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Abstract: To achieve the artificial general intelligence (AGI), imitate the intelligence? or imitate the brain? This is the question!

Most artificial intelligence (AI) approaches set the understanding of the intelligence principle as their premise. This may be correct to

implement specific intelligence such as computing, symbolic logic, or what the AlphaGo could do. However, this is not correct for AGI,

because to understand the principle of the brain intelligence is one of the most difficult challenges for our human beings. It is not wise

to set such a question as the premise of the AGI mission. To achieve AGI, a practical approach is to build the so-called neurocomputer,

which could be trained to produce autonomous intelligence and AGI. A neurocomputer imitates the biological neural network with

neuromorphic devices which emulate the bio-neurons, synapses and other essential neural components. The neurocomputer could

perceive the environment via sensors and interact with other entities via a physical body. The philosophy under the “new” approach,

so-called as imitationalism in this paper, is the engineering methodology which has been practiced for thousands of years, and for many

cases, such as the invention of the first airplane, succeeded. This paper compares the neurocomputer with the conventional computer.

The major progress about neurocomputer is also reviewed.

Keywords: Artificial general intelligence (AGI), neuromorphic computing, neurocomputer, brain-like intelligence, imitationalism.

1 Introduction

For a long time, making intelligent machines has been

a big dream of our human beings. From the early days

of the conventional computer, it is regarded as a such plat-

form. For example, the proposal for the Dartmouth summer

meeting on artificial intelligence (AI) in 1956 claimed that[1]

“as the speeds and memory capacities of present computers

may be insufficient to simulate many of the higher functions

of the human brain, but the major obstacle is not lack of

machine capacity, but our inability to write programs tak-

ing full advantage of what we have.”

During the past six decades, there are roughly four

methodologies to achieve some kinds of AI: symbolism,

connectionism, behaviorism and statisticalism. These four

methodologies had epoch-making achievements in AI by

seizing some characteristics of the intelligence from differ-

ent perspectives. In recent years, deep learning is surging

around the world, especially significantly succeeds in image

and voice recognition, pushing AI forward into the third

revolution.

In particular, AlphaGo, which combines the ideas of deep

learning (connectionism), feature matching and linear re-

gression (statisticalism), Monte Carlo search (symbolism)

and reinforcement learning (behaviorism), and utilizes the
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high performance computing (CPU+GPU) and big data

(160 thousand human games and 30 million self-playing

games), successfully defeated top Go player Lee Sedol in

March 2016, and has recently ranked the world′s first oc-

cupation of professional Go. The rapid progress of AI has

attracted global attention: Countries are launching their

policies or plans to encourage the AI related research, in-

vestment on AI has soared. The ethical problems relating

to the fact, such as intelligent robots will overtake the intel-

ligence of human and even destroy the human being, once

again becomes a hot topic on media and are now being seri-

ously concerned and studied by the academic communities.

The machine intelligence that could successfully perform

any intellectual task that a human being can, be adaptive

to the external environment, and even forms its own self-

awareness, is termed as artificial general intelligence (AGI),

full AI or strong AI. Till now, the artificial intelligence sys-

tems could only realize specific functions or given functions,

and cannot adapt to complex environments or constantly

develop new functions as human does. Therefore, these AI

systems are still domain-specific AI, weak AI or narrow AI.

Could the strong AI be made successfully by use of the

four classic methodologies or the combination of them? It

is still disputable among the researchers but most of them

hold a negative viewpoint that, even with higher perfor-

mance computing platforms and much more big data, such

AI only can progress quantitatively rather than qualita-

tively. The underlying reason of this viewpoint is that it

is impossible to produce strong AI before we really under-

stand the principles of our intelligence. To understand how

the brain produces intelligence is an ultimate problem for
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human, a challenge that most brains scientists even think

that it cannot be solved for centuries or even thousands of

years. That is to say, there is not a basic logic bridge to pro-

duce human level intelligence, as understanding is still in its

infancy. This viewpoint is widely accepted, even for the op-

position of this viewpoint, also share the basic assumption

that “understanding intelligence” is needed before “making

(such) intelligence”.

“Making intelligence” must base on “understanding intel-

ligence”? Is it really true? This is possibly correct for weak

AI such as computation, symbolic reasoning, and what Al-

pha Go does. However, it is not correct for the ultimate

goal of AI, the artificial general intelligence. The reason

is very straightforward: Setting “understanding the brain

intelligence” as the premise means to solve a harder prob-

lem before “making artificial general intelligence”. This is

logically wrong just like putting the cart before the horse.

However, if we move our attention from the traditional

thinking to where is the biological intelligence from, we may

find a “new” way to create the artificial general intelligence,

following a “new” methodology named as Imitationalism.

The underlying philosophy is “function comes from struc-

ture”, i.e., the same structures (with similar functional com-

ponents) will generate similar functions. It is new just be-

cause it reverses the order of “understanding intelligence”

and “making intelligence”. Understanding intelligence (the

functions of the brain) is instead by analyzing its struc-

ture with advanced detection tools (so called brain reverse

engineering). Then, imitate the brain by assembling neu-

romorphic devices (artificial neurons, synapses, etc.) ac-

cording to the structure of the neural networks of the brain

(so called physical imitation engineering). Finally, stimu-

late the artificial brain with signals from the environment

and train it interactively to generate intelligence (so called

intelligence fostering engineering). The brain reverse en-

gineering, physical imitation engineering and intelligence

fostering engineering are collectively called brain imitation

engineering, likely to be realized in dozens of years. Al-

though the three engineering are also very difficult to real-

ize, they are easier than “understanding intelligence”, which

is still unforeseeable and unreachable. The reason why the

word “new” is quotation marked here is that the thinking

of “function comes from structure” has been practiced for

thousands of years, as a classic methodology for engineers.

While the thinking of “understanding comes before prac-

tice” or “seeking scientific principle before any practice” is

an ossified thinking formed in hundreds of years.

Imitationalism can be regarded as the fifth methodology

for AI, following the symbolism, connectionism, behavior-

ism and statisticism. It has close relationships with the

above four methodologies and is also a necessary step for

the above four to achieve the ultimate goal of artificial gen-

eral intelligence. The advanced intelligence of human ba-

sically results from complex neural network structure and

the strong information processing capability of the cerebral

cortex[2]. The conventional computer, which implements

mathematical logic with switching circuit under Von Neu-

mann architecture, is a good platform to realize specific

intelligence such as logical reasoning, but not suitable to

realize the artificial general intelligence. In fact, Von Neu-

mann had not expected his architecture to become an AI

platform when he developed it seven decades ago. On the

contrary, he had carefully considered the possibility to de-

sign a new type of computer according to the neural system

of the human brain.

Although the concepts of the artificial neural networks

and the computer came into being basically in the same pe-

riod, the exponential increasing performance of computer

under the Moore′s law in the past half century gave peo-

ple an illusion that the conventional computer is powerful

enough to implement AI, which overshadowed the greatness

of the thinking of neural networks. In fact, the top super-

computer nowadays could only simulate the functionalities

of the brain by 1%, with very huge power consumption.

Therefore, in order to imitate the brain as per the imitation-

alism, it is required to design a totally new platform which

could be called brain-like computer or neurocomputer[3],

which is a milestone of the brain imitation engineering and

will be the corner stone to achieve the artificial general in-

telligence.

2 The “New” methodology

Before revealing the mechanism of the human brain in-

telligence, is it possible to make an artificial general intel-

ligence? The answer is positive, and making such an in-

telligent machine may be the best shortcut to uncover the

enigma of the human intelligence[4, 5].

The human intelligence is the unique function of our liv-

ing brain. As pointed out by Markram and Meier[6] in the

report on human brain project submitted to Europe Union

(EU), “no other natural or engineered system can match

its ability to adapt to novel challenges, to acquire new in-

formation and skills, to take complex decisions and to work

reliably for decades on end. And despite its many diseases,

no other system can match its robustness in the face of se-

vere damage or match its amazing energy efficiency. Our

brain consumes about 30 W, the same as an electric light

bulb, thousands of times less than a small supercomputer.”

Understanding how the human brain produces intelli-

gence (understanding intelligence) is the ultimate problem

in the brain science. Similarly, making the human level in-

telligence (making intelligence) is the technical crown of en-

gineering technology. If the problem of “understanding in-

telligence” could be solved, it will be naturally easy to real-

ize “making intelligence”. But, we still know little about the

human intelligence. In fact, “What is the biological basis of

consciousness?” is listed in the top 25 big “What do not we

know” questions by Science in July of 2005. The intelligence

of the brain is from the dynamic behavior of the biological

neural networks, while the mathematical and physical the-

ory to handle it is not available. Therefore, putting our
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hope for making intelligence on understanding intelligence

is actually to base one problem on the solving of another

more difficult problem, which misleads many researchers

in the past 60 years′ history of AI. In order to make new

progress in AI in the new era, we must break away from the

traditional thinking and correctly position the relationship

between the scientific problem (understanding intelligence)

and the engineering problem (making intelligence).

2.1 Function comes from structure

The relationship between brain and awareness, or that

of machine and intelligence, is just like the relationship be-

tween airplane and flying, or more simply, between glue

and bonding, or that of flute and its sound. Here is the

question: Is it necessary to understand the chemical prin-

ciple underlying the bonding function before making any

glue? Is it necessary to draw out the aerodynamic for-

mula of the beautiful flute sound before making a flute?

Obviously, we surely are not against that those flute mak-

ers hundreds years ago, even nowadays, do not understand

aerodynamics. But if we are questioned whether it is neces-

sary to study aerodynamics before making an airplane, the

answer may be not so obvious as before. Undoubtedly, the

plane designers in present times should learn aerodynamics.

However, when Wright brothers designed the first plane of

the world in 1903, there was not a subject on aerodynamics.

Inspired by bird gliding, they succeeded on flying the first

plane with a mechanical engine. In 1908, after having ob-

served a short flight by Henry Farman in a test airplane in

Paris, Theodore von Krmn started to believe the machine

also could fly and “determined to make every effort to study

the mystery about wind and flying in the wind”. 30 years

later, he successfully established the aerodynamics with his

student Qian Xuesen (Hsue-Shen Tsien) and answered the

question of why the airplane could fly in the air.

It is the same with the relationship between “understand-

ing intelligence” and “making intelligence”. To achieve a

true humanoid intelligence, we must first distinguish the

function of the brain function (intelligence, consciousness)

from the structure of the brain structure (mainly neural

networks of the cerebral cortex). Even though our objec-

tive is to realize intelligent functions, we need to go back

to the structural level, i.e., to firstly make out the same

structure and then test if it could produce the anticipated

function. Just like as the engineering methodology, prac-

ticed by human beings for thousands of years, to make new

devices such as a flute, a plane or the future general intel-

ligent machines.

The human brain is so far the most complex structure

known in the universe, but still a physical structure with

limited complexity: hundreds of billions of neurons (1011)

in hundreds of kinds, each of which has several thousand

or even ten thousand synapses which connect with other

neurons (the total connection quantity may exceed 1014).

With neuroscience experimental approaches, the physico-

chemical property of neurons and synapses could be an-

alyzed from the perspective of molecular biology and cell

biology, and their characteristics on signal processing and

information processing may be represented as mathematical

models. For achieving the above goals, there is no obsta-

cle that we cannot surmount. The neuron and synapse, as

information processing unit, lay the lower bound for the

structural analysis. With continuous advancing detection

tools and increasingly sophisticated analytical approaches,

mapping the structure of the brain is a realizable engineer-

ing.

The human brain, like a deep valley lying between us

and the artificial general intelligence, is not a bottomless

one. One reason for the bottomless feeling is that most AI

research excessively focuses on the crown on the peak in

the past. In 2008, the National Academy of Engineering of

USA listed reverse engineering of the human brain as one

of the major engineering problems of 21st century[7]. Re-

cently, more and more “Brain Projects” launched worldwide

are offering more supports to high precision brain mapping.

Therefore, we should not be entangled in the controversy

on how the intelligence is produced, but try to make any

possible breakthroughs in brain structure imitation based

on the latest works on brain structural mapping. Once the

brain imitating machine could produce some functions of

the brain, the mystery of the brain may be unveiled in a

foreseeable period.

2.2 Three steps to imitate the brain

The brain imitation engineering could be divided into

three interrelated steps or three sub-engineering fields: the

brain reverse engineering (BRE), the physical imitation en-

gineering (PIE) and the intelligent fostering engineering

(IFE). The fundamental task is to make out the brain-like

machinery, or a neuromorphic computer, or neurocomputer

for short. The neurocomputer is the machine which imi-

tates the structure of the brain′s neural systems and its in-

formation processing mechanism, with the goal to produce

artificial general intelligence.

The goal of the brain reverse engineering is to map

the brain at structural level. That is, analyze the hu-

man brain as a matter or physiological object to make

clear the functions of basic elements (various neurons and

synapses) and their connection relations (network struc-

ture). This stage is mainly completed by neuroscience ex-

periments and advanced analysis and detection technology.

British physiologists, Alan Hodgkin (1914–1998) and An-

drew Huxley (1917–2012) jointly put forward, in 1952, the

famous Hodgkin-Huxley equation (HH equation)[8] which

exactly described the dynamic discharge process of single

neuron and won the Nobel Prize in 1963. Tsodyks et al.[9]

jointly constructed computing model of synapse in 1998.

In 2005, Swiss Federal Institute of Technology in Lausanne

(EPFL) launched the blue brain program to approach the

bio-realistic imitation[10] of the cortical columns of specific
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brain regions. In January 2013, Europe launched the hu-

man brain program by investing more than one billion Eu-

ros to combine information technology and life science, and

integrate single molecule detection and entire brain struc-

ture analysis to realize the whole brain simulation[11]. In

April 2013, that is about three months later, Obama an-

nounced that 4.5 billion dollars would be invested in BRAIN

Initiative[12] to draw out the dynamic map of the human

brain in twelve years[13]. The relevant progresses show that

significant breakthroughs may be achieved on structural

mapping of the human brain in the coming decade.

The target of the physical imitation engineering is to

make out micro-nano devices that could emulate the func-

tions of neurons and synapses so as to construct the neural

network system of human brain scale under the conditions

of limited physical space and power consumption. The rep-

resentative project of this kind is the systems of neuromor-

phic adaptive plastic scalable electronics (abbreviated as

SYNAPSE) launched by defense advanced research projects

agency (DARPA) in 2008 to develop a kind of electronic de-

vice with power consumption of 1 kW (that of the human

brain is about 30 watts) that could match the human brain

cortex in terms of function, scale and density, for which IBM

and several universities were granted over 100 million dol-

lars. On August 7, 2014, IBM[14] released an article on Sci-

ence to announce they successfully developed neuromorphic

chip TrueNorth which contains 1 million neurons and 256

million synapses. This event was listed in “Top 10 Scien-

tific Breakthroughs in 2014”. University of Heidelberg has

amassed rich experience in development of neuromorphic

chips over a dozen of years[15, 16] and successfully integrated

200 thousand neurons and 50 million synapses on an 8-inch

wafer in March 2015. Because the amount of synapses of

the human brain is ten thousand times that of neurons, the

synapse-imitating devices become a hot topic in the inter-

national research community. Recently, fast progresses are

also made in memory resistors and optical synapses.

The main hardware of the neurocomputer is the large

scale neuromorphic chip, which includes a neuron ar-

rays and a synapse array, the former mutually connected

through the latter. One typical connection structure is cross

bar which enables one neuron to connect with one thou-

sand or even ten thousand other neurons. This connection

structure could be configured or adjusted by software. The

basic software of the neurocomputer is mainly used for real-

izing the mapping of various kinds of neural networks onto

underlying neuromorphic hardware. The “software neural

networks” may copy from specific regions of the biological

brain, or may be optimized or newly-designed neural net-

works based on the biological one.

The intelligent fostering engineering is about the appli-

cation software of the neurocomputer, which aims to enable

the neurocomputer to produce intelligence similar to the hu-

man brain or even self-awareness by applying information

stimulation, training and learning. The stimulation may be

the virtual environment, various kinds of information (e.g.,

big data from the internet) and signals (e.g., cameras and

sensors of internet of things around the world) from the real

environment, or exploration and interaction experience ob-

tained by installing it on a robot body which can move in

the natural environment. This method takes the method-

ology of behaviorism except for replacing the intelligence

platform with the neurocomputer. By use of interactivity,

the adjustment to connection relationship and connection

strength of synapses of the brain-imitating neural networks

is realized, to realize learning, memorizing, recognition, con-

versation, reasoning and other high level intelligence.

Imitationalism can be regarded as another methodol-

ogy following symbolism, connectionism, behaviorism and

statisticism, and has close relationship with the four. In

particular, imitationalism can be regarded as extreme con-

nectionism: the neurons, synapses and neural circuits all

approach the biological counterparts as possible so as to re-

peat corresponding biological functions from the elements

to the entire network. Although the classic artificial neural

network is one form of connectionism, its measures are to

the contrary: Use the simplified neuron models and human-

designed network structure to produce complex functions;

Although some functions may be realized, it is not known

when the real human level intelligence could be produced.

Imitationalism is to approach neural networks from the

structural level, therefore it is more possible to produce

the artificial general intelligence. The principle of the intel-

ligence could be further studied after successful production

of the intelligence. Certainly, simplifying or optimizing so-

lution can be considered after full understanding of the in-

telligence, which is fully consistent with the technical engi-

neering methodology that has been practiced for thousands

of years.

2.3 Towards AGI: Conventional computer
versus neurocomputer

It is well known that the conventional computer is based

on mathematical logics and the switching circuit theory.

In 1936, to prove the existence of the “incomputable num-

ber”, Alan Mathison Turing proposed a universal comput-

ing machine that only processes binary symbols (0 and 1)

and could also imitate any mathematical reasoning process,

which is widely regarded as the origin of modern computers.

In 1938, Claude Elwood Shannon (1916–2001) established

the theory of switching circuits which bridges mathemati-

cal logics with the physical implementation. In 1946, the

first computer ENIAC was successfully developed, which, in

essence, is a large mathematical logic circuit system made

up with about 18 thousand electronic tubes. In the same

year, John von Neumann (1903–1957) put forward the stor-

age program architecture with storage and computing sep-

arated (called Von Neumann architecture) which actually

is the physical embodiment of Turing machine. By the

end of 1947, Bell Labs invented the transistor which be-

came a smaller and more efficient substitute for the vac-
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uum tube. In 1952, the first computer of Von Neumann

architecture (EDVAC) came into being which only used

2 300 electronic tubes but increased its performance by ten

times that of ENIAC. In 1954, Bell Labs successfully assem-

bled the first transistor-based computer TRADIC, which

signaled the coming of large-scale integrated circuit tran-

sistors into our world and then the computer performance

increased at an exponential rate under the Moore′s law.

The conventional computer based on Turing model has,

on one hand, its theoretical limits (“incomputable number”)

and on the other hand is a kind of general computing tool

which could help realize various applications. Is it possible

to realize the human level intelligence since the computer

could be used as a platform to realize various intelligent

applications? Or, could all the intelligence of the human

brain be computed? This is a question that has not been

answered theoretically till now. Could the neurocomputer

realize all the intelligence of the human brain? Is the neu-

rocomputer still a Turing machine? Both of the questions

above are also pending till now. In that case, why should

we make the neurocomputer? Why not to continue using

computers as a platform to realize stronger intelligence or

even the strong AI?

The neurocomputer does not preclude using computers

continuously as a platform to develop stronger intelligence

or the strong AI. However, the information processing on

the conventional computer is based on the one-dimension

instructions sequences, and for each instruction, one or

more data may be fetched from and stored into the memory.

The biological neural network, as a parallel system which

processes the spiking trains asynchronously, can generate

complicated non-linear behaviors. Even the neurocomputer

is theoretically proved to be a Turing machine in the future,

it is still necessary to process the dynamic multi-dimension

information more efficiently. As transforming such tasks to

one-dimension instructions stream and then executing on

the conventional computers will cost extremely much (hard-

ware scale and power consumption), or even not achievable

in finite time.

Von Neumann is the person who best knows about the

advantages and disadvantages of the computer architecture

he proposed. Subsequently, the computer of the Von Neu-

mann architecture is developed at an unprecedented speed,

which forced him to concentrate his efforts onto the de-

sign and implementation of the computer, for which he was

later widely reputed as the father of computer. However,

Von Neumann did not think as later generations that his

architecture is excellent enough to be used as the plat-

form for AGI, so in his last years, he continued to study

how to use unreliable components to design a reliable au-

tomata and how to design a self-reproductive automata.

As Von Neumann was hospitalized for cancer in April 1956,

it was impossible for him to give his points, in that sum-

mer, to Dartmouth summer research project on AI, which

marked the advent of the new subject. One year after the

death of Von Neumann, the book The Computer and The

Brain was compiled based on his uncompleted documents

for the Silliman lecture for Yale University and published

in 1958[17], about more than half of which was describing

neurons, nerve impulse, neural networks and information

processing mechanism of the human brain.

Alan Turing, widely reputed as “Father of Theoretical

Computer” and “Father of AI”, also did not regard the

computer as the natural platform for realizing real intel-

ligence. In October 1950, Turing showed his thinking for

making intelligent machine in his article titled “Computing

Machinery and Intelligence”[18] . Turing thought the real in-

telligent machine must be able to learn. He described how

to make such machine by taking human development as a

model: Simulate the child brain firstly, then educate and

train it. Consequently, Turing did not concentrate on the

computer as Von Neumann, and came into mathematical

biology. In 1952, Turing released an article titled “Chem-

ical Basis for Morphogenesis” in which he used “chemical

reaction-diffusion equation” to explain the development of

patterns and shapes in biological organisms (this hypothesis

was verified by experiments 60 years later). For this rea-

son, Turing became the founder of morphogenesis theory.

If he did not pass away so early, it is basically sure that he

would make great contributions to dynamic analysis of neu-

ral networks of the human brain, and the neurocomputer

imitating the human brain would also come out earlier.

Following the Moore′s law, conventional computer has

been developed very fast for half a century. The great

success of computer applications overshadowed the short-

comings of the Von Neumann architecture. The architec-

ture is characterized by separation of memory and process-

ing unit. The key advantage of the design is the software

could be programmable, namely, different software could

be loaded in the same hardware platform to implement dif-

ferent functions; at the same time, this is its key disad-

vantage, that is the huge communication cost between the

memory and the processing units, which negatively affects

its performance and results in the problem called “memory

wall”[19] . Comparatively speaking, the human brain has

the following characteristics and advantages: high error-

tolerance (tolerate the deaths of large numbers of neurons

while keeping its basic functions normal), high parallelism

(about 1011 neurons), high connectivity (more than 1014

synapses), low computing frequency (about 100 Hz), low

communication rate (several meters per second), low power

consumption (about 20 watts). A researcher proposed an

index for comparing the performance of the human brain

and the computer[8]: the number of traversed edges per sec-

ond (TEPS) on a large random graph. Its basic thinking is

that the performance bottleneck of the human brain is not

computing but communication between neurons; and one

impulse used for communication between neurons is similar

to traversing one edge on the graph. Based on the TEPS

index, the human brain is about 30 times faster than the

existing fastest computer in the world[20].

Table 1 is a comparison of the emerging neurocomputer

with conventional computer from the classic perspectives.
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Table 1 Comparison of the conventional computer and neurocomputer

Conventional computer Neurocomputer

Components Transistor to construct switching circuits Neuromorphic devices to imitate biological neurons

and synapses

Architecture Turing model Based on biological neural networks

Von Neumann architecture

Hardware Arithmetic logic unit Neuron array

Control unit Synapse array

Registers Routing bus

Data and control bus

Basic software Operation system Neuromorphic array configuration

Complier Mapping neural networks to neuromorphic array

Dynamic behaviors management

Application software Data structure + algorithm = (Big) data + training algorithm =

(artificial) program (autonomous) learning

Typical functions Calculation Structure discovery from non-structural sensing

Logical and structural data processing and perception

Target intelligence Artificial intelligence Autonomous intelligence

AGI

Science base Cognitive science Neuroscience

2.4 Why not the artificial neural network?

The human intelligence is produced by neural networks of

the human brain, therefore it is a natural idea to choose the

artificial neural network to imitate the neural networks of

the human brain. The idea can be traced back to the math-

ematical model of neurons proposed by neurophysiologist

Warren Sturgis McCulloch and the scientist of mathemat-

ical logician Walter Harry Pitts in 1943. In their seminal

paper entitled “A Logical Calculus of Ideas Immanent in

Nervous Activity”, they proposed a simple formalized neu-

ron often called as McCulloch-Pitts neuron, which is still

the standard of reference in the field of artificial neural net-

work.

In March 1955, the Western Joint Computer Conference

(WJCC) was held in Los Angeles, where Walter Harry Pitts

chaired a session on learning machine. During the ses-

sion, two participants, Oliver Selfridge and Alan Newell,

also presented the Dartmouth AI meeting one year later,

respectively published a paper on pattern recognition and

another paper on the possibility for computer to play chess,

from two different viewpoints. Walter Pitts summarized the

session that “(one viewpoint) tries to imitate the nervous

system, while Mr. Newell tries to imitate intelligence · · ·
but both of the viewpoints are leading to the same target.”

This laid a start point to fight against each other for the

approaches of “structure” and “function” in the following

decades[21, 22].

Comparing with the transistor which boosted the com-

puter for decades, the lack of neuromorphic devices confined

the steps of neural networks. In 1940s, people had as much

enthusiasm to neural networks as to the computer. Many

researchers were studying the relationship among neuro-

science, information theory and control theory, and used

the simple networks to make some robots, the most famous

of which is the Tortoise made by William Grey Walter. It

is known that IBM produced the first electronic computer

IBM701 in 1953, but it is little known that IBM invented

neural networks containing 512 hardware neurons in 1956.

In 1957, Frank Rosenblatt invented the “perceptron” algo-

rithm at the Cornell Aeronautical Laboratory. The percep-

tron was intended to be a physical machine, rather than a

program, while its first implementation was in software for

the IBM 704. It was subsequently implemented in custom-

built hardware as the “Mark 1 perceptron”. This machine

was designed for image recognition: It had an array of 400

photocells, randomly connected to the “neurons”. Weights

were encoded in potentiometers, and weight updates during

learning were performed by electric motors. In the 1960s,

Bernard Widrow and Ted Hoff developed adaptive linear

neuron (ADALINE) which used electrochemical cells called

memistors (memory resistors) to emulate synapses of an

artificial neuron. The memistors were implemented as 3-

terminal devices operating based on the reversible electro-

plating of copper such that the resistance between two of

the terminals is controlled by the integral of the current

applied via the third terminal. The ADALINE circuitry

was briefly commercialized by the Memistor Corporation

in the 1960s enabling some applications in pattern recog-

nition. However, since the memistors were not fabricated

using integrated circuit fabrication techniques, the technol-

ogy was not scalable and was eventually abandoned. Con-

sequently, limited by high costs for making electronic neural

devices, no visible progress was made in making the large-

scale physical neural networks.

In 1982 and 1984, John Hopfield, a famous biophysicist of

USA published two articles about the artificial neural net-

works, which reminded the people again to dig the power

of neural networks. In 2006, Hinton and Salakhutdinov[23]

proposed deep belief networks in the paper published on
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Science, which triggered the return of the artificial neural

networks and the third AI revolution featured with deep

learning.

Except for the lack of neuromorphic devices to imitate

the biological ones, the neuron and synapse model em-

ployed by the artificial neural networks are too simple to

match the biological one, in at least three aspects. Firstly,

the mathematical model of bio-neurons, say the Hodgkin-

Huxley equation, is much more complex than that of the

artificial neural networks. Secondly, the human brain is a

kind of extremely complex bio-tissue that is made up of

about one hundred billion neurons of different types, which

are mutually connected through several thousand or even

ten thousand synapses for each. There are still two orders

of magnitude gap to imitate the human brain with the top

high performance supercomputer in the world, even with

a simplified neuron model. Thirdly, biological neural net-

works use action potential to represent and convey infor-

mation and process the information as per nonlinear dy-

namic mechanism. The existing artificial neural networks

including deep learning networks still have not such dy-

namic features. In order to make stronger intelligence or

even the artificial general intelligence, it is necessary to em-

ulate bio-neural network system in structure and elements

more accurately.

3 Progress of neurocomputer

Neurocomputer, or the neuromorphic computer in more

formal sense, is an intelligent machine constructed accord-

ing to structure of the neural networks in the brain, with

neuromorphic devices which imitate the functionalities of

the biological neurons and synapses, to implement brain-

like intelligence and artificial general intelligence.

The concept of brain-like machinery could be traced back

to Gerald Maurice Edelman (1929–2014), who shared the

1972 Nobel Prize in physiology or medicine for work with

Rodney Robert Porter on the immune system. Soon af-

ter that, Edelman[24] turned his interest to the theory of

consciousness, documented in a trilogy of technical books

and in several subsequent books. In his books, Edel-

man argued that the mind and consciousness are purely

biological phenomena, arising from complex cellular pro-

cesses within the brain, and that the development of con-

sciousness and intelligence can be explained by Darwinian

Theory[25, 26]. To verify his so-called synthetic neural mod-

eling theory[27], Edelman led the developing of the brain-

based-devices (BBD)[28−31], the Darwin series of neural au-

tomata from 1981. BBDs were originally software models,

they have had physical bodies that interact with the envi-

ronment from 1992. The body known as neurally organized

mobile adaptive device (NOMAD) platform, developed in

2000, has many sensors, such as a pan-tilt color camera for

vision, artificial whiskers for texture sensing. Darwin X and

Darwin XI (2005–2007) investigated a hippocampal model

of spatial, episodic, and associative memory that learned to

navigate both open-field and maze environments, by sim-

ulating the medial temporal lobe and surrounding cortical

regions (100 K neuronal units, 1.2 M synapses). In 2005, a

special scientific version of BBDs, granted by DARPA, was

undefeated in a series of exhibition games against the clas-

sic AI-based robots from Carnegie Mellon University at the

US Open RoboCup in Atlanta.

Also early to 1980s, Professor Carver Mead of CalTech,

a pioneer of modern microelectronics, began to explore the

potential for modelling biological systems of computation,

for both animal and human brains, and pioneered the neuro-

morphic engineering concept and practices. Mead predicted

correctly that the conventional computer would use ten mil-

lion times more energy (per instruction) than the brain uses

(per synaptic activation). Observing graded synaptic trans-

mission in the retina, Mead became interested in the poten-

tial to treat transistors as analog devices rather than digital

switches[32]. He noted parallels between charges moving in

metal oxide semi-conductor (MOS) transistors operated in

weak inversion and charges flowing across the membranes

of neurons[33]. Mead[34] succeeded in mimicking ion-flow

across a neuron′s membrane with electron-flow through a

transistor′s channel, the same physical forces are at work

in both cases. He worked with Professor John Hopfield

and Nobelist Richard Feynman, helping to create three new

fields: neural networks, neuromorphic engineering, and the

physics of computation[35]. During the 1980s, Mead led a

number of developments in bio-inspired microelectronics,

culminating in the publication of his book entitled Analog

Very Large Scale Integration (VLSI) and Neural Systems

in 1989[33] . In May 1989, Mead co-chaired a Workshop

on Analog Integrated Neural Systems on working chips in

this area, in connection with International Symposium on

Circuits and Systems. The authors listed in the published

proceedings[36] are still leading figures in neuromorphic en-

gineering and/or related areas of research till to now. Also

from 1989, Mead started to advise Misha Mahowald, a

Ph.D. degree candidate in computation and neural systems,

to develop the silicon retina, using analog electrical circuits

to mimic the biological functions of rod cells, cone cells, and

other non-photoreceptive cells in the retina of the eye[37].

In 1992, Misha was awarded the Ph.D. degree in compu-

tational neuroscience, a symbol of the emerging subject,

with her prized thesis for its originality and “potential for

opening up new avenues of human thought and endeavor”.

Kwabena Boahen, who has also participated in the devel-

opment of the silicon retina[38] when he was a Ph.D. degree

candidate supervised by Mead from 1989 to 1997, devel-

oped the Neurogrid from 2005 in the “brains in silicon”

laboratory established by him at Stanford University. Neu-

rogrid uses subthreshold analogue circuits to model neuron,

with a quadratic integrate and fire model, and synapse dy-

namics in biological real time[39]. Each neurocore, which

integrates 65 536 sub-threshold analogue neurons on chip,

includes a router that is able to route spike packets between

its local chip, its parent chip, and its two child chips via
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digital communications. The neurogrid system comprises a

software suite for configuration and visualisation of neural

activities.

The IBM TrueNorth chip is the outcome of a decade of

work under the DARPA SYNAPSE program aimed at deliv-

ering a very dense, energy-efficient platform capable of sup-

porting a range of cognitive applications[40] . The key com-

ponent is a very large, 5.4 million transistor 28 nm comple-

mentary metal Oxide semiconductor (CMOS) chip that in-

corporates 4 096 neurosynaptic cores where each core com-

prises 256 enhanced LIF (leaky integrate and fire) neurons

each with 256 synaptic inputs[41]. The chip is all digital, and

operates asynchronously apart from a 1 kHz clock that de-

fines the basic time step. TrueNorth chips can be connected

directly together to form larger systems, and a circuit board

with 16 chips has been developed, incorporating a total of 16

million neurons and 4 billion synapses. Larger systems can

be assembled by connecting multiple boards together. The

hardware behaves deterministically exactly as predicted by

a software model, which can therefore be used for appli-

cation development and to implement learning algorithms.

The philosophy underpinning the TrueNorth support soft-

ware is to raise the level of abstraction at which applications

are conceived from the level of the individual neuron to the

level of cognitive modules, where each module occupies one

neurosynaptic core, and a library of such modules can be

pre-generated and made available with tested and tried per-

formance and behavior.

The BrainScaleS neuromorphic system has been devel-

oped at the University of Heidelberg over a series of projects

funded by the European Union, including the fast ana-

log computing with emergent transient states (FACETS)

projects and the BrainScaleS project. Ongoing support

for BrainScaleS comes from the EU ICT fiagihip human

brain project. BrainScaleS employs above- threshold ana-

logue circuits to implement the AdExp (adaptive exponen-

tial integrate-and-fire) neuron model[42], contrasting with

the subthreshold circuits favoured by Carver Mead and

used in the Stanford Neurogrid, and yield much faster cir-

cuits, running at 10 000 times biological speeds. Accord-

ingly, BrainScaleS uses wafer-scale integration to intercon-

nect the neurons very efficiently to accommodate the 10 000

times speedup[43], in which each of the 48 reticles holds

eight HiCANN (high-count analogue neural network) die,

each of which implements 512 neurons and over 100 000

synapses. The primary communication layer in the Brain-

ScaleS system operates within a wafer through hi-speed se-

rial channels, each convey the output of 64 neurons from one

HiCANN die to another. These high-speed channels pass

through cross-bar switches to route the channels across the

wafer. The support software for BrainScaleS is PyNN[44], a

python-based neural network description language. PyNN

not only specifies the network but can also define the net-

work inputs and how the user wishes to visualise the out-

puts, offering a sophisticated environment for specifying

and managing neural network modelling. At the end of

March 2016, a 20-wafer BrainScaleS platform incorporating

4million neurons and 1 billion synapses running at about

10 000 real-time was released for open access by The EU

Flagship Human Brain Project (HBP) to the scientific com-

munity, to accelerate progress in neuroscience, medicine,

and computing.

The SpiNNaker from the University of Manchester,

grounds on the advanced reduced instruction set computer

(RISC) machine (ARM) architecture, is a massively-parallel

digital computer whose communication infrastructure is

motivated by the objective of modeling large-scale spiking

neural networks with connectivity similar to the brain in

biological real time[45]. The current largest SpiNNaker ma-

chine (available as another EU HBP platform) incorporates

500 000 processor cores, with a goal of doubling this to a

million cores over the coming year. Brown et al.[46] de-

scribes the (rather unusual) low-level foundation software

developed to support the operation of the machine.

The above mentioned Neurogrid, BrainScaleS,

TrueNorth, SpiNNaker and other neuromorphic systems

shape the profile of nowadays′ neurocomputer, the novel

neuromorphic devices will form its future, as to imitate

human brain means to integrate 1011 neurons and 1014

synapses in a limited physical space and with low en-

ergy consumption[47]. As mentioned above, the neuron

model is LIF for IBM TrueNorth, adaptive quadratic IF

for Neurogrid, more accurate AdExp for BrainScaleS and

programmable, thus possible to approximate the HH equa-

tion, for SpiNNaker and any software-based system on high

performance computer. In August 2016, IBM scientists in

Zurich announced they create world′s first artificial neurons

with phase-change materials[48] , if practicable, a big step

to physical neuron.

Compared with emulating the bio-neuron, a bigger chal-

lenge is to invent the physical device to emulate the bio-

synapse. The synapse between neurons is not a simple con-

nection but a place where memory and learning happen.

The human brain contains up to 100 TB synapses, tens

of thousands of times more than the number of neurons.

If the synapse is emulated with the static random access

memory (SRAM) and each synapse occupies 8 bit, 100 TB

SRAM is required. The Tianhe-2 supercomputer only con-

tains 144 TB dynamic random access memory (DRAM).

Therefore, the physical device whose size is smaller than

transistor and functional characteristic is close to that of

biological synapse, is necessary for brain-level imitation on

neurocomputer.

Memristor, also called memory resistance, seems to be

born for synapse imitating. This concept is introduced by

Leon O. Chua, a Chinese scientist at the University of Cal-

ifornia, Berkeley, in his paper Memristor–the Missing Cir-

cuit Element in 1971. In 2008, HP Laborary introduced re-

sistive random access memory (RRAM) made by titanium

dioxide to reproduce the functionality of the memristor[49].

In 2009, HP proved that Crossbar Latch can be used to

implement stacked-3D memristor array easily. The switch
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between wires is about 9 square nanometers, and the switch

time is less than 0.1 ns. In July 2011, Samsung announced

a great breakthrough in RRAM technology. In 2013, Dr.

Andy Thomas and his colleagues from Bielefeld University

stated in a paper that memristor can continually increase

or decrease resistance to emulate the learning and forget-

ting process of the artificial brain. In January 2014, Leon

O. Chua published Brains are Made of Memristors, whose

main idea is that the response characteristic of synapses

is highly similar to that of memristors. HRL laborato-

ries, also got the support from DARPA SyNAPSE project,

used memristors to simulate synapses from the beginning

and has more emphasis on the approximation of biological

nervous system, especially the flexibility and programma-

bility of neural connections as well as the learning ability.

Narayan Srinivasa, the SyNAPSE chief researcher of HRL

laboratories, said that their neuromorphic architecture uses

abundant programmable brain-like connections, and they

are currently focused on building a 2D cross matrix to re-

duce the risk to the limits, but they will extend the ar-

ray to 3D in the future to simulate real synaptic structures

found in the brain. According to the public information,

HRL neuromorphic chip contains 576 neurons and 73 000

synapses, and its power consumption is 120 mW/cm2. IBM

also implied the possibility of using memristors in the future

in the paper about TrueNorth chip in 2014.

From 2008, memristors[48−53] and phase-change

memory[54−58] with intrinsic similarities to biologi-

cal synapses attracted worldwide attention. Espe-

cially, the contributions from China, including Peking

University[59−62], Tsinghua University[63−66], Nanjing

University[67−70], Chinese Academy of Sciences[71, 72],

Huazhong University of Science and Technology[73−77] and

National University of Defense Technology[78−80] , demon-

strate the potential impact to this area from China. Al-

though these devices do not feature in current large-scale

neuromorphic systems, they may fundamentally change the

landscape of the neurocomputer in the future.

In recent years, brain-mapping initiatives have been pop-

ping up around the world. The Human Brain Project of

the EU, the Brain Research through Advancing Innovative

neurotechnologies (BRAIN) of the United States, the brain

mapping by Integrated Neurotechnologies for Disease Stud-

ies (Brain/MINDS) of Japan, the Brain-mapping Project of

Korea and the brain science and brain-inspired intelligence

technology project of China, successively debut, with the

sharing goal of mapping the brain. To efficiently join forces,

the Global Brain Workshop 2016, convened in the April

of 2016, identified three grand challenges. The anatomi-

cal neurocartography of the brain, as the first challenge,

exactly is the foundation of the Neurocomputer. Accord-

ing the opinion of the experts of the workshop, “within

a decade, we expect to have addressed this challenge in

brains including but not limited to drosophila, zebrafish,

mouse, and marmoset, and to have developed tools to con-

duct massive neurocartographic analyses”[81] . As if to prove

the expectation, half year later, Ryuta Mizutani and Pals

at Tokai University in Japan complete an accurate 3D map

of a drosophila brain′s neural network, with about 100 K

neurons[82].

4 Conclusions

To make artificial general intelligence by imitating the

human brain is not a new idea. As capturing some features

of the biological counterpart, the artificial neural network

demonstrated significant advantage on making more and

more powerful artificial intelligence. However, at least three

barriers constrained artificial neural network to make artifi-

cial general intelligence: the too simple neuron and synapse

model, the human designed network structure and the lack

of dynamic behaviors.

Along with the inventing of the neuromorphic devices

which can imitate the bio-neuron and synapse more accu-

rately in the last decade, making hardware neural network

to imitate the biological neural networks is becoming possi-

ble. The neurocomputer based on neuromorphic hardware

is taking on the mission to make the artificial general in-

telligence. There are various differences between the con-

ventional computer and the neurocomputer. Among them,

the most prominent is the form of the information to be

processed. In Turing′s model, which is inherited by the

Von Neumann architecture, the data and instructions both

are represented as one dimension sequence, which is essen-

tial to prove the existence of the “incomputable number”,

also fine to implement arithmetic calculation and logic in-

ference, but not enough to represent the dynamic 3D world

and other more complicated forms, including the high di-

mension virtual worlds imagined by the human brain. In

contrast, the neurocomputer, which duplicates the biologi-

cal neural network, can handle the spike trains just like a

brain. That is, the neurocomputer can process the spatial-

temporal information in a dynamic way, which can not only

cut off the huge energy consumption on information trans-

form and exchange between the processor and the memory

of the conventional computer, but also and more impor-

tantly, to reserve the dynamic nature of the information

to create real intelligence for which the dynamic is indis-

pensable. Therefore, the neurocomputer, but not the con-

ventional computer, is the essential platform to achieve the

artificial general intelligence.

The AGI is not the final destination of the neurocom-

puter, but a start point to explore the secret of conscious-

ness. Neuroscientists have even proposed, “Perhaps the

greatest unresolved problem in visual perception, in mem-

ory, and, indeed, in all of biology, resides in the analysis

of consciousness”[83] . Zhang and Zhou[84] even designed

simulation experiments to emulate self-consciousness, and

indicated that self-consciousness can be imitated by ma-

chines. Obviously, the emerging neurocomputer will be an

ideal platform to dig such exploration deeper and deeper.

In return, such exploration will inspire new idea on opti-
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mizing the neurocomputer′s architecture deriving from the

biological brain.

The conventional computer leads us into the information

age via increasing performance and information processing

capacity, the neurocomputer will lead us into the intelli-

gence age via supporting the autonomous intelligence and

even artificial general intelligence. Although the neurocom-

puter is still very primitive nowadays, once succeed, it may

make the machine as intelligent as, even surpass, our hu-

man beings[85]. Do not underestimate the neurocomputer,

just as what should not have been done when the computer

was invented in 1940s. The wise decision is to follow Alan

Turing′s suggestion at the end of his paper on “Can ma-

chines think?”[19], that is:

We can only see a short distance ahead, but we can see

plenty there that needs to be done.
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