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Abstract

A novel local image descriptor is proposed in this paper,
which combines intensity orders and gradient distributions
in multiple support regions. The novelty lies in three as-
pects: 1) The gradient is calculated in a rotation invariant
way in a given support region; 2) The rotation invariant
gradients are adaptively pooled spatially based on intensity
orders in order to encode spatial information; 3) Multiple
support regions are used for constructing descriptor which
further improves its discriminative ability. Therefore, the
proposed descriptor encodes not only gradient information
but also information about relative relationship of intensi-
ties as well as spatial information. In addition, it is truly
rotation invariant in theory without the need of computing a
dominant orientation which is a major error source of most
existing methods, such as SIFT. Results on the standard Ox-
ford dataset and 3D objects have shown a significant im-
provement over the state-of-the-art methods under various
image transformations.

1. Introduction

Local image descriptors computed from interest regions
have been widely studied in the community of computer vi-
sion. Recent years, they have became more and more popu-
lar and have been shown to be useful for a variety of visual
tasks, such as 3D reconstruction [1, 4], structure from mo-
tion [17], object recognition [10] and classification [24] as
well as panoramic stitching [18], to name a few.

Many methods in the literature have been proposed
for extracting interest regions. Widely used methods in-
clude Harris-affine/Hessian-affine [12], Maximally Stable
Extremal Regions (MSER) [11], intensity and edge-based
detectors [21]. Please see [14] for a comprehensive study
of these affine regions. Once interest regions have been ex-
tracted, feature descriptors are computed from these inter-
est regions (affine normalized) in order to distinguish them

(a) With SIFT descriptor (b) With the proposed descriptor

Figure 1. Matching results of corresponding points with orienta-
tion assignment errors larger than 20 degrees. The corresponding
points that are also matched by their descriptors are marked with
cyan lines while yellow lines indicate those corresponding points
that are un-matchable by their descriptors.

from each other. A main concern about the design of lo-
cal descriptor is to make it distinctive while simultaneously
robust to as many image transformations as possible. This
paper is focused on the problem of designing image descrip-
tors for local interest regions. More specifically, a novel lo-
cal image descriptor is introduced. The novelties, and hence
our main contributions include:

1) Given a support region for descriptor construction,
gradients of sample points are computed in a rotation in-
variant way. The proposed descriptor is rotation invari-
ant without resorting to computing a dominant orientation.
According to our experimental study, errors in assigning
dominant orientation are the main source of the false neg-
atives (the true corresponding points that are not matched
by their descriptors). Therefore, compared with those de-
scriptors which achieve the rotation invariance by assigning
a dominant orientation, our method is more stable. Fig. 1
shows the matching results of corresponding points whose
orientation estimation errors are larger than 20 degrees. It is
clear that many corresponding points can still be correctly
matched by our proposed descriptor even if the orientation
assignment errors are large.

2) In order to encode spatial information into the descrip-
tor to enrich its discriminative power, an adaptive strategy is
proposed for pooling gradients spatially. In our work, sam-
ple points are segmented based on their intensity orders and
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their gradients are then pooled for each segment. There-
fore, not only spatial information, but also the relationship
of intensities among sample points are inherently encoded.

3) Multiple support regions are used for the descriptor
construction to further enhance its discriminative ability.
Although two non-corresponding points may have similar
appearances in a certain size of support region, they usually
can be easily distinguished in a different size of support re-
gion. Thus by constructing our descriptor from multiple
support regions, discriminative ability is improved.

All these factors contribute to the good performance of
our proposed descriptor. Its performance has been tested
on two widely used datasets: one from the Oxford (2D ob-
jects) [13] and the other from the Caltech (3D objects) [15].
The experimental results are quite encouraging.

The rest of this paper is organized as follows: Section 2
gives a brief overview of the related works. Then, our new
descriptor is presented in Section 3, followed by the exper-
iments in Section 4. Finally, we conclude this paper in Sec-
tion 5.

2. Related Work
The research and design of local image descriptors have

received many attentions of researchers in the field of com-
puter vision. Perhaps one of the most famous and pop-
ular descriptors is SIFT (Scale Invariant Feature Trans-
form) [10]. According to the comparative study of Mikola-
jczyk and Schmid [13], SIFT and its variant GLOH (Gradi-
ent Location and Orientation Histogram) outperforms other
local descriptors such as shape context, steerable filters,
spin images, differential invariants and moment invariants.
Inspired by the high discriminative ability and robustness
of SIFT, many researchers have developed local descriptors
following the way of SIFT. Ke and Sukthankar [8] applied
PCA (Principal Component Analysis) to gradient patch of
keypoint and introduced the PCA-SIFT descriptor which is
said to be more compact and distinctive than SIFT. Bay et
al. [2] proposed an effective implementation of SIFT via the
integral image technique, achieved 3 to 7-fold speed-ups.
Tola et al. [20] developed a fast descriptor named DAISY
for dense matching. Winder et al. [22] proposed a frame-
work to learn local descriptors with different combinations
of local features and spatial pooling strategies. The SIFT
and many other descriptors proposed before can be incorpo-
rated into their framework and it is said that a DAISY-like
descriptor has the best performance among all configura-
tions. Then, the best DAISY was picked in [23].

In order to deal with the problem of illumination
changes, some researchers proposed to design local descrip-
tors based on intensity orders since the intensity orders are
invariant to monotonic illumination changes. Gupta and
Mittal [5] proposed a monotonic change invariant feature
descriptor based on intensity orders of point pairs in the in-

terest region. The point pairs are carefully chosen from ex-
tremal regions in order to be robust to localization error as
well as to intensity noise. Matching of this kind of descrip-
tors is based on a distance function that penalizes flip of
orders. In [19], Tang et al. used a 2D histogram of position
and intensity order to construct a feature descriptor to deal
with complex brightness changes. While their work directly
used intensity order with respect to the entire patch, Marko
Heikkila et al. [7] proposed to use LBP (Local Binary Pat-
tern) which encodes ordering relationship locally for feature
description. Instead of gradient features, LBP was incorpo-
rated in the framework of SIFT and the obtained descrip-
tor CS-LBP was reported to have better performance than
SIFT. In [6], Gupta et al. generalized the CS-LBP descrip-
tor with a ternary coding style and proposed to incorporate
a histogram of relative intensities in their work. Therefore,
their proposed descriptor captures both local orders as well
as overall distribution of pixel orders in the entire patch.

Besides the low-level features (e.g. the gradient orienta-
tion in SIFT, LBP in CS-LBP) which are used for descrip-
tor construction, choosing an optimal support region size is
also critical for feature description. Some researchers have
found that a single support region is not enough to distin-
guish some incorrect matches from correct ones [3, 16].
In [16], Mortensen et al. proposed to combine the SIFT
with global context to improve the performance of SIFT es-
pecially when there exist repeated textures in the matching
images. In their method, the global context is computed
from curvilinear shape information in a much larger neigh-
borhood. Thus, by incorporating global context to local de-
scriptor, the discriminative ability of their descriptor is im-
proved and hence can disambiguate the confusion induced
by repetitive patterns to some extent. In [3], the authors
proposed to use multiple support regions of different size to
construct a feature descriptor that is robust to general image
deformations. In their work, a SIFT descriptor is computed
for each support region, then they are concatenated together
to form their descriptor. They further proposed a similarity
measure model, Local-to-Global Similarity model, to match
points described by their descriptors.

Our work is fundamentally different from the previous
ones. In our work, the gradient is calculated in a rotation
invariant way. Thus it is theoretically rotation invariant.
While previous methods, such as SIFT, GLOH, DAISY, CS-
LBP, are not totally rotation invariant since they need to
assign a dominant orientation for each interest point, but
unfortunately the computation of dominant orientation is
not reliable according to our experiments. The need of a
dominant orientation is in fact a drawback and bottleneck
of the previous methods that utilize multiple support re-
gions, hence largely differentiates our method from them.
Although there are local descriptors that are also theoreti-
cally rotation invariant, e.g. spin image [9], RIFT (Rotation
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Invariant Feature Transform) [9], they are less distinctive
since spatial information is discarded. On the contrary, our
descriptor not only contains rotation invariant gradient in-
formation, but also encodes spatial information which is an
important cue for discrimination. The spatial pooling strat-
egy used in our work is an adaptive one while the previ-
ous methods pool low-level features either in rectangular
grids or in polar grids. Once again, these pooling strategies
need to assign a dominant orientation in advance in order
to be rotation invariant. In our method, the pooling regions
are decided by the intensity orders of sample points and so
no dominant orientation is required for reference. What is
more, the ordering information is encoded in our descriptor
by such a pooling strategy.

3. Descriptor Construction
3.1. Aggregating Gradient Distributions into Inten-

sity Orders

In this work, we aggregate gradient distributions into in-
tensity orders by a 2D histogram of gradient orientation and
intensity order, in order to construct a robust and distinc-
tive descriptor for a given support region. Such a 2D his-
togram not only contains gradient information but also en-
codes relative relationship of intensities. Moreover, spatial
information is also encoded indirectly by pooling sample
points according to their intensity orders. Theoretically, it
is rotation invariant without the help of a dominant orienta-
tion, because both the computations of gradient and inten-
sity ordering are rotation invariant in our work. Whereas,
for the most of existing methods, their rotation invariance
is achieved by assigning a dominant orientation to each in-
terest point based on local image statistics [10]. Then the
descriptor is constructed relative to the assigned orienta-
tion. Take the SIFT descriptor as an example, the partition
of subregions and calculation of gradient are relative to the
dominant orientation.

However, here we would claim that the dominant ori-
entation assignment based on local image statistics is an
error-prone process and we will experimentally show that
the inevitable error in the orientation assignment will make
many true corresponding points un-matchable by their de-
scriptors. To assess this, we have collected 40 pairs of im-
ages with rotation transformation from the Internet1, each
of which is related by a homography and the homogra-
phy is supplied along with the image pair. For each im-
age pair, we extracted SIFT keypoints and matched them
by the nearest neighbor of the distances of their SIFT de-
scriptors. We focus on orientation assignment errors be-
tween corresponding points which satisfy the homography.
Fig. 2 presents some statistical results on these 40 image
pairs. Fig. 2(a) shows the orientation assignment errors be-

1http://lear.inrialpes.fr/people/mikolajczyk/

tween corresponding points. A similar histogram of orien-
tation estimation errors between corresponding points was
obtained in [22] through applying random synthetic affine
warps. Here we use real image data with mainly rotation
transformation. In Fig. 2(b), it shows the errors between
those corresponding points that are also matched by their
SIFT descriptors. Fig. 2(b) implies that for the SIFT de-
scriptor, it requires the orientation assignment errors within
20 degrees in order to match corresponding points correctly.
However, it can be clearly seen from Fig. 2(a) that there
are only 63.77% corresponding points whose orientation
assignment errors are within [−20, 20]. Thus many cor-
responding points whose orientation assignment errors are
larger than 20 degrees would not be correctly matched by
comparing their descriptors. In other words, 36.23% corre-
sponding points will not be correctly matched mainly due to
the incorrect orientation assignment. Therefore, orientation
assignment has a significant impact on distinctive descriptor
construction.

Instead of assigning a dominant orientation to each in-
terest point, we propose to calculate the gradient of sample
point in a rotation invariant way. Meanwhile, in order to
encode spatial information which is an important factor to
the discriminative power of the descriptor, we use intensity
orders of sample points to adaptively pool gradient informa-
tion into different groups. Since intensity orders of sample
points are rotation invariant, such a spatial pooling strategy
is also rotation invariant inherently and so no dominant ori-
entation is required. Hence, our descriptor is completely
rotation invariant. It can be seen from Fig. 1 that many cor-
responding points with large orientation assignment errors
can be correctly matched by our proposed descriptor which
are un-matchable by the SIFT descriptor due to incorrect
orientation estimation.
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Figure 2. Orientation assignment errors. (a) Between correspond-
ing points, only 63.77% of errors are in the range of [-20,20]. (b)
Between corresponding points that are also matched by SIFT.

3.1.1 The Computation of Rotation Invariant Gradi-
ent

In Fig. 3, suppose P is an interest point and Pi is one of
the sample points in its support region. Then a local x − y
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Figure 3. The computation of rotation invariant gradient.

coordinate system can be established by P and Pi for each
sample point as shown in Fig. 3, where

−−→
PPi is defined as

the positive y-axis. Obviously, such a coordinate system is
rotation invariant. Therefore, in this coordinate system, the
calculated gradient is rotation invariant too. Such a rotation
invariant gradient can be computed as follows:

Dx(Pi) = I(P 1
i )− I(P 3

i ) (1)

Dy(Pi) = I(P 2
i )− I(P 4

i ) (2)

where P j
i , j = 1, 2, 3, 4 are Pi’s neighboring points along

the x-axis and y-axis in the local x − y coordinate system
and I(P j

i ) stands for the intensity at P j
i .

Note that in RIFT [9], it uses a similar way to calculate
the gradients. However, since it accumulates histogram of
orientation in rings around the interest point to achieve rota-
tion invariance, the spatial information is lost which results
in less distinctiveness. In our work, spatial information is
encoded into the descriptor by an adaptive pooling strategy,
which will be described in the next subsection.

3.1.2 Adaptive Spatial Pooling based on Intensity Or-
ders

Given a support region, one can divide it into several rings
and pool together gradient information of sample points in
each ring in a similar way as spin image or RIFT [9] does, so
as to achieve a rotation invariant description of the region.
However, such a method does not take into account the spa-
tial information that is important for distinguishing different
interest regions. In other words, pooling gradient informa-
tion circularly achieves a rotation invariant representation at
the cost of degrading the descriptor’s discriminative power.
Therefore, many popular and state-of-the-art methods di-
vide the support region into subregions in order to take into
considerations of the spatial information, such as SIFT [10],
DAISY [20], CS-LBP [7], OSID [19] and so on [6, 16, 2].
Unfortunately, these pre-defined subregions need to assign
a relative orientation in order to be rotation invariant. As
we have said before, the orientation assignment is not sta-
ble enough, here we propose an adaptive strategy for pool-
ing gradient information spatially. The proposed strategy is

based on the intensity orders of sample points. Specifically,
we first sort sample points in the support region according
to their intensities. Then we divide them into k segments
equally according to their orders. Finally, gradient infor-
mation of the sample points in each segment are pooled,
and the gradient orientation histograms in these k segments
are concatenated to form the representation of this support
region. Fig. 4 shows an example of spatial segmentations
based on intensity orders.

Figure 4. An example of spatial pooling: 6 pooling segments (in-
dicated by different colors) based on intensity orders for a region.

To sum up, given a support region, firstly we calculate ro-
tation invariant gradient for each sample point in the region
according to Eq. (1) and Eq. (2). Secondly, sample points
are sorted according to their intensities and they are divided
into k segments according to their orders. Finally, gradient
information are pooled together in each of the k segments.
That is, in each of the k segments, a histogram of gradient
orientation is accumulated. In the histogram, the gradient
orientation of a sample point is linearly allocated to the two
adjacent orientation bins according to its distances to them
and also weighted by the gradient magnitude of this sample
point. Suppose the number of orientation bins is d, then we
can obtain a d× k vector as the representation for the given
support region. The obtained vector is then normalized to
counter illumination changes as SIFT does [10].

3.2. Multiple Support Regions

We believe that only one single support region is
not enough to distinguish incorrect matches from correct
ones in general cases. Generally speaking, two non-
corresponding points may accidently have similar appear-
ances in a certain local region. However, it is less likely
that two non-corresponding interest points have similar ap-
pearances in several local regions of different sizes. In con-
trast, two corresponding interest points should have similar
appearances in a local region of any size, although some
differences may exist due to localization error of interest
points. That is to say, with multiple support regions, it is
much easier to distinguish whether two points are matched
or not than using a single support region. Therefore, in
our proposed method we utilize multiple support regions to
construct the descriptor to further improve its discriminative
ability.

In Fig. 5, it gives an overview of our proposed method.
For an interest point (x, y), let Ri(x, y) denotes its ith sup-
port region. Then a vector Di can be obtained from Ri(x, y)
by aggregating the rotation invariant gradient distributions
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Figure 5. The proposed method for descriptor construction.

into intensity order as described in the proceeding subsec-
tion. Finally, those vectors of multiple support regions are
concatenated to form our proposed descriptor, which we
called MROGH, i.e. {D1D2 · · ·DN} in which N is the
number of support regions. In this paper, we choose sup-
port regions as the N nested regions centered at the interest
point with an equal increment of size. All the support re-
gions are affine normalized to an unified circular region of
radius 20.5 for descriptor construction.

4. Experiments
4.1. Parameter Selection

The proposed descriptor has three parameters: the num-
ber of orientation bins d, the number of order segmentations
k and the number of support regions N. In order to evalu-
ate their influences on the performance of the proposed de-
scriptor, we have conducted experiments on 142 pairs of
images2 with different parameter settings. These 142 image
pairs are mainly selected from zoom and rotation transfor-
mations. Note that here we do not use image pairs in the
standard Oxford dataset3 because those image pairs will be
used for the descriptor’s performance evaluation later on.
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Figure 6. Parameters evaluation of the proposed descriptor.

Fig. 6 shows the curves of average recall vs. average
2They can be downloaded from http://lear.inrialpes.fr/people/mikolajczyk/
3http://www.robots.ox.ac.uk/˜vgg/research/affine/

1-precision for different parameter settings. The definition
of a correct match and a correspondence is the same as [13]
which is determined with the overlap error [12]. The match-
ing strategy we used here is the nearest neighbor distance
ratio [13]. In the remaining experiments, we used the same
definition of a match, a correct match and a correspondence
unless otherwise specified.

It can be seen from Fig. 6 that the performance of the
proposed descriptor is improved with the increase of the
number of orientation bins, the number of order segments
as well as the number of support regions. This could be
that with more bins, more information can be captured
by the descriptor. Thus higher performance is expected.
Among all these plots, it is clear that both the settings of
{d = 8, k = 8, N = 4} and {d = 8, k = 6, N = 4} give
the best performance, but the dimension of the latter one is
much less, i.e. 192 vs. 256. Therefore, we set orientation
bins to 8, the number of order segments to 6 and the number
of support regions to 4 for our subsequent experiments.

4.2. Multi-Support Regions vs. Single Support Re-
gion

This experiment aims to show the superiority of using
multi-support regions to a single support region. We used
the same dataset as in the experiment of parameter selec-
tion. As said in the previous subsection, we use 4 support
regions to construct our descriptor, obviously we can also
calculate a descriptor for each of the 4 used support re-
gions respectively. Thus we have 5 respective descriptors
in total for one interest point: SR-i denotes the descriptor
calculated with the information in the ith support region
and MR is the descriptor concatenating SR-1, SR-2, SR-3,
SR-4. For each image pair, we respectively extracted these
5 kinds of descriptors to perform point matching and ob-
tained the curves of average recall vs. average 1-precision
as before. The comparative results are shown in Fig. 7. It
can be seen from Fig. 7 that the performance of SR-i im-
proves with the increasing size of support region, mainly
because that more information can be captured by a larger
support region. As expected, by combining multiple sup-
port regions for descriptor construction, the performance of
our proposed descriptor has a significant improvement over
the best performance when using a single support region,
c.f. the curves of MR and SR-4. For comparison, the per-
formance of SIFT is also included.

4.3. Performance Evaluation on the Oxford Dataset

To evaluate the performance of the proposed descriptor,
we have tested it on the Oxford dataset which is widely used
for local descriptors evaluation. We followed the evaluation
procedure proposed by Mikolajczyk and Schmid [13]. The
codes for evaluation are downloaded from their website4

4http://www.robots.ox.ac.uk/˜vgg/research/affine/desc evaluation.html
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Figure 7. Performance comparison between multi-support regions
and each single support region.

too. Two other state-of-the-art local descriptors are also
evaluated in our experiments for comparison: SIFT [10]
and DAISY [20, 23]. In our experiments, the implemen-
tation of SIFT is downloaded from the Oxford University
website which is the same as the one used by Mikolajczyk
and Schmid [13] while the DAISY is our own implementa-
tion according to the optimal parameters provided by the
authors. The T1-8-2r8s configuration [23] of DAISY is
used, whose dimension is 136. Since the proposed descrip-
tor does not need to estimate orientation, its computational
cost is lower than SIFT and DAISY in a single support re-
gion. Generally speaking, its computational cost is propor-
tional to the number of the used regions (4 in this paper).
In our experiments (Intel Core2 CPU 1.86GHz), the time
of constructing descriptor for a feature point is: 12.3ms for
DAISY, 4.6ms for SIFT, 8.3ms for MROGH, 1.9 ms for the
MROGH with a single region.

As in [13], we have evaluated the performance of the de-
scriptors using both Hessian-Affine and Harris-Affine de-
tectors [12]. Fig. 8 shows the experimental results on im-
ages under various transformations, including viewpoint
changes, rotation and scale changes, illumination changes,
image blur and JPEG compression. In Fig. 8, MROGH is
our proposed local descriptor indicated by red plots, while
the results of DAISY are indicated by green plots and the
results of SIFT are marked by blue plots. Results using
Hessian-Affine detector are plotted by solid curves while
the dashed curves are the results using Harris-Affine detec-
tor. It can be found that although the performance of each
descriptor varied with different feature detectors, the rela-
tive performance among different descriptors is more or less
consistent. Obviously, our proposed descriptor outperforms
SIFT and DAISY in all cases, either for Hessian-Affine
regions or for Harris-Affine regions. Such a good perfor-
mance of our proposed descriptor may attribute to its well-
designed properties. It not only uses multiple support re-

gions to improve its discriminative ability, but also encodes
local gradient information as well as ordering and spatial
information. Moreover, the gradients are calculated in a ro-
tation invariant way which further improves its robustness.

4.4. Performance Evaluation based on 3D Objects

In [15], Moreels and Perona have evaluated different
combinations of feature detectors and descriptors based on
3D objects. We have downloaded the database from their
website5 and evaluated our proposed descriptor following
their work. In order to mimic the process of image re-
trieval/object recognition, interest point matching is con-
ducted on a database containing both the target features and
a large amount of features from unrelated images. In our
experiments, 105 features are randomly chosen from 500
unrelated images obtained from Google by typing ’things’
as in [15]. Please refer to [15] for more details about the
dataset and experimental setup.

In this experiment, the Hessian-Affine detector is used
for feature detection since it has been reported with the
best results combined with SIFT descriptor in [15]. Fig. 9
shows the comparative results of the evaluated descriptors.
In Fig. 9(a), the ROC curves of ’detection rate vs. false
alarm rate’ are obtained by varying the threshold of nearest
neighbor distance ratio which defines a match. The detec-
tion rate is the number of detections against the number of
tested matches, while the false alarm rate is the number of
false alarms divided by the number of tested matches. A
tested match is classified as a non-match, a false alarm or
a correct match (a detection) according to the distances be-
tween descriptors and whether the geometric constraints are
satisfied or not [15]. In Fig. 9(b), it shows the detection rate
as a function of the viewpoint changes at a fixed false alarm
rate. The false alarm rate 10−6 is chosen which implies that
one false alarm over every 10 attempts since the false alarm
rate is normalized by the number of database features (105).
From Fig. 9 we can see that our proposed descriptor outper-
forms the other tested descriptors.

5. Conclusion
This paper presents a novel local image descriptor, which

has the following nice features:
(1) Unlike the undertaking in many popular descriptors
where a dominant orientation is assigned to the descriptor
for it to be rotation invariant, our descriptor is inherently
rotation invariant thanks to a rotation invariant way of gra-
dient computation.
(2) To encode spatial information and take into considera-
tion of intensity distributions, sample points are segmented
based on their intensity orders, rather than their geometric
locations. Thus no orientation is required for reference.

5http://www.vision.caltech.edu/pmoreels/Datasets/TurntableObjects
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(c) rotation and scale changes (boat)
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(d) image blur (bikes)
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(e) JPEG compression (ubc)
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(f) illumination changes (leuven)

Figure 8. Experimental results under various image transformations.
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(b) Detection Rate vs. Viewpoint Changes at false alarm rate of 10−6

Figure 9. Experimental results on dataset of 3D objects.

(3) Gradient distributions are pooled within such order seg-
ments, rather than in fixed subregions.
(4) It uses multiple support regions to further improve its
discriminative ability.
Experimental results on two popular datasets have shown
that our proposed descriptor outperforms many state-of-the-
art methods under various image transformations.
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