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    Abstract— In this  paper,  an  event-triggered  sliding  mode  con-
trol approach for trajectory tracking problem of nonlinear input
affine system with  disturbance  has  been  proposed.  A  second or-
der robotic manipulator system has been modeled into a general
nonlinear input affine system. Initially, the global asymptotic sta-
bility  is  ensured  with  conventional  periodic  sampling  approach
for reference trajectory tracking. Then the proposed approach of
event-triggered sliding  mode  control  is  discussed  which  guaran-
tees  semi-global  uniform  ultimate  boundedness.  The  proposed
control approach  guarantees  non-accumulation  of  control  up-
dates  ensuring  lower  bounds  on  inter-event  triggering  instants
avoiding Zeno behavior  in  presence  of  the  disturbance.  The sys-
tem shows  better  performance  in  terms  of  reduced  control  up-
dates, ensures system stability which further guarantees optimiz-
ation  of  resource  usage  and  cost.  The  simulation  results  are
provided  for  validation  of  proposed  methodology  for  tracking
problem by a robotic manipulator. The number of aperiodic con-
trol  updates  is  found  to  be  approximately  44% and  61% in  the
presence of constant and time-varying disturbances respectively.
    Index Terms—Event-trigger,  inter  execution  time,  stability,  sliding
mode control, trajectory tracking.

I.  Introduction

CONVENTIONAL control theory is usually based on time
triggered  approach,i.e.,  periodic  sampling  of  feedback

and  accomplishment  of  control  law.  This  approach  is  well
known  for  its  simplicity  of  analysis.  In  this  approach  rate  of
control  law  execution  does  not  depend  upon  system  states.
Such control approach may be inefficient from computational
perspective.  An  alternate  approach  known  as  an  event-
triggered control has been presented in [1]. In event-triggered
control, execution of control law is done in aperiodic manner.
The control input is computed at events based on condition(s)
or  threshold  value(s)  which  relies  on  evolution  of  system
states.  Hence,  the  number  of  data  packets  transmitted  over
network are less which in turn reduces actuator efforts. Event-
triggered  control  makes  optimal  utilization  of  resources  and
improves  performance  in  terms  of  processing  time.  Simple
event-triggered  control  approaches  have  been  presented  in
[2]–[4].  Lunze et  al. show  state  feedback  based  event-

triggered control in [5].  Several works in distributed network
control system, decentralized sensor networks, consensus con-
trol with  time  delay  on  event-triggered  approach  can  be  re-
ferred  to  [6]–[14].  The  works  presented  in  [15],  [16]  discuss
non-linear event-triggered approach.

The  uncertainties  are  unavoidable  in  real-time  control
systems.  They  might  adversely  affect  the  performance  of
system. Hence, their treatment becomes a necessary task. The
current  state-of-the-art  primarily  deals  with  event-triggered
strategy for  systems without  uncertainty or  some works have
been reported on linear system with uncertainty [5], [12], [13].
Uncertainties  in  system  affect  the  performance  of  event-
triggered control [5].

To  overcome  uncertainty  present  in  system,  sliding  mode
control  (SMC) has been used for  its  good performance [17]–
[19]. SMC can be used for continuous as well as discrete time
system  dynamics.  For  discrete  time  SMC,  steady-state
performance  of  system  depends  upon  sampling  time  and
disturbance  bound  [20].  Li et  al. in  [21]  have  designed  an
adaptive  sliding-mode  stabilization  for  Markov  jump
nonlinear  systems  with  actuator  faults  which  guarantees
stochastic  stability  of  closed  loop  system.  These  works  are
based  on  conventional  time-triggered  approach.  Event  based
SMC  have  been  presented  in  [13],  [22]  for  linear  system.
These  works  do  not  cater  to  admissibility  of  control  inputs.
Admissibility  in  event-trigger  is  defined  by  a  bound  on  inter
execution  time  for  update  of  control  law  which  should  be  a
finite value to ensure system stability. Ferrara and Cucuzzella
[23]  have  shown  general  results  for  sliding  mode  control  of
first and second order using event-based approach. The paper
considers triggering conditions first and then goes for stability
analysis of the system in both cases. The triggering conditions
are designed using threshold values which are arbitrarily set.

The  motivation  for  this  work  is  to  develop  an  approach
which reduces usage of various resources and actuator efforts.
In addition to it, a controller methodology should take care of
system  stability,  uncertainty  and  admissibility  of  control
executions. SMC has been extensively studied in recent years
but to the best of our knowledge there is dearth of work which
analyzes  the  performance  of  SMC  for  trajectory  tracking  by
nonlinear  system  based  on  event-triggered  approach.  This
paper  puts  an  effort  to  present  such  a  controller  design  by
considering  the  dynamics  of  robotic  manipulator  and
modeling it into a general nonlinear control affine system. The
event-based  approach  performs  at  par  to  the  time-triggered
controller  if  not  better.  The  work  done  in  this  paper  can  be
summarized into following contributions:
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1)  The  event-triggering  condition  is  derived  using  Lyapunov
theory which ensures accuracy and stability of SMC.
2)  Admissibility  or  bound  on  inter-execution  time  has  been
derived for controller application.
3)  The  controller  design  considers  uncertainty  in  nonlinear
system dynamics.

The  paper  is  organized  as  follows.  Section  II  presents
preliminaries.  Section  III  has  three  subsections.  The  first
subsection presents  mathematical  modeling and sliding mode
control  law  design  for  trajectory  tracking.  The  proposed
event-triggered  sliding  mode  control  law  is  discussed  in
second subsection. The third subsection discusses semi-global
uniform ultimate boundedness of dynamical system on desired
trajectory  ensuring  minimum  bound  on  inter-event  time.  In
Section IV, results and discussions for trajectory tracking have
been presented. Finally, conclusions are drawn in Section V.

II.  Preliminaries

A nonlinear input affine system with external disturbance is
considered as

ẋ = f (x)+g(x)(u+d) (1)
x ∈ Rn, f : Rn→ Rn,u ∈ Rm,g : Rn→ Rn Rm d ∈ Rm

d(t)
||d(t)|| ≤ dmax

where x  and .
The  external  disturbance  is  unknown and assumed to  be
bounded i.e. . The dynamics of desired trajectory
is

ẋd = fd(xd). (2)
x̃The  tracking  error  is  difference  between  actual  and

desired trajectory.

x̃ = x− xd. (3)

γ α(γ)

The  control  input  depends  on  tracking  error  and  desired
trajectory.  The  control  law  can  therefore  be  written  as  a
function of , i.e., .

u = α(γ), γ = [x̃ xd]T . (4)
The tracking error dynamics is further expressed as
˙̃x = ẋ− ẋd, ˙̃x = f (x̃+ xd)+g(x̃+ xd)(α(γ)+d(t))− ẋd. (5)

u

ti i = 0,1,2, ....

The  event  driven  approach  updates  control  law  in  an
aperiodic way on the basis of triggering condition(s). An event
is  basically  a  discrete  time  instant  when  system  tends  to
become unstable and a necessary action is to be taken to make
it  stable.  The  necessary  action  here  is  the  update  of  control
input ( ) which ensures stability of the system along with the
desired trajectory tracking. The control law is updated at non-
uniform  time  instant  ( ).  If  the  system  remains
stable  then  there  will  be  no  triggering  of  event  and
consequently  there  will  be  no  update  of  control  input.  The
tracking  error  dynamics  can  be  expressed  in  terms  of  event-
based control input as

˙̃x = f (x̃+ xd)+g(x̃+ xd)(α(γ(ti))+d(t))− ẋd. (6)
eA parameter termed as event-trigger error ( ) is defined for

developing triggering condition.

e(t) = γ(ti)−γ(t)
⇒ e(t) = [x̃(ti)− x̃(t)xd(ti)− xd(t)]T (7)

t ∈ [ti, ti+1) ewhere . The event-trigger error ( ) is different from

x̃ = x− xd
x̃

xd

xd
xd

trajectory  tracking  error .  The  objective  of  defining
the  event-triggered  error  in  terms  of  tracking  error  and  the
known  desired  trajectory  is  to  design  the  event-triggering
condition from  Lyapunov  stability  analysis.  The  desired  tra-
jectory  is known but it  is time varying by nature. The dif-
ference (i.e. error) between the desired value of  at last trig-
gering instant and current time instant contributes in deciding
events  based  on  stability  of  the  system.  Equation  (6)  can  be
further  expressed as  a  perturbed dynamics  in  terms of  event-
trigger error.

˙̃x = [ f (x̃+ xd)+g(x̃+ xd)(α(γ)+d(t))− ẋd]
+g(x̃+ xd)(α(γ+ e)−α(γ)). (8)

The following section provides a novel approach for design
of event-triggered SMC for nonlinear input affine system with
external disturbances.

III.  System Modeling and Control Law for
Trajectory Tracking

The  proposed  control  approach  has  been  designed  by
modeling the dynamics for a class of nonlinear system into a
general nonlinear control affine system. The control approach
can be directly  applied to  system which are  already in  affine
form.

A.  Nonlinear Control Affine System
The  dynamics  of  a  class  of  continuous  time  system  is

described  mathematically  in  the  following  non-linear
differential form [24], [25].

M(q)q̈+C(q, q̇)+G(q)+D(t,q, q̇) = τ(t) (9)
n q ∈ Rn q̇ ∈ Rn

M(q) n×n C(q, q̇) G(q)
n×1 D(t,q, q̇)

τ(t) n×1

where  is number of states,  is position vector,  is
velocity vector,  is  inertia matrix,  and 
are  are  system  vector,  is  uncertainty  term  and

 is  control vector.
For controller design, the dynamic model given in (9) has to

be  expressed  in  standard  nonlinear  control  affine  form  with
respective states. The position and velocity vectors considered
here are as follows.

x1 = [q1 q2]T , x2 = [q̇1 q̇2]T , x = [x1 x2]T . (10)
The system parameters and control input are expressed as

f (x) = −M−1(C(q, q̇)+G(q))g(x) = M−1, u = τ. (11)
Using  (10)  and  (11),  the  state  space  model  for  (9)  can  be

written in following form.

ẋ1 = x2, ẋ2 = f (x)+g(x)(u+d(t)). (12)

S (t) x̃1
x̃2

The control  law designed for tracking is  based on SMC. A
sliding surface ( )  is  defined in terms of tracking error (
and ).

S (t) = λx̃1+ x̃2 (13)
λ

x̃1 = x1− x1d x̃2 = x2− x2d x1d x2d

where  is  a  non-zero  positive  sliding  gain  parameter  with
 and .  and  represent the states

of  respective  desired  trajectories.  The  derivative  of  sliding
surface can be expressed as

Ṡ (t) = λ ˙̃x1+ ˙̃x2 ⇒ Ṡ (t) = λ ˙̃x1+ ẋ2− ẋ2d. (14)
VA Lyapunov function  is defined in terms of sliding surface.
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V =
1
2

S (t)T S (t). (15)

Using  (12)  and  (14),  the  derivative  of  Lyapunov  function
defined in (15) is

V̇ = S (t)T Ṡ (t) = S (t)T [ f (x)+g(x)(u+d(t))− ẋ2d +λ ˙̃x1]. (16)
For a non zero positive constant K, closed loop system will

be stable for the control law designed as

u = −g(x)−1[ f (x)+K ∗ sign(S (t))− ẋ2d +λ ˙̃x1] (17)
K >max ||g(x̃+ xd)d(t)||+η ηwhere .  is  a  non  zero  positive

constant. The derivative of Lyapunov function in (16) will be-
come

V̇ = S T (t)[g(x)d(t)−Ksign(S (t))]
= −S T (t)[Ksign(S (t))−g(x̃+ xd)d(t)]
≤ −ηS T sign(S (t)) ≤ −η|S (t)|
≤ −η

√
λ2+1||x̃|| ≤ 0. (18)

Equation  (18)  proves  that  the  sliding  mode  control  law  in
(17)  ensures  asymptotic  stability  of  system.  Event  triggered
approach for SMC is discussed in following subsection.

η

Remark  1: Note  that,  for  the  control  law  in  (17)  with  a
positive  scalar  constant ,  system given  in  (12)  converges  to
zero and guarantees stability in presence of disturbance.

Remark  2:  The  notion  of  zero  dynamics  of  a  nonlinear
system is used in the investigation of three classes of problems
that  arise  in  robotics:  control  of  robots  in  rigid  contact  with
the  environment,  free  motion  control  of  manipulators  with
redundant degrees of freedom, and trajectory control of robot
arms  with  flexible  links.  In  each  case,  the  internal  dynamics
present  in  the  system when  a  proper  output  is  constrained  to
be zero is characterized, and a physical interpretation of such
dynamics is provided [26].

B.  Event Triggered Sliding Mode Control
In this subsection, design of an event-based control law and

triggering  conditions  are  discussed.  The  control  law  should
meet following two aspects:

1)  tracking  error  should  converge  to  zero  ensuring
asymptotic stability of system, and

2) does not violate admissibility condition, i.e., non stacking
of actuator actions.

The  following  assumptions  are  considered  for  design  of
event-triggered SMC law applied to system (12) for trajectory
tracking problem.

V(x̃) : Rn→ R+0 xd

Assumption  1:  Consider  a  Lyapunov  candidate  function
 for system given in (5), such that for all 

1) β1(||x̃||) ≤ V ≤ β2(||x̃||)

2)
∂V
∂x̃

[ f (x̃+ xd)+g(x̃+ xd)

(α(γ(ti))+d(t))− ẋd] ≤ −β3(||x̃||) (19)
β1(·) β2(·) β3(·) K∞where ,  and  are class  functions.

f (.) g(.)Assumption  2:  The  functions  and  of  system
dynamics are assumed to be known.

f (·) fd(·) g(·) α(·)Assumption  3: , , ,  are  assumed  to  be
Lipschitz [27] on compact sets.

∀t ≥ 0 ||x̃(0)|| ≤ σ ||xd || ≤ h ||d(t)|| ≤ dmax
σ ≥ 0, h ≥ 0 dmax ≥ 0

Assumption 4: , ,  and 
where,  and  [28].

g(x)
t ∈ [ti, ti+1) g(x)

Lg

Assumption  5:  Variation  in  over  triggering  instant  i.e.
the  interval  is  negligible.  is  positive  definite
and bounded by maximum value of  on compact set E [24].

f g
f g f g

Remark 3: The sliding mode variable, controller design, and
event-triggering condition takes into account  and . Hence,
this work considers  and  to be known. The  and  may be
considered uncertain as in [29].

g(x)
g(x)

Lg
g(x)

t ∈ [ti, ti+1)

Remark 4:  As  per  [24],  a  non-linear  dynamical  system can
be  modelled  in  state  space  form  where  represents  the
inverse  of  inertia  matrix.  For  such  a  system  is  positive
definite and bounded by maximum value of  on compact set
E.  For  the  sake  of  simplicity,  variation  of  during  inter-
events,  i.e.,  the  interval  are  assumed  to  be
negligible.

α(.) E = [γ : ||x̃|| ≤ σ; ||xd || ≤ h; ||d(t)|| ≤ dmax]
A Lipschitz  constant,  denoted  as L,  is  defined  for  function

 on  compact  set .
Using Assumption 2 with equation for (4), one has

||u(ti)−u|| = ||α(γ+ e)−α(γ)|| = L||e||. (20)
Theorem 1: Let an event-triggered sliding mode control law

for system in (12) can be designed as

u(ti) =−g(x(ti))−1[ f (x̃(ti)+ xd(ti))
+Ksign(S (ti))− ẋ2d(ti)+λ ˙̃x1(ti)] (21)

tiwhere  represents  a  triggering  instant.  If  the  following
threshold conditions

1) ||e|| ≤ η
√

2(λ+1)L
(22a)

where e is defined in (7),

2) ||x̃|| ≤ r for all t ∈ [ti, ti+1) (22b)
wherer r is a design parameter which guarantees boundedness
of  tracking  error  are  not  satisfied,  then  an  event  is  triggered
and control input is updated. The gradual triggering of events
lead tracking error to converge to zero in presence of disturb-
ance and the system shows asymptotic stability.

V(x̃)

V̇(x̃) = ∂V∂x̃ ˙̃x

Proof: Consider  a  Lyapunov  function  as  per
Assumption 1 for the system described in (12). The derivative
of Lyapunov function can be expressed as , which
can be further expressed using perturbed dynamics in (8) as

V̇ =
∂V
∂x̃

[ f (x̃+ xd)+g(x̃+ xd)α(γ)+g(x̃+ xd)d(t)− ẋd]

+
∂V
∂x̃

g(x̃+ xd)(α(γ+ e)−α(γ)). (22)

Using Assumption 1, (22) can be expressed as

V̇ ≤ −β3||x̃||+
∂V
∂x̃

g(x̃+ xd)(α(γ+ e)−α(γ)). (23)

Consider the second term of (23) for further analysis

∂V
∂x̃

g(x̃+ xd)(α(γ+ e)−α(γ)). (24)

The Lyapunov candidate function is explicitly defined as

V(x̃) =
1
2

(x̃2+λx̃1)T (x̃2+λx̃1). (25)
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V(x̃)The partial derivative of  can be expressed as

∂V
∂x̃
= [λ 1][x̃2+λx̃1 x̃2+λx̃1]T . (26)

Using Assumption 4,

g(x̃+ xd)(α(γ+ e)−α(γ)) = g(x̃+ xd)(u(ti)−u). (27)

ti
Using  (17)  and  (21)  along  with  Assumption  4  at  event-

triggered instant , (27) can be expressed as

g(x̃+ xd)(u(ti)−u) = [ f (x̃+ xd)+K ∗ sign(S )− ẋ2d +λ ˙̃x1]
− [ f (x̃(ti)+ xd(ti))+K ∗ sign(S (ti))− ẋ2d(ti)+λ ˙̃x1(ti)].

(28)
Equation (28) can be further written using (2) as

g(x̃+ xd)(u(ti)−u) = f (x̃+ xd)− f (x̃(ti)+ xd(ti))+K ∗ sign(S )
−K ∗ sign(S (ti))+ fd(x2d(ti))− fd(x2d)+λ ˙̃x1−λ ˙̃x1(ti).

(29)
˙̃x1 = ẋ1− ẋ1d, ˙̃x1 = x̃2+ x2d − ẋ1dUsing  and  (2),  (29)

becomes

g(x̃+ xd)(u(ti)−u) = f (x̃+ xd)− f (x̃(ti)+ xd(ti))
+K ∗ sign(S )−K ∗ sign(S (ti))+ fd(x2d(ti))− fd(x2d)+λ(x̃2

− x̃2i)+λ(x2d − x2d(ti))+λ( fd(x1d(ti))− fd(x1d)).
(30)

f (·) fd(·)As  per  Assumption  2,  and  are  assumed  to  be
Lipschitz for a defined set. Hence,

∥g(x̃+ xd)(u(ti)−u)∥ ≤ ∥ f (x̃+ xd)− f (x̃(ti)+ xd(ti))∥
+ ∥K ∗ sign(S )−K ∗ sign(S (ti))∥+ ∥ fd(x2d(ti))− fd(x2d)∥
+ ∥λ(x̃2− x̃2(ti))∥+ ∥λ(x2d − x2d(ti))∥
+ ∥λ( fd(x1d(ti))− fd(x1d))∥ . (31)
Equation (31) is further expressed as

∥g(x̃+ xd)(u(ti)−u)∥ ≤ ∥L1(x̃+ xd − x̃(ti)− xd(ti))∥
+ ∥L2(x2d(ti)− x2d)∥+ ∥λ(x̃2− x̃2(ti))∥
+ ∥λ(x2d − x2d(ti))∥+ ∥λL3(x1d(ti)− x1d)∥ . (32)

∥e∥
Equation  (32)  is  written  below  in  terms  of  event-trigger

error .

∥g(x̃+ xd)y(u(ti)−u)∥ ≤ ∥L1 [1 1 1 1]e∥
+ ∥L2 [0 0 0 1]e∥+ ∥λ [0 1 0 1]e∥
+ ∥λL3 [0 0 1 0]e∥ (33)

ewhere event-trigger error ( )  is  given in (22a).  Equation (33)
is further expressed as

∥g(x̃+ xd)(u(ti)−u)∥ ≤ 2L1 ∥e∥+L2 ∥e∥+λL3 ∥e∥+
√

2λ∥e∥ .
(34)

Using (26) and (34), equation (24) can be written as∥∥∥∥∥∂V∂x̃ g(x̃+ xd)(α(γ+ e)−α(γ))
∥∥∥∥∥ ≤ (λ+1)

√
(λ2+1)||x̃||L||e||

(35)

where L = 2L1+L2+λL3+
√

2λ. (36)
Using (18) and (35), equation (22) can be further written as

V̇ =
∂V
∂x̃

[ f (x̃+ xd)+g(x̃+ xd)α(γ)+d(t)− ẋd]

+
∂V
∂x̃

g(x̃+ xd)(α(γ+ e)−α(γ)) (37)

which will finally become

V̇ ≤ −η
√
λ2+1||x̃||+ (λ+1)

√
(λ2+1)||x̃||L||e||. (38)

V̇ ≤ 0
Using  the  event-trigger  threshold  condition  (22a)  in  (38),

one can ensure . It shows that the system in (12) with the
designed  control  law  in  (21)  is  bounded  and  achieves
convergence  despite  the  disturbance.  The  violation  of
threshold conditions (22a) and (22b) are necessary as well as
sufficient for the update of event-driven sliding mode control.
This completes the proof of Theorem 1.

Remark  5:  Theorem  1  shows  that  control  law  in  (21)  will
force the system to track the desired trajectory in presence of
disturbance rendering asymptotic  stability  of  the system. The
proof  ensures  this  approach  can  be  applied  to  real-time
applications with resource optimization.

C.  Admissibility of Event-Driven Control
The admissibility of event-driven control law is necessary to

avoid  the  piling  of  triggering  instants  and  ensuring  the
stability of system. Theorem 2 provides a lower bound for an
inter-event triggering interval.

Definition  1:  Admissibility  in  event-triggered  system  is
defined  as  the  inter-execution  time  for  update  of  control  law
which is always lower bounded by a finite value.

v̇ = f (t,v), v(t0) = v0 f (t,v)
v t ∀t ≥ 0

v ∈W ⊂ R. [t0,T ) v(t)
v(t) ∈W ∀t ∈ [t0,T ) m(t)

D+m(t) D+m(t) ≤ f (t,m(t)),
m(t0) ≤ m0 m(t) ∈W ∀t ∈ [t0,T ) m(t) ≤ v(t)
t ∈ [t0,T )

Lemma  1  (Comparison  Lemma)  [27]: Let  the  scalar
differential  equation ,  where  is
locally  Lipschitz  in  and  continuous  in ,  and

 Consider  be maximal period of solution ,
and  assume  that .  Consider  be  a
continous  function  whose  upper  derivative  on  right-hand

 satisfy  differential  inequality 
 with . Then,  for all

.

∀ti (i = 0,1,2...)
Ti Ti = ti+1− ti

Theorem 2:  For  the  system in  (12),  event-driven  control  is
updated  on  violation  of  conditions  in  (22a)  and  (22b)

.  For  admissibility  of  system  the  inter-event
period  defined  as  should  always  be  lower
bounded by a positive constant given by

Ti ≥
1
Q

(
1+

η
√

2(λ+1)L(σ+h+dmax)

)
. (39)

∥e∥Proof:  The  time  required  for  event-trigger  error  to  rise
from zero at last triggerng instant to threshold value should be
lower bounded. Hence, the accumulation of triggering instants
and existence of Zeno phenomenon can be avoided ensuring a
stable system. The event driven system is represented as

˙̃x = f (x̃+ xd)+g(x̃+ xd)(α(γ)+d(t))− ẋd. (40)
Using triangular inequality, (40) can be expressed as

|| ˙̃x|| ≤ || f (x̃+ xd)+g(x̃+ xd)(α(γ)+d(t))− ẋd ||
+ ||g(x̃+ xd)[α(γ+ e)−α(γ)]||. (41)

f (x̃+ xd)+g(x̃+ xd)(α(γ)+d(t))− ẋd
La

For ,  a  Lipschitz
constant  is defined on compact set E based on Assumptions
2 and 3. Equation (41) therefore becomes

|| ˙̃x|| ≤ La(||x̃||+ ||xd ||+ ||d(t)||)+L||e||||g(x̃+ xd)|| (42)
||g(x̃+ xd)||As per Assumption (4),  attains a maximum value
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Lgof . Hence, equation (42) can be expressed as

|| ˙̃x|| ≤ La(||x̃||+ ||xd ||+ ||d(t)||)+LgL∥e∥ . (43)
Q (Q > 0)

|| ˙̃x|| ≤ Q (||x̃||+ ||xd ||+ ||d(t)||+ ||e||) ∀ t ∈ [ti, ti+1)
There  exists  a  constant  such  that

 .  As  per
Assumption (3)

|| ˙̃x|| ≤ Q(σ+h+dmax + ||e||). (44)
ė = −[ ˙̃x ẋd]TFor the rate of change of event-trigger error, 

d||e||
dt
≤ ||ė|| ≤ Q(σ+h+dmax + ||e||). (45)

Then, using Lemma 1

||e|| ≤ (σ+h+dmax)(expQ(t−ti)−1), ∀t ∈ (ti, ti+1). (46)
Using (22a)  in  (46)  the  lower  bound on inter-event  time is

obtained as

Ti ≥
1
Q

(
1+

η
√

2(λ+1)L(σ+h+dmax)

)
. (47)

Remark 6: Theorem 2 shows that the inter-execution time in
(47) for the designed control law (21) will be lower bounded.
The  boundedness  on  inter-execution  time  will  ensure  non-
accumulation of actuator actions and further guarantees robust
trajectory  tracking.  This  proof  supports  the  real-time
feasibility of developed resource optimization approach.

L
L j( j = 1,2,a, ...)

S (R)(∥x̃∥ ∈ S (R)) ≡ ∥x̃∥ ≤ β−1
1 (β2 ∥x̃(ti)∥) β1 β2

R ≥ 0 S (R)
x̃ x̃

S (R)
x̃

L = β−1
1 (β2(R))

Remark  7:  is  computed  using  (36).  For  choosing
 (Lipschitz constant), it is necessary to have a

set  (  and  are
defined  in  Assumption  1)  where  for ,  the  set 
includes  all  system  states .  For  all ,  with  bounded  initial
condition to enter the set  in finite time and to stay there,
the  tracking  error  is  uniformly  ultimately  bounded  by  the
closed ball of radius .

La Lg La
Lg∥∥∥ ˙̃x

∥∥∥ ∥x̃∥ ∥xd∥ ∥d(t)∥ ∥e∥
La Lg

The  value  of Q depends  on , ,  and L.  and L are
Lipschitz  constants  and  is  the  maximum  value  of g.  The
variables , , , ,  and  in  (43)  are  positive
scalar  values.  Hence,  the  values  of , ,  and L are  chosen
such that they at least satisfy∥∥∥ ˙̃x

∥∥∥ = La(∥x̃∥+ ∥xd∥+ ∥d(t)∥)+LgL∥e∥ .

ax+by+ cz = 0
x = ∥x̃∥+ ∥xd∥+ ∥d(t)∥ y = ∥e∥ z =

∥∥∥ ˙̃x
∥∥∥ a = La b = LgL

c = −1

The  above  equation  can  be  expressed  in  the  form  of  a
standard  equation  of  a  plane  (i.e., )  where

, , , , ,  and
. Now

|| ˙̃x|| = Q(||x̃||+ ||xd ||+ ||d(t)||+ ||e||) ∀ t ∈ [ti, ti+1).

a = Q b = Q c = −1 La Lg
Q Q

La Lg
∥x̃∥ ∥xd∥ ∥d(t)∥

The equation above can also be expressed in the form of a
plane,  where , ,  and .  The values of , ,
and L are chosen prior to . Hence, the value of  is chosen
based  on  the  space/domain  where  these  two  planes  either
intersect  or  overlap  keeping  the  (44)  intact.  There  is  an
alternative  to  compute  minimum  inter-event  time  for  the
proposed  approach.  One  can  always  express  the  minimum
inter-event  time  expression  based  on  the  parameters , ,
and L and maximum values of , , and .

IV.  Results and Discussions

This  section  validates  the  proposed  event-triggered  sliding

mode  controller  for  trajectory  tracking  problem.  Simulations
are  carried  out  for  two-link  robotic  manipulator.  The
dynamics is given by[

M11 M12
M21 M22

] [
ẍ1
ẍ2

]
+

[
N1
N2

]
+

[
d1
d2

]
=

[
τ1
τ2

]
(48)

M11= (m1+m2)a2
1+m2a2

2+2m2a1a2 cos(x2) M12=m2a2
2+

m2a1a2 cos(x2) M21 = m2a2
2+m2a1a2 cos(x2) M22 = m2a2

2

N1 = −m2a1a2(2ẋ1 ẋ2+ ẋ2
2) sin(x2)+ (m1+m2)ga1 cos(x1)+m2ga2

cos(x1+ x2) N2 = m2a1a2 ẋ2
1 sin(x2)+m2ga2 cos(x1+ x2)
d1 d2

τ1 τ2

m1 m2 a1 a2 = 1 m1, m2
a1, a2

xd(t) cos(1.57t) cos(1.57t)]T

x(0) [11]T

λ
η

d(t) = [0.01 0.01]T

∥e∥
∥x̃∥

V(x̃)

where , 
, , and .

Lumped  Coriolis  and  Gravitational  force  is  represented  by

 and  
for  joints-1  and  2  respectively.  and  represent disturb-
ances  and  and  are torques  for  joints-1  and  2,  respect-
ively.  The  structural  parameters  of  robotic  manipulator  are:

 =  1  kg,  =  1  kg,  =  1  m  and  m.  ( )  and
( ) are mass and length of links respectively.The desired
trajectories for two joints are  = [  .
The initial joint positions are  = . The Lipschitz con-
stant L is  determined  using  (36)  as  0.85.  The  sliding  mode
gain  parameter  in  (13)  is  considered  to  be  unity.  Consider
the design parameter  = 0.7 and bound on tracking error r =
1.2. The sampling period considered is 0.01s. The results have
been obtained  for  constant  as  well  as  time-varying  disturb-
ances in the system. The initial results are for constant disturb-
ance of . The trajectory tracking by rigid re-
volute joint robot manipulator system here does not belong to
any of the cases mentioned in Remark 2. There does not exist
any zero dynamics for the system considered. The desired tra-
jectory tracking in terms of joints’ angular positions and velo-
cities  have  been  shown  in Figs. 1 and 2 respectively.  The
tracking in these figures are robust even in the presence of un-
certainty  using  the  proposed  approach. Figs. 3 and 4 demon-
strate tracking error of angular positions and velocities of both
joints  respectively.  Both  tracking  errors  show  convergence
and  ensure  asymptotic  stability  of  the  system.  The  event-
triggered  approach  binds  chattering  in  a  band  as  shown  in
tracking error plots. The event-based sliding mode control in-
put for both joints have been shown in Fig. 5. The control in-
puts  demonstrate  aperiodic  triggering  after  6 s.  They  are  not
updated periodically and remain constant for many inter-event
intervals. Fig. 6 shows the  sliding  surface  of  both  joints.  Al-
though Fig. 6 illustrates  chattering  on  sliding  surfaces,  the
control  law  brings  trajectory  to  sliding  manifold  and  ensures
system stability. Fig. 7 presents event-trigger error  and tra-
jectory tracking error . Both the errors converge almost to
zero after 6.4 s. The time required for convergence while peri-
odic-triggering is  found  to  be  approximately  6 s.  The  pro-
posed  approach  takes  a  little  more  time  for  convergence  as
compared  to  periodic  triggering  but  the  difference  is  very
small. It can be inferred from Figs. 7 and 8 that update of con-
trol  law occurs only when the conditions (22a) and (22b) are
violated. Fig. 7 has  been  enlarged  in Fig. 8 for  clarity  in
presenting  all  the  error  parameters  with  triggering  instants
after  6.4  s.  It  shows that  aperiodic  updates  of  control  actions
significantly reduce for desired tracking. These results ensure
resource  optimization  along  with  stability  of  system.  The
value  of  Lyapunov  function  has  been  shown  in Fig. 9.
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The  number  of  control  updates  using  the  proposed  approach
are  found  to  be  441  for  the  simulated  duration  of  10 s  (i.e.,
1000 sampling instants). The average frequency of control up-
dates is approximately 44 Hz. Similarly the number of control
updates  for  time  varying  disturbance d(t)  =  [0.5sin(3.14t)
0.5sin(3.14t)] T are found  to  be  606  for  the  simulated  dura-
tion of  10  s  (i.e.  1000  sampling  instants).  The  average  fre-
quency of control updates is approximately 61 Hz. The angu-
lar positions and tracking errors of joints for second set of res-
ults have been shown in Figs. 10 and 11 respectively. The nor-
malized  values  of  various  error  parameters  have  been  shown
in Fig. 12 with its zoomed view in Fig. 13 along with the trig-
gering instants. A comparison of time-triggered and proposed
SMC controller has been done in Table I based on number of
events and convergence time of errors.  Using (47),  the lower

bound  on  inter-event  times  are  found  to  be  0.0037  s  and
0.0032 s  for  constant  and  time-varying  disturbances  respect-
ively.  The  admissibility  in  both  the  cases  are  maintained  as
minimum inter-event time is 0.01 s.
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Fig. 1.     Angular positions of joints during trajectory tracking.
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Fig. 2.     Angular velocities during trajectory tracking.
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Fig. 3.     Tracking error for angular positions of two joints.
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Fig. 4.     Tracking error for angular velocities of two joints.
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Fig. 5.     Control inputs for two joints.
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Fig. 6.     Sliding surfaces of two joints.
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Fig. 7.     Normalized values of various error parameters.
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Fig. 8.     Error parameters and triggering instants (zoomed view).
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Fig. 9.     Value of Lyapunov function during tracking.
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V.  Conclusions

The  work  in  this  paper  presented  the  event-driven  sliding
mode  control  for  tracking  problem  of  a  class  of  nonlinear
input  affine  system  in  the  presence  of  the  uncertainty.  The
proposed  approach  guarantees  asymptotic  stability  for  the
desired  trajectory.  It  also  ensures  boundedness  of  error  and
avoids Zeno behavior on the sliding surfaces.  Inter-execution
time  for  proposed  control  approach  is  verified  through
simulation results. The presented work shows performance of
the system at par with traditional periodic triggering approach
in  the  terms  of  processing  time.  The  proposed  approach  also
significantly  reduces  the  number  of  actuator  actions  required
to  address  trajectory  tracking  problem.  This  ensures
optimization of  resources available  for  any system operation.
The  approach  can  be  restrictive  to  some  critical  applications
where high threshold error and chattering cannot be tolerated.
This  approach can be  extended to  multi-agent  systems in  the
presence of disturbance and can be implemented on real-time
framework in future.
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