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Recognizing activities from egocentric multimodal data collected by wearable cameras and sensors, is gaining

interest, as multimodal methods always benefit from the complementarity of different modalities. However,

since high-dimensional videos contain rich high-level semantic information while low-dimensional sensor

signals describe simple motion patterns of the wearer, the large modality gap between the videos and the sen-

sor signals raises a challenge for fusing the raw data. Moreover, the lack of large-scale egocentric multimodal

datasets due to the cost of data collection and annotation processes makes another challenge for employing

complex deep learning models. To jointly deal with the above two challenges, we propose a knowledge-

driven multimodal activity recognition framework that exploits external knowledge to fuse multimodal data

and reduce the dependence on large-scale training samples. Specifically, we design a dual-GCLSTM (Graph

Convolutional LSTM) and a multi-layer GCN (Graph Convolutional Network) to collectively model the rela-

tions among activities and intermediate objects. The dual-GCLSTM is designed to fuse temporal multimodal

features with top-down relation-aware guidance. In addition, we apply a co-attention mechanism to adap-

tively attend to the features of different modalities at different timesteps. The multi-layer GCN aims to learn

relation-aware classifiers of activity categories. Experimental results on three publicly available egocentric

multimodal datasets show the effectiveness of the proposed model.
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1 INTRODUCTION

With the advancement of Mobile Internet and the Internet of Things, various wearable devices,

such as mobile phones, portable cameras, and smart wristbands, are widely used in people’s daily

lives. The widespread use of these devices enables a low-cost and autonomous collection of large-

scale multimodal data, such as personal photos, the egocentric (i.e., first-person view) videos, ac-

celerometer data, heart rate, and GPS, which can record people’s daily physical activities at any

place and any time. Automated understanding and analysis of the collected raw data is extremely

valuable in many applications such as healthcare monitoring [2, 68] and human-computer inter-

action [69]. For example, learning user behaviors facilitates to optimize the course of the day with

regard to dietary control or sport.

Egocentric human activity recognition has been extensively investigated in the past decade with

the help of various sensors. In pervasive computing area, the data streams collected from wear-

able sensors, such as accelerometer and gyroscope, are widely exploited for behavior analysis [18,

19, 40, 62, 66, 67]. However, the activity recognition performance is often limited by the drifts of

sensors (e.g., mobile phone), which occurs during user’s long operation time [8]. In computer vi-

sion area, the encouraging progress of deep learning–based research on activity recognition from

exocentric (i.e., third-person view) videos [12, 24, 26, 63, 70] has inspired the research interest in

egocentric videos (i.e., first-person view) [3, 42, 46]. However, compared with exocentric videos, the

invisibility of the activity performer in the egocentric videos generates extra challenges to activity

recognition task. In many tasks of the multimedia and computer vision fields, such as event de-

tection [48, 55], micro-video understanding [31, 44, 65], and multiple social networks learning [17,

43], multimodal methods always benefit from the complementarity of different modalities. Thus,

combining data streams collected from the wearable sensors and the egocentric cameras is useful

to alleviate the sensor drift and wearer invisibility problems in recognizing activities using the

single modality data. Although promising progress has been achieved, most of the existing meth-

ods only focus on directly concatenating multimodal features [2, 41, 56] or selectively using single

modality features in different scenes [47]. They do not pay much attention to the challenge of the

large modality gap: High-dimensional videos, consisting of spatial and temporal information,

contain rich, high-level semantic information [59], while the low-dimensional sensor signal data

only describe the simple motion pattern of the wearer. The simple fusion scheme may fail to exploit

the complex semantic information in egocentric videos.

Another challenge in egocentric multimodal activity recognition is the lack of large-scale an-

notated datasets. Recently, third-view activity recognition has gained significant progress due

to the availability of large-scale datasets, such as ActivityNet [5] and Kinetics [7]. However, the

largest publicly available egocentric dataset including both video and sensor data, i.e., Stanford-

ECM [41], has only 113 videos of 23 activity categories. Recently, Karpathy et al. [26] found that

3D CNN architectures are not able to properly learn motion features when there is non-existence

of sufficiently large datasets. However, it is not an easy way to obtain a large-scale dataset from
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wearable sensors and cameras due to the high cost of data collection and class annotation. Al-

ternatively, there is an imperative requirement of new egocentric activity recognition model that

works well on the relatively small dataset.

Recently, knowledge graph has attracted notable attention as a flexible data structure for repre-

senting relationships of real-world entities. It has been increasingly applied in various fields includ-

ing object recognition [36, 50] and video classification [15, 54]. Complex human actions have been

shown to strongly relate to the objects in the context where human is embedded [10]. Actually,

modeling semantic relations of intermediate objects and activities is also helpful for solving the

challenge of the modality gap between the egocentric videos and the sensor data. Specifically, the

relations among intermediate semantic features and activities to be recognized provide top-down

guidance to adaptively find the most important features of different modalities to fuse for correct

activity prediction. For example, egocentric videos always contain shaken and blurred shots due

to the natural movements of the wearers. It is hard to find the effective visual feature to com-

bine with the motion feature of the sensors in an bottom-up scheme. Instead, with the awareness

of the high-level relations between objects and activities, the recognition model is more likely

to make the correct decision to focus on the visual features of videos or movement patterns of

sensor data. Moreover, Salakhutdinov et al. [50] demonstrate that different classifiers can share

the implicit representations over the knowledge graph so the classifiers with few training sam-

ples can borrow statistical information from other classifiers with explicit relations (i.e., edges) in

knowledge graph. Thus, the knowledge graphs are also suitable for solving the challenge of lack

of large-scale annotated datasets in egocentric multimodal activity recognition.

Motivated by above observations, we propose a knowledge-driven multimodal activity recog-

nition framework that exploits external knowledge to enhance the performance of activity recog-

nition on the egocentric data. In this work, we mainly focus on the egocentric video and the ac-

celerometer/gyroscope data. It is not difficult to extend it to other kinds of modalities. Figure 1

shows an overview of the proposed framework. Specifically, we first build a single-modality global

prediction module that calculates the preliminary activity scores based on the motion feature of

the sensor signal and the vision feature of the egocentric video, respectively. Then, we propose a

knowledge-driven multimodal prediction module consisting of a dual-GCLSTM (Graph Convolu-

tional LSTM) and a multi-layer GCN (Graph Convolutional Network), which collectively model the

relations among activities and intermediate objects. The dual-GCLSTM is designed to model tem-

poral multimodal features with the top-down relation-aware guidance. In addition, a co-attention

mechanism is adopted to adaptively attend to different modality data at different timesteps. The

multi-layer GCN aims to learn relation-aware classifiers of different activity categories. By lever-

aging external knowledge to model the relations among activities and intermediate objects, the

classifiers can also reduce the dependence on large-scale training samples.

The main contributions of this article are summarized as follows:

(1) We propose a knowledge-driven egocentric multimodal activity recognition framework

that can collectively leverage the external semantic context and relationship knowledge

to augment the conventional recognition model.

(2) We propose a dual-GCLSTM to dynamically combine relation-aware multimodal features,

which can alleviate the modality gap, and a multi-layer GCN to comprehensively learn

relation-aware activity classifiers, which can reduce the dependency on large-scale train-

ing samples.

(3) We evaluate the proposed framework against several competitive existing methods. The

extensive experiment results on three public datasets demonstrate the effectiveness of the

proposed method.
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Fig. 1. An overview of the proposed knowledge-driven framework for multimodal activity recognition. In

single-modality global prediction module, the dual-LSTM models the sequential features {ev
t }Tt=1 and {es

t }Tt=1
to produce preliminary activity scores ŷv and ŷs . In knowledge-driven multimodal prediction module, object

classifiers first produce object scores {ot }Tt=1 of each video clip. The object and activity scores of ot , ŷv , and

ŷs are used to multiply corresponding object or activity word-embeddings to obtain input node features Xv
t

and Xs
t of graph. Then Xv

t and Xs
t are fed into co-attention module to produce weighted features X̂v

t and X̂s
t .

The Dual-GCLSTM is used to fuse multimodal data streams {X̂v
t }Tt=1 and {X̂s

t }Tt=1 and produce final concept

features HT with the consideration of temporal dynamic patterns of knowledge evolution. In addition, the

GCN is used to model the static relations among concepts and learn the relation-aware classifiersWcls .

The relation structure of the graph in all branches is constructed from external knowledge graph. The final

knowledge-aware activity prediction is implemented via the learned HT andWcls .

2 RELATED WORK

In this section, we review the most related work to our method in the following three aspects.

2.1 Egocentric Activity Recognition

In the past several years, activity recognition has been extended to egocentric cameras as well

as wearable sensors and has attracted a lot of attention. We first review the methods based on

the single modality data. Then, we introduce the state-of-the-art multimodal egocentric activity

recognition methods.

For video-based egocentric activity recognition, traditional methods rely on handcrafted fea-

tures such as objects [34, 46], hands [39, 61], and gaze [14, 29]. However, these methods strongly

rely on prior knowledge in constrained environments, but have not addressed the datasets in nat-

ural environment. Recently, deep learning–based methods have achieved more successful perfor-

mances in large-scale activity datasets. One research line of egocentric activity recognition meth-

ods directly follows the third-view activity recognition. Simonyan et al. [53] propose a two-stream

Convolutional Neural Network over image frames and optical flows to explore spatial and tempo-

ral information. Song et al. [56] extend this method to egocentric video domain. Another research

line focuses specifically on hand and object cues for activity recognition. Pirsiavash et al. [46] ex-

plore active object detection as an auxiliary task for activity recognition. Cai et al. [6] propose a
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structured approach where grasp types, object attributes, and their contextual relationships are

analyzed together. Baradel et al. [1] extend this approach with considering both the spatial and

temporal information.

Sensor-based activity recognition task has also been studied widely due to its low-power and

lost-cost advantages. Bulling et al. [4] has shown that statistical features (e.g., time-domain and

frequency-domain features) of sensor signals can achieve advanced performance in recognizing

activities. In addition, CNN-based [18, 19] and RNN-based [40, 66] architectures have also achieved

competitive performances.

More recently, there is an emerging tendency to incorporate video modality and sensor signal

modality together to improve the accuracy of egocentric activity recognition. Hsieh et al. [22]

leverage several mid-level representations in the surrounding of a subject as essential cues for

inferring the activity class. The handcrafted features represent what, where, and how a subject is

interacting with the context. However, this method only fuses the posterior probabilities based

on each modality but ignores the interaction among the extracted mid-level concepts. Song et al.

[56] propose a multi-stream feature extractor with a two-level multimodal fusion technique for

egocentric multimodal activity recognition. Nakamura et al. [41] make activity recognition via

concatenating video and sensor signal features and use the heart rate signal as self-supervised in-

formation to enhance the model performance. Bernal et al. [2] use an LSTM-based temporal fusion

method on video and sensor data, where the correlations of two modalities are modeled into the

hidden states of the LSTM. Possas et al. [47] propose a reinforcement learning framework to select

the video or sensor signal modality for activity predicting in different scenes. This method reduces

the computational consumption and increases the accuracy simultaneously. However, the above

methods only directly combine multimodal features or selectively use single modality feature in

different scenes, which cannot explicitly model the complementarity of videos and sensor signals.

2.2 Knowledge Graphs

Learning knowledge graphs and reasoning on graphs have recently been of interest to the vi-

sion and multimedia communities, such as object detection [50], image recognition [36], video

retrieval [9], and visual question answering [25, 49]. Salakhutdinov et al. [50] demonstrate that

different classifiers can share the implicit representations in the knowledge graph so classifiers

with few training samples can borrow the statistical information from other classifiers with ex-

plicit relations. It is extremely helpful to deal with the unavailability of the large-scale annotated

activity dataset. Marino et al. [36] propose a graph search neural network to exploit structured

prior knowledge into image classification. Chen et al. [9] employ the knowledge graph on video

retrieval task. They build the knowledge graph on user described queries and use Conditional Ran-

dom Field to learn the node/edge predictors for semantic matching. Sadeghi et al. [49] introduce a

visual knowledge extraction system to reason the entities in the context of a given relation phrase

and exploit this system into question-answering task. To the best of our knowledge, there is no

existing work that incorporates external knowledge to improve the egocentric activity recognition.

2.3 Graph Neural Networks

Graph Neural Network (GNN), a neural network employment for structured graphs, has gained

much attention, as it can effectively employ local graph operation with learnable filters. Kipf et al.

[28] use the GCN to handle a semi-supervised node classification problem. By propagating the

information over explicit relation edges, the embedding features of nodes can be learned with

only few labeled information. Lately, Wang et al. [64] regard graph nodes as classifiers to deal

with the zero-shot problem. They model the semantic embeddings (represented as nodes) and the

relations (represented as edges) between categories to learn the classifiers of unseen categories.
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Gao et al. [16] propose that building knowledge graph with both the classifier and the pre-defined

attribute can further improve generalization.

GNN has also been designed to model sequential structured data. Seo et al. [51] combine the

GNN and RNN to build Graph Convolutional Recurrent Network (GCRN). It can identify the spatial

structures on the graph via graph convolutional operations and capture temporal dependencies of

the data via recurrent operations. Li et al. [30] propose a diffusion method that incorporates graph

convolutional layer into GRU networks for spatiotemporal forecasting in traffic environments.

Different with the above methods, we employ GNN to enhance the prediction performance of the

egocentric multimodal activity recognition with the external knowledge. We propose a knowledge-

aware prediction module where a GCN is adopted to learn classifiers from semantic embeddings of

activities and objects with explicit relations, and a dual-GCLSTM is adopted to model the dynamic

patterns of the knowledge evolution in both the video and sensor signal streams.

3 METHODOLOGY

3.1 Overview

We give the details of our framework for Egocentric Multimodal Activity Recognition in this sec-

tion. Formally, letV denote a video sequence and S denote a sequence of wearable sensor signals.

We formulate this task as a sequential prediction problem where both V and S are segmented

into T equal-length segments V = {v1, v2, . . . , vT } and S = {s1, s2, . . . , sT }. In addition, we have

an object set O containing O objects that will be used as the intermediate features. The object

set is important for building a top-down relation-aware guidance to fuse multimodal data to en-

hance the recognition capacity. Our target is to calculate the activity probability distribution over

y = {y1,y2, . . . ,yC } based onV ,S, and O. Here,C is the number of activity classes. The number of

segmentsT is fixed for all videos and wearable sensor signals to perform sequential parallelization

in our framework.

The framework of the proposed model is shown in Figure 1. We first create the single-modality

global prediction module, which consists of a motion predictor and a vision predictor to produce

the preliminary activity scores. Here, we use a dual-LSTM to extract the global motion feature

based on sensor signals and the global vision feature based on videos, respectively. Then, we de-

sign a knowledge-driven multimodal prediction module to fuse two single-modality predictors

with semantic features and knowledge graph. A dual-GCLSTM is adopted to produce the relation-

aware multimodal features, and a multi-layer GCN is adopted to learn the final knowledge-aware

classifiers. Specifically, the dual-GCLSTM is designed to model the dynamic knowledge evolution

on the two modalities. At each timestep, the embedding vectors of the objects and activities are

used as the node inputs of the GCLSTM. The relations (i.e., edges) among the objects and activi-

ties are built based on ConceptNet. In addition, a co-attention mechanism is adopted to adaptively

attend to the features of different modalities at different timesteps. The multi-layer GCN is de-

signed to learn relation-aware activity classifiers. In this branch, the input nodes of GCN are the

word embeddings of all possible activities and objects, and the adopted relation graph is same as

GCLSTM. Finally, the relation-aware classifiers are used to perform knowledge-aware prediction

based on the relation-aware multimodal features.

3.2 Single-modality Global Prediction

The single-modality global prediction module is implemented by two preliminary predictors based

on the video modality and the sensor signal modality, respectively.

3.2.1 Motion Predictor. We directly extract the Time-domain and Frequency-domain (T-F) fea-

tures from the raw wearable sensor signals as in References [32, 41]. For time-domain features, we
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compute mean, standard deviation, skewness, kurtosis, percentiles (10th, 25th, 50th, 75th, 90th), the

counts for each signal axis, as well as the correlation coefficients between each axis of sensor signal.

For frequency-domain features, we use the spectral entropy, which is computed through short-time

fourier transform (STFT) [45]. All time-domain and frequency-domain features of the sensor signal

segment st are concatenated to get the final representation es
t ∈ Rds . The ds is the dimension of

the sensor signal feature. The resulting hand-crafted features are denoted as Es = {es
1, e

s
2, . . . , e

s
T
}.

Then, we feed the sequential sensor signal features Es into LSTM [21] networks, which are good

at solving the problem of long-term dependencies compared with traditional RNNs, to capture the

temporal structure of sensor signal modality:

hs
t = LSTMs

(
es

t , h
s
t−1

)
, (1)

where hs
t is the hidden state in LSTM cell. To get the activity probability distribution, we employ a

fully connected layer followed with a Softmax activation layer on the hidden state hs
T

of the final

timestep:

ŷs = Softmax
(
Ws hs

T + bs
)
, (2)

where Ws and bs are trainable parameters, and ŷs ∈ RC is the probability distribution over all

activity categories. The motion predictor is appropriate to capture the body movement–related

patterns such as running, walking, and cycling. In other words, it will perform poorly for activities

with limited movement.

3.2.2 Vision Predictor. Referring to the recently advanced work in video analysis domains such

as video classification [15] and activity recognition [16, 41], we employ a pre-selected feature

extraction layer of the deep CNNs Inception-V3 [58] pre-trained on ImageNet [11] to extract visual

features over the frames sampled from the video modality. Then, we perform mean pooling over

those frame features of the video segment vt to compute the final representation ev
t ∈ Rdv . The

resulting visual features of the video segments are denoted as Ev = {ev
1 , e

v
2 , . . . , e

v
T
}.

Same as how to design the motion predictor, we feed the sequential features Ev into LSTM

networks:

hv
t = LSTMv

(
ev

t , h
v
t−1

)
, (3)

where hv
t is the hidden state. Then, we employ a fully connected layer followed with a Softmax

layer on the final hidden state hv
T

to get the activity probability distribution ŷv ∈ RC :

ŷv = Softmax
(
Wv hv

T + bv
)
, (4)

where Wv and bv are trainable parameters.

3.3 Knowledge-driven Multimodal Prediction

In this section, we will introduce the knowledge-driven multimodal prediction module. The tar-

get of this module is to enhance the generalization capacity of the motion predictor and vision

predictor in the manner of exploiting the explicit relations among activities and objects via graph

neural network and knowledge graph. The object set O (containing O objects) is introduced as

an intermediate to connect the low-level vision/motion features and the high-level activities to

be predicted. The structured graph G describes the explicit relations (i.e., edges) among all the

activities and objects (i.e., nodes).

We will first introduce the main building block of our knowledge-driven prediction module,

i.e., graph convolutional layer, which is well known, as it can learn layer-wise propagation oper-

ations on graphs [28]. Graph convolutional operations are used for producing temporal dynamic
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knowledge-aware semantic features of multimodal data, as well as learning static knowledge-

aware classifiers. To reduce the clutter in the following parts, we use a simplified notation to

represent a one-layer graph convolutional operation as follows:

W ∗G X
Δ
= Z = D̂−

1
2 ÂD̂−

1
2 XW, (5)

where X is the input node features. W∗G denotes a one-layer graph convolution operation based

on relation graph G with trainable filter W. Specifically, Â = A + Im is the adjacency matrix of the

knowledge graph G with self-connections, Im is the identity matrix. D̂ is the degree matrix of Â

as D̂ii =
∑

j Âi j . Note that the row vector Xi ∈ Rk is the feature representation of the ith node. As

a result, the input X ∈ Rm×k for this graph convolutional layer is transformed into a new feature

space Z ∈ Rm×c with filter W ∈ Rk×c .

In our work, the nodes of the graph are represented by k−dimensional word vectors pre-trained

on the large-scale corpus with rich context information. We use the Xcls ∈ R(C+O )×k to denote the

word-embedding matrix of all activity and object nodes. The edges of the graph are created based

on the extra public knowledge base, e.g., ConceptNet [57]. More details of building the graph are

introduced in Section 4.2.

3.3.1 Dynamic Knowledge-aware Semantic Feature. Our motivation is to fuse sensor signal and

video in the manner of modeling the explicit relations among all activities and intermediate objects

that vary dynamically over the time. To capture the knowledge evolution with a graph structure,

we first build two-stream semantic embeddings as graph node inputs based on intermediate object

scores and preliminary activity scores of two modalities. Then, we use the dual-GCLSTM to pro-

duce knowledge-aware features, which can model the temporal dynamic patterns of knowledge

evolution in two-stream inputs.

Semantic Embedding: For a video segment vt , we employ Inception-V3 [58] model trained

on ImageNet [11] to get the object scores of each frame using the output of the Softmax layer.

Then, we obtain the object score vector ot ∈ RO of the video segment through mean-pooling over

all frames. At each timestep of the GCLSTM, the object score ot and the preliminary predicted

activity score ŷv (or ŷs ) is used as a weight vector to multiply with the initial graph input Xcls .

Specifically, the graph input Xv
t ∈ R(C+O )×k of the video modality and the Xs

t ∈ R(C+O )×k of the

sensor signal modality at each timestep are computed as:

Xv
t = diag([ŷv ; ot ])Xcls , Xs

t = diag([ŷs ; ot ])Xcls , (6)

where [; ] denotes the concatenation operation of two vectors.

Multimodal Attention: To exploits the complementary and redundancy of two data modalities

at each timestep t , a co-attention [33] operator is performed on Xv
t and Xs

t as follows:

Mt = tanh
(
Xs

t Wb
caXv

t
T
)
,

Av
t = tanh

(
Wv

caXv
t

T
+

(
Ws

caXs
t

T
)
Mt

)
,

As
t = tanh

(
Ws

caXs
t

T
+

(
Wv

caXv
t

T
)
Mt

T
)
,

av
t =Softmax

(
wv

ca
TAv

t

)
,

as
t =Softmax

(
ws

ca
TAs

t

)
,

(7)

where av
t , a

s
t ∈ RC+O are normalized attention weights of the concept features in Xv

t and Xs
t , re-

spectively. Mt ∈ R(C+O )×(C+O ) is affinity matrix of Xv
t and Xs

t , which is used for transforming

sensor signal attention space to video attention space (vice versa for Mt
T). Wb

ca ∈ Rk×k , Wv
ca ,

Ws
ca ∈ Rhc×k , and wv

ca , ws
ca ∈ Rhc are trainable parameters.hc is the dimension of video attention
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space and sensor signal attention space. Based on the above attention scores, we can get weighted

representation X̂v
t and X̂s

t of two data modalities as follows:

X̂v
t = diag

(
av

t

)
Xv

t , X̂s
t = diag

(
as

t

)
Xs

t . (8)

In the training phase, the adopted bottom-up attention will be constrained by the relation-aware

guidance from the following dual-GCLSTM module.

Temporal Dynamic Modeling: We use graph convolutional LSTM (GCLSTM) in our frame-

work to model the temporal dynamic patterns of knowledge evolution based on the graph inputs

{X̂v
t }Tt=1 and {X̂s

t }Tt=1.

Since the video stream and sensor signal stream are temporally aligned, we adopt a dual-

architecture with different parameters. For simplicity, we use X̂t to represent the graph input

X̂v
t (or X̂s

t ). Next, we will briefly introduce the implementation details of one-branch of the dual-

GCLSTM.

Given the input node features X̂t ∈ Rm×k , hidden node states Ht−1, and memory cell states Ct−1

from last timestep, the updating units of GCLSTM in timestep t are calculated as follows:

Gt = tanh(Wд ∗G X̂t + Rд ∗G Ht−1),

It =σ (Wi ∗G X̂t + Ri ∗G Ht−1),

Ft =σ (Wf ∗G X̂t + Rf ∗G Ht−1),

Ct =Gv
t � Ivt + Ct−1 � Ft ,

Ot =σ (Wo ∗G X̂t + Ro ∗G Ht−1),

Ht = tanh(Ct ) � Ot ,

(9)

where W∗G is the filter operation defined in Equation (5). Gt ∈ Rm×h is the cell input matrix. It , Ft ,

and Ot ∈ Rm×k are input gate, forget gate, and output gate matrixes, respectively. σ (·) is Sigmoid

activation function and � is element-wise product operation. All the gate parameters W ∈ Rh×k

and R ∈ Rh×h are trainable. It is worth noting that k is the dimension of input node features and

h is the dimension of hidden state features. By using the GCLSTM unit described in Equation (9),

the number of model parameters is independent of the number of nodes in the graph G.

We calculate the final feature matrix Hv
T

and Hs
T

at timestepT from both video and sensor signal

data via GCLSTM defined in Equation (9) as follows:

Hv
t = GCLSTMv

(
X̂v

t ,H
v
t−1

)
, Hs

t = GCLSTMs

(
X̂s

t ,H
s
t−1

)
, (10)

where Hv
t ∈ R(C+O )×h and Hs

t ∈ R(C+O )×h . Then, we fuse the final augmented features of videos

and sensor signals by element-wise product operation as follows:

HT = Hv
T � Hs

T . (11)

3.3.2 Static Knowledge-aware Classifier. For the activity classifiers, we also want to exploit the

instance-agnostic concept relationships in graph G, i.e., we use GCN to synthetically consider

the semantic representations of activities and objects, and propagate information via the edge

connections. Specifically, we use the initial node features Xcls ∈ R(C+O )×k defined in Section 3.3

as input. Activity classifiersWcls is produced via a two-layer GCN with following operations:

Wcls = ϕ
(
W2 ∗G ϕ

(
W1 ∗G Xcls

))
, (12)

where ϕ is a nonlinear activation function. W1 ∈ Rk×h′ and W2 ∈ Rh′×h are trainable parameters,

h′ and h are the feature dimensions of the two GCN layers. The output Wcls ∈ R(C+O )×h is a

matrix where each row can be used as a classifier.
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In our setting, Wcls
1:C

corresponds to activity classifiers and Wcls
C+1:C+O

corresponds to object

features. The proposed architecture collectively models all the relations among activities and ob-

jects. The classifiersWcls
1:C

learned from the explicit knowledge relations will be applied to predict

activity probabilities.Wcls
C+1:C+O

, which will not be explicitly used for activity recognition, serves

as a bridge between learned classifiers, and produced multimodal features. After obtaining the

knowledge-aware classifiersWcls
1:C

and the semantic feature HT , we calculate probability of each

activity as follows:

ŷ =Softmax(q),

qi =Wcls
i

∑
o∈N (i )

HT ,o
T, (13)

where qi , the ith element of q, is the classification score of the ith activity.Wcls
i ∈ R1×h is the ith

activity classifier. HT ,o ∈ R1×h is the oth row of HT , which indicates the output semantic feature of

the oth node in the graph G.N (i ) is the index set of one-hop neighbors of the ith node in the graph

G, which means that we focus strongly on related visual objects for specific activity prediction. In

fact, using neighbors can avoid some interference visual objects in activity classification.

3.4 Joint Learning and Inference

Suppose that we have a training set D = {Vn ,Sn , yn }Nn=1 containing N videos, their associated

sensor signals, and activity labels. Since the construction of knowledge-driven prediction module

relies on the single-modality predictors, we train all the predictors together with following losses.

For the motion predictor, cross-entropy loss is typically used over all data samples to constrain

the model parameters:

Ls = −
1

N

N∑
n=1

C∑
i=1

yn,i log
(
ŷs

n,i

)
. (14)

Similarly, the vision predictor can be optimized as follows:

Lv = −
1

N

N∑
n=1

C∑
i=1

yn,i log
(
ŷv

n,i

)
. (15)

And the knowledge-aware predictor can also be optimized as follows:

Lk = −
1

N

N∑
n=1

C∑
i=1

yn,i log(ŷn,i ). (16)

In above formulations, yn,i is the ith value (0 or 1) of the ground-truth label yn . The ŷs
n,i , ŷv

n,i , and

ŷn,i are the probabilities of the ith activity calculated by the motion predictor in Equation (2), the

vision predictor in Equation (4), and the knowledge-aware classifier in Equation (13), respectively.

We comprehensively train all the predictors together by minimizing the following loss function:

L = α
(Ls + Lv

2

)
+ (1 − α )Lk , (17)

where α is the hype-parameter to balance the single-modality global prediction module and the

knowledge-driven multimodal prediction module. We equalize the contribution of Ls and Lv ,

which denotes that motion predictor and vision predictor carry the same significance compared

with the knowledge-aware predictor.
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During the inference stage, we fuse the motion predictor, vision predictor, and knowledge-aware

predictor together to calculate the enhanced recognition result of the ith activity as follows:

P (i ) = β

(
ŷs,i + ŷv,i

2

)
+ (1 − β )ŷi , (18)

where β is used to balance the contribution from each predictor.

4 EXPERIMENTS

4.1 Datasets

4.1.1 Multimodal Data. Multimodal dataset [56] is an early publicized dataset for egocentric

activity recognition. Egocentric videos and sensor signals are recorded by the Google Glass in a

synchronized manner. It is a small-scale dataset that contains 20 life-logging activities recorded by

different subjects. Each activity has 10 sequences and each sequence has a duration of 15 seconds.

We use full 200 videos with three-axis accelerations and three-axis gyroscopes as sensor signals

in our experiments. We split the Multimodal dataset into a training set with 140 samples and a

testing set with 60 samples.

4.1.2 Stanford ECM. This new dataset is proposed by Nakamura et al. [41]. It comprises

31 hours of egocentric videos augmented with heart rate and acceleration data. There are totally

23 activity classes in the Stanford ECM. Both the videos and the acceleration signals are collected

by a mobile phone, which is placed in the chest pocket of subjects. A wrist sensor provides the

corresponding heart rate data. Nakamura et al. use the heart rates as self-supervised information

for activity recognition. In the experiments, we only use three-axis accelerations as sensor signals.

Different from the Multimodal Data, Stanford ECM is collected in a more natural way, where the

videos have different time durations from 2 minutes to 51 minutes, and each video may contain

multiple activities. To conduct activity recognition task on this dataset, we split each video into

multiple instances so each of them has a single activity label. Finally, we get 559 instances and split

them into 373 instances for training and 186 instances for testing.

4.1.3 DataEgo. Possas et al. [47] propose an egocentric multimodal dataset named DataEgo. It

contains 20 activities performed in different conditions and by different subjects. Each recording

has a five-minute video that contains a flow of four to six activities, and the whole dataset contains

four hours of continuous activities. Besides the video, each recording also contains accelerometer

and gyroscope signals. Same as the Stanford ECM, we split each video into multiple instances

with individual activity labels. Finally, we get 264 instances. We split them into 176 instances for

training and 88 instances for testing.

4.2 Implementation Details

4.2.1 Knowledge Graph Building. In our experiments, we use the ConceptNet-v5.7 [57] to build

our knowledge graph. ConceptNet connects words and phrases of natural language with labeled

edges. Following previous work [13], we employ the English sub-graph of ConceptNet, which has

about 1.5M nodes. We follow the previous methods [13, 36] to build the adjacency matrix A over

activity and object nodes by retrieving the relation weight between two concept nodes from Con-

ceptNet. In practice, the edges of the graph are frozen during the training step as References [16,

36], since fine tuning A is computationally burdensome and will lose generalization capacity, as

it changes the intrinsic knowledge structures of A. Moreover, we impose some constraints on the

fully connected adjacency matrix to make it sparse. The reasons are as follows: (1) Fully connected

A will burden the computations. (2) For each activity, we should only attend to a subset of con-

cept nodes. To this end, we select top K nodes with the highest edge weights for each activity as
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follows:

N (i ) = topK(ai ), (19)

where topK(x) returns the indices of the K largest values of the input vector x, and ai denotes the

ith row of the adjacency matrix A.

Here, we present the computational complexity analysis for building the knowledge graph. The

relation weight between two concept nodes is retrieved by the API of ConceptNet [57]. For the

C activity nodes and O object nodes, we need to do (C +O ) (C +O − 1)/2 operations of retrieval.

Since each operation of the relation retrieval takes a fixed time τ (about 1–2 milliseconds on an

ordinary PC), the total time of building the graph is (C +O ) (C +O − 1)τ/2. Once the knowledge

graph is constructed, the graph structure is fixed for all samples in training and prediction stage

and will not change the computational complexity of the proposed framework.

Following Reference [37], node representations of the graph are computed by the skip-gram net-

work of Word2Vec pre-trained on the meta-data of YFCC100M dataset [60]. The reason of choosing

the YFCC100M dataset is that its meta-data have semantic context information that closely match

activity recognition. The trained model produces a 500-dimensional representation for each word.

In the aforementioned three activity datasets, the labels of activities and objects always contain

two or above words. To represent each node in a fixed length, we average all word vectors as in

Reference [37].

4.2.2 Model Details. We set the length of the video sequence or the sensor signal sequence to 10

(T = 10). We choose the 2,048-dimensional outputs (dv = 2,048) of the pool-3 layer in Inception-V3

[58] as video frame features. The dimensions of the hidden states in the motion predictor LSTMs

and the vision predictor LSTMv are set ashs = 64 andhv = 256. To recognize key objects contained

in the video data, we consider the 1,000 categories in ImageNet [11]. Specifically, the object score

vector is computed through the last layer in the Inception-V3 model. The dimension hc of multi-

modality attention space is set to 256. The dimension h of hidden features in GCLSTM is set to 256.

The output dimension of the first GCN layer is set as h′ = 512, while the second GCN layer is set

as h′′ = h = 256 for element-wise feature classification. We use PReLU, which returns max(ρx ,x )
as activation function in GCN, since it can increase the convergence speed of neural network

compared with ReLU [20]. Recently, it is also popularly used in graph neural networks [38, 52].

The coefficient ρ is initialized to 0.2. α and β are set by using the grid-search approach in range [0,

1]. The final values are 0.7 for α and 0.3 for β on the MultiModal and Stanford ECM datasets, and

0.8 for α and 0.2 for β on the DataEgo dataset. We employ Adam [27] gradient descent optimizer

with a learning rate of 0.001 for end-to-end training on one NVIDIA RTX GPU. The batch size is

set to 32. The overall framework is implemented on TensorFlow.

4.3 Performance Comparison

4.3.1 Comparison to Other Models. We use Accuracy and AUC-PR (i.e., area under the curve of

precision-recall) metrics to compare our model on the egocentric multimodal activity recognition

task with recent state-of-the-art methods. LSTM (motion) [56] only uses the sensor signal modal-

ity to predict activities. LRCN [47] adopts a video-based method, where CNNs are used for vision

feature extraction and RNNs for temporal dependency modeling. ERCN [41] uses an early fu-

sion scheme that is combined with LSTM for activity recognition. TFusion [2] uses a hierarchical

multimodal data fusion scheme for egocentric activity recognition, where the first layer consists

of two single-modality LSTMs, and the second layer attempts to explicitly capture the temporal

sequence behavior and correlations of multi-modality.

As shown in Table 1, the results of the LSTM (motion) method on three datasets show that it

performs poorly, as the daily and natural environment activities are hard to be recognized via
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Table 1. Performance Comparison of Accuracy (%) and AUC-PR (%) on Three Datasets

Model Multimodal Data Stanford ECM DataEgo
Accuracy AUC-PR Accuracy AUC-PR Accuracy AUC-PR

LSTM (motion) [56] 48.33 58.13 33.69 30.00 44.32 55.57

LRCN [47] 53.33 60.22 67.91 74.49 68.18 78.32

ERCN [41] 63.33 70.96 68.35 76.22 71.59 81.19

TFusion [2] 67.80 71.99 68.98 75.79 72.73 81.63

Ours 71.67 77.24 73.80 79.94 76.14 83.78

Table 2. Ablation Studies of the Proposed Method on Three Datasets

Multimodal Data Stanford ECM DataEgo
MP VP CA KA Accuracy AUC-PR Accuracy AUC-PR Accuracy AUC-PR

� � 60.00 61.72 36.36 35.06 53.41 62.09

� � 58.33 64.35 68.40 75.11 69.32 78.80

� � � 61.67 73.77 67.38 75.65 71.59 81.27

� � � � 71.67 77.24 73.80 79.94 76.14 83.78

*Notations: MP, VP, and KA denote the motion predictor, vision predictor, and knowledge-aware predictor, respec-

tively. CA denotes co-attention mechanism. � denotes whether the the component is employed in our model for

end-to-end training.

sensor signals. The results of the LRCN method show that, compared with the sensor signal, the

visual data have richer information, which is beneficial for daily activity recognition. According

to the results of the ERCN and TFusion methods, fusing the data from two modalities can further

improve the recognition performances. These results demonstrate that the visual content can well

complement the sensor signal. However, the TFusion only has small improvements than ERCN,

since the data scale of all three egocentric multimodal datasets limits the performance improve-

ment of complicated deep model. Moreover,the feature fusion operation of multimodal data in

References [2, 41] can neither model the explicit interaction of two modalities nor use the exter-

nal knowledge to enhance the recognition capacity. In comparison, the proposed model performs

favorably on all three datasets.

4.3.2 Ablation Studies. In this part, we evaluate the effectiveness of each component of the

proposed model. Our model is composed of two key modules: the single-modality global pre-

diction module and the knowledge-driven multimodal prediction module. For simplicity, we use

the abbreviations: motion predictor (MP), vision predictor (VP), knowledge-aware predictor (KA),

and co-attention mechanism (CA). As shown in Table 1 and Table 2, MP+KA achieves much bet-

ter performances than LSTM (motion) [56], as MP+KA uses explicit concept relations among vi-

sual objects for activity recognition, while LSTM (motion) only uses sensor signal information.

Moreover, the VP+KA, which consists of the vision predictor and the knowledge-aware predictor,

also achieves better performances than LRCN [47]. It shows that external knowledge can improve

recognition performances even when only visual data are used. Aforementioned ablation studies

have not synthetically considered the information of two modalities. When we combine the MP,

VP, and KA together, the results in Table 2 show that MP+VP+KA outperforms both MP+KA and

VP+KA on MultiModal and DataEgo datasets. In contrast, the MP+VP+KA performs worse than

the MP+KA in the Accuracy metric on the Stanford ECM dataset. It is mainly because, on Multi-

modal and DataEgo datasets, the sensor signals consist of accelerations and gyroscopes, while the
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Fig. 2. Influence of the graph sparsity. The K determines how many local neighboring nodes in the graph

will be connected with a given activity node. K changes from 20 to 100 with the step of 5.

Stanford ECM only has acceleration signals. Thus, fewer motion features can be extracted on the

Stanford-ECM dataset and the MP+KA has much lower accuracy than the VP+KA. With the big

performance gap between MP and VP, it is difficult to boost the performance by the late fusion of

them. Finally, with the co-attention module, which dynamically pays different attentions to each

data modality at different timesteps with the top-down relation guidance, the MP+VP+CA+KA has

significant improvements on all the three datasets.

4.4 Further Remarks

4.4.1 Influence of the Graph Sparsity. The number K illustrated in Section 4.2 determines how

many local neighboring nodes in the graph will be connected with a given activity node. A small

number of K produces a sparse knowledge graph, which will reduce the burden of computation

and memory usage, but loses much relation knowledge. As shown in Figure 2, when K = 50, our

method obtains the highest performance compared with other values of K on all three datasets.

With the increase of K , the recognition performance decreases, because considering too many

object nodes will bring noises into the model. In contrast, if K is too small, insufficient relation

knowledge will also influence the model performances.

4.4.2 Impact of the Semantic Embedding. In our work, besides external knowledge graph struc-

ture that is used to describe the relations between concepts, another important prior knowledge

is the node’s embedding feature, whose semantic information will propagate in the graph with

regard to the connected edges. To illustrate the effectiveness of the adopted semantic embedding

scheme, we use randomly initialized vectors to replace the pre-trained embedding vectors. As

shown in Figure 3, our model with random embedding vectors performs worse than the w/o KA

model, which denotes a directly concatenated fusion model without use of external knowledge.

This shows that wrong semantic information is harmful for the generalization ability of the pro-

posed model. When we set the randomly initialized node’s embedding vectors trainable, it obtains

better performances. However, on Multimodal dataset, our model with randomly initialized and

trainable embedding vectors still performs worse than the w/o KA model. This is due to the fact

that such models cannot learn robust embedding vectors from the limited context of the small-

scale Multimodal dataset. On the contrary, when using the embedding vectors pre-trained from

large-scale corpus, the proposed model has a significant improvement on the Multimodal dataset

and also obtains best performances on the Stanford ECM and DataEgo datasets. To this end, we can
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Fig. 3. The impact of different node embedding features of the graph. Random Init denotes the proposed

model with random initialized embedding vectors. Init+trainable has random initialized and trainable em-

bedding vectors. w/o KA is a directly concatenated fusion model without knowledge-aware predictor.

Table 3. Recognition Accuracies (%) of Individual Predictors in

Proposed Model on Three Datasets

Multimodal Data Stanford ECM DataEgo

LSTM (motion) [56] 48.33 33.69 44.32

LRCN [47] 53.33 68.91 68.18

MP 53.33 34.76 45.45

VP 63.33 68.98 70.45

KA 70.00 73.26 72.73

Ours 71.67 73.80 76.14

*Notations: The MP, VP, and KA, respectively, denote the jointly trained motion pre-

dictor, vision predictor, and knowledge-aware predictor in the proposed model.

conclude that using the embedding vectors pre-trained on external large-scale corpus is helpful

for knowledge propagation in our task, especially on the small-scale dataset.

4.4.3 Performances of the Individual Predictors. We employ a late fusion scheme for knowledge-

driven activity recognition in the prediction phase, as shown in Equation (18). In Table 3, we show

the performance of individual predictors in the proposed model. Note that this setting is different

from the ablation study in Section 4.3.2, where the proposed model is trained in an end-to-end

from with/without specific modules. But here all three predictors are trained individually and

we just employ late fusion scheme to fuse the results of them. As shown, the fused prediction

model achieves further improvements on all three datasets than the individual knowledge-aware

predictor. Moreover, the motion predictor and vision predictor in our model also have better per-

formances than the LSTM(motion) and LRCN, respectively. It shows that the joint training scheme

also has positive impact on the capacity of the single-modality based model, because the external

knowledge information has been propagated back to both single-modality predictors during the

training process.

4.4.4 Performances on Few-shot Classes. The Stanford ECM is an extremely unbalanced dataset

with 23 activity classes, where some classes only have 2 samples and some others have above

300 samples. To explore the performance of the proposed method on few-shot classes, we show

the recognition performance on classes that have less than 25 samples in Table 4. As shown, our
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Table 4. Recognition Accuracies (%) of Few-shot Classes

on the Stanford ECM Dataset

<10 <15 <20 <25 Over All

ERCN [41] 41.67 49.09 51.14 53.54 68.35

TFusion [2] 41.67 43.64 54.55 54.55 68.98

Ours 58.33 61.82 62.50 62.63 73.80

Improvement +16.66 +12.73 +7.95 +8.08 +4.82

The performances of classes with < {10, 15, 20, 25} training samples are illus-

trated. Over all denotes all classes in dataset.

Fig. 4. The t-SNE scatter plots of feature representations on test set. Representations in (a–f) are trained on

single modality without external knowledge, while (g–i) fuse two modality with external knowledge.

model obtains much better performances than other egocentric multimodal methods. Moreover,

the largest performance improvement 16.66% is achieved on activities classes that have less than

10 samples. These results demonstrate that the proposed knowledge-aware predictor can reduce

the dependence on large-scale training samples.

4.4.5 Visualization. In Figure 4, we show t-SNE visualization [35] of several important features

of the proposed model on all three datasets, i.e., Multimodal, Stanford ECM, and DataEgo. As

shown in Figures 4(a-f), the sensor features are harder to be discriminated into different classes

than visual features. It is because the video modality has richer information than the sensor signal

modality. Moreover, As shown in Figures 4(g–i), the fused features that augmented by the external

knowledge become more discriminative.

Figure 5 shows the attention scores of an example instance of shopping in the testing set of

the Stanford ECM dataset. Specifically, Figure 5(a) shows the video stream, Figure 5(b) shows the
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Fig. 5. A qualitative result of shopping activity on the testing set of the Stanford ECM dataset. (a) and (c) show

inputs of the video and sensor signal modalities. (b) shows the attention scores obtained by the proposed

method at different timesteps.

time-varying attention scores computed by the proposed model, and Figure 5(c) shows the sensor

signal stream. As shown, the video stream always obtains higher attention score than sensor signal

modality in most of time, since the video data have more information for recognition. As shown in

Figure 5(b) and Figure 5(c), when sensor signals vary drastically (i.e., in 0, 4, and 8 timesteps), this

modality gets relatively higher attention scores compared with other timesteps. When the signals

are flat, attention scores will gradually decrease, because the drastic motion pattern of the sensor

modality provides more discriminative features for activity recognition. The above discussions

show the effectiveness of the adopted multimodal co-attention scheme.

5 CONCLUSION

In this work, we present a knowledge-driven multimodal activity recognition model on the egocen-

tric video and the sensor data. The proposed model consists of a single-modality global prediction

module and a knowledge-driven multimodal prediction module. The single modality module pro-

duces the preliminary activity scores that will be augmented by a knowledge-driven module. Graph

neural networks are adopted to exploit the relations among intermediate objects and activities.

The proposed approach improves the performances of egocentric multimodal activity recognition

on three public datasets. Moreover, the incorporated external knowledge successfully reduces the

dependence on large-scale training samples. Our future work will focus on event segmentation

and egocentric video summary using knowledge graph [23], which can reduce the recording and

analyzing cost of daily living activities.
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