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Abstract
As a relatively new physiological signal of brain, functional near-infrared spectroscopy (fNIRS) is being used more and more
in brain–computer interface field, especially in the task of motor imagery. However, the classification accuracy based on this
signal is relatively low. To improve the accuracy of classification, this paper proposes a new experimental paradigm and only
uses fNIRS signals to complete the classification task of six subjects. Notably, the experiment is carried out in a non-laboratory
environment, and movements of motion imagination are properly designed. And when the subjects are imagining the motions,
they are also subvocalizing the movements to prevent distraction. Therefore, according to the motor area theory of the cerebral
cortex, the positions of the fNIRS probes have been slightly adjusted compared with other methods. Next, the signals are
classified by nine classification methods, and the different features and classification methods are compared. The results
show that under this new experimental paradigm, the classification accuracy of 89.12% and 88.47% can be achieved using
the support vector machine method and the random forest method, respectively, which shows that the paradigm is effective.
Finally, by selecting five channels with the largest variance after empirical mode decomposition of the original signal, similar
classification results can be achieved.

Keywords Brain–computer interface · Functional near-infrared spectroscopy (fNIRS) · Motor imagery · Classification ·
Empirical mode decomposition

Introduction

In daily life, the function of the upper limbs accounts for
60% of the total body function, while the function of fingers
accounts for 90%of the function of the upper limbs [1]. Com-
plete hand function plays a very important role in people’s
work and daily life. However, some patients, such as hand
muscle weakness, hand paralysis, hand sequelae after stroke,
and even cut-off patients, lose or partially lose the hand
function. Therefore, it is suitable to use the brain–computer
interfaces (BCI) technology to drive the exoskeleton or the
prosthetic hand to compensate for their hand function.
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BCI systems have been widely used in the last decades as
a communication medium between the human and external
devices, particularly those people with movement issues [2].
A typical BCI system allows a person to interact with the
environmentwithout involving the peripheral nervous system
ormuscles, using only brain activity [3].Motor imagery (MI)
is one kind of BCI, which detects the brain’s sensorimotor
cortex activation to identify a person’s motor intent. Sensory
homunculus shows that the cortical areas that control human
hands account for the largest proportion of the total cortical
areas, and a large proportion indicates that the movements
can be controlled better. Therefore, it is possible to perform
the hand MI with the BCI technology. To take advantage of
brain activity, BCI systems require communication signals.
Functional near-infrared spectroscopy (fNIRS) is a relatively
new BCI signal with some favorable properties such as the
high temporal resolution, spatial resolution, portability, and
ease of wearing.

There have been some papers regarding the application
of fNIRS in the field of BCI, especially in the field of MI.
Bhutta et al. classified the fNIRS data for deception decod-
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ing, using the methods of linear discriminant analysis (LDA)
and support vector machine (SVM), and the average classi-
fication accuracies of these two methods were 78.34% and
87.33%, respectively [4]. Yin et al. utilized fNIRS to classify
the imaginary clench force and clench speed, and eachmove-
ment is divided into three levels. The average classification
accuracy using fNIRS signal alone was 76±5% [5]. In Jiao’s
fNIRS-BCI study, the classification accuracy of finger per-
cussion was 88.66% [6]. With the help of SVM, Neethu et
al. studied the real-time dichotomy between the executions
of the left hand and the right hand, and the imaginations of
the left hand and the right hand. The accuracies were 63%
and 80%, respectively [7]. Abtahi [8] and Abibullaev [9] col-
lected fNIRS to complete the MI tasks of upper limbs and
hands, respectively, and usedSVMto classify them.The clas-
sification accuracy was more than 90%. Zhu [10], Peng [11],
and Ghafoor [12] also only acquired fNIRS to complete the
classification task of MI, and the classification method was
LDA,with the accuracy rates of 87.8%, 70.43%, and 77.14%,
respectively. By collecting fNIRS signal, Wang et al. classi-
fied the grasping motion imagination of the right hand. The
classification accuracy was 80.21± 6.7%, and the classifica-
tion method was SVM [13]. One common fact of the above
papers is that only the fNIRS signal is used for MI.

In addition to simply using fNIRS for MI, there have been
other studies that have used a mix of fNIRS and electroen-
cephalography (EEG) signals. For example, Yin et al. used
the fNIRS-EEG to performmotion imagery tasks for the hand
speed and force, with classification accuracy of 89 ± 2%
[5]. Kaiser et al. completed a 2-class (right hand and feet)
MI-based BCI task in 15 subjects. Using the LDA classi-
fier, the accuracy was 89 ± 6% [14]. Yvonne et al. acquired
EEG-fNIRS signals to classify MI and motor execution, the
accuracy was 87% [15]. Zhu et al. gathered EEG-fNIRS
to complete the classification task of hand MI, and the
classification accuracies of SVM and LDA were 86% and
84.92%, respectively [16]. Fu et al. used the same experi-
mental paradigm as the one presented in [5] and used a mix
of EEG and fNIRS signals for classification. With the help
of SVM, the accuracy was 74± 2% [17]. Although the EEG
signal is noninvasive and has a high temporal resolution, the
EEG signal is also known for its low spatial resolution, low
signal strength, and easy interference by strong electrical
noises [18,19].

The summary of the recent literature is given in Table 1.
It can be seen that there are only few types of MI tasks (two,
three, or four types). In addition, no comparison of different
classification methods has been made for MI tasks, and there
is no in-depth study of physiological signals. For this reason,
this study attempted to classify new MI tasks and analyze
the fNIRS by the method of empirical modal decomposition
(EMD). Compared with other papers, the improvements of
the results presented in this paper are as follows:

1. In the designed experiment, five kinds of MI tasks of
hand are completed, and each task contains four levels.
The purpose of the experiment is to classify the four
levels of each action only using fNIRS signals obtained
from the motor areas and other corresponding regions
of the brain. To the best of the authors’ knowledge,
the experiment of motion imagination on this scale was
not carried out before. And the actions designed in this
experiment belong to the Fugl-Meyer assessment scale,
and can be used as the basic BCI to control rehabilitation
robots. This lays the foundation for the future use of the
BCI technology to drive the exoskeleton manipulator or
prosthetic hand for complex hand movement training.

2. In this study, nine classification methods and nine
features are used to determine how to combine the clas-
sification method and features can lead to a satisfactory
solution for the designed MI classification task. Experi-
ments have shown a competitive classification accuracy.

3. To further reduce the number of fNIRS channels, the
method of EMD is used to decompose the original fNIRS
signal into several sub-modes. By calculating the max-
imum variance of each fNIRS signal sub-mode, the
brain regions with the highest correlation with motor
imagery task are identified, andwecan just use the fNIRS
signals of these regions to completeMI tasks. The experi-
ment results show that the classification accuracy in this
optimized setting is very close to that with all fNIRS
channels.

This paper is structured with the following sections: the
section “Materials and methods” describes the instrumen-
tation, experiment paradigm, fNIRS probe position, exper-
iment procedure, data processing, feature extraction, and
EMD. The section “Results” presents experimental details
regarding the fNIRS collection and the classification results
of the designed experiment paradigm. The section “Con-
clusion and discussion” discusses the obtained results and
concludes the entire paper.

Materials andmethods

Subjects

In this experiment, six healthy volunteers [one woman and
five men of age 33.3 ± 4.7 (mean ± SD), all righthanded]
took part in the test. They are all healthy, have no mental
diseases or history of psychological disorders, and have no
experience about the test of BCI. They have been informed
of the test in details, and have been given a short warm-up
test before the formal test.

This human subject study is approved by the ethics com-
mittee of Institute of Automation, Chinese Academy of
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Sciences (protocol number: IA-201942), and all human sub-
jects have signed informed consent forms.

Instrumentation

In this study, tests are conducted by the Brite 24 (Artinis,
Netherlands) to collect fNIRS. “Brite 24 ” contains 24 chan-
nels and 18 optrodes (10 transmitters and 8 receivers). The
receiver–transmitter distance is 3 cm and the sampling fre-
quency is set as 25 Hz. To make the measurement more
accurate, the device is equipped with three types of elec-
trode caps: large, medium, and small, which can be selected
according to the different size of the subject’s head.

Experiment paradigm

This experiment is carried out in a non-laboratory environ-
ment. Five different hand MI tasks are designed which are
essential components of daily life, including the hand’s group
flexion and extension (GFE), hooklike grasping (HG), dig-
ital opposition (DO), cylindroids grasp (CG), and spherical
grasp (SG). GFE and HG tasks are further divided into 4 lev-
els [0%, 30%, 60%, and 100% of the maximum hand motion
range (MHMR)]; DO, CG, and SG tasks are also divided into
4 levels [0%, 30%, 60%, and 100% of the maximum hand
grasp force (MHGF)]. It is worth noting that 0% is actually
a relaxed state, which can be used in all five MI actions.

Figure 1 shows the timing diagram of a single trial for MI
task. The timing diagram is generated byE-Prime 2 (Psychol-
ogy Software Tools, Inc., Sharpsburg, KY, USA). In Fig. 1,
the bottom of the panel exhibits theMI task of one entire trial,
consisting of four parts: during the baseline interval (BI), a
red circle is displayed on the screen and the subject sees it for
20 s, keeping relaxed and motionless; during the ready inter-
val (RI), a yellow circle is raised on the screen to remind the
subject of preparing forMI tasks; during the task cue interval
(TCI), task pictures are displayed on the screen to remind the
subject ofwhat to image; during the task interval (TI), a green
circle is presented on the screen and the subject performs the
correspondingMI task for 20 s. In addition, when the subject
imagines the movements, he/she is also asked to subvocalize
the corresponding action to prevent distraction. A single trial
costs 44 s, and each level of imaging task contains 30 trails.
The middle of top panel of Fig. 1 shows five different MI
tasks, where the left two pictures indicate the GFE and HG
MI tasks and the far left picture displays 0%, 30%, 60%, and
100% of MHMR (the period of imaging hand opening and
closing is about 6–8 s); the right three pictures indicate the
DO, CG, and SG MI tasks and the far right picture shows
0%, 30%, 60%, and 100% of MHGF. The subject is required
to complete the target force of the hand grasp within 2 s and
then keep the force constantly for the following 18 s.

Probe deployment of Brite 24

The brain regions associated with the hand motor mainly
include: the primary motor cortex, premotor cortex, and
sensorimotor area. Because the subject is also asked to
subvocalize the requiredMI task, theBroca’s area is also con-
sidered. As shown in Fig. 2, the probe positions of the fNIRS
detection device are: BA6 region [premotor cortex (PMC)],
BA4 region [motor cortex (M1), sensorimotor cortex (S1)],
and Broca’s area. The yellow dots are the transmission ter-
minals and the blue dots are the receiving terminals. The
shortest distance between the yellow point and the blue point
is 3 cm. The device has a total of 16 terminals, comprising
24 channels.

Training

Before the formal data collection, all subjects are taught about
the process of the experiment many times until they can retell
it fluently.

For GFE and HG, they are asked to stretch their four fin-
gers to the maximum extend as they can for about 30 s to
remember how their handmuscles feel. Then, using this feel-
ing as a reference point, they should stretch or hook their hand
to 60%, 30%, and 0% of MHMR, and also remember how
their hand muscles feel at a specific level.

For DO, CG, and SG, the MHGF is determined by the
average of three maximal forces: digital opposition, cylin-
droid grasp, and spherical grasp with the hand dynamometer.
The subject takes a break every 3 min. After the completion
of the MHGF task, the subject is required to do DO, CG, and
SG with the hand dynamometer, and the target is 60%, 30%,
and 0% of MHGF, which lasts for 2 s, and then keep hands
still for 10 s. Each level of training involves ten tests to build
the muscle memory.

Experiment procedure

The experiment procedures are shown in Fig. 3. The sub-
ject sits in a comfortable armchair with their arms resting
naturally on the table.

There is a desktop screen/iPad screen on the table which
is 0.8–1.2 m away from the subject. The subject is asked
to start a trial, and then to execute 30 trails for every task.
One trial lasts for 44 s and the subject is required to avoid
any body movements or frequently eye blinking. The trails
(different MI tasks) in this study are not presented in a ran-
domized sequence. The order of actions is the same among
the subjects. This setting can reduce the number ofmovement
repetition errors in comparison to randomized protocols [20].

There are five actions in the experiment, and each action
includes four levels, and each level needs to be completed
for 30 times. The subjects take a 5-min break to regain their

123



Complex & Intelligent Systems

Fig. 1 Timing diagram of a single trial. In the timing diagram: baseline interval (BI), random rest (RR), ready interval (RI), task cue interval (TCI),
and task interval (TI)

Fig. 2 The optode arrangement.
Left panel is 2-D view; right
panel is 3-D view. The yellow
points are transmitting
terminals; the blue ones are
receiving terminals

Fig. 3 The experiment process
of MI. The laptop is the control
terminal; the iPad or the desktop
is used for screen tips
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concentration after every two levels. The subject completes
two actions a day, and the entire training lasts for 2.5 days.
To ensure the consistency of the measurement status when
wearing the optical cap, the wearing process of the optical
cap is set as follows: first, the central point CZ of the human
brain is found,which is used to fix the position of theCZpoint
of the electrode cap; second, the midline of the electrode cap
is coincident with the line between the patient’s nose bridge
and CZ point; finally, the location of the electrode is set in
accordance with International Society of Electroencephalog-
raphy 10–20 standards. This ensures that when the subject
wears the cap again, the position of the electrode is the same
as he/she first wears it.

fNIRS signal collection

Thedata collectedby the instrument are concentration signals
including: the oxygenated hemoglobin (Oxy-Hb), deoxy-
genated hemoglobin (Deoxy-Hb), and total of hemoglobin
(THb). The sampling frequency is 25 Hz, and the cut-off
frequencies of the band-pass filter are 0.01 Hz and 0.1 Hz,
respectively [17].

Feature extraction

In this paper, the sliding window method which is most
commonly used for processing fNIRS signals is used for
feature extraction. In the classification task, the selected time-
domain features include:mean value (MV), slope factor (SF),
mean absolute value (MAV), integrated absolute value (IAV),
passing zero numbers (PZN), and passing mean numbers
(PMN). The definitions of these features are listed as fol-
lows:

MV = 1

L

L∑

n=1

x(n), (1)

SF = Polyfit[x(1) −→ x(L)], (2)

MAV = 1

L

L∑

n=1

|x(n)|, (3)

IAV =
L∑

n=1

|x(n)|, (4)

PZN = Num

[
L∑

n=1

x(n)x(n + 1) < 0

]
, (5)

PMN = Num

×
[

L∑

n=1

(x(n) − Avg(x))(x(n + 1) − Avg(x)) < 0

]
,

(6)

where L is the length of time window, and in this test, it is
2 s; x(n) is fNIRS signal. Polyfit is the polynomial curve
fitting a range of area. x(1) is the starting point of the area;
x(L) is the end point of the area. SF is the slope factor of the
polynomial curve. Num is the count number that satisfies the
condition in the following bracket. Avg(x) is the average of
x(n) in the time window length of L.

The frequency-domain features used in this study contain
instantaneous amplitude (IA), instantaneous phase (IP), and
instantaneous frequency (IF). These features can be extracted
by Hilbert transform (HT) [5,17].

The non-stationary signal x(t) is transformed into y(t) by
Hilbert transform as follows:

y(t) = 1

π
P

∫ ∞

−∞
x(τ )

t − τ
dτ , (7)

where P is the Cauchy principal value. Then, IP, IA, and IF
can be, respectively, calculated by:

IP = ϕ(t) = arctan
y(t)

x(t)
, (8)

IA =
√
x(t)2 + y(t)2, (9)

IF = dϕ(t)

dt
. (10)

Both the time-domain and frequency-domain features can
be divided into two categories: one is to reflect the value of
the curve in the time window, and the other is to reflect the
change degree of the curve value in the time window.

Classification

Besides SVM and LDA, some classical machine learning
classification methods are also tested in this study. They are:
random forest (RF), quadratic discriminant analysis (QDA),
k-nearest neighbor (KNN), decision tree (DT), feed forward
neural networks (FFNN), naive Bayes (NB), and ensemble
learning (EL). SVM is modified according to the method of
bagging [21], whose kernel function is chosen as Gaussian
radial basis function. The number of decision trees is set to
be 500 in RF. In QDA and LDA, the types of discriminant
functions are chosen as linear and quadratic. There are 4
neighbors in KNN, and the number of trees in DT is 100.
Back propagation is applied in FFNN. Naive Bayes is based
on the attribute conditional independence assumption. In EL,
the method is set as AdaBoostM2 and the weak learners are
chosen as DT based on ID3.

The method of slide time window is used as follows: the
length is set to be 2 s and the sliding distance is set to be
1 s. The proportion of the training set to the testing set is 3:2.
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Fig. 4 fNIRS signals at channel 16: a Oxy-Hb, Deoxy-Hb, and Thb in
task 30% of MHMR during GFE. bOxy-Hb of four levels during GFE

The classification accuracy is determined by the average of
10 tests.

Optimize fNIRS channels

Toutilize fewer fNIRSchannels to complete the classification
tasks, it is necessary to determine the relevant channels. EMD
is such a signal decomposition method. It is the first step of
Hilbert–Huang Transform, which acts as a dyadic filter bank
[22]. After EMD, the original signal can be decomposed into
intrinsic mode functions (IMFs). The decomposition results
in a set of empirical mode functions and a residual term,
which can represent the trend of the signal or a fixed value
[23]. The mathematical formula of EMD is given as follows:

X(t) =
n∑

i=1

IMFi (t) + rn(t), (11)

where X(t) is the original data, IMFi (t) are intrinsic mode
functions, and rn(t) is the residual term.

Results

fNIRS signals

There are three types of signals collected in the experiment:
Oxy-Hb, Deoxy-Hb, and THb. As shown in Fig. 4a, the red
solid line is Oxy-Hb, the blue dashed line is Deoxy-Hb, and
the green dotted line is THb. Figure 4 shows the fNIRS signal
at channel 16 when the subject carries out three trials. The x-
axis represents the sampling points, and one trial is composed
of 1100 sampling points. Therefore, trial one is between 0
and 1100, trial two is between 1101 and 2200, and trial three
is between 2201 and 3300. The y-label is the concentration
of fNIRS. In Fig. 4a, the subject’s MI movement is 30% of
MHMR of GFE MI task. The positions of the yellow verti-
cal lines represent the starting time of the RI and the black
dotted lines represent the starting time of the TI. The areas
between the black solid lines and the yellow vertical solid
lines are BI processes, the areas between the yellow vertical
solid lines and the black vertical dashed lines are the RI and
TCI processes, and the regions between the black vertical
dashed line and the black solid line are the TI processes. In
Fig. 4a, when the signal curves cross the yellow line, the red
solid curve rises quickly, the blue dashed curve changes a lit-
tle bit, and the green dotted curve follows the red solid curve.
The results show that the average amplitudes of the red solid
curves and the green dotted curves in TI are higher than those
in BI, while the amplitude of the blue dashed curve does not
change too much. Therefore, the data of the red solid curve
(Oxy-Hb) are selected for the subsequent analysis.

Figure 4b shows different four color lines (red, blue, green,
and pink) which, respectively, represent four levels of GFE
(0%, 30%, 60%, and 100% of MHMR) based on Oxy-Hb. It
can be seen from Fig. 4b that the pink curve changes dramat-
ically. And then, the ranges of amplitude from top to bottom
are green, blue, and red. This indicates that the intensity of
signal change is proportional to the magnitude of imagined
hand motor range. The other four MI types of fNIRS figures
are similar to GFE, which are therefore omitted from this
paper.

Classification results

With different features and different classification methods,
the classification accuracy of GFE MI task is provided in
Table 2. The accuracies greater than 80% are all marked in
bold. Table 2 illustrates that features with the satisfactory
accuracy are MV and IA, and the satisfactory classification
methods are SVM, QDA, KNN, and RF. The results of the
other four MI tasks are similar to the results of GFE, which
are omitted here.

Furthermore, MV and IA are combined together to check
whether the classification accuracy can be improved or not.
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68 The results are given in Fig. 5. It can be seen that the classifi-

cation accuracy is generally improved. In this case, the best
classification methods are SVM and RF whose classification
accuracies are 89.12% and 88.47%, respectively.

fNIRS channel optimization results

According to (11), IMFs of 24 channel signals are calculated,
which are given in Fig. 6. The first curve in Fig. 6 is the
original signal, and the curves from 2 to 11 are 10 IMFs
decomposed from the original curve. The 5 channels with
the largest IMF variance are given in Table 3. They are R7–
T7, R8–T8, R3–T5, R5–T6, and R8–T10.

R7–T7 correspond to the PMC area, and R8-T8 corre-
spond to the M1 area. R3–T5 and R8–T10 correspond to the
Broca’s area, and R5–T6 corresponds to the C3 area. Then,
signals from these 5 channels are used to fulfill the classifica-
tion tasks. As seen from Fig. 7, with the IA and MV feature
combination, the classification accuracy based on these five
channels is relatively high, which is only slightly lower than
that based on 24 channels. The results imply:

1. For theMI tasks designed in this paper, the classification
accuracy using these 5 channels is comparable to that
based on 24 channels.

2. For the MI tasks designed in this paper, the BA6 area is
more sensitive than the BA4 area.

3. In this MI paradigm, the Broca’s area is activated to a
certain extent, because the subject is required to subvo-
calize specific MI tasks.

Discussion and conclusion

In the proposed experimental paradigm, only fNIRS signals
are used. Therefore, there is no need to consider the syn-
chronization between different physiological signals, which
reduces the complexity of the system. In addition, it helps
to collect more accurate BCI signal, because subjects may
shake their heads during a long-term test (the EEG signal is
easy to be interfered by the shaking head behavior, while the
fNIRS is less affected). Although the designed MI tasks are
relatively simple, they are the basis for other complex hand
movements. In addition, these MI tasks belong to the typi-
cal movements of Fugl-Meyer assessment scale. A desirable
recognition of these tasks may lay the foundation for BCI-
controlled hand rehabilitation robot.

The tests are conducted in a non-laboratory setting and
are performed by people who are familiar with the subjects,
and an familiar environment makes the subjects behave more
comfortably [24]. At the same time, a simple test proves that
when subjects face a familiar environment, fNIRS signal fluc-
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Fig. 5 Classification accuracy under different features and different classification methods

Fig. 6 Raw signal and IMFs

tuations are relatively small, which is less likely to interfere
with the normal fNIRS signals.

With an appropriate feature selection process, it is rec-
ommended that for the proposed experimental paradigm, the
combined feature (MV and IV features) can lead to the high-
est classification accuracy (89.12% by SVM and 88.47% by
RF). Furthermore, the original signals are decomposed into
IMFs by EMD, and the 5 channels with the largest variance

could also be used to complete the classification task, and
the classification accuracy is close to that of the complete
channels. This suggests that these 5 channels can be used as
principal components of 24 channels, and the functions of
these 5 channels in the brain areas are consistent with the
task of MI. On one hand, it can promote the understanding
of the cerebral cortex. On the other hand, according to the
motor imagery task, more accurate use of the fNIRS signals
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Fig. 7 Comparison between the 5-channel classification accuracy and the full-channel classification accuracy

Table 3 Five channels with the largest variance in five MI tasks

Task Channels

GFE T7–R7 R8–T8 R3–T5 R5–T6 R8–T10

HG T7–R7 R8–T8 R3–T5 R5–T6 R8–T10

DO T8–R8 R7–T7 R3–T5 R5–T6 R8–T10

CG T8–R8 R7–T7 R3–T5 R5–T6 R8–T10

SG T8–R8 R7–T7 R3–T5 R5–T6 R8–T10

of the corresponding cortical regions of the brain can further
optimize BCI and improve efficiency.
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