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a b s t r a c t 

Image-based posture recognition is a very challenging problem as it is difficult to acquire rich 3D infor- 

mation from postures in 2D images. Existing methods founded on 3D skeleton cues could alleviate this 

issue, but they are not particularly efficient due to the application of handcrafted features and traditional 

classifiers. This paper presents a novel and unified framework for skeleton-based posture recognition, ap- 

plying powerful 3D Convolutional Neural Network (CNN) to this issue. Technically, bounding-box-based 

normalization for the raw skeleton data is proposed to eliminate the coordinate differences caused by di- 

verse recording environments and posture displacements. Moreover, Gaussian voxelization for the skele- 

ton is employed to expressively represent the posture configuration. Thereby, an end-to-end framework 

based on 3D CNN, called 3D PostureNet, is developed for robust posture recognition. To verify its ef- 

fectiveness, a large-scale writing posture dataset is created and released in this work, including 113,400 

samples of 30 subjects with 15 postures. Extensive experiments on the public MSRA hand gesture dataset, 

body pose dataset and the proposed writing posture dataset demonstrate that 3D PostureNet achieves 

significantly superior performance on both skeleton-based human posture and hand posture recognition 

tasks. 

© 2020 Elsevier B.V. All rights reserved. 
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. Introduction 

Posture recognition mainly includes two research fields, i.e., hu-

an posture recognition and hand posture recognition. Both of

hem have been attractive topics for years due to their wide range

f applications, such as human-machine interaction, ambient as-

isted living, intelligent health care systems and sign language

ecognition. In the last decade, various data modalities have been

xplored to facilitate posture recognition, in which the main ones

re RGB image, depth map and skeleton. 

Traditional works use RGB images and depth maps to charac-

erize posture configurations, whose common pipeline is shown in

he first row of Fig. 1 . They usually focus on extracting low-level

eatures from RGB and depth images, and then employing tradi-

ional classifiers for posture recognition [2,11,23] . Recently, some

orks also apply convolutional neural networks to posture recog-

ition and achieve superior performance [3,7] . However, the RGB-D

ased methods may be less effective due to the inherent limita-

ions of 2D images to model actual 3D postures. 
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In addition to the RGB image and depth map, skeleton is an-

ther data modality that is popularly applied for posture recogni-

ion. Skeleton data is utilized to build high level features for char-

cterizing the 3D configurations of postures. In the existing liter-

ture, few works have been developed for skeleton-based posture

ecognition with the tricks of CNNs which are now popularly used

n the field of computer vision. Previous works usually take the

trategy that extracts a feature vector from joint positions, joint

ngles and joint distances [6,7,18,20] , and then employs SVM or

LP for classification. The pipeline of this strategy is shown in

he second row of Fig. 1 . Though achieving some success, these

ethods have certain drawbacks such as losing the natural expres-

ion of the relative position of joints, lacking scalability for invisi-

le joints. 

To solve the aforementioned problems and exert the power

f CNN to this issue, this paper develops a unified end-to-end

ramework called 3D PostureNet, by introducing Gaussian voxel

odeling and 3D CNN for skeleton-based posture recognition. The

ipeline of our method is shown in the third row of Fig. 1 . 

Specifically, in order to eliminate the coordinate differences

f raw skeleton data caused by diverse recording environments

nd posture displacements, a bounding-box-based normalization

ethod for raw skeleton data is proposed. When there are large

https://doi.org/10.1016/j.patrec.2020.09.029
http://www.ScienceDirect.com
http://www.elsevier.com/locate/patrec
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patrec.2020.09.029&domain=pdf
mailto:ywang@nlpr.ia.ac.cn
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Fig. 1. The procedures of different methods for posture recognition. The first row 

is RGB-D based approach, the second row is feature vector based method and the 

third row is our method. 
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displacements among posture samples in original data, it can pre-

serve the original scale among three dimensions while avoiding

the normalized joints falling into a small area of [0, 1] cube space.

Moreover, a Gaussian voxelization approach for skeleton modeling

is devised. It can naturally reflect the mutual positional relation-

ship of joints. As a consequence, the 3D PostureNet based on the

Gaussian voxel representation can be highly effective for posture

recognition. To validate our method, a large-scale writing posture

dataset is proposed and released, including 113,400 samples with

30 subjects and 15 postures. Extensive experiments on the public

MSRA hand gesture dataset, body pose dataset and the proposed

writing posture dataset demonstrate that 3D PostureNet achieves

superior performance. 

In summary, the contributions of this paper are as follows: 

• A bounding-box-based normalization method is proposed. It

can eliminate the coordinate differences caused by diverse

recording environments and posture displacements. 
• A Gaussian voxelization approach is devised to represent pos-

ture configurations. It can naturally reflect the mutual posi-

tional relationship of joints. 
• A unified end-to-end framework call 3D PostureNet is devel-

oped by introducing 3D CNN to learn on the Gaussian voxel

representation of the skeleton. 
• A large-scale writing posture dataset 1 including 113,400 sam-

ples of 30 subjects with 15 postures is proposed. 

2. Related works 

Human posture recognition. Early works for human posture

recognition usually use images captured by conventional RGB cam-

eras to model posture configurations [32] . These methods have in-

herent limitations for posture recognition since RGB images only

provide 2D information rather than 3D information which is cru-

cial to distinguish different postures. The emergence of RGB-D

cameras (e.g. Microsoft Kinect) allows researchers to exploit depth

information in computer vision tasks. In this context, recent ap-

proaches employ depth maps from RGB-D cameras to model hu-

man posture. Torres et al. [26] used multimodal data including

RGB images, depth maps and pressure maps for sleep poses clas-

sification in an Intensive Care Unit (ICU) environment. Elforaici

et al. [7] trained convolutional neural networks on RGB and depth

images to recognize human postures. With the development of

skeleton detection technology, skeleton data extracted from depth

map is utilized to build high level features characterizing the 3D

configurations of human body. Thus, skeleton is used for human
1 https://drive.google.com/drive/folders/1x51kWIoa _ eKm-UPvUt46N4VQiNxrfX0t? 

usp=sharing 
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a  
osture recognition in many papers. Le et al. [18] recognized hu-

an postures using skeleton information provided by Kinect. They

esigned a multiclass SVM to classify the feature vector consisting

f joint absolute coordinates. A new feature vector combining joint

ngles and the relative position of arm joints with respect to head

as proposed by Mangera [20] . K-means classifier was used to

dentify each posture. Elforaici et al. [7] designed a handcraft fea-

ure vector which was composed of 3D pairwise distances between

oints and the geometrical angles of adjacent limbs. Then SVM

as used to perform posture recognition. Wang and Liu [28] col-

ected bone information of the human body using the direction

osine method for feature extraction, feature vector was sent to

he BP neural network for human body gesture recognition. Guerra

t al. [10] used skeletal joint vertical coordinates and relative an-

les to represent each skeleton, a multi-layer perceptron with two

idden layers and a SoftMax output layer was built to classify the

uman posture. Ding et al. [5] proposed a new method based on

ultiple features (angle features and distance features) and rule

earning. Esmaeili et al. [8] designed an ensemble model to com-

ine 2D skeleton features and RGB features. 

Hand posture recognition. Similar to human posture recog-

ition, previous works for hand posture recognition extract low-

evel features from RGB or depth images. Traditional classifiers are

hen proposed to classify hand postures according to the features.

hukla and Dwivedi [24] computed hand features based on con-

our area and convexity defects. Pugeault and Bowden [23] pro-

osed a large hand posture recognition dataset corresponding to

etters of the American Sign Language (ASL) alphabet. Color and

epth maps have been used to characterize hand shapes, with ran-

om forests chosen as classifiers. Wang and Yang [29] presented

 2D volumetric shape descriptor based on the polar representa-

ion of hand image and rotation invariance. Dong et al. [6] used a

ierarchical mode-seeking method to localize hand joint positions

nd built a Random Forest (RF) classifier to recognize ASL signs

sing the joint angles. Feng et al. [9] generated depth projection

aps to extract the bag of contour fragment descriptors, which

ere concatenated as a final shape representation of the original

epth data. A SVM with a linear kernel was used as a shape clas-

ifier. Chevtchenko et al. [3] applied a convolutional neural net-

ork with feature fusion for real-time hand posture recognition.

adashzadeh et al. [4] presented a fusion network for hand ges-

ure segmentation and recognition. Kane and Khanna [15] recog-

ized static hand gesture using depth matrix and 1-nearest neigh-

or strategy. Mirsu et al. [21] proposed a deep neural network by

mploying PointNet architecture for hand gesture recognition us-

ng depth data. Recently, skeleton-based methods get more atten-

ion. Kapuscinski and Organisciak [16] encoded differences of hand

keleton using finger directions and palm normal. Kapu ́sci ́nski and

archoł [17] combined this feature with distance descriptor for

tatic hand gesture recognition. 

. Proposed method 

The proposed framework for skeleton-based posture recognition

s shown in Fig. 2 . The skeleton is normalized using bounding-box-

ased normalization to eliminate the coordinate differences caused

y diverse recording environment and posture displacement. After-

ards, Gaussian voxel modeling for skeleton is executed to repre-

ent posture configurations. A simple but powerful 3D PostureNet

ased on 3D CNN is designed to classify the constructed 3D fea-

ures. 

.1. Joint coordinate normalization 

In 3D skeleton-based posture recognition, a posture is described

s a collection of 3D positions of all joints in the skeleton. This

https://drive.google.com/drive/folders/1x51kWIoa_eKm-UPvUt46N4VQiNxrfX0t?usp=sharing
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Fig. 2. The proposed framework for skeleton-based posture recognition. The skeleton is normalized using bounding-box-based normalization. Gaussian voxel modeling for 

skeleton is executed to represent posture configurations. Then, 3D PostureNet is used to classify the constructed 3D features. For network architecture of the 3D PostureNet, 

3 × 3 × 3 Conv represents 3D filter with kernel size of 3, 2 × 2 × 2 Pool is a 3D max pooling layer, 64@16 × 16 × 16 means a set of 16 × 16 × 16 3D features with 64 

channels. 
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epresentation depends on the choice of the reference coordinate

ystem, which is different in every recording environment, and on

iometric differences [22] . However, given a specific posture, it is

ndependent of the absolute spatial position of joints but is depen-

ent on the relative position among all joints. Generally, the abso-

ute 3D coordinates of joints are based on the coordinate system of

he data acquisition camera. In this context, a variety of normaliza-

ion methods are proposed to eliminate the recording environment

nd biometric differences in skeleton data. Wei et al. normalized

uman poses by aligning the torsos and the shoulders [30] . Wu

nd Shao [31] changed the coordinate system from the world co-

rdinate system to person centric coordinate system by placing the

ip center at the origin. Besides, skeletons were normalized by the

ead length and aligned based on the head location [27] . Hussein

t al. [13] normalized the 3D coordinates of joints to range from 0

o 1 in all dimensions to make it scale-invariant. 

In this paper, we attempt to model skeleton in a cube vol-

me as the input of 3D convolutional neural networks. Hence, the

oordinates of joints are supposed to be normalized to range in

0,1] and then multiplied by a scale factor to be embedded into a

ube space with a specific resolution. The normalization approach

roposed by Wang et al. [27] which used limb length (e.g. head

ength) for skeleton normalization is robust to eliminate biomet-

ic differences. While this method has a strictly restricted condi-

ion for the selected limb, that is the limb should be visible in all

keleton samples. Thus, it is not applicable to our writing posture

ataset, since a few joints are invisible for some postures and there

s no constant visible limb for all skeleton samples. As a result, a

ew normalization approach without referring to limb information

hould be proposed. In this work, several normalization strategies

re explored. 

Global normalization. The simplest and most straightforward

trategy is global normalization. In this strategy, joint coordinates

n each dimension are normalized by the corresponding minimum

nd maximum values of the entire training data. Specifically, the

-coordinate is normalized as follows, 

 norm 

= 

x − G 

x 
min 

G 

x 
max − G 

x 
min 

, (1) 

here G 

x 
min 

and G 

x 
max are the minimum and maximum x-

oordinate values of the joints in the whole training data, x is

he original x-coordinate, and x norm 

is the normalized x-coordinate.

he coordinates of Y and Z are processed in the same way. This

ethod has an obvious drawback when there are large displace-

ents among posture samples of original data. In that case, the

ormalized joints will gather in a small area of [0, 1] cube space

eaving most regions empty. 

Local normalization. Another natural normalization strategy is

ocal normalization which normalizes each skeleton using its own

inimum and maximum values of coordinate. If the minimum and
aximum x-coordinate values of this skeleton are defined as x min ,

 max respectively, the x-coordinates of all joints in this skeleton are

ormalized by 

 norm 

= 

x − x min 

x max − x min 

. (2) 

Joint coordinates in all three dimensions will be transformed

o [0, 1] for every skeleton. Although joints will be dispersed as

uch as possible via this strategy, it has a fatal weakness as well.

oint coordinates in each dimension are standardized using differ-

nt scale factors. It will destroy the scale ratio among the three

imensions, which is a crucial feature to characterize the posture

keleton. 

Bounding-box-based normalization. In order to solve the is-

ue caused by global and local normalization, an innovative nor-

alization strategy based on the bounding box of skeleton is pro-

osed. The main idea of this approach is to normalize skeletons

sing the maximum side length of the bounding box for skeletons

n all training data. Concretely, for the given i th skeleton in train-

ng data, the minimum and maximum coordinate values of three

imensions for this skeleton are defined as x i 
min 

, x i max , y 
i 
min 

, y i max ,

 

i 
min 

, z i max respectively. The maximum side length of the bounding

ox for this skeleton is defined as 

 i = max 
(
x i max − x i min , y 

i 
max − y i min , z 

i 
max − z i min 

)
. (3) 

Hence, the scale factor used for normalization can be written as

 = max (l i ) , where i = 1 , . . . , N, N is the number of samples in total

raining data. Finally, the x-coordinate of joints for each skeleton

re normalized as follows, 

 norm 

= 

x − x min + x max 

2 

L 
+ 0 . 5 , (4)

here x min , x max are the minimum and maximum x-coordinate

alues of this skeleton, x is the original x-coordinate, and x norm 

is

he normalized x-coordinate. The coordinates of Y and Z are pro-

essed in the same way with the coordinate of X . In this way, each

keleton is normalized by a constant L and the center of the skele-

on is aligned to (0.5, 0.5, 0.5) which is the center of the [0, 1]

ube space. The shift among postures is eliminated via this nor-

alization strategy. Meanwhile, the structure characteristic of the

keleton remains consistent owing to the constant scale factor in

ll three dimensions. 

.2. Gaussian voxel modeling for skeleton 

Previous works for skeleton-based posture recognition usually

se a method where a feature vector is extracted from joint posi-

ions, joint angles and joint distances. The feature vector is treated

s the input of a traditional classifier e.g. KNN, SVM and MLP.

hese methods have the following disadvantages: 
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• Using a vector as an input can’t express the relative location of

joints naturally. 
• The structure of the classifier depends on the input form.

Therefore, the classifier structure has to be in line with the vec-

tor size which is determined by the number of involved joints.

That is, these methods lack scalability due to the fixed vector

size. 
• The input vector can’t express invisible joints well. As is dis-

cussed above, the vector size isn’t flexible, the coordinates of

all joints should be valued even when there are invisible joints.

That means the vector may contain some meaningless entries

corresponding to invisible joints. 

Voxel modeling. To overcome the drawbacks discussed above,

the skeleton is proposed to be modeled in voxel space. It is in-

spired by the volumetric representation for the geometric object

in computer graphics community. The process of generating volu-

metric representation from the geometric object is typically called

voxelization. It converts a continuous geometric model to a set of

voxels in the 3D discrete space with a specific resolution. Mean-

while, the appearance and shape feature of the original object is

maintained as much as possible. In this context, the skeleton is

transformed into a volume occupancy grid. That is, the skeleton

is put into a voxel space, the value of the occupied voxels equal to

1 and the values of the rest voxels equal to 0. 

More specifically, a skeleton data with J joints can be repre-

sented as a set S = { p n | p n = (x n , y n , z n , v n ) , n = 1 , . . . , J} , where p n

is a vector consists of 3D coordinate ( x n , y n , z n ) and visible label

v n of the n th joint. v n = 1 indicates that the joint is visible. On

the contrary, when v n = 0 , the joint is invisible. It’s worth noting

that x n , y n , z n ∈ [0, 1] due to the process of coordinate normaliza-

tion. For simplicity, the skeleton is embedded in a cube voxel space

with M × M × M resolution. Hence, it is necessary to discretize the

3D coordinate of joint to apply to the resolution. The discretization

procedure for coordinates can be conducted as follows, { 

x d n = � x n × (M − 1) � , 
y d n = � y n × (M − 1) � , 
z d n = � z n × (M − 1) � , 

(5)

where n = 1 , . . . , J and x d n , y 
d 
n , z 

d 
n are discretized coordinates,

x d n , y 
d 
n , z 

d 
n ∈ { 0 , 1 , . . . , M − 1 } . Simultaneously, the discretized skele-

ton data is turned into S d = { p 

d 
n | p 

d 
n = (x d n , y 

d 
n , z 

d 
n , v n ) , n = 1 , . . . , J} .

After voxel modeling, the volumetric representation for the skele-

ton can be represented as a tensor T of ( M, M, M ) dimension. The

entry with index ( i, j, k ) of tensor T can be written as Eq. (6) , where

i, j, k = 0 , . . . , M − 1 . 

T (i, j, k ) = 

{
1 if (i, j, k, 1) ∈ S d , 
0 otherwise. 

(6)

Gaussian voxel modeling. By voxel modeling for skeleton, we

overcome the weaknesses of the prior approaches successfully

which extracts features from skeleton to form a vector. The relative

positions between joints are reflected naturally since every joint is

embedded in the same 3D voxel space as a voxel cell. In addition,

the size of feature tensor is fixed as M × M × M , which is indepen-

dent of the number of involved joints. This improves the scalability

of subsequent classifier significantly. As for invisible joints, only the

voxel corresponding to the visible joint has a value of 1, and the

values of other voxels are 0, so the invisible joints remain invisible

in the voxel space as well. This technique distinguishes visible and

invisible joints visually. However, extensive entries of the tensor

T constructed above have a value of 0. As a result, when using a

high resolution, the tensor T will be too sparse for the subsequent

classifier to learn an effective feature for posture classification. This

motivates us to propose Gaussian voxel modeling for skeleton. 
The main idea of Gaussian voxel modeling for skeleton is to

pread the value of visible voxel cells to their neighbor vox-

ls using 3D Gaussian function. In detail, for the n th joint p 

d 
n =

(x d n , y 
d 
n , z 

d 
n , v n ) , a tensor T n is created to characterize this joint ac-

ording to the formula as follows, 

 n (i, j, k ) = 

{ 

exp 

(
− (i −x d n ) 

2 

2 σ 2 − ( j−y d n ) 
2 

2 σ 2 − (k −z d n ) 
2 

2 σ 2 

)
if v n = 1 , 

0 if v n = 0 , 
(7)

here i, j, k = 0 , . . . , M − 1 , and σ is the variance coefficient in

he direction of X, Y, Z coordinate axes. For skeleton S d = { p 

d 
n | p 

d 
n =

(x d n , y 
d 
n , z 

d 
n , v n ) , n = 1 , . . . , J} , T n is integrated together to character-

ze the configurations of the skeleton. Finally, the tensor T G used

o model the skeleton in 3D voxel space is obtained according to

q. (8) . T G ( i, j, k ) is the entry value with index ( i, j, k ) in tensor T G .

 G (i, j, k ) = max ( T n (i, j, k ) ) , n = 1 , . . . , J. (8)

.3. 3D PostureNet 

After generating the 3D Gaussian voxel feature, it is fed to our

D PostureNet to classify postures. The 3D PostureNet is based on

D convolutional neural network, which is used to aggregate lo-

al 3D features with a 3D convolutional kernel. 3D CNN is first

roposed for action recognition [14] , where features from the spa-

ial and temporal dimensions are extracted by performing 3D con-

olutions. After that, studies based on 3D CNN emerge in large

umbers. Recently, Li et al. [19] used separable 3D CNN to extract

patial and spectral information for hyperspectral image super-

esolution. In this paper, 3D CNN is used to capture the structure

nformation of the posture skeleton encoded in the 3D Gaussian

oxel feature. 

The network architecture of the proposed 3D PostureNet is

hown in Fig. 2 . For simplicity, a network with an input resolu-

ion of 32 × 32 × 32 and an output size of 15 is illustrated. With

egard to other input resolution and output size, the feature size of

he hidden layers can be inferred effortlessly. As shown in Fig. 2 ,

our 3D convolutional layers with a kernel size of 3 × 3 × 3 are

pplied to the 3D input to extract high level features gradually for

he skeleton. The sizes of the output channels of four 3D convo-

utional layers are 64, 128, 256 and 512. Each 3D convolutional

ayer is followed by a 2 × 2 × 2 max pooling layer to reduce the

ize of the feature. The output of the last 3D convolutional layer is

ransformed into a feature vector using global max pooling. The

etwork is designed to be scalable to the inputs with different

esolution using global max pooling layer. After that, three fully

onnected layers with sizes of 512, 256 and 15 are used to clas-

ify the posture skeleton. ReLU is applied to the output of every

ayer except for the last layer. The last output layer uses Softmax

s an activation function, and cross entropy loss is applied. In order

o avoid overfitting, dropout is used between the second and the

hird 3D convolutional layers as well as the fully connected layers.

. Experiments 

In this section, three datasets are introduced, one of which

s a large scale writing posture dataset including 113,400 sam-

les of 30 subjects with 15 postures collected by us. The others

re MSRA hand gesture dataset and body pose dataset which are

ublicly available. Then, comparison experiments are performed

gainst other methods. Ablation experiments and analyses are pro-

ided as well. 

.1. Datasets 

Writing posture dataset. Most of the existing works for

keleton-based posture recognition performed quantitative evalu-
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tion only on small datasets [7,18,20,26] , which contain less than

0 human postures. The datasets involve a small number of sub-

ects and the skeletons are always visible, which leads to a lack

f challenge. Therefore, in this work, a large and more challenging

ataset is collected for writing posture recognition. 

The writing posture dataset was collected using a calibrated

inocular camera in a laboratory environment, RGB video was

ecorded for each subject. We performed human pose estimation

n the RGB videos using OpenPose [1] to get the joint positions

nd visibility. By binocular reconstruction, 3D skeleton data was

rovided. In total, it consists of 113,400 images captured from 30

ubjects with different genders and heights. Skeleton data and pos-

ure category for each frame are provided. During our data cap-

ure, each subject was asked to perform one of the 15 writing

ostures each time. For each writing posture, about 300 frames

ere recorded. The skeleton data contains 12 body joints, and each

oint is recorded as a 3D coordinate ( x, y, z ) in the coordinate sys-

em centered on the binocular camera. The 15 writing postures

ith corresponding skeletons are shown in Fig. 3 . It shows that

oints suffer from severe occlusion in some postures such as head

own, lying down, turning left, turning backward, turning right

nd standing up. This increases the difficulty to recognize the pos-

ures. During training, the data of the first 7 subjects were used for

esting, and the rest data of 23 subjects were used for training. 

MSRA hand gesture dataset. In order to verify the effective-

ess and scalability of our method, we perform hand posture

ecognition on a challenging dataset which was proposed by Sun

t al. [25] . This dataset consists of 76, 500 depth images captured

rom 9 subjects, with 17 hand gestures that are mostly from Amer-

can Sign Language. The dataset was originally collected for hand

ose estimation using depth images. It provides skeleton data with

D joint coordinates for each posture. Containing all the informa-

ion for hand posture recognition, this dataset can be used to fur-

her evaluate our method. As is shown in Fig. 4 , the dataset has

arge viewpoint variations. It is a challenging task to distinguish
ig. 3. Illustration of the 15 postures in writing posture dataset. The corresponding 

keleton is drawn on each image. 

ig. 4. Illustration of the 17 hand gestures in MSRA hand gesture dataset. Each col- 

mn displays six depth images with various viewpoints corresponding to the spe- 

ific posture. 
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ifferent kinds of gestures in this dataset. During training, the data

f the first 2 subjects were used for testing, and the rest data of 7

ubjects were used for training. Due to the large viewpoint varia-

ions in the dataset, data argumentation was performed during the

raining stage. While training the network, the skeleton from the

raining set was randomly rotated an angle from -45 degrees to 45

egrees around X -axis, Y -axis and Z -axis respectively. 

Body pose dataset. Body pose dataset [12] has 12 recorded

ubjects performing 10 different standstill body poses. The dataset

rovides image, depth map, skeleton and pose label for each pose

ample. It provides 8400 pose samples in total. We use the data of

he first 3 subjects for testing, and the rest data of 9 subjects for

raining. 

.2. Comparison with the state of the art 

In order to evaluate and compare our method with previous

ethods proposed by other researchers, experiments were con-

ucted on the writing posture dataset, MSRA hand gesture dataset

nd body pose dataset. The selected works for comparison are

isted in Table 1 . 

Mangera [20] proposed a new feature vector combining joint

ngles and the relative positions of arm joints with respect to

ead. The feature vector then inputs to the k-means classifier to

luster each posture. In our experiments, the joint nose, wrist

nd head were chosen as the reference joints in writing posture

ataset, MSRA hand gesture dataset and body pose dataset respec-

ively. The relative position of all the other joints with respect to

he reference joint was used in the three datasets. The skeleton-

ased approaches in Table 1 didn’t take into consideration the in-

isible joints. To evaluate these methods on our writing posture

ataset which contains plenty of postures with invisible joints, the

alues of joint absolute coordinates, joint angles and joint dis-

ances are fixed to 0 when encountering invisible joints. We im-

lemented these methods and applied them to the above three

atasets respectively. 

The mean accuracy of the above methods as well as our ap-

roach is listed in Table 1 . The data shows that our approach out-

erforms the state of the arts with a larger margin. Our method

chieved the highest accuracy on the three datasets with 97.77%

n the writing posture dataset, 98.56% on the MSRA hand gesture

ataset and 98.16% on the body pose dataset. The performance of

ur method is better than the skeleton-based methods as well as

he RGB and depth-based methods. It is clear that our approach

as better effectiveness on skeleton modeling and posture recogni-

ion. 

To further analyze the results on the proposed writing pos-

ure dataset, we provide the confusion matrix of the predictions

n Fig. 5 . It can be seen that our method can distinguish most of

osture categories effectively. For posture “Sloping left shoulder”

nd “Sloping right shoulder”, our method confuses these postures

ith postures “Head tilted left” and “Head tilted right”, since these

osture skeletons are similar in spatial configurations. 

.3. Ablation study 

Normalization strategies. In this work, three normalization

trategies are presented, i.e., global normalization, local normal-

zation and bounding-box-based normalization. As analyze above,

lobal normalization and local normalization have inherent dis-

dvantages. Global normalization has an obvious drawback when

here are large displacements among posture samples. The normal-

zed joints will be gathered in a small area of [0, 1] cube space

eaving most regions empty. This will increase the difficulty for the

etwork to recognize the postures. With regard to local normaliza-

ion, joint coordinates in all three dimensions will be transformed
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Table 1 

Recognition accuracy comparison with the state-of-the-art methods on the writing posture dataset (WPD), MSRA hand gesture dataset 

(MSRA-HGD) and body pose dataset (BPD). 

Method Modality Features Classifier WPD(%) MSRA-HGD(%) BPD(%) 

Elforaici et al. RGB — CNN 91.82 — 92.43 

Esmaeili et al. RGB — CNN 94.55 — 94.96 

Chevtchenko et al. Depth — CNN 93.28 92.35 93.26 

Le et al. skeleton absolute coordinates SVM 85.65 83.72 86.41 

Dong et al. skeleton joint angles RF 84.37 85.64 85.63 

Mangera skeleton relative positions and joint angles K-means 86.15 87.78 88.82 

Elforaici et al. skeleton joint distances and angles SVM 87.03 87.17 89.33 

Wang and Liu skeleton bone angle BP NN 89.95 88.58 90.25 

Kapuscinski and Organisciak skeleton finger directions and palm normal SVM — 90.67 —

Kapu ́sci ́nski and Warchoł skeleton finger directions and distances SVM — 93.27 —

3D PostureNet skeleton Gaussian voxel feature 3D CNN 97.77 98.56 98.16 

Fig. 5. Confusion Matrix of predication results of our method on the writing pos- 

ture dataset. The posture labels corresponds to Fig. 3 . Best seen on computer, in 

color and zoomed in. 

Table 2 

Recognition accuracy with different normalization strategies and 

rotation augmentation on both the writing posture dataset and 

MSRA hand gesture dataset. 

Normalization Strategies WPD MSRA-HGD 

Global normalization 96.41% 83.82% 

Local normalization 7.65% 94.34% 

Bounding-box-based normalization 97.77 % 98.56 % 

without rotation augmentation 97.15% 95.32% 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6. The test loss curve with different normalization strategies during training 

on the MSRA hand gesture dataset. 

Table 3 

Recognition accuracy with different 

variances on both the writing pos- 

ture dataset and MSRA hand gesture 

dataset. 

Variance WPD MSRA-HGD 

σ = 2 . 0 96.58% 98.08% 

σ = 1 . 5 97.10% 98.27% 

σ = 1 . 0 97.17% 98.56 % 

σ = 0 . 5 97.77 % 97.93% 

sparse 91.35% 91.95% 
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to [0, 1] for every skeleton. Although joints will be dispersed as

much as possible via this strategy, it has a fatal weakness as well.

Joint coordinates in each dimension are standardized using a dif-

ferent scale factor. This will result in the destruction of the rela-

tive position between joints which is a crucial feature to character-

ize the posture skeleton. The bounding-box-based normalization is

presented to address these problems. In order to evaluate the per-

formance of the three normalization strategies, experiments were

conducted using different normalization strategies on two datasets.

The results are given in Table 2 . Bounding-box-based normaliza-

tion achieves the best performance on both datasets. The result

is in line with the above analysis. Duo to the large displacements

among gesture samples in MSRA hand gesture dataset, the perfor-

mance deteriorates with the global normalization. Note that local

normalization failed on the writing posture dataset, the network

didn’t converge. Compared to MSRA hand gesture dataset, the scale

factors of the three dimensions differ considerably for the writing

posture dataset. It leads to severe destruction of the relative po-

sition between joints. Besides, rotation augmentation shows about

3% improvement on MSRA hand gesture dataset but little improve-
ent on the writing posture dataset, since the MSRA hand gesture

ataset has large viewpoint variations. To further analyze the ef-

ectiveness of the bounding-box-based normalization, Fig. 6 shows

he test loss curve with different normalization strategies during

raining on the MSRA hand gesture dataset. The test loss curve

ith bounding-box-based normalization is smoother than global

ormalization and local normalization. It shows that test data is

ncoded closer to train data using bounding-box-based normaliza-

ion. 

Variance and resolution. To explore the influence of the vari-

nce and input resolution in Gaussian voxel modeling on the

erformance, ablation experiments with different variances and

esolution were conducted. When performing ablation experi-

ents with various variances, the input resolution was fixed to

2 × 32 × 32. Similarly, the variance was fixed to 1.0 when ex-

loring the influence of input resolution. The result for different

ariances and resolution are listed in Tables 3 and 4 respectively.

hese results clearly show that the best variance and input reso-
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Table 4 

Recognition accuracy with different input 

resolution on both the writing posture 

dataset and MSRA hand gesture dataset. 

Resolution WPD MSRA-HGD 

16 × 16 × 16 95.69% 98.13% 

24 × 24 × 24 96.37% 98.22% 

32 × 32 × 32 97.17% 98.56 % 

40 × 40 × 40 97.57 % 97.40% 

Table 5 

Average inference time of different methods. 

Method Inference time (ms) 

Elforaici et al. 158 

Esmaeili et al. 363 

Chevtchenko et al. 174 

Le et al. 26 

Dong et al. 6 

Mangera 12 

Elforaici et al. 25 

Wang and Liu 23 

Kapuscinski and Organisciak 27 

Kapu ́sci ́nski and Warchoł 63 

3D PostureNet 87 
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ution for MSRA hand gesture dataset are 1.0 and 32 × 32 × 32.

ompare with MSRA hand gesture dataset, smaller variance and

igher resolution lead to better performance on the writing pos-

ure dataset. Some of the postures (e.g., turning left and turning

ight) in the writing posture dataset have joints too adjacent to

ach other, which requires a smaller variance and a higher resolu-

ion to distinguish each joint. 

.4. Computational efficiency 

To investigate the computational efficiency of the proposed

ethod, we list the average inference time of different meth-

ds in Table 5 . Experiments are conducted on a PC with an In-

el i7-7700HQ (2.8GHz) CPU and 16GB RAM. Due to the use of

eep learning, our method is not superior in speed compared

ith other approaches based on traditional classifiers. However,

ur method achieves superior performance with an acceptable in-

rease on computation complexity. 

. Conclusion 

In this paper, we have proposed a novel framework for

keleton-based posture recognition using 3D CNN. To eliminate

he coordinate differences caused by diverse recording environ-

ents and posture displacements, the skeleton is normalized us-

ng bounding-box-based normalization. Gaussian voxel modeling

or skeleton is executed to represent posture configurations. After-

ards, a simple but powerful 3D PostureNet based on 3D CNN is

esigned to classify the constructed 3D features. To verify the ef-

ectiveness of our method, a large-scale writing posture dataset in-

luding 113,400 samples of 30 subjects with 15 postures was col-

ected. Experiments on the writing posture dataset, MSRA hand

esture dataset and body pose dataset show that our method

chieves superior performance on both skeleton-based human pos-

ure and hand posture recognition tasks. 

eclaration of Competing Interest 

The authors declare that they have no known competing finan-

ial interests or personal relationships that could have appeared to

nfluence the work reported in this paper. 
cknowledgements 

This research was supported by the Major Project for New

eneration of AI under Grant No. 2018AAA010 040 0, the Na-

ional Key Research and Development Program under Grant No.

016YFB0501100, and the National Natural Science Foundation of

hina under Grants 91646207 , and 61976208 . 

eferences 

[1] Z. Cao , T. Simon , S.-E. Wei , Y. Sheikh , Realtime multi-person 2d pose estimation

using part affinity fields, in: CVPR, 2017, pp. 1302–1310 . 
[2] K.W. Chen , X. Guo , J.G. Wu , Gesture recognition system based on wavelet mo-

ment, in: Applied Mechanics and Materials, vol. 401, Trans Tech Publ, 2013,
pp. 1377–1380 . 

[3] S.F. Chevtchenko , R.F. Vale , V. Macario , F.R. Cordeiro , A convolutional neural

network with feature fusion for real-time hand posture recognition, Appl. Soft
Comput. 73 (2018) 748–766 . 

[4] A . Dadashzadeh , A .T. Targhi , M. Tahmasbi , M. Mirmehdi , HGR-Net: a fusion
network for hand gesture segmentation and recognition, IET Comput. Vis. 13

(8) (2019) 700–707 . 
[5] W. Ding , B. Hu , H.Y. Liu , X. Wang , X. Huang , Human posture recognition based

on multiple features and rule learning, Int. J. Mach. Learn. Cybern. (2020) . 

[6] C. Dong , M.C. Leu , Z. Yin , American sign language alphabet recognition using
microsoft kinect, in: CVPRW, 2015, pp. 44–52 . 

[7] M.E.A. Elforaici , I. Chaaraoui , W. Bouachir , Y. Ouakrim , N. Mezghani , Posture
recognition using an RGB-D camera: exploring 3d body modeling and deep

learning approaches, in: LSC, IEEE, 2018, pp. 69–72 . 
[8] B. Esmaeili , A. AkhavanPour , A. Bosaghzadeh , An ensemble model for human

posture recognition, in: MVIP, IEEE, 2020, pp. 1–7 . 
[9] B. Feng , F. He , X. Wang , Y. Wu , H. Wang , S. Yi , W. Liu , Depth-projec-

tion-map-based bag of contour fragments for robust hand gesture recognition,

IEEE Trans. Hum. Mach. Syst. 47 (4) (2017) 511–523 . 
[10] B.M.V. Guerra , S. Ramat , G. Beltrami , M. Schmid , Automatic pose recognition

for monitoring dangerous situations in ambient-assisted living, Front. Bioeng.
Biotechnol. 8 (2020) 415 . 

[11] P. Gurjal , K. Kunnur , Real time hand gesture recognition using sift, Int. J. Elec-
tron. Electr.Eng. 2 (3) (2012) 19–33 . 

[12] J.R. Hidalgo, J.R. Casas, Body pose dataset, image processing group, Accessed 1

July 2020. http://imatge.upc.edu/web/resources/body- pose- dataset . 
[13] M.E. Hussein , M. Torki , M.A. Gowayyed , M. El-Saban , Human action recognition

using a temporal hierarchy of covariance descriptors on 3d joint locations, in:
IJCAI, 2013, pp. 2466–2472 . 

[14] S. Ji , W. Xu , M. Yang , K. Yu , 3D convolutional neural networks for human action
recognition, IEEE Trans. Pattern Anal. Mach. Intell. 35 (1) (2013) 221–231 . 

[15] L. Kane , P. Khanna , Depth matrix and adaptive bayes classifier based dynamic

hand gesture recognition, Pattern Recognit. Lett. 120 (2019) 24–30 . 
[16] T. Kapuscinski , P. Organisciak , Handshape recognition using skeletal data, Sen-

sors 18 (8) (2018) 2577 . 
[17] T. Kapu ́sci ́nski , D. Warchoł, Hand posture recognition using skeletal data and

distance descriptor, Appl. Sci. 10 (6) (2020) 2132 . 
[18] T.-L. Le , M.-Q. Nguyen , T.-T.-M. Nguyen , Human posture recognition using hu-

man skeleton provided by kinect, in: ComManTel, 2013, pp. 340–345 . 

[19] Q. Li , Q. Wang , X. Li , Mixed 2d/3d convolutional network for hyperspectral im-
age super-resolution, Remote Sens. 12 (10) (2020) 1660 . 

20] R. Mangera , Static gesture recognition using features extracted from skeletal
data, 2013 . 

[21] R. Mirsu , G. Simion , C.D. Caleanu , I.M. Pop-Calimanu , A pointnet-based solution
for 3d hand gesture recognition, Sensors 20 (11) (2020) 3226 . 

22] L.L. Presti , M. La Cascia , 3D skeleton-based human action classification: asur-

vey, Pattern Recognit. 53 (2016) 130–147 . 
23] N. Pugeault , R. Bowden , Spelling it out: real-time ASL fingerspelling recogni-

tion, in: ICCVW, IEEE, 2011, pp. 1114–1119 . 
24] J. Shukla , A. Dwivedi , A method for hand gesture recognition, in: CSNT, IEEE,

2014, pp. 919–923 . 
25] X. Sun , Y. Wei , S. Liang , X. Tang , J. Sun , Cascaded hand pose regression, in:

CVPR, 2015, pp. 824–832 . 

26] C. Torres , V. Fragoso , S.D. Hammond , J.C. Fried , B. Manjunath , Eye-CU: sleep
pose classification for healthcare using multimodal multiview data, in: WACV,

IEEE, 2016, pp. 1–9 . 
[27] C. Wang , Y. Wang , A.L. Yuille , An approach to pose-based action recognition,

in: CVPR, 2013, pp. 915–922 . 
28] J. Wang , X.H. Liu , Human posture recognition method based on skeleton vector

with depth sensor, IOP Conf. Ser. Mater. Sci.Eng. 806 (2020) 012035 . 
29] Y. Wang , R. Yang , Real-time hand posture recognition based on hand dominant

line using kinect, in: ICMEW, IEEE, 2013, pp. 1–4 . 

30] P. Wei , N. Zheng , Y. Zhao , S.-C. Zhu , Concurrent action detection with structural
prediction, in: ICCV, 2013, pp. 3136–3143 . 

[31] D. Wu , L. Shao , Leveraging hierarchical parametric networks for skeletal joints
based action segmentation and recognition, in: CVPR, 2014, pp. 724–731 . 

32] M. Yu , A. Rhuma , S.M. Naqvi , L. Wang , J. Chambers , A posture recogni-
tion-based fall detection system for monitoring an elderly person in a smart

home environment, IEEE Trans. Inf. Technol. Biomed. 16 (6) (2012) 1274–1286 .

https://doi.org/10.13039/501100001809
http://refhub.elsevier.com/S0167-8655(20)30361-5/sbref0001
http://refhub.elsevier.com/S0167-8655(20)30361-5/sbref0001
http://refhub.elsevier.com/S0167-8655(20)30361-5/sbref0001
http://refhub.elsevier.com/S0167-8655(20)30361-5/sbref0001
http://refhub.elsevier.com/S0167-8655(20)30361-5/sbref0001
http://refhub.elsevier.com/S0167-8655(20)30361-5/sbref0002
http://refhub.elsevier.com/S0167-8655(20)30361-5/sbref0002
http://refhub.elsevier.com/S0167-8655(20)30361-5/sbref0002
http://refhub.elsevier.com/S0167-8655(20)30361-5/sbref0002
http://refhub.elsevier.com/S0167-8655(20)30361-5/sbref0003
http://refhub.elsevier.com/S0167-8655(20)30361-5/sbref0003
http://refhub.elsevier.com/S0167-8655(20)30361-5/sbref0003
http://refhub.elsevier.com/S0167-8655(20)30361-5/sbref0003
http://refhub.elsevier.com/S0167-8655(20)30361-5/sbref0003
http://refhub.elsevier.com/S0167-8655(20)30361-5/sbref0004
http://refhub.elsevier.com/S0167-8655(20)30361-5/sbref0004
http://refhub.elsevier.com/S0167-8655(20)30361-5/sbref0004
http://refhub.elsevier.com/S0167-8655(20)30361-5/sbref0004
http://refhub.elsevier.com/S0167-8655(20)30361-5/sbref0004
http://refhub.elsevier.com/S0167-8655(20)30361-5/sbref0005
http://refhub.elsevier.com/S0167-8655(20)30361-5/sbref0005
http://refhub.elsevier.com/S0167-8655(20)30361-5/sbref0005
http://refhub.elsevier.com/S0167-8655(20)30361-5/sbref0005
http://refhub.elsevier.com/S0167-8655(20)30361-5/sbref0005
http://refhub.elsevier.com/S0167-8655(20)30361-5/sbref0005
http://refhub.elsevier.com/S0167-8655(20)30361-5/sbref0006
http://refhub.elsevier.com/S0167-8655(20)30361-5/sbref0006
http://refhub.elsevier.com/S0167-8655(20)30361-5/sbref0006
http://refhub.elsevier.com/S0167-8655(20)30361-5/sbref0006
http://refhub.elsevier.com/S0167-8655(20)30361-5/sbref0007
http://refhub.elsevier.com/S0167-8655(20)30361-5/sbref0007
http://refhub.elsevier.com/S0167-8655(20)30361-5/sbref0007
http://refhub.elsevier.com/S0167-8655(20)30361-5/sbref0007
http://refhub.elsevier.com/S0167-8655(20)30361-5/sbref0007
http://refhub.elsevier.com/S0167-8655(20)30361-5/sbref0007
http://refhub.elsevier.com/S0167-8655(20)30361-5/sbref0008
http://refhub.elsevier.com/S0167-8655(20)30361-5/sbref0008
http://refhub.elsevier.com/S0167-8655(20)30361-5/sbref0008
http://refhub.elsevier.com/S0167-8655(20)30361-5/sbref0008
http://refhub.elsevier.com/S0167-8655(20)30361-5/sbref0009
http://refhub.elsevier.com/S0167-8655(20)30361-5/sbref0009
http://refhub.elsevier.com/S0167-8655(20)30361-5/sbref0009
http://refhub.elsevier.com/S0167-8655(20)30361-5/sbref0009
http://refhub.elsevier.com/S0167-8655(20)30361-5/sbref0009
http://refhub.elsevier.com/S0167-8655(20)30361-5/sbref0009
http://refhub.elsevier.com/S0167-8655(20)30361-5/sbref0009
http://refhub.elsevier.com/S0167-8655(20)30361-5/sbref0009
http://refhub.elsevier.com/S0167-8655(20)30361-5/sbref0010
http://refhub.elsevier.com/S0167-8655(20)30361-5/sbref0010
http://refhub.elsevier.com/S0167-8655(20)30361-5/sbref0010
http://refhub.elsevier.com/S0167-8655(20)30361-5/sbref0010
http://refhub.elsevier.com/S0167-8655(20)30361-5/sbref0010
http://refhub.elsevier.com/S0167-8655(20)30361-5/sbref0011
http://refhub.elsevier.com/S0167-8655(20)30361-5/sbref0011
http://refhub.elsevier.com/S0167-8655(20)30361-5/sbref0011
http://imatge.upc.edu/web/resources/body-pose-dataset
http://refhub.elsevier.com/S0167-8655(20)30361-5/sbref0012
http://refhub.elsevier.com/S0167-8655(20)30361-5/sbref0012
http://refhub.elsevier.com/S0167-8655(20)30361-5/sbref0012
http://refhub.elsevier.com/S0167-8655(20)30361-5/sbref0012
http://refhub.elsevier.com/S0167-8655(20)30361-5/sbref0012
http://refhub.elsevier.com/S0167-8655(20)30361-5/sbref0013
http://refhub.elsevier.com/S0167-8655(20)30361-5/sbref0013
http://refhub.elsevier.com/S0167-8655(20)30361-5/sbref0013
http://refhub.elsevier.com/S0167-8655(20)30361-5/sbref0013
http://refhub.elsevier.com/S0167-8655(20)30361-5/sbref0013
http://refhub.elsevier.com/S0167-8655(20)30361-5/sbref0014
http://refhub.elsevier.com/S0167-8655(20)30361-5/sbref0014
http://refhub.elsevier.com/S0167-8655(20)30361-5/sbref0014
http://refhub.elsevier.com/S0167-8655(20)30361-5/sbref0015
http://refhub.elsevier.com/S0167-8655(20)30361-5/sbref0015
http://refhub.elsevier.com/S0167-8655(20)30361-5/sbref0015
http://refhub.elsevier.com/S0167-8655(20)30361-5/sbref0016
http://refhub.elsevier.com/S0167-8655(20)30361-5/sbref0016
http://refhub.elsevier.com/S0167-8655(20)30361-5/sbref0016
http://refhub.elsevier.com/S0167-8655(20)30361-5/sbref0017
http://refhub.elsevier.com/S0167-8655(20)30361-5/sbref0017
http://refhub.elsevier.com/S0167-8655(20)30361-5/sbref0017
http://refhub.elsevier.com/S0167-8655(20)30361-5/sbref0017
http://refhub.elsevier.com/S0167-8655(20)30361-5/sbref0018
http://refhub.elsevier.com/S0167-8655(20)30361-5/sbref0018
http://refhub.elsevier.com/S0167-8655(20)30361-5/sbref0018
http://refhub.elsevier.com/S0167-8655(20)30361-5/sbref0018
http://refhub.elsevier.com/S0167-8655(20)30361-5/sbref0019
http://refhub.elsevier.com/S0167-8655(20)30361-5/sbref0019
http://refhub.elsevier.com/S0167-8655(20)30361-5/sbref0020
http://refhub.elsevier.com/S0167-8655(20)30361-5/sbref0020
http://refhub.elsevier.com/S0167-8655(20)30361-5/sbref0020
http://refhub.elsevier.com/S0167-8655(20)30361-5/sbref0020
http://refhub.elsevier.com/S0167-8655(20)30361-5/sbref0020
http://refhub.elsevier.com/S0167-8655(20)30361-5/sbref0021
http://refhub.elsevier.com/S0167-8655(20)30361-5/sbref0021
http://refhub.elsevier.com/S0167-8655(20)30361-5/sbref0021
http://refhub.elsevier.com/S0167-8655(20)30361-5/sbref0022
http://refhub.elsevier.com/S0167-8655(20)30361-5/sbref0022
http://refhub.elsevier.com/S0167-8655(20)30361-5/sbref0022
http://refhub.elsevier.com/S0167-8655(20)30361-5/sbref0023
http://refhub.elsevier.com/S0167-8655(20)30361-5/sbref0023
http://refhub.elsevier.com/S0167-8655(20)30361-5/sbref0023
http://refhub.elsevier.com/S0167-8655(20)30361-5/sbref0024
http://refhub.elsevier.com/S0167-8655(20)30361-5/sbref0024
http://refhub.elsevier.com/S0167-8655(20)30361-5/sbref0024
http://refhub.elsevier.com/S0167-8655(20)30361-5/sbref0024
http://refhub.elsevier.com/S0167-8655(20)30361-5/sbref0024
http://refhub.elsevier.com/S0167-8655(20)30361-5/sbref0024
http://refhub.elsevier.com/S0167-8655(20)30361-5/sbref0025
http://refhub.elsevier.com/S0167-8655(20)30361-5/sbref0025
http://refhub.elsevier.com/S0167-8655(20)30361-5/sbref0025
http://refhub.elsevier.com/S0167-8655(20)30361-5/sbref0025
http://refhub.elsevier.com/S0167-8655(20)30361-5/sbref0025
http://refhub.elsevier.com/S0167-8655(20)30361-5/sbref0025
http://refhub.elsevier.com/S0167-8655(20)30361-5/sbref0026
http://refhub.elsevier.com/S0167-8655(20)30361-5/sbref0026
http://refhub.elsevier.com/S0167-8655(20)30361-5/sbref0026
http://refhub.elsevier.com/S0167-8655(20)30361-5/sbref0026
http://refhub.elsevier.com/S0167-8655(20)30361-5/sbref0027
http://refhub.elsevier.com/S0167-8655(20)30361-5/sbref0027
http://refhub.elsevier.com/S0167-8655(20)30361-5/sbref0027
http://refhub.elsevier.com/S0167-8655(20)30361-5/sbref0028
http://refhub.elsevier.com/S0167-8655(20)30361-5/sbref0028
http://refhub.elsevier.com/S0167-8655(20)30361-5/sbref0028
http://refhub.elsevier.com/S0167-8655(20)30361-5/sbref0029
http://refhub.elsevier.com/S0167-8655(20)30361-5/sbref0029
http://refhub.elsevier.com/S0167-8655(20)30361-5/sbref0029
http://refhub.elsevier.com/S0167-8655(20)30361-5/sbref0029
http://refhub.elsevier.com/S0167-8655(20)30361-5/sbref0029
http://refhub.elsevier.com/S0167-8655(20)30361-5/sbref0030
http://refhub.elsevier.com/S0167-8655(20)30361-5/sbref0030
http://refhub.elsevier.com/S0167-8655(20)30361-5/sbref0030
http://refhub.elsevier.com/S0167-8655(20)30361-5/sbref0031
http://refhub.elsevier.com/S0167-8655(20)30361-5/sbref0031
http://refhub.elsevier.com/S0167-8655(20)30361-5/sbref0031
http://refhub.elsevier.com/S0167-8655(20)30361-5/sbref0031
http://refhub.elsevier.com/S0167-8655(20)30361-5/sbref0031
http://refhub.elsevier.com/S0167-8655(20)30361-5/sbref0031

	3D PostureNet: A unified framework for skeleton-based posture recognition
	1 Introduction
	2 Related works
	3 Proposed method
	3.1 Joint coordinate normalization
	3.2 Gaussian voxel modeling for skeleton
	3.3 3D PostureNet

	4 Experiments
	4.1 Datasets
	4.2 Comparison with the state of the art
	4.3 Ablation study
	4.4 Computational efficiency

	5 Conclusion
	Declaration of Competing Interest
	Acknowledgements
	References


