. Mhaskar. Limitations of the ap-
proximation capabilities of neural networks with one hid-
den layer. Advances in Computational Mathematics, vol. 5,
no. 1, pp. 233–243, 1996.

[13] A. Pinkus. Approximation theory of the MLP model in neu-
ral networks. Acta Numerica, vol. 8, pp. 143–195, 1999.

[14] T. Poggio, S. Smale. The mathematics of learning: Dealing
with data. Notices of the American Mathematical Society,
vol. 50, no. 5, pp. 537–544, 2003.

[15] B. Moore, T. Poggio. Representation properties of multi-
layer feedforward networks. Neural Networks, vol. 1, no. S1,
pp. 203, 1998.

[16] R. Livni, S. Shalev-Shwartz, O. Shamir. A provably
efficient algorithm for training deep networks. CoRR,
abs/1304.7045, 2013.

[17] O. Delalleau, Y. Bengio. Shallow vs. deep sum-product net-
works. In Proceedings of Advances in Neural Information
Processing Systems 24, NIPS, Granada, Spain, pp. 666–674,
2011.

518 International Journal of Automation and Computing 14(5), October 2017

[18] G. F. Montufar, R. Pascanu, K. Cho, Y. Bengio. On the
number of linear regions of deep neural networks. In Pro-
ceedings of Advances in Neural Information Processing Sys-
tems 27, NIPS, Denver, USA, pp. 2924–2932, 2014.

[19] H. N. Mhaskar. Neural networks for localized approxima-
tion of real functions. In Proceedings of IEEE-SP Workshop
on Neural Networks for Processing III, pp. 190–196, IEEE,
Linthicum Heights, USA, 1993.

[20] N. Cohen, O. Sharir, A. Shashua. On the expressive power
of deep learning: A tensor analysis. arXiv:1509.0500v1,
2015.

[21] F. Anselmi, J. Z. Leibo, L. Rosasco, J. Mutch, A. Tacchetti,
T. Poggio. Unsupervised Learning of Invariant Representa-
tions With Low Sample Complexity: The Magic of Sensory
Cortex or A New Framework for Machine Learning? Center
for Brains, Minds and Machines (CBMM) Memo No. 001,
The Center for Brains, Minds and Machines, USA, 2014.

[22] F. Anselmi, J. Z. Leibo, L. Rosasco, J. Mutch, A. Tacchetti,
T. Poggio. Unsupervised learning of invariant representa-
tions. Theoretical Computer Science, vol. 633, pp. 112–121,
2016.

[23] T. Poggio, L. Rosaco, A. Shashua, N. Cohen, F. Anselmi.
Notes on Hierarchical Splines, DCLNs and i-theory, Center
for Brains, Minds and Machines (CBMM) Memo No. 037.
The Center for Brains, Minds and Machines, 2015.

[24] Q. L. Liao, T. Poggio. Bridging the Gaps between Residual
Learning, Recurrent Neural Networks and Visual Cortex,
Center for Brains, Minds and Machines (CBMM) Memo
No. 047, The Center for Brains, Minds and Machines, 2016.

[25] M. Telgarsky. Representation benefits of deep feedforward
networks. arXiv:1509.08101v2, 2015.

[26] I. Safran, O. Shamir. Depth separation in ReLU net-
works for approximating smooth non-linear functions.
arXiv:1610.09887v1, 2016.

[27] H. N. Mhaskar. Neural networks for optimal approxima-
tion of smooth and analytic functions. Neural Computation,
vol. 8, no. 1, pp. 164–177, 1996.

[28] E. Corominas, F. S. Balaguer. Conditions for an in-
finitely differentiable function to be a polynomial. Revista
Matemática Hispanoamericana vol. 14, no. 1–2, pp. 26–43,
1954. (in Spanish)

[29] T. Poggio, H. Mhaskar, L. Rosasco, B. Miranda, Q. L. Liao.
Why and when can deep–but not shallow–networks avoid
the curse of dimensionality: A review. arXiv:1611.00740v3,
2016.

[30] R. A. DeVore, R. Howard C. A. Micchelli. Optimal non-
linear approximation. Manuscripta Mathematica, vol. 63,
no. 4, pp. 469–478, 1989.

[31] H. N. Mhaskar. On the tractability of multivariate inte-
gration and approximation by neural networks. Journal of
Complexity, vol. 20, no. 4, pp. 561–590, 2004.

[32] F. Bach. Breaking the curse of dimensionality with convex
neural networks. arXiv:1412.8690, 2014.

[33] D. Kingma, J. Ba. Adam: A method for stochastic opti-
mization. arXiv:1412.6980, 2014.

[34] J. Bergstra, Y. Bengio. Random search for hyper-parameter
optimization. Journal of Machine Learning Research,
vol. 13, no. 1, pp. 281–305, 2012.

[35] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. F. Chen,
C. Citro, G. S. Corrado, A. Davis, J. Dean, M. Devin, S.
Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Isard,
Y. Q. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Leven-
berg, D. Mané, R. Monga, S. Moore, D. Murray, C. Olah,
M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Tal-
war, P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas,
O. Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu,
X. Q. Zheng. TensorFlow: Large-scale machine learning on
heterogeneous distributed systems. arXiv:1603.04467, 2016.

[36] R. Eldan, O. Shamir. The power of depth for feedforward
neural networks. arXiv:1512.03965v4, 2016.

[37] H. W. Lin, M. Tegmark. Why does deep and cheap learning
work so well? arXiv:1608.08225, 2016.

[38] J. T. H̊astad. Computational Limitations for Small Depth
Circuits, Cambridge, MA, USA: MIT Press, 1987.

[39] N. Linial, Y. Mansour, N. Nisan. Constant depth circuits,
Fourier transform, and learnability. Journal of the ACM,
vol. 40, no. 3, pp. 607–620, 1993.

[40] Y. Bengio, Y. LeCun. Scaling learning algorithms towards
AI. Large-Scale Kernel Machines, L. Bottou, O. Chapelle,
D. DeCoste, J. Weston, Eds., Cambridge, MA, USA: MIT
Press, 2007.

[41] Y. Mansour. Learning Boolean functions via the Fourier
transform. Theoretical Advances in Neural Computation
and Learning, V. Roychowdhury, K. Y. Siu, A. Orlitsky,
Eds., pp. 391–424, US: Springer, 1994.

[42] M. Anthony, P. Bartlett. Neural Network Learning: Theo-
retical Foundations, Cambridge, UK: Cambridge University
Press, 2002.

[43] F. Anselmi, L. Rosasco, C. Tan, T. Poggio. Deep Convolu-
tional Networks are Hierarchical Kernel Machines, Center
for Brains, Minds and Machines (CBMM) Memo No. 035,
The Center for Brains, Minds and Machines, USA, 2015.

[44] B. M. Lake, R. Salakhutdinov, J. B. Tenenabum. Human-
level concept learning through probabilistic program induc-
tion. Science, vol. 350, no. 6266, pp. 1332–1338, 2015.

[45] A. Maurer. Bounds for linear multi-task learning. Journal of
Machine Learning Research, vol. 7, no. 1, pp. 117–139, 2016.

[46] S. Soatto. Steps towards a theory of visual information: Ac-
tive perception, signal-to-symbol conversion and the inter-
play between sensing and control. arXiv:1110.2053, 2011.

[47] T. A. Poggio, F. Anselmi. Visual Cortex and Deep Net-
works: Learning Invariant Representations, Cambridge,
MA, UK: MIT Press, 2016.

[48] L. Grasedyck. Hierarchical singular value decomposition of
tensors. SIAM Journal on Matrix Analysis and Applica-
tions, no. 31, no. 4, pp. 2029–2054, 2010.

T. Poggio et al. / Why and When Can Deep-but Not Shallow-networks Avoid the Curse of Dimensionality: A Review 519

[49] S. Shalev-Shwartz, S. Ben-David. Understanding Machine
Learning: From Theory to Algorithms, Cambridge, UK:
Cambridge University Press, 2014.

[50] T. Poggio, W. Reichardt. On the representation of multi-
input systems: Computational properties of polynomial
algorithms. Biological Cybernetics, vol. 37, no. 3, 167-186,
1980.

[51] M. L. Minsky, S. A. Papert. Perceptrons: An Introduc-
tion to Computational Geometry, Cambridge MA, UK: The
MIT Press, 1972.

Tomaso Poggio received the Ph. D. de-
gree in theoretical physics from University
of Genoa, Italy in 1971. He is the Eu-
gene McDermott Professor at Department
of Brain and Cognitive Sciences, the direc-
tor of Center for Brains, Minds and Ma-
chines, the member of the Computer Sci-
ence and Artificial Intelligence Laboratory
at Massachusetts Institute of Technology

(MIT), USA. Since 2000, he is a member of the faculty of
the McGovern Institute for Brain Research. He was a Wis-
senschaftlicher assistant in Max Planck Institut für Biologische
Kybernetik, Tüebingen, Germany from 1972 until 1981 when
he became an associate professor at MIT. He is an honorary
member of the Neuroscience Research Program, a member of the
American Academy of Arts and Sciences and a Founding Fellow
of AAAI. He received several awards such as the Otto-Hahn-
Medaille Award of the Max-Planck-Society, the Max Planck Re-
search Award (with M. Fahle), from the Alexander von Hum-
boldt Foundation, the MIT 50K Entrepreneurship Competition
Award, the Laurea Honoris Causa from the University of Pavia
in 2000 (Volta Bicentennial), the 2003 Gabor Award, the 2009
Okawa prize, the American Association for the Advancement of
Science (AAAS) Fellowship (2009) and the Swartz Prize for The-
oretical and Computational Neuroscience in 2014. He is one
of the most cited computational neuroscientists (with a h-index
greater than 100-based on GoogleScholar).

E-mail: tp@ai.mit.edu (Corresponding author)
ORCID iD: 0000-0002-3944-0455

Hrushikesh Mhaskar did his under-
graduate studies in Institute of Science,
Nagpur, and received the first M. Sc. de-
gree in mathematics from the Indian In-
stitute of Technology, India in 1976. He
received the Ph.D. degree in mathematics
and M. Sc. degree in computer science from
the Ohio State University, USA in 1980. He
then joined Cal. State L. A., and was pro-

moted to full professor in 1990. After retirement in 2012, he
is now a visiting associate at California Institute of Technology,
Research Professor at Claremont Graduate University, and occa-
sionally served as a consultant for Qualcomm. He has published
more than 135 refereed articles in the area of approximation the-
ory, potential theory, neural networks, wavelet analysis, and data
processing. His book Weighted Polynomial Approximation was
published in 1997 by World Scientific, and the book with Dr.
D. V. Pai, Fundamentals of Approximation Theory was pub-
lished by Narosa Publishers, CRC, and Alpha Science in 2000.
He serves on the editorial boards of Journal of Approximation
Theory, Applied and Computational Harmonic Analysis, and
Jaen Journal of Approximation. In addition, he was a co-editor
of a special issue of “Advances in Computational Mathematics
on Mathematical Aspects of Neural Networks”, two volumes of
Journal of Approximation Theory, dedicated to the memory of

G. G. Lorentz, as well as two edited collections of research ar-
ticles: Wavelet Analysis and Applications, Narosa Publishers,
2001, and Frontiers in Interpolation and Approximation, Chap-
man and Hall/CRC, 2006. He has held visiting positions, as well
as given several invited lectures throughout North America, Eu-
rope, and Asia. He was awarded the Humboldt Fellowship for
research in Germany four times. He was John von Neumann dis-
tinguished professor at Technical University of Munich in 2011.
He is listed in Outstanding Young Men of America (1985) and
Who′s Who in America′s Teachers (1994). His research was sup-
ported by the National Science Foundation and the U. S. Army
Research Office, the Air Force Office of Scientific Research, the
National Security Agency, and the Research and Development
Laboratories.

E-mail: hmhaska@calstatela.edu

Lorenzo Rosasco received the Ph. D.
degree from the University of Genova, Italy
in 2006, where he worked under the super-
vision of Alessandro Verri and Ernesto De
Vito in the Statistical Learning and Image
Processing Research Unit (SLIPGURU).
He is an assistant professor at the Univer-
sity of Genova, Italy. He is also affiliated
with the Massachusetts Institute of Tech-

nology (MIT), USA, where is a visiting professor, and with the
Istituto Italiano di Tecnologia (IIT), Italy where he is an external
collaborator. He is leading the efforts to establish the Laboratory
for Computational and Statistical Learning (LCSL), born from a
collaborative agreement between IIT and MIT. During his Ph. D.
degree period, he has been visiting student at the Toyota Tech-
nological Institute at Chicago, USA (working with Steve Smale)
and at the Center for Biological and Computational Learning
(CBCL) at MIT– working with Tomaso Poggio. Between 2006
and 2009, he was a postdoctoral fellow at CBCL working with
Tomaso Poggio.

His research interests include theory and algorithms for ma-
chine learning. He has developed and analyzed methods to learn
from small as well as large samples of high dimensional data, us-
ing analytical and probabilistic tools, within a multidisciplinary
approach drawing concepts and techniques primarily from com-
puter science but also from statistics, engineering and applied
mathematics.

E-mail: lrosasco@mit.edu

Brando Miranda received the B. Sc.
degree in electrical engineering and com-
puter science (EECS) and the M.Eng.
degree (supervised by Professor Tomaso
Poggio) in machine learning from Mas-
sachusetts Institute of Technology (MIT),
USA in 2014 and 2016, respectively.

His research interests include machine
learning, statistics, neural networks, theo-

ries in deep learning and applied mathematics.
E-mail: brando90@mit.edu

Qianli Liao is a Ph. D. degree candi-
date in electrical engineering and computer
science (EECS) at Massachusetts Institute
of Technology (MIT), USA, supervised by
Professor Tomaso Poggio.

His research interests include machine
learning, optimization, neural networks,
theoretical deep learning, computer vision,
visual object/face recognition, biologically-

plausible and brain-inspired learning.
E-mail: lql@mit.edu

