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Event-triggered guaranteed cost
control of time-varying delayed fuzzy
systems with limited communication
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Abstract
Modern network applications place higher demands on its controller, especially for those with time-varying delays and
limited communication capacity. For such cases, the fuzzy system has already become an advanced and powerful tool to
deal with the control problem in consideration of a guaranteed cost performance. In this paper, we introduce the event-
triggered mechanism with quantization effect to the controller, which proves to be more effective in terms of the infor-
mation transmission. We adopt the classical Lyapunov approach to find the sufficient conditions for the controller and
we illustrate the effectiveness of the controller with a numerical simulation.
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Introduction

Fuzzy systems have been proven to be an advanced and
powerful tool in modelling and controlling of nonlinear
and complex systems in a series of robotic applica-
tions,1–3 such as robot manipulator,4 unmanned auton-
omous mobile5 and rehabilitation robot.6 In particular,
much effort has been made towards the classical type
fuzzy control systems,7 which turns out to be a compel-
ling tool for representing nonlinear dynamics.8,9 As a
result, fruitful analytical and synthetical methodologies
have been proposed. General examples can be found as
filtering problems, stability problems, synchronization
problems and so on.10–12 Moreover, the control strate-
gies based on network have been discussed targeting at
fuzzy systems relying on the substantial progress of net-
work research. These works are mainly based on
sample-data control framework. Meanwhile, some net-
work constraints have also been taken into account,
such as data packet dropout, bandwidth limitation and
network communication delay.13–15 More precisely, in
Ma et al.14 the discrete-time information exchange is
proposed instead of continuous-time approaches to
decrease the information exchanges under networked
communication environment. Moreover, in Guan
et al.15 and Zhang and Han,16 the limited communica-
tion capacity is discussed with the corresponding effec-
tive control methods. These constraints are always
inevitable and may lead to system performance degra-
dation or even system divergence, which make it critical

and sensible to specify the corresponding effect during
the design procedure.

On another active research area, the so-called event-
triggered strategy has attracted rapidly growing atten-
tion for control systems. In comparison to the tradi-
tional time-triggered methods according to the fixed-
time instances, the event-triggered strategy is based on
a prescribed triggering function monitoring the event
thresholds.16–18 For example, based on the sign func-
tion and backstepping design, a novel event-triggered
strategy is studied for a class of uncertain non-linear
systems with global finite-time controller.19 Another
event-based adaptive control approach is developed to
deal with a class of uncertain nonlinear systems with
unknown control direction and actuator failures.20 In
Pan et al.21 an adaptive robust control approach with
event-triggering mechanism is designed to handle the
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communication burden, physical limitation and mea-
surement errors in uncertain constrained nonlinear sys-
tems. The effective finite-time control is studied in Pan
and Sun22 for vehicle active suspension systems with
desired control performance. As such, this effective
mechanism would bring considerable benefits, which
can be obtained by decreasing the network burden and
increase the signal transmission efficiency. Especially,
additional advantages can be obtained in energy saving
in some wireless network scenarios.23,24 It is worth men-
tioning that although successful performance on event-
triggered control systems have been addressed, the con-
cerns on limited communication capacity issue with the
event-triggered approaches are few. As is well known,
there is no perfect capacity in the digital communica-
tion channels. This would lead certain conservatism
when modeling these controller or sensor information
transmissions. As a result, it is reasonable and necessary
to investigate a more practical communication strategy
considering the communication capacity limitations.
However, to our best knowledge, the event-triggered
control problem for delayed T–S fuzzy systems with (a)
guaranteed cost performance and (b) limited communi-
cation capacity is still remaining unresolved.

Provoked by the aforementioned discussions, we aim
at solving the guaranteed cost control problem of time-
varying delayed T–S fuzzy systems based on event-
triggered strategy with limited communication capacity.
Compared with the most of the existing literature, our
novelties include three points: (1) To deal with the lim-
ited communication capacity issue, an event-triggered
strategy with transmission quantization is investigated
for a time-varying delayed T–S fuzzy system while the
desired guaranteed cost performance can be satisfied.
(2) By adopting a Lyapunov–Krasovskii function, the
delay-dependent control criteria are derived, and the
corresponding fuzzy controller is designed with the aid
of linear matrix inequality (LMI). (3) The established
theoretical results are further illustrated with a numeri-
cal simulation case study.

The organization of the paper is as follows: In sec-
tion ‘ Preliminaries and problem formulation’, some
preliminaries are presented, and the control problem is
established. Section ‘ Main results’ presents the theore-
tical conditions for the proposed control scheme. In
section ‘ Illustrative case study’, the proposed control
scheme is discussed in a simulated case study. In section
‘Conclusion’, the conclusion with some future perspec-
tives is reported.

Notation: The following standard notations are uti-
lized throughout the paper: (1) R

n: n dimensional
Euclidean space. (2)A � 0: A is positive definite and
vice versa. (3) Rm3n: the set of m3n real matrices. (4) �:
the ellipsis terms in symmetry matrices.

Preliminaries and problem formulation

System model

Consider the following time-varying delayed T–S fuzzy
system based on IF–THEN rules:

System Rule i:
IF

q1 isMi1, q2 isMi2, . and qp isMip,
THEN

_x tð Þ =Aix tð Þ+Adix t� d tð Þð Þ+Biu tð Þ,j
x tð Þ = d tð Þ,j

�
t 2 ��d, 0
� �

where qj are premise variables, j=1, 2, . . . , p,Mij are
the fuzzy sets, i=1, 2, . . . , r and r represents the num-
ber of IF-THEN rules, Ai, Adi and Bi are constant sys-
tem matrices, x tð Þ and u tð Þ are system state and control
input, respectively. In addition,�d is a known constant,
and d tð Þ is the time-varying delay satisfying 04d tð Þ4�d.

As a result, the fuzzy system could be given by

_x tð Þ=
Xr
i=1

hi q tð Þð Þ Aix tð Þ+Adix t� d tð Þð Þ+Biu tð Þ½ �,

where q tð Þ= q1,q2, . . . ,qp

� �
and

mi q tð Þð Þ=
Yp
j=1

Mij qj tð Þ
� �

,

Xr
i=1

hi q tð Þð Þ =j 1,

hi q tð Þð Þ= mi q tð Þð ÞPr
i=1 mi q tð Þð Þ ,

with Mij qj tð Þ
� �

being the grade of membership of
qj tð Þ:

Fuzzy event-triggered controller

Under the networked communications, the sampler of
the system is supposed to be time-driven by sampling
sequence: 0= t0 \ t1 \ � � � \ tk \ � � �, and
tk+1 � tk = t as t! ‘, while the actuator and the con-
troller are event-driven with zero-order hold (ZOH).

Considering the limited network environment, the
event-triggering strategy is proposed for networked
controller design. The control input only updates when
the following event-triggering function (equation (1))
can be satisfied.

tk+1h=
tkh+ min

l51
flhjek> tð ÞW1ek tð Þ

. ex> tkh+ lhð ÞW2x tkh+ lhð Þg
ð1Þ
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where tkh is the latest triggering instant, 0\ e\ 1 is the
threshold, W1 . 0 and W2 . 0 are weighting matrices
and ek tð Þ= x tkh+ lhð Þ � x tkhð Þ.

Furthermore, the following quantizer (equation (2))
is considered for the limited communication work
bandwidth:

G= wk =mkw0, k=0,61,62, . . .
� �

[ 0f g ,w0 . 0,

ð2Þ

where wk is the quantization density, m 2 0, 1½ � and
q �ð Þ : R! G is defined as follows:

q x tkhð Þð Þ=
wk, if 1

1+ k
wk \x tkhð Þ4 1

1�k
wk,

0, ifx tkhð Þ=0,

�q �x tkhð Þð Þ, ifx tkhð Þ\ 0,

8><
>:

ð3Þ

where k= 1�m

1+m
denotes sector bound.25 The quantiza-

tion density for the quantizer (equation (3)) is defined
as �2lnm

. Then, it follows that

q x tkhð Þð Þ= I+Dð Þx tkhð Þ,D 2 �k, k½ �: ð4Þ

Remark 1. For the networked control scheme in most
systems, there always exists a certain limited communi-
cation capacity. An effective method to deal with the
limited communication capacity issue is the adoption
of the quantizer, which can considerably reduce the
communication consumption with desired accuracy of
information. In particular, the logarithmic quantizer
can well achieve the signal quantization and is widely
studied in voluminous literature.

As a result, the corresponding fuzzy controller can be
defined as below:

Controller Rule i:
IF
q1 isMi1, and q2 isMi2, and . and qp isMip,
THEN

u tð Þ=Kiq x tkhð Þð Þ, t 2 tkh, tk+1h½ �,

where Ki is the local gain matrix to be determined.
Similarly, it can be obtained that

u tð Þ=
Xr
j=1

hj q tkð Þð ÞKjq x tkhð Þð Þ, t 2 tkh, tk+1h½ �,

and we can rewrite the overall closed-loop system by
parallel distributed compensation as follows26:

_x tð Þ=
Xr
i=1

Xr
j=1

hi q tð Þð Þhj q tkð Þð Þ½Aix tð Þ

+Adix t� d tð Þð Þ+BiKjq x tkhð Þð Þ�,
t 2 tkh, tk+1h½ �:

Control objective

With the aforementioned discussions, the cost perfor-
mance index is introduced for the T–S fuzzy system
with time-varying delays, such that the desired control
performance can be achieved with the proposed control
scheme. In this paper, the following guaranteed cost
performance is given.

J=

ð‘

0

x> tð ÞM1x tð Þ+ u> tð ÞM2u tð Þdt,

where M1 . 0, M2 . 0.
Consequently, the goal is to ensure that the system

can be asymptotically stable while the cost performance
J4J� holds, where J� is the guaranteed cost.

Before proceeding, the following lemmas are useful
for later results.

Lemma 1.27 Given an arbitrary matrix X . 0 and a sca-
lar �t . 0, t tð Þ satisfying 04t tð Þ4�t, if the vector func-
tion _x tð Þ : ��t, 0½ � ! R

n such that the involved
integrations are well defined, then

� �t

ðt
t��t

_x
>
sð ÞX _x sð Þds4h> tð ÞYh tð Þ,

where

h tð Þ= ½x> tð Þ, x> t� t tð Þð Þ, x> t� �tð Þ�
>

,

Y=

�X X 0

� �2X X
� � �X

2
64

3
75:

Lemma 2.28 Let X>=L, H and E correspondingly be
the real matrices with appropriate dimensions. F tð Þ
satisfies that F> tð ÞF tð Þ4I. Then it holds that

X+HFE+ E>F>H> � 0 if and only if there exists a

scalar e . 0 for L+ e�1HH>+ eE>E � 0, or
equivalently

X H eE>
� �eI 0
� � �eI

2
4

3
5 � 0:

Main results

Following the preliminaries, we present the derivation
of the sufficient conditions of the proposed controller.
We introduce the design procedure of the controller
hereafter.

Theorem 1. For parameters �d, h, the closed-loop fuzzy
system could realize the guaranteed cost performance
with designed controller gains, if for i=1, . . . , p, and
i\ j4p, matrices P. 0, Qk . 0, Rk . 0,Wk . 0
k=1, 2ð Þ exist, such that it holds that Qij \ 0 where
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Qij =
Qij1 Qij2

� Qij3

	 

,

Qij1 =

2PAi +Q1 +Q2 � R1 � R2 �M1 +M2 PAdi +R2 0

� �2R2 R2

� � �Q1 � R2

2
4

3
5,

Qij2 =

PBiKj +R1 0 PBiKj �M2 hA>i
�dA>i PBiKj 0

0 0 0 hA>di
�dA>di 0 0

0 0 0 0 0 0 0

2
64

3
75,

Qij3 =

�2R1 + eW2 R1 0 hK>j B
>
i

�dK>j B
>
i 0 E I

� �Q2 � R1 0 0 0 0 0

� � �W1 +M2 �hK>j B>i ��dK>j B
>
i 0 �E I

� � � �R�11 0 hBiKj 0

� � � � �R�12
�dBiKj 0

� � � � � �E I 0

� � � � � � �E I

2
66666666664

3
77777777775
:

Proof. Firstly, applying the virtual delay approach, one
has

_x tð Þ=
Xr
i=1

Xr
j=1

hi q tð Þð Þhj q tkð Þð Þ

½Aix tð Þ+Adix t� d tð Þð Þ+BiKj I+Dð Þ
x t� t tð Þð Þ � ek tð Þð Þ�,

where t tð Þ= t� tkh� lh, 04t tð Þ4h, _t tð Þ=1:
Secondly, the Lyapunov–Krasovskii function is

constructed:

V tð Þ=
X3
i=1

Vi tð Þ,

Where

V1 tð Þ= x
>
tð ÞPx tð Þ,

V2 tð Þ=

ðt
t�h

x> sð ÞQ1x sð Þds

+

ðt
t��d

x> sð ÞQ2x sð Þds,

V3 tð Þ=
h

ð0
�h

ðt
t+ d

_x> sð ÞR1 _x sð Þdsdd

+ �d

ð0
��d

ðt
t+ d

_x
>
sð ÞR2 _x sð Þdsdd:

Then, it can be obtained that

_V1 tð Þ=2x> tð ÞP _x tð Þ

=2x> tð ÞP
Xr
i=1

Xr
j=1

hi q tð Þð Þhj q tkð Þð Þ½Aix tð Þ

+Adix t� d tð Þð Þ+BiKj I+Dð Þ x t� t tð Þð Þ � ek tð Þð Þ�

=2x> tð ÞP
Xr
i=1

Xr
j=1

hi q tð Þð Þhj q tkð Þð ÞAix tð Þ

+2x
>
tð ÞP

Xr
i=1

Xr
j=1

hi q tð Þð Þhj q tkð Þð ÞAdix t� d tð Þð Þ

+2x> tð ÞP
Xr
i=1

Xr
j=1

hi q tð Þð Þhj q tkð Þð ÞBiKj I+Dð Þx t�t tð Þð Þ

� 2x> tð ÞP
Xr
i=1

Xr
j=1

hi q tð Þð Þhj q tkð Þð ÞBiKj I+Dð Þek tð Þ,

and

_V2 tð Þ= x
>
tð ÞQ1x tð Þ � x> t� hð ÞQ1x t� hð Þ

+ x> tð ÞQ2x tð Þ � x> t� �d
� �

Q2x t� �d
� �

,

and

_V3 tð Þ= h2 _x> tð ÞR1 _x tð Þ � hðt
t�h

_x> uð ÞR1 _x uð Þdu+ �d2 _x> tð ÞR2 _x tð Þ

� �d

ðt
t�d

_x> uð ÞR2 _x uð Þdu:

To determine the sign of each part of _V3 tð Þ, based on
Lemma 1, it can be derived that

� h

ðt
t�h

_x
>
sð ÞR1 _x sð Þds4�

x tð Þ
x t� t tð Þð Þ
x t� hð Þ

2
4

3
5
>

R1 �R1 0

� 2R1 �R1

� � R1

2
4

3
5 x tð Þ

x t� t tð Þð Þ
x t� hð Þ

2
4

3
5,

and similarly, that

� �d

ðt
t��d

_x
>
sð ÞR1 _x sð Þds 4�

x tð Þ
x t� t tð Þð Þ
x t� hð Þ

2
64

3
75
>

R1 �R1 0

� 2R1 �R1

� � R1

2
64

3
75

x tð Þ
x t� t tð Þð Þ
x t� hð Þ

2
64

3
75:
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In addition, it can be derived that

_x> tð Þ R1 +R2ð Þ _x tð Þ=h
>
tð Þ
Xr
i=1

Xr
j=1

hi q tð Þð Þhj q tkð Þð Þ

Ai

Adi

0

BiKj I+Dð Þ
0

�BiKj I+Dð Þ

2
66666664

3
77777775

R1 +R2ð Þ

3
Xr
i=1

Xr
j=1

hi q tð Þð Þhj q tkð Þð Þ

Ai

Adi

0

BiKj I+Dð Þ
0

�BiKj I+Dð Þ

2
66666664

3
77777775

>

h tð Þ,

where

h tð Þ= ½x> tð Þ, x> t� d tð Þð Þ, x> t� �d
� �

,

x
>
t� t tð Þð Þ, x> t� hð Þ, e>k tð Þ�>:

With the event-triggering function, it follows that

ex> t� t tð Þð ÞW2x t� t tð Þð Þ � ek(t)
>
W1ek tð Þ. 0:

Basing on the above results, one has

_V tð Þ+ x> tð ÞM1x tð Þ

+
Xr
i=1

Xr
j=1

hi q tð Þð Þhj q tkð Þð Þ(x t� t tð Þð Þ � ek tð Þ)>(I+D)>K
>

j 3

M2

Xr
i=1

Xr
j=1

hi q tð Þð Þhj q tkð Þð ÞKj I+Dð Þ x t� t tð Þð Þ � ek tð Þð Þ

+ ex> t� t tð Þð ÞW2x t� t tð Þð Þ � ek(t)
>W1ek tð Þ

4
Xr
i=1

Xr
j=1

hi q tð Þð Þhj q tkð Þð Þ

h> tð Þ~Qijh
> tð Þ+ h2 _x> tð ÞR1 _x tð Þ+ �d

2
_x> tð ÞR2 _x tð Þ

� �
,

Where

t

~Qij=
~Qij1

~Qij2

� ~Qij3

" #
,

~Qij1 =
2PAi +Q1 +Q2 � R1 � R2 �M1 +M2 PAdi +R2

� �2R2

	 

,

~Qij2 =
0 PBiKj I+Dð Þ+R1 0 �PBiKj I+Dð Þ �M2

R2 0 0 0

	 

,

~Qij3 =

�Q1 � R2 0 0 0

� �2R1 + eW2 R1 0

� � �Q2 � R1 0

� � � �W1 +M2

2
6664

3
7775:

Together with Lemma 2 and the Schur complement,
it holds that

_V tð Þ+ x
>
tð ÞM1x tð Þ+ u> tð ÞM2u tð Þ\ 0,

when Qij \ 0 is satisfied. Finally, it can be deduced that

J= lim
t!‘

XT
k=0

ðtk+1h

tkh

x> tð ÞM1x tð Þ+ u
>
tð ÞM2u tð Þdt,

such that V ‘ð Þ � V 0ð Þ4� J, which implies that

J4J�=V 0ð Þ

= d> 0ð ÞPd 0ð Þ+
ð0
�h

d> sð ÞQ1d sð Þdst0�h

+

ð0
��d

d> sð ÞQ2d sð Þds

+ h

ð0
�h

ð0
d

_d
>
sð ÞR1

_d sð Þdsdd+�d

ð0
��d

ð0
d

_d
>

sð ÞR2
_d sð Þdsdd

as t! ‘ and thus completes the proof.

Theorem 2. For parameters �d, h, the closed-loop fuzzy
system could realize the guaranteed cost performance if
for i=1, . . . , p, and i\ j4p, matrices ~P. 0, ~Qk . 0,
~Rk . 0, ~Wk . 0 k=1, 2ð Þ and ~Kj exist, such that it
holds that �Qij \ 0 where

�Qij=
�Qij1

�Qij2

� �Qij3

" #
,

�Qij1 ¼

2Ai
~Pþ ~Q1 þ ~Q2 � ~R1 � ~R2 � ~M1 þ ~M2 Adi

~Pþ ~R2 0 Bi
~Kj þ ~R1

� �2 ~R2
~R2 0

� � � ~Q1 � ~R2 0

� � � �2 ~R1 þ e ~W2

2
6664

3
7775,

�Qij2 =

0 Bi
~Kj � ~M2 h ~PA>i

�d ~PA>i Bi
~Kj 0

0 0 h ~PA>di
�d ~PA>di 0 0

0 0 0 0 0 0

~R1 0 h ~K>j B
>
i

�d ~K>j B
>
i 0 E ~P

2
66664

3
77775,

�Qij3 =

� ~Q2 � ~R1 0 0 0 0 0

� � ~W1 + ~M2 �h ~K>j B
>
i ��d ~K>j B

>
i 0 �E ~P

� � ~R1 � 2 ~P 0 hBi
~Kj 0

� � � ~R2 � 2 ~P �dBi
~Kj 0

� � � � E I� 2E ~P 0

� � � � � �E I

2
6666666664

3
7777777775
,
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and the expected controller gains could be computed
with:

Kj = ~Kj
~P�1:

Proof. Let ~P=P�1, ~Qk=P�1QkP
�1, ~Rk =P�1RkP

�1,
~Wk =P�1WkP

�1 (k=1,2), and perform matrix congru-
ent transformation. Then, the theorem could be derived
directly from Theorem 1.

Illustrative case study

We present a numerical simulation in this section,
which could be seen as an abstraction of the controlled
complex non-linear system, to verify the effectiveness
of the controller.

_x tð Þ=
X2
i=1

hi q tð Þð Þ Aix tð Þ+Adix t� d tð Þð Þ+Biu tð Þ½ �,

where h1 q tð Þð Þ= 1
1+exp �2x1 tð Þð Þ , h2 q tð Þð Þ=1� h1 q tð Þð Þ, and

A1 =
�1:2 1

1 �1

	 

,Ad1 =

0:1 0

0:2 �0:5

	 

,B1=

1

0:5

	 

,

A2 =
�2 0:8

0:8 0

	 

,Ad2 =

0:1 0:2

0 �0:5

	 

,B2 =

1

0:5

	 

:

In the simulation, it is assumed that d tð Þ=0:2sin tð Þ,
h=0:05 and M1 =0:5I, M2 =1. The parameters of
the quantizer is set as m=0:65 and w0 =100. As a
result, the desired fuzzy controller gains can be calcu-
lated based on the Theorem 2 as follows:

K1 = �0:1481 �0:2400½ �,
K2 = �0:1570 �0:2240½ �:

By setting the above initial values and parameters as
½10, 10�>, the resulting closed-loop system state response
and the event-triggered signals can be seen from
Figures 1 to 3, respectively. We could draw the conclu-
sion from the results, that the proposed controller can
stabilize the system with guaranteed cost. The guaran-
teed cost performance is shown in Figure 4, from which
one can see that the guaranteed cost can be satisfied.
Moreover, Figure 5 depicts the control input compari-
son results of our proposed event-triggered scheme and
the common time-triggered scheme. It can be seen that
the control input trajectory of the event-triggered
approach is almost same with the time-triggered one by
desired control performance. However, the event-
triggered strategy can considerably decrease the signal
transmissions with distinguishing advantages.

Conclusion

In this work, we implemented a fuzzy controller for
complex, non-linear systems in consideration of the
time-vary delay and the limited communication capac-
ity. We adopted the event-triggered mechanism in the
design procedure to deal with the limited

Figure 1. The simulated state response of the closed-loop
system.

Figure 2. The control input in simulation.

Figure 3. The event triggering signals in simulation.
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communication situation. By constructing the
Lyapunov–Krasovskii function, the fuzzy controller is
designed with parallel distributed compensation strat-
egy for ensuring both asymptotic stability and guaran-
teed cost performance. Furthermore, a numerical
simulation case study is performed for showing the cor-
rectness of the proposed approach. In our future
researches, we would extend our current results to the
cases with Type II fuzzy systems, which are more com-
plex but with fuzzier modeling ability.
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