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ABSTRACT

With the rising of internet photos-sharing web sites, the rich
aware text information surrounding images on the sites are
proved helpful to improve the image classification. This pa-
per presents a novel nested deep learning model called Nested
Deep Belief Network(NDBN) for tag-aware image classifica-
tion. A multi-layer structure of Deep Belief Network(DBN)
is established to learn a unified representation of visual fea-
ture and tag feature for an image, and an additional Gaussian
Restricted Boltzmann Machine is built to capture the tag-tag
dependency. Compared with conventional methods, the pro-
posed model can not only find correlations across modalities,
but mine the importance for different tags, and also bring
about low-rank tag feature representation. We conduct exper-
iments over the MIR Flickr dataset and the results show that
the proposed NDBN model outperforms the existing image
classification techniques.

Index Terms— Deep belief network, image classifica-
tion, deep learning, singular value decomposition

1. INTRODUCTION

Image classification is the most important part of digital im-
age content analysis. Many efforts have been made about it.
e.g., SVM [1], sparse representation [2], Boosting [3]. How-
ever, in real world application, image classification is still a
challenging task because of the semantic gap.

On the other hand, with the dramatic growth of the in-
ternet photo sharing web, we could have millions of inter-
net images which are surrounded with rich text information,
such as text, tag, etc. These information are indicative of the
image content and provide a more direct gateway to image
analysis. Actually, some related research works [4] [5] [6]
[7] [8], etc. have proved that these text information consis-
tently improve the performance on image classification prob-
lems. These methods could be roughly divided into three cat-
egories: classifier-level methods, latent space methods and
feature-level methods. The difference among these categories
lies in the fusion level.

Classifier-level methods for tag-aware image classifica-
tion train separate classifiers for text and visual feature re-

spectively, and then correlate the visual information and text
information in the classifying phase. Based on the motivation
that images with similar surrounding text are similar in visual
feature space, [4] builds the text feature for images by finding
the K nearest neighbor images which are similar to the target
image in visual. Two separate classifiers are trained, and the
then combined for the final prediction. In [6], author assumes
that the text is not available in test dataset and only a train-
ing subset is labeled. A strong Multiple Kernel Classifier is
learned using the text and visual feature to aid the final visual
classification performance.

Latent space methods assume that although the raw text
and image are in different feature spaces, but there could be
a latent semantic space, where text and visual features with
same semantic meaning have same statistical property. A rep-
resentative work is [7], in which a latent space bridges the text
and image visual feature. Through the bridge, a cross modal
transfer learning model is built for image classification.

Feature-level methods focus on learning an unified repre-
sentation from multimodal feature. For the sake of the goal,
deep networks which have been successful applied to fea-
ture learning are usually built. [9] uses deep sparse Restricted
Boltzmann Machine to learn sharing representation for multi-
modal feature. A closely related work [10] introduces a mul-
timodal data representation learning model with Deep Belief
Network.

However, there are still some difficulties in image classi-
fication even with text information. Firstly, image low-level
visual features and the associated text features are belong to
different modal spaces respectively, and each modal is charac-
terized by different statistical properties. Models in the first t-
wo kinds of methods belong to shallow architectures and have
limited representation capabilities [11]. Hence, they can not
fuse the multimodal data well. Secondly, the text informa-
tion usually is very noisy and ambiguous. Taking the tags for
example, some tags are meaningless and even indicate error
information for the associated image content. Thirdly, the di-
mension of the whole tag/text feature space is high. If the raw
tag features are used directly as inputs of a model, the train-
ing process will become very difficulty. In addition, for each
image, the associated tags have different indicative intensity
for the image content, and these intensity can not be reflected



by the word counts, etc. simple feature.
Our work builds on three insights. First, deep learning

with the strong feature learning ability provides us a powerful
framework to learn a more discriminative feature representa-
tion. Based on Deep Belief Nets [12], we learn an unified
representation from multimodal feature. Second, consider-
ing that there are some degree of dependence between tags
of an image, and these dependence could constitute a depen-
dence spectrum for the image, an additive Restricted Boltz-
mann Machine in this paper is built to capture these tag-tag
dependence. Third, in order to handle the high dimension
problem of tag space and mine the tag indicative intensity,
we use SVD algorithm for image-tag relation matrix, which
bring out a brief but informative low-rank representation for
tag feature.

The remainder of this paper is organized as follows. sec-
tion 2 introduces a popular deep learning model which is the
background of our work. section 3 describes our proposed
Nested Deep Belief Network(NDBN) model. Experiments
on the MIR Flickr dataset are presented in Section 4. section
5 summarizes the conclusion and mentions future work.

2. BACKGROUND: DEEP BELIEF NETS

Recently, deep learning is successfully applied to multiple ar-
eas due to its strong feature learning ability. Among these
models, Deep Belief Nets [12] is of special concern. For our
work is based on this architecture, we give an brief introduc-
tion to it in this section. DBN uses multiple non-linear lay-
ers to learn semantic feature. The learning processes include
layer-wise pre-training and a following fine-tuning stage.

The greedy layer-wise pre-training is the phase of con-
structing the deep architecture based on Restricted Boltzman-
n Machine [13]. RBM is an undirected graphical model with
a hidden layer and another visible layer shown as left plot in
Fig. 1. The two layers are connected by symmetric weight-
s, but there are no intra-layer connection. The energy of the
joint configuration is give by [14]:

E (v,h) = −
∑
i

aivi −
∑
j

bihj −
∑
ij

νihjWij (1)

where vi and hj are the binary states of units in v ∈ {0, 1}D

and hidden units in h ∈ {0, 1}F , and ai and bj are their bi-
ases. Wij denotes the symmetric weights. The probability of
visible vector v can be computed using the energy function:

P ( v) =
∑
h

exp (−E (v, h))∑
u,g exp (−E (u, g))

(2)

The conditional distribution of hidden units with value 1
given the states of visible units is:

Q (hj = 1|v) = σ

(
bj +

∑
i

νiWij

)
(3)

Fig. 1: Layer-wise pre-training process.

where σ (x) denotes the logistic function. Similarly, the prob-
ability on visible units given the hidden units:

P (vi = 1|h) = σ

ai +
∑
j

hjWij

 (4)

There is no closed solution for the parameters of RBM, but
they can be obtained by alternating Gibbs sampling. For sim-
plicity, a contrastive divergence [15] is carried out, which is
an approximate version of Gibbs sampling:

4wij = ε(< vihj >data − < vihj >recon) (5)

where ε is the learning rate. < . >data and < . >recon are
the expectation with respect to the data distribution and the
expectation with respect to the reconstruction distribution af-
ter running k steps of Gibbs sampling. The biases parameters
could be updated in a similar way.

Multiple layers deep network is built in a bottom-up fash-
ion. Each pair of two adjacent layers can be regarded as a
RBM by taking the lower layer as visible layer v and the up-
per layer as hidden layer h. Fig. 1 shows the layer-wise pre-
training process.

After having greedily pre-trained the deep multiple layers,
a up-down algorithm is used to adjust the parameter of all the
layer globally in the fine-tuning stage, which is a contrastive
form of “wake-sleep” algorithm [16].

3. NESTED DEEP BELIEF NETWORK

In this section, we describe the details of our proposed Nested
Deep Belief Network(NDBN) model. We first overview the
architecture of the NDBN model, and then show how to apply
the singular value decomposition technique to learn tag fea-
ture for images. Next, the two training stages of NDBN model
will be introduced. Finally, we summary the algorithm.

3.1. Model Overview

Let x be the visual feature vector of an image, and matrix C ∈
RN×M are the image-tag matrix. N and M is the number of
images and tags in tag dictionary. Let y be the label vector



Fig. 2: Nested Deep Belief Network(NDBN) model frame-
work.

corresponding the image with visual feature x, which is the
form as follows:

y = (y1, y2, . . . , yK) (6)

where K is the number of total classes, and yk is binary such
that if x belong to the kth class, then yk is 1, otherwise 0.
Each image may belong to multiple classes.

Based on these data above, what we want to do is to learn
a model that can achieve the tag-aware image classification
purpose. To address the problem, we propose a novel Nested
Deep Belief Network model. Fig. 2 show the architecture of
NDBN. Multiple layers is built to fuse the visual feature and
tag feature. In order to capture the tag-tag dependence, an
additional Gaussian RBM is contained for tag feature, which
forms a nested architecture. To handle the high dimension
and mine the tag indicative intensity, a SVD [17] algorithm is
used to the image-tag matrix for getting tag feature.

3.2. SVD for Image-tag Matrix Factorization

In linear algebra, the singular value decomposition (SVD) is
a factorization of a real or complex matrix, with many useful
applications in relational data modeling and statistics, which
maps the high dimension feature into the low dimension fea-
ture space through discovering the principle components of
the data. Here, we factorize the image-tag matrix C to get the
singular value matrix Σ.

C = UΣVT (7)

where U ∈ RN×N and V ∈ RM×M are unitary matrixes.
The entries of matrix Σ reflect the indicative degrees of the
tags for the image content. A low dimension singular value
matrix Σ

′ ∈ RD×D is got by discarding the part of smallest
singular values, which is the approximation of Σ. It contains
only the largest D singular values. Under the new singular
value matrix, low dimensional tag features are computed by:

T = UΣ
′

(8)

where T ∈ RN×D and ith row vector vi of T can be treated as
a latent semi-semantic representation of the ith image, which
remove the noise of text information. Through the SVD fac-
torization process, new tag feature set T reflect the indicative
intensity of tags, and also bring out low-rank representaion.
It could enhance for our multimodal feature fusion in deep
architecture.

3.3. Nested Deep Architecture for Classification

After discovering the low-rank tag feature, a deep multiple
layers architecture is constructed to fuse the visual feature and
tag feature. However, before that, an additive RBM is estab-
lished to capture tag-tag dependence explicitly in our model.
In this case, the input feature v is real-value rather than bi-
nary, so the Gaussian RBM [18] is used to model them. The
energy of the states in visible layer v, and hidden layer h(1) is
defined as follows:

E
(

v,h(1)
)

=
∑D

i=1

(νi − µi)
2

2σ2
i

−
D∑
i=1

F∑
j=1

νi
σi
W

(0)
ij h

(1)
j −

F∑
j=1

ajh
(1)
j (9)

where, σi is standard deviation with predetermined value and
µi denotes the expectation of the ith unit in the visible layer
v. This lead to conditional probabilities on visible units given
the hidden layer:

P
(
νi|h(1)

)
= N

bi + σi

F∑
j=1

W
(0)
ij h

(1)
j , σ2

i

 (10)

The corresponding conditional distribution on hidden layer
given the visible layer is:

Q
(
h

(1)
i = 1|v

)
= σ(µj +

∑
i

W
(0)
ij

vi
σi

) (11)

Learning of the parameters in this work is carried out using
one-step Contrastive Divergence [15].

The additive Gaussian RBM together with the latter deep
network forms a nested architecture. we argue that it is nec-
essary for it could make the compact tag-tag relation be ob-
tained and the tag feature more discriminative.

In order to fuse the visual feature x and tag feature, a
similar deep belief net is built with a different RBM which
we called Multimodal RBM where visual feature layer x and
layer h(1) are regarded as visible layer together. Consid-
ering visual feature units x ∈ {0, 1}G, units in the layer
h(1) ∈ {0, 1}D and as hidden layer in Multimodal RBM
h(2) ∈ {0, 1}F , the joint energy configuration is defined as

cheney
高亮



follows:

E
(
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)
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i W
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(1)
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(2)
j −

G∑
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a(1)
mg xg (12)

Exact inference likelihood learning in this model is in-
tractable. However, an analogous Contrastive Divergence ap-
proximation algorithm [15] could be applied.

Based on the Multimodal RBM, we also use the greedy
layer-wise pretraining strategy to construct the deep network
and initial the model parameters simultaneously by learning a
RBM at a time.

In order to make the classification task more precision, we
use a discriminative fine-tuning method to adjust the parame-
ter globally so as to find the local optimal solution. This goal
is achieved by minimizing the empirical risk on the training
data, and the optimization problem can be formulated as:

argΘ minL
(

Y, Ŷ,Θ
)

(13)

where Θ is the parameters of the whole network, and the
L
(

Y, Ŷ,Θ
)

is the loss function for measuring the training
error on the training data, Y is the groundtruth labels of the
training samples, and Ŷ is the predicted labels from our mod-
el. we use the exponential loss function as optimization crite-
ria:

L
(

Y, Ŷ,Θ
)

=

N∑
n=1

K∑
k=1

exp (l (ynk, ŷnk)) (14)

where, N denotes the number of the training samples and
K represents the image classes. If ynk = ŷnk, we set
l (ynk, ŷnk) as 1, otherwise 0.

Combined the SVD algorithm introduced in section 3.2,
the proposed Nested Deep Belief Nets model is summarized
in Algorithm 1.

4. EXPERIMENTS

4.1. Dataset and Experiment Setup

In order to evaluate the effectiveness of our proposed
NDBN model, we conduct a series experiments on a pub-
lic MIRFLICKR-25000 collection dataset [19]. The data set
consist of 25, 000 annotated images which are collected from
Flickr along with their tags. It includes 24 labeled categories
among which 14 classes were stricter labeled. Therefore,
there are 38 classes in total. Each image may belongs to

Procudure 1: NESTED DEEP BELIEF NETS
Input: Image-tag matrix C; visual feature dataset of

images X; Corresponding labels set Y;
Number of network layers L; Number of
training samples N; Random initial bias
parameters
a = {a(0)

t , a
(1)
t , a

(1)
m , a(2), . . . , a(L)}; Random

initial weight parameters
W = {W (0)

t ,W
(1)
t ,W

(1)
m ,W (2), . . . ,W (L−1)};

Dimension of tag feature D.
Output: Optimal parameter space Θ̂ =

[
Ŵ, â

]
1 SVD for matrix C: C = UΣVT ;
2 Σ

′
approximates Σ ;

3 T = UΣ
′
;

4 Train Gaussian RBM consdiering vi as visible layer
and h(1) as hidden layer;

5 Train Multimodal RBM consdiering xi and h(1) as
visible layer, h(2) as hidden layer;

6 for each layer from h(2) to h(L) do
7 Greedy layer-wise pretraining by learning a RBM

at a time;

8 Return optimal parameter Θ̂ = argΘ minL
(

Y, Ŷ,Θ
)

;

multiple classes. Fig. 3 shows some sample images from the
dataset.

In our experiment, we use randomly selected 15, 000 im-
ages for pretraining, 5, 000 for fine-tuning and 5, 000 for test.
Gray values are extracted as visual feature for each image and
they are represented by 1024(32 × 32) dimensional vectors.
We set the dimension of the approximation singular value ma-
trix Σ

′
to 200. In GRBM, the numbers of units in both layers

are 200 and in visual feature layer are 1, 024. Mean Aver-
age Precision(MAP) is served as performance metric and the
results are averaged over 10 trials.

4.2. Experimental Results and Analysis

Table 1 presents the AP scores for the our comparison
with Support Vector Machines(SVMs) and Multimodal DB-
N(MDBN) [10]. For the SVM model, we use the concate-
nated visual and tag feature as input feature, and use 20, 000
images for training and 5, 000 for testing. Table 1 shows that
proposed NDBN model outperforms the SVM and MDBN
models.

For the sake of studying the influence of the com-
ponents SVD and Gaussian RBM(GRBM), we also con-
duct the experiment with SVD and DBN but no Gaus-
sian RBM(SVD+DBN). Meanwhile, we discard the SVD
step and replace the tag feature in our model with the tag
counts(GRBM+DBN), where we just consider the 2000 most



Table 1: Experiment Results

LABELS ANIMALS BABY BABY* BIRD BIRD* CAR CAR* CLOUDS CLOUDS* DOG
SVM 0.477 0.171 0.157 0.249 0.223 0.341 0.311 0.627 0.573 0.261

MDBN 0.498 0.129 0.134 0.184 0.255 0.309 0.354 0.759 0.691 0.342
SVD+DBN 0.481 0.135 0.153 0.219 0.238 0.285 0.332 0.762 0.674 0.438

GRBM+DBN 0.483 0.147 0.166 0.207 0.264 0.293 0.305 0.705 0.662 0.451
NDBN 0.474 0.268 0.269 0.191 0.234 0.378 0.317 0.724 0.684 0.447

LABELS DOG* FEMALE FEMALE* FLOWER FLOWER* FOOD INDOOR LAKE MALE MALE*
SVM 0.219 0.459 0.405 0.524 0.586 0.341 0.485 0.475 0.411 0.385

MDBN 0.376 0.540 0.478 0.593 0.679 0.447 0.750 0.262 0.503 0.406
SVD+DBN 0.465 0.582 0.567 0.568 0.663 0.325 0.691 0.326 0.571 0.479

GRBM+DBN 0.445 0.627 0.583 0.556 0.647 0.351 0.678 0.314 0.552 0.492
NDBN 0.490 0.646 0.603 0.531 0.606 0.349 0.632 0.365 0.570 0.509

LABELS NIGHT NIGHT* PEOPLE PEOPLE* PLANT-LIFE PORTRAIT PORTRAIT* RIVER RIVER* SEA
SVM 0.558 0.493 0.458 0.436 0.531 0.417 0.408 0.407 0.069 0.538

MDBN 0.655 0.483 0.800 0.730 0.791 0.642 0.635 0.263 0.110 0.586
SVD+DBN 0.621 0.516 0.819 0.752 0.613 0.627 0.622 0.342 0.246 0.576

GRBM+DBN 0.637 0.540 0.764 0.725 0.665 0.641 0.596 0.354 0.257 0.574
NDBN 0.638 0.559 0.826 0.718 0.679 0.632 0.613 0.272 0.152 0.537

LABELS SEA* SKY STRUCTURES SUNSET TRANSPORT TREE TREE* WATER MEAN
SVM 0.073 0.609 0.488 0.672 0.418 0.495 0.217 0.532 0.407

MDBN 0.259 0.873 0.787 0.648 0.406 0.660 0.483 0.629 0.503
SVD+DBN 0.263 0.801 0.774 0.632 0.437 0.624 0.492 0.593 0.508

GRBM+DBN 0.271 0.816 0.733 0.642 0.481 0.651 0.497 0.608 0.510
NDBN 0.188 0.829 0.791 0.635 0.456 0.602 0.503 0.615 0.514

Fig. 3: Sample images from MIRFLICKR-25000 dataset.

frequent tags. In the experiments of SVD+DBN and GRB-
M+DBN, the training and tuning methods are the same as our
proposed NDBN model. From the results showed in table 1,
both the SVD+DBN and GRBM+DBN outperform SVM and
MDBN models slightly.

For illustrating the advantages of the proposed NDBN
mode demonstrably, we give a brief analysis about some cas-
es in the experiments. Fig. 4 show two images as well as
the associated tags on the right side of the picitures, which
are classified incorrectly by SVM, while classified correctly
by NDBN model. The groundtruth labels are provided be-
low the pictures. For the left image, the SVM model classi-
fies the label “flower”and “flower r1” correctly, but misclas-

Fig. 4: Example images which are classified incorrectly by
SVM, while classified correctly by NDBN model

sifies the label “Plant life”. We think that “Plant life” is a
more abstract concept than “flower”, and it needs more train-
ing samples to cover the concept, while in the tags set for all
samples, the “flower”and “Plant life”usually appear together.
The SVD step in our NDBN model could capture this type of
correlation and corresponding singular value of “Plant life”is
bigger than the other tag such as “macro”although it does not
appear in the raw tags.

As for the right image case, it is misclassified in the
SVD+DBN experiment as well while correctly by NDBN
model. We believe that it owes to the Gaussian RBM as well
as the deep architecture. Although the tags “lupa”, “geometri-
ca”, and “figura” are seldomly arise along with the tag “struc-
tures”, they constitute a specific dependence spectrum cap-
tured by the Gaussian RBM. This kind of dependence spec-
trum implies some semantic concept and the semantic “struc-
tures” is learned through the following deep architecture. By
the way, some other tags which are hardly indicative of the
image content will be filtered by the SVD algorithm, which
can be explained the small corresponding singular values.



5. CONCLUSION

In this paper, a Nested Deep Belief Network model is pro-
posed to solve the tag-aware image classification problem. In
this framework, we use SVD to educe low-rank tag feature
representation which reflect the indicative intensity of differ-
ent tags. Obtained the brief but informative tag feature, tag
dependence spectrum is captured by a Gaussian RBM. we
generalize a Multimodal RBM together with deep network
to fuse the visual feature and text feature. A series of experi-
ments are conducted to MIR Flickr dataset.

Our future work include: 1) considering the fact that im-
ages with similar content exist similar tags, image-image re-
lationship is more mined. 2) modeling topic distributions of
tag space which can reflect more semantic content for images.
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