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   Abstract—Fault prognosis is mainly referred to the estimation of
the operating  time  before  a  failure  occurs,  which  is  vital  for  en-
suring the  stability,  safety  and  long  lifetime  of  degrading  indus-
trial  systems.  According  to  the  results  of  fault  prognosis,  the
maintenance strategy for underlying industrial  systems can real-
ize the  conversion  from  passive  maintenance  to  active  mainten-
ance. With  the  increased  complexity  and  the  improved  automa-
tion  level  of  industrial  systems,  fault  prognosis  techniques  have
become  more  and  more  indispensable.  Particularly,  the  data-
driven based  prognosis  approaches,  which  tend  to  find  the  hid-
den fault factors and determine the specific fault occurrence time
of  the  system  by  analysing  historical  or  real-time  measurement
data, gain great attention from different industrial sectors. In this
context,  the  major  task  of  this  paper  is  to  present  a  systematic
overview  of  data-driven  fault  prognosis  for  industrial  systems.
Firstly, the characteristics  of  different prognosis  methods are re-
vealed  with  the  data-based  ones  being  highlighted.  Moreover,
based on the different data characteristics that exist in industrial
systems, the  corresponding  fault  prognosis  methodologies  are  il-
lustrated, with  emphasis  on  analyses  and  comparisons  of  differ-
ent  prognosis  methods.  Finally,  we  reveal  the  current  research
trends and look forward to the future challenges in this field. This
review is expected to serve as a tutorial and source of references
for fault prognosis researchers.
    Index Terms—Data-driven, fault  prognosis,  feature  extraction,  in-
dustrial systems.

I.  Introduction

W ITH  the  rapid  development  of  information  collection
and  industrial  automation  technologies,  the  industrial

system  of  modern  society  has  made  considerable  progresses
and become more and more elaborate. With the increase in the
components of the industrial system, the interactions between

them  have  become  more  and  more  frequent  and  complex,
which  makes  the  occurrence  probability  of  functional  failure
greatly increased [1]–[4]. And these characteristics are partic-
ularly prominent  in  modern  industries.  Against  this  back-
ground, fault detection and diagnosis are increasingly import-
ant for safety-critical industrial systems. However, simply de-
tecting  and  diagnosing  a  fault  may  be  insufficient  in  some
cases, since some critical functions of the system have already
been destroyed before the fault occurs. Hence, it is necessary
to prognose  the  fault  ahead of  time so  as  to  provide  the  pre-
dictive maintenance measures and repair schedules.

Specifically, fault prognosis is equivalent to establishing the
long-term  (multi-step)  predictions  regarding  the  evolution  in
time of a particular interested fault signal (indicator) [5]. The
concept of fault prognosis is firstly put forward by researchers
when  analyzing  the  automated  maintenance  system  for
vessels.  Since  then,  fault  prognosis  has  attracted  great
attention from both the scientific and industrial  communities,
and  many  related  research  works  have  been  proposed
[6]–[10].  The  objective  of  fault  prognosis  is  to  determine
whether  a  failure  is  impending  and  estimate  how  soon  and
how  likely  a  failure  will  occur,  aiming  to  prevent  system
degradation, catastrophic failures, ensure the long-term stable
operation of the industrial enterprises, and ultimately result in
the  end  of  life  (EOL)  or  remaining  useful  life  (RUL)  of  the
faulty component or subsystems [11].

As  per  literature,  current  fault  prognosis  methods  can  be
generally  classified  as  three  types:  model-based  methods,
knowledge-based methods and data-based methods (see Fig. 1).
Concretely,  model-based  methods  are  approaches  that  build
accurate mathematical description of systems using physics or
first-principle.  The  identification  and  update  of  the  model
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Fig. 1.     Taxonomy of different prognosis methods.
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parameters generally require specifically designed experiments
and statistical methods, respectively. As a result, they tend to
outperform other kinds of models when sufficiently knowledge
of physical  mechanisms are available.  However,  as  industrial
systems  become  more  and  more  complex,  to  exact
mathematical  knowledge  about  the  system  is  generally
unavailable. Additionally, model-based methods are often built
case by case. Hence, it is not conducive to apply them to other
systems.

On the other hand, knowledge-based methods are based on
engineering  experience  and  historical  events,  the  prognosis
results obtained by these methods are more intuitive. Hence, it
is easy to carry out and efficient when the process models can
be easily obtained or the process knowledge has been readily
accumulated.  However,  the  formation  of  the  process
knowledge  is  always  time  consuming,  and  knowledge-based
models rely too much on the capability of the expert experience
and sometime it is even impossible to build such models due to
the  combinational  explosion  problem,  thus  the  prediction
accuracy  is  greatly  reduced  and  application  scope  is  largely
limited.

Apart  from  the  aforementioned  two  types  of  prognosis
methods, the data-based method mainly determines the health
status  of  the  system  within  a  certain  period  of  time  by
analyzing the previously observed data [12]. Because they do
not  require  the  professional  knowledge  or  mathematical
models  of  industrial  systems,  the  data-based  methods  are
applicable  when  data  is  sufficiently  abundant  and  have
relatively  low  operating  cost.  With  the  development  of
modern  information  and  digital  technology,  the  collection  of
large amounts of system measurement data provides the basis
for  data-driven  fault  prognosis  applications  with  higher
prediction  accuracy,  widely  promoted  in  the  past  decades.
Even if the enough observation data is not always available in
some  actual  working  environment,  several  specific  data-
driven  methods  can  produce  accurate  prognosis  results  with
few  training  samples  [13]  or  lacked  experimental  samples
[14].  Therefore,  this  paper  focuses  on  data-driven  fault
prognosis  methods,  which mainly  include but  are  not  limited
to  machine  learning  algorithm,  statistical  pattern  recognition
based methods, and artificial intelligence models.

Notably,  some  traditional  data-driven  prognosis  methods,
such as principal component analysis (PCA) and partial least-
squares  (PLS)  have  inherent  limitations.  They  often  assume
that  the  industrial  systems  to  be  linear,  Gaussian  or  operated
under  stationary  conditions.  However,  most  of  these
assumptions are hard to be satisfied in practice. Therefore, in
past  years,  various  improved  versions  of  the  general  data-
based  prognosis  methods  have  been  proposed,  such  as
independent  component  analysis  (ICA),  Gaussian  mixture
models  (GMMs)  and  so  on.  To  the  best  of  our  knowledge,
though the research about fault prognosis has progressed to an
exceptionally  high  standard,  no  comprehensive  review  has
been  proposed  on  recently  developed  data-based  fault
prognosis  methods  for  industrial  systems  until  now.  The
motivation of this survey paper is to provide such an overview
for data-based fault prognosis methods.

The remaining parts of this paper are organized as follows.

The  fault  prognosis  methods  for  different  systems  are
introduced  in  Section  II.  Section  III  shows  the  detailed
implementation  procedures  of  the  typical  data-driven  fault
prognosis method. A systematical review of the state of the art
data-based  methods  for  different  industrial  systems  fault
prognosis  is  given  in  Section  IV.  Section  V  is  used  to  look
forward  the  future  perspectives  and  challenge  of  fault
prognosis  under  the  gradually  complicated  industrial  system.
Finally, Section VI concludes the paper.

II.  Industrial System and Its Characteristics

In  this  part,  two  typical  industrial  systems  are  briefly
described,  and  the  main  data  characteristics  of  these  systems
are also introduced.

A.  Continuous System
Industrial systems can generally be divided into two primary

subcategories,  continuous  system  and  discrete  system.  As
depicted  in Fig. 2,  continuous  systems  mainly  involve  steel,
chemical,  petroleum  and  so  on.  As  its  name  implies,  the
continuous system operates around the optimal state most of the
time and produces constant outputs after the process has been
started. It is noteworthy that most studies focus on continuous
process in the early stage of data-driven fault prognosis.

B.  Discrete System
In  contrast,  the  discrete  systems  usually  have  finite

operation  durations  and  the  production  strictly  follows  the
process specifications. In addition, the set point of this system
always  changes,  which  means  the  system  is  often  operated
under different process conditions. Hence, the discrete system
is generally more complicated than the continuous system. In
practice,  electronic,  machinery  and  automobile  and  many
other systems belong to this type.

C.  Characteristics
With  the  increase  of  production  links,  more  frequent

interactions arise between various subcomponents. The data of
modern  industrial  systems  mainly  has  the  following
characteristics  [15]–[18]:  1)  dynamic  behaviors,  2)  nonlinear
relationships,  3)  non-Gaussian  distribution,  4)  time-varying
multimodality, 5) non-stationary. And the detailed description
of these characteristics are shown in Section IV, followed by
the  review  of  existing  fault  prognosis  methods  for  the
corresponding industrial systems.

III.  Data-Based Fault Prognosis Procedures

In this section, the detailed implementation procedures of a
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Fig. 2.     Typical kinds of industry systems.
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typical  data-driven  fault  prognosis  method  are  divided  into
four  layers,  which  are  shown  in Fig. 3,  including  data
collection  and analysis  layer,  feature  extraction  and selection
layer,  model  selection,  training  and  validation  layer,  fault
prognosis  and  health  management  layer.  The  detailed
illustrations of every layer are given as follows.

A.  Data Collection and Analysis
The data collection and analysis  layer is  the basis  and data

sources  of  the  data-based  fault  prognosis  methodology.
Generally,  in  this  layer,  the  original  measurement  data  is
collected,  then  the  data  characteristics  are  analyzed  and  the
most  appropriate  measurement  datasets  (generally  the  data
under  stationary  state  is  collected  for  continuous  system  and
the  data  under  most  representative  process  conditions  is
collected  for  discrete  system)  are  provided  for  modeling  and
evaluation.  Since  the  following  layers  are  all  based  on  this
layer, it is an important step for data-based fault prognosis. In
other words, if an appropriate measured data has been selected
for  model  construction  that  can  well  describe  the  operating
conditions  of  current  industrial  systems,  the  satisfactory
prognosis results can be guaranteed and vice versa.

B.  Feature Extraction and Selection
The feature extraction and selection can be regarded as the

preprocessing  step  for  measurement  data  of  data-driven  fault
prognosis  [19]–[22].  It  is  obviously  that  not  every
measurement  variable  is  directly  related  to  the  underlying
fault.  Feature  extraction  and  selection  technique  can  extract
the  conducive  information  for  fault  detection  and  prognosis
from the massive original data [23]. Therefore, it will not only
improve  prognosis  accuracy,  but  also  reduce  computational
complexity  [24].  With  the  increasing  of  system  complexity
and data volume, feature extraction is gradually becoming an
indispensable part in dealing with fault prognosis problems for
complex industrial systems and achieves great success. In this
part, we summarize the commonly used methods in regard of
fault prognosis. These techniques can be roughly classified as
statistical methods (PCA [25], ICA [26], PLS [27], FDA [28],
subspace-aided  monitoring  [29])  and  engineering  knowledge
based methods (Fourier transform [30], wavelet analysis [31]).

A  comparison  of  these  feature  extraction  algorithms  can  be
found in Table I.

Although  the  above  standard  methods  have  various
limitations, they still find good applications in many industrial
systems.  In  recent  years,  in  order  to  meet  the  increasing
requirements for fault prognosis, various improved algorithms
have been proposed to improve the effect of feature extraction
and  selection.  Specifically,  the  dynamic  principal  component
analysis  (DPCA)  [32]  can  describe  process  monitoring
parameters  with  autocorrelation  and  cross-correlation
properties.  Multiblock  PCA  [33]  and  multiblock  partial  least
squares  (MPLS)  [34]  are  multiblock  analysis  algorithms  for
plant-wide  process  feature  extraction,  a  survey  on  wavelet
analysis  in  machine  fault  feature  extraction  can  be  found  in
[35].  Since the above methods are not the main goal pursued
here,  the  detailed  introduction  and  analysis  of  them  are
omitted  here.  Furthermore,  there  is  no  conclusive  evidence
that a single method outperforms all others in all situations, so
we  should  choose  the  appropriate  one  according  to  the  data
characteristics in the actual fault prognosis situation.

C.  Model Selection, Training, and Validation
Following the features extraction and the analysis results of

process data characteristics, the intelligent prognosis model is
then applied and the complexity is also evaluated, e.g., which
kind  of  model  can  be  chosen  to  model,  what  is  the  model
structure  and  parameters  should  be.  For  example,  if  the  data
relationship is non-Gaussian distributed, we can simply select
the  ICA  model  to  realize  fault  prognosis.  If  the  process  has
dynamic  characteristics,  the  dynamic  signal  processing
approach  can  be  employed,  such  as  wavelet  analysis  and
DPCA.

Since  the  prognosis  model  is  considered  to  be  the  driving
force  for  data-driven  fault  prognosis,  choosing  the  most
suitable model is of significant importance. However, there is
no  unified  standard  or  pattern  for  model  selection  till  now.
Alternatively, the model selection can be realized by a special
way or experience.

Once a certain model is determined, the process data based
model efficiency assessment can be carried out. Therefore, the
process  data  is  often  divided  into  two  parts:  the  training
dataset, which is used to evaluate the model performance, and
the  testing  dataset,  which  is  applied  to  put  the  model  for
online  utilization.  Nevertheless,  in  some  particular  cases,  the
industrial  process  cannot  provide  sufficient  process  data,
especially the fault data for model training and testing. In this
case,  it  is  necessary  to  use  the  cross-validation  technique  or
turn  to  some  resampling  methods  (boosting  and  bagging)  to
make full use of the existing data.

D.  Fault Prognosis and Health Management
According  to  the  comprehensive  analysis  of  the  above

methods,  the  fault  prognosis  mainly  aims  at  potential  and
future  fault  [36],  which  means  the  research  object  of  fault
prognosis  is  the  future  uncertainty  event  [37].  That  is,  the
health status over the next period of time is determined by the
variation trend analysis for the measurement data. Fig. 4 is the
description  of  implementation  process  of  the  fault  prognosis
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Fig. 3.     The typical function structure for data-driven fault prognosis system.
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method and time periods for the development of the fault. If a
good solution is  given in the stage of the incipient fault,  it  is
possible  to  eliminate  the  hidden  trouble  of  the  accident  to
avoid the occurrence of the disastrous fault.

Since  fault  prediction  is  far  less  developed  than  fault
diagnosis,  early  development  of  fault  prognosis  was  once
regarded  as  a  complement  to  fault  diagnosis.  In  fact,  the
research objects of fault prognosis and fault diagnosis are the
faults  in  different  time  periods  [38].  Specifically,  fault
prognosis aims at  potential  faults,  i.e.,  the generated faults  in
systems,  subsystems  or  components  are  predicted,  and  then
the  residual  life  is  estimated.  Fault  diagnosis  is  to  determine
the  fault  before  the  occurrence  of  secondary  damage  or
catastrophic  failure  of  system,  subsystem or  component.  The
relationship  between  fault  prognosis  and  fault  diagnosis  [39]
is  briefly  described  in Fig. 4.  What  is  more,  the  difference
between  fault  prognosis  and  fault  diagnosis  lies  in  their
purposes rather than their implementation procedures [40].

RUL  estimation  is  another  mainstream  idea  of  fault
prognosis,  which is  used to  determine future  health  status  by
analyzing  the  performance  degradation  trends  of  industrial
systems [41]. Compared with the incipient fault diagnosis, this
method  can  determine  the  system  fault  condition  more
accurately, then the staff can specify a maintenance plan based
on  the  predicted  health  status,  which  means  that  the  RUL
estimation  method  can  be  considered  as  the  core  of  the
condition-based  maintenance  (CBM)  implementation  [42].
With  the  improvement  of  system  stability  requirements  and
the  development  of  various  intelligent  algorithms,  we  firmly
believe  that  RUL  estimation  will  become  an  important
research direction in near future.

IV.  Review of Data-Driven Fault Prognosis

Industrial  systems  often  have  complex  structural  principles
and  operating  conditions,  which  will  result  in  multifarious
data  characteristics  for  their  measurement  variables.  It  is  of

great  significance  to  propose  appropriate  methods  for  these
different  data  characteristics  in  industrial  systems to  improve
the  accuracy  of  fault  prognosis.  This  section  will  summarize
and analyze the fault  prognosis  methods from the view point
of different data characteristics.

A.  Dynamic System Fault Prognosis
1) Problem  Statement: Temporal  continuation  of  different

sampling  points  widely  exists  due  to  the  intrinsic  feedback
control systems, which makes the dynamic data characteristics
very  common  in  industrial  systems.  The  dynamic
characteristics  of  the  system  are  mainly  manifested  by  the
autocorrelation  and  crosscorrelation  properties  between
different  sampling  points  of  the  measurement  variables.  And
for different industrial systems, the dynamic steps differ from
one another [43]. Nevertheless, most existing data-driven fault
prognosis  methods  neglect  the  dynamic  characteristics  or
describe it just by increasing the sampling interval. As a result,
these  methods  will  cause  the  loss  of  partial  dynamic  fault
information and increase of noise effect, thus reducing the fault
prognosis  performance.  Hence,  various  dynamic  fault
prognosis schemes are proposed recently, which are introduced
as follows.

2) State Estimation Methods: It  is  believed that  the current
state  of  the  system  is  only  related  to  one  or  a  few  of  the
previous  state  parameters,  which  means  the  future  health
status  can  be  determined  by  estimating  the  previous  state
parameters. The state estimation is a very common method in
predicting  the  health  status  of  a  system  using  dynamic
characteristics  of  measurement  variables.  Generally,  this
method  does  not  directly  predict  the  health  status,  but
estimates  the  state  variables  to  determine  the  performance
degradation  trend  of  current  systems.  As  a  common  state
estimation  method,  hidden  Markov  model  (HMM)  has  been
widely  used  in  fault  prognosis  and  a  novel  method  for
employing  hidden  Markov  models  is  proposed  in  [44].  The
proposed methods are validated on a vertical drilling machine
and  the  physical  test-bed,  both  of  them  show  promising
diagnosis  and  prognose  results.  Similarly,  other  HMM-based
fault  prognosis  methods for  dynamic system can be found in
[45].  It  is  worth  noting  that  how  to  identify  key  or  part  of
parameters of industrial systems is also crucial [46], [47].

Besides,  the  filter  method  is  another  classical  state
estimation  based  one,  which  assumes  that  the  state  variables
of the next moment are directly related to the state variables of

 

TABLE I  
Comparison of Commonly Used Feature Extraction Algorithms

Method Advantage Disadvantage

PCA Reduce data dimension and decrease the computational
complexity

The frequency characteristics of the process data are not taken into
account

ICA Statistically independent and suitable for non-Gaussian
process The training time for multidimensional data is too long

PLS Reduce the impacts of multicellularity between variables Unable to extract variables with little correlation

FDA Sample data achieves the best separability in projection
subspaces Very sensitive to noise and need label dataset

Subspace-aided Extracted fault subspace variables can be directly processed Variable selection conditions are subjective

Fourier transform To better display signal in spectral resolution Cannot be applied to dynamic signal

Wavelet analysis Suitable for dynamic signal processing Hard to choose the optimal model parameters
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Fig. 4.     The relationship between fault prognosis and fault diagnosis.
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the  current  time,  and  the  health  status  of  the  system  can  be
obtained  by  the  constructed  relationship  between  the  health
parameter  and  the  system  state  variables.  Xu et  al.  [48]
proposed a method for system fault estimation and prediction
using a modified particle filtering and exponential smoothing,
respectively. Finally, the Monte Carlo simulation was used to
calculate  the  system  predictive  reliability.  Cosme et  al.  [49]
proposed a new fault prognosis by incorporating fuzzy system
into  the  interacting  multiple  model  filter  to  model  the
dynamics  of  system.  The  prognosis  results  showed  better
performance  in  both  numerical  example  and  experimental
PRONOSTIA platform.

3) Regression  Analysis  Methods: The  regression  analysis
method  is  mainly  used  to  determine  the  quantitative
relationship  between  variables,  which  can  be  used  to  model
the  data  relationship  between  different  sampling  points.  The
autoregressive is a simple method to model the autocorrelation
data  change  process.  However,  this  method  is  less  efficient
than directly predicting the evolution process of measurement
variables. It is used to model the degradation process of fault
factors  after  feature  extraction  in  the  current  fault  prognosis
process.  Li et  al.  [50]  proposed  a  fault  prognosis  method
based  on  fault  reconstruction.  The  vector  AR  method  and
wavelet denoising method are used to predict the degradation
process  of  extracted fault  factors,  the  RUL of  the continuous
process  can  be  estimated.  Zhao et  al.  [51]  firstly  used  a
combined relative analysis to extract critical fault effects, then
a  vector  auto-regression  model  is  developed  to  realize  fault
prognosis.  Recently,  Wang et  al.  [10]  proposed  a  hybrid
algorithm  that  combines  the  iterative  dynamic  least  square-
support  vector  regression  method  and  moving  window
mechanism  to  achieve  fault  prognosis  for  dynamic  systems,
which  received  a  good  multi-step  prediction  result  upon  the
traction motors of CRH trains.

4) Dynamic  Statistical  Methods: The  dynamic  statistical
prognosis  method  is  a  kind  of  advanced  ones,  which  can  be
used  to  cope  with  the  ubiquitous  dynamic  behaviors  in  the
measurement  data.  For  example,  the  DPCA  [52]  is  an
improved method of PCA, which will make it possible to deal
with  dynamic  data.  Jia et  al.  [53]  propose  a  new  dynamic
kernel  partial  least  squares  (DKPLS)  method  for  fault
prognosis.  The  measurement  data  is  decomposed  by  DKPLS
to extract the variables that are fault-related, and the forgetting
factor  is  introduced  to  assign  weights  to  the  collected  data
samples.  Then  the  health  status  of  industrial  systems  can  be
determined according to the corresponding process monitoring
and  quality  prediction  methods  proposed.  In  addition,  the
similar fault prognosis methods using dynamic prognostic can
also be found in [32] and [54].

5) Dynamic  Neural  Networks (DNN) Methods: During  the
past  years,  neural  networks  (NN)  has  been  proven  to  be  a
powerful tool for prognosis [55], [56]. In order to improve the
efficiency  of  processing  dynamic  data  by  NN,  a  sequential
fuzzy clustering dynamic based fuzzy NN method is proposed
in  [57].  This  method  is  capable  of  learning  the  model
sequentially  and  adapting  itself  to  variations,  thus  providing
accurate  estimate  or  prediction  on  the  status  of  the  dynamic
process. Other kinds of dynamic NN, such as dynamic wavelet

neural networks [58] and dynamic Elman neural networks [59]
are also proposed and applied to fault prognosis.

6) Discussions: In  recent  years,  lots  of  advanced  methods
have  been  proposed  for  dynamic  system  fault  prognosis.
Among  them,  the  DPCA and  DPLS are  the  simplest  ones  to
carry out. However, the dynamic step of the augmented matrix
is  always  difficult  to  confirm,  which  can  seriously  affect  the
prognosis  results.  And  it  is  still  worthy  of  studying  in  the
future  despite  the  existing  methods  for  dynamic  step
calculation.  In  contrast,  the  state  estimation  methods  can
consider  both  the  autocorrelations  and  cross-correlations  of
different variables,  which are quite powerful in disposing the
complex  dynamic  characteristics  among  different  variables.
The  regression  analysis  method  depends  on  the  relationship
between  variables  and  may  show  worse  performance  than
directly  predicting  the  evolution  process  of  measurement
variables.  It  is  noteworthy  that  both  the  regression  analysis
method and state estimation method can be incorporated with
dynamic  statistical  methods  or  DNN  methods  for  enhanced
results in special dynamic industrial systems. And the detailed
advantages  and  disadvantages  of  different  dynamic  process
prognosis methods are shown in Table II.

B.  Nonlinear System Fault Prognosis
1) Problem  Statement: Generally,  nonlinearity  generally

stems  from  linear  characteristics  or  linear  equations  of  the
system’s  dynamics  [60],  and  nonlinear  systems  are  systems
whose  behaviours  are  within  the  control  of  nonlinear
differential  equations.  Hence,  it  is  more  difficult  to  prognose
the fault in nonlinear system than that of linear system. Due to
the  increasing  complexity  of  the  industrial  system  structure,
the  nonlinearity  between  different  measurement  variables  is
more and more common in  many modern industrial  systems.
However, most of existing linear methods usually assume that
the systems are linear, which is obviously not conducive to the
realization  of  high-precision  fault  prognosis  for  nonlinear
system. In order to improve the prognosis performance for the
nonlinear  industrial  system,  significant  research  works  have
been proposed in the past years, detailed analyses of which are
shown in this subsection.

2) Kernel-Based  Methods: The  kernel-based  method  is
widely used in processing nonlinear objects. Its main principle
is to establish a map between the original monitoring space and
the  high-dimensional  kernel  space  with  a  specific  kernel
function,  which  can  extend  the  existing  linear  applicable
methods  to  the  nonlinear  situation.  The  common  kernel
methods  mainly  include  the  kernel  PCA  (KPCA)  method  in
which the kernel function is incorporated into the PCA model.
Recently, Xu et al. [61] used the local KPCA (LKPCA) method
to  prognose  the  incipient  faults,  which  showed  better  fault
prognosis performance than the other traditional methods. Liu
et  al.  [62]  combined  the  support  vector  regression  (SVR)
method with various kernel functions to realize fault prognosis
for  nonlinear  systems.  The  simulation  results  upon  the
Tennessee Eastman process show that the newly raised method
acquired  a  better  result  than  the  single  SVR  method.  Other
kernel-based methods designed for fault prognosis of nonlinear
system can also be found in [63] and [64].
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3) Particle  Filtering  Methods: Particle  filters  (PF)  are
usually  regarded  as  the  sequential  Monte  Carlo  (SMC)
methods using a statistical method called Bayesian inference,
the  first  implementation  of  this  technique  was  by  Gordon et
al.  [65],  then  a  particle  filtering-based  framework  for  fault
diagnosis and failure prognosis in complex nonlinear systems
was  systematically  introduced  in  [66],  followed by  a  particle
filtering  method  for  state-of-charge  prognosis  in  lithium-ion
batteries [67]. Jin et al.  [68] established a nonlinear model to
track the degradation process of the bearing, and the extended
Kalman  filter  is  used  to  realize  RUL  prediction  and  shows
better  results  than  the  contrasted  methods.  Recently,  Chen
et al.  [69] established a novel integrated framework based on
PF  and  the  least  squares  support  vector  regression  (LSSVR)
for the nonlinear system failure prognosis and received much
higher prediction accuracy in three-vessel water tank systems.

4) Artificial  Neural  Networks  Methods: Artificial  neural
networks  (ANNs),  also  identified  as  the  representative
nonlinear  information  processors,  have  input  layer,  output
layer  and  the  hidden  layer,  which  have  been  widely  used  in
fault  prognosis  for  nonlinear  systems.  Daroogheh et  al.  [70]
used  a  combined  method  based  on  NN  and  PF,  and  the
proposed  hybrid  methodology  showed  superior  performance
in  predicting  the  fault  of  gas  turbine  engine.  Authors  of  [71]
showed  a  systematic  review  prognostic  modelling  options
mainly including knowledge-based, statistical methods, ANNs
and  so  on  for  RUL  estimation.  And  Mandic et  al.  [72]
introduced  the  structure,  learning  algorithm  and  stability  of
neural network in context of fault prediction.

5) Discussions: Though  the  aforementioned  nonlinear
methods  have  received  great  attention  and  have  been  widely
used to  fault  prognosis  recently,  the linear  ones are  still  very
important  in  the  cases  that  have  fix  set  of  conditions  with
limited  variation  about  these  conditions.  This  is  the  reason
why  the  linear  prognosis  approaches  such  as  PLS  and
regression  analysis  are  still  widely  used  nowadays.
Nevertheless,  with the significant growing of complexity and
automation  degree  of  modern  industrial  systems,  this  part
mainly introduced some other nonlinear methods, which show
great  advantages  for  fault  prognosis  in  complex  nonlinear
industrial systems.

As  a  typical  nonlinear  modeling  method,  NN  often  needs
some parameters  beforehand,  such as  the  number  of  network
nodes, network layer, learning rate and so on. Hence, this kind
of  method  is  troublesome  in  particular  industrial  processes.
Similarly,  the  kernel-based  methods  also  need  to  choose  the

appropriate kernel functions and set the corresponding kernel
parameters.  Compared  with  NN  models  and  kernel-based
methods,  the  particle  filtering  methods  seem  much  more
straightforward.  And  the  detailed  advantages  and
disadvantages  of  different  nonlinear  process  prognosis
methods are shown in Table III.

C.  Non-Gaussian System Fault Prognosis
1) Problem  Statement: The  non-Gaussian  characteristic

means  that  the  measurement  data  does  not  conform  to  the
Gaussian  distribution  and  fluctuates  within  a  certain  range
under  certain  operation  conditions.  However,  most  existing
fault  prognosis  methods  assume  that  process  variables  are
Gaussian,  which  can  be  easily  violated  in  practical  industrial
systems due to the existence of various environmental factors
and signal generation mechanism, hence, the general Gaussian
distribution  based  methods  may  show  poor  performance.  In
order to guarantee the prediction results of non-Gaussian data
with higher precision, lots of advanced approaches have been
set  up  in  the  past  years.  This  subsection  provides  a  detailed
introduction  of  the  existing  fault  prognosis  methods  for  non-
Gaussian industrial systems.

2) Independent  Component  Analysis (ICA): ICA  is  a
popular  method  to  search  the  independent  latent  components
in the process measurement data, with a higher order statistics
information, hence, it can dig more information from the non-
Gaussian distribution data than other methods. [73] developed
a  new  multivariate  fault  prognosis  framework  for  non-
Gaussian  faulty  data  with  a  hidden  fault  process  based  on
ICA,  which  is  more  efficient  than  traditional  methods
regarding fault prognosis in the flue gas turbine. Ma et al. [74]
used  the  kernel  independent  components  analysis  (KICA)  to
deal with both non-Gaussian and nonlinear features of process
data  to  realize  fault  prediction  which  had  been  successfully
applied to Tennessee Eastman process. Besides, Ge et al. [75]
combined  ICA  and  Bayesian  estimation  for  multivariate
quality  prediction,  which  can  achieve  satisfactory  fault
prognosis  for  non-Gaussian  systems and has  been verified  in
two case studies.

3) Gaussian  Mixture  Models: Another  popular  method  for
non-Gaussian system prognosis is the Gaussian mixture model
(GMM), which assumes that  the process data in the complex
industrial  system  can  be  described  by  some  local  linear
models.  Wang et  al.  [76]  developed  the  GMM  monitor,
diagnosing  and  forecasting  the  faults  automatically,  which
also  keeps  the  reliability  and safety  of  complex systems.  Rai

 

TABLE II  
Comparisons of the Fault Prognosis Methods for Dynamic Process

Method Advantage Disadvantage

State estimation 1) Able to predict each state variable in real time
2) The established KPI is meaningful

1) The accumulated error may result in poor results
2) Large error in long-term prediction

Regression analysis
1) The autocorrelation of every variable can be well
captured
2) Unaffected by the number of measurement variables

1) The required feature extraction process is complex
2) Only suitable for the process with little fluctuation
3) Cross-correlation among different variables can not be described well

Dynamic statistical 1) Easy to carry out in practice
2) Easy to be applied to some existing methods

1) The dynamic step is sometimes hard to ascertain
2) May be noneffective in modeling the dynamic behaviors in process data

Dynamic neural
networks

1) Own powerful parallel computing ability
2) Capable of approximating any continuous
multivariate function with arbitrary accuracy

1) The number of node and parameters of network may be difficult to
determine in some cases
2) Easy to trap into local optima
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et  al.  [77]  proposed  a  GMM based  HI,  which  maintained  its
monotonicity  as  the  bearing  condition  deteriorates  and  the
simulation  experiment  showed  that  the  proposed  method
achieved better results for RUL estimation of bearings.

4) Discussions: Notably,  though  a  lot  of  different  types  of
non-Gaussian  methods  have  been  developed  for  fault
prognosis, the Gaussian methods still play an important role in
both  industrial  and  academics  fields  due  to  the  certain
production  with  fixed  conditions  and  limited  variation.
Nevertheless,  since  the  level  of  modern  industries  has  risen
rapidly,  miscellaneous  data  and  complicated  interactions  and
the non-Gaussian properties may be more common. Hence, it
is necessary to develop new non-Gaussian modeling methods
for better prognosis performances.

In addition, although these two approaches seem irrelevant,
they are in fact closely related. If there are a mass of process
variables for modeling, the GMM can be combined with ICA
to  realize  dimensionality  reduction  for  the  variables,  so  it  is
much easier to construct the GMM model. Based on the above
analysis,  we  know  that  ICA  and  GMM  are  the  two  most
widely used methods for the non-Gaussian process prognosis.
And  the  detailed  advantages  and  disadvantages  of  the  two
different methods are shown in Table IV.

D.  Time-Varying and Multimode System Fault Prognosis
1) Problem  Statement:  Time-varying  multimode  has

attracted  the  attention  of  scholars  recently.  Existing  fault
prognosis  methods  generally  assume  that  the  degradation
occurs  under  a  single  fault  with a  single  mode,  which means
the  fault  evolution  process  is  relatively  stable.  However,  the
operation  condition  may  vary  from  time  to  time  in  practice,
and  it  is  obviously  unreasonable  to  assume  the  operation
condition  under  a  single  mode.  The  occurrence  of  a  fault  is
likely  to  cause  one  or  more  other  faults.  Meanwhile,  there  is
still  some randomness while these concurrent faults occur. In
addition,  due  to  the  different  fault  mechanisms,  the  fault
factors  generally  have  their  own  characteristics,  that  is,  the
fault  evolution  process  is  not  constant.  Therefore,  the  stable
fault  prognosis  methods  are  not  practicable  in  modern
industrial  systems,  and  the  methods  that  can  handle  time-
varying  and  multimode  problems  are  badly  in  need.  This
subsection summarizes and classifies the current  methods for
time-varying  multimode  industrial  systems,  the  details  are
shown as follows.

2) Multimodel  Methods:  The  multi-model  methods  are

commonly  used  to  deal  with  fault  prognosis  problems  based
on  the  known  fault  modes,  and  lots  of  multimodel  methods
have  been  established  for  fault  prognosis.  Wen et  al.  [78]
proposed  a  flexible  Bayesian  multiple-phase  model  based
method to describe degradation process for prognosis, and the
effectiveness  of  the  new  approach  is  verified  in  both  the
numerical  example and real  case.  A fixed model  is  generally
not  able  to  achieve  accurately  prediction  for  the  degradation
process  under  multiple  fault  modes.  Therefore,  establishing
prediction  models  for  different  degradation  models  becomes
the  simple  and effective  method.  Verbert et  al.  [79]  took the
mode change in fault evolution process into consideration, and
proposed  a  multivariate  multi-model  method  to  achieve
reliability  prediction.  The  simulation  results  confirm  that  the
multi-model method is superior to the single-model method in
respect  to  prediction  accuracy  when  there  are  multiple
degradation modes.  Lim et  al.  [80]  used Bayesian estimation
to  infer  the  probable  degradation  process  from  multiple
models.  The  switching  Kalman  filter  (SKF)  is  used  to
implement  model  estimation  and  RUL prediction,  which  can
better  represent  the  changing  degradation  path.  Recently,  the
authors  of  [81]  reviewed  four  technical  processes  of
machinery  health  prognostics  and  also  showed  some  related
multimodel methods for fault prognosis and RUL prediction.

3) Adaptive  Methods:  When  the  systems  are  slow-varying,
the adaptive and recursive methods are  generally  suitable  for
the implementation of fault prognosis. It can determine model
parameters  based  on  the  fault  modes  and  the  analysis  of
specific  degradation  processes.  Dayal et  al.  [82]  developed a
recursive  exponentially  weighted  PLS  approach  for  state
prediction  and  adaptive  control  in  industrial  systems.
Therefore,  this  method  is  suitable  for  fault  prognosis  with
uncertain  fault  mode  change  process,  and  ensures  the  fault
degradation  prediction  accuracy  in  different  modes  by
updating the prediction model. Prakash et al. [83] proposed an
adaptive  RUL  prediction  method  for  the  dynamic  systems
with  unknown  degradation  modes.  The  RULs  are  regularly
updated  through  the  adaptive  degradation  technique  and  the
effectiveness  of  the  method  is  demonstrated  on  a  multi-
component electrical system. Wen et al. [84] used two phases
(i.e.,  offline  phase  and  online  phase)  to  achieve  multimode
fault prognosis. The offline phase estimates the model of each
unit  and determines the unit  that  failed,  and the online phase
updates the prediction model with the collected measurement
data  and  determines  the  health  status  of  the  system.  And  the

 

TABLE III  
Comparisons of the Fault Prognosis Methods for Nonlinear System

Method Advantage Disadvantage

Kernel-based
1) Able to handle the multiple nonlinear relationships by kernel
functions
2) Simplify the nonlinear model training process

1) Kernel functions are difficult to determine sometimes
2) Process analysis and interpretation are difficult to
implement

Particle filtering
1) Sequential importance sampling (SIR) is useful to improve
accuracy and avert degeneracy
2) Owns higher accuracy than other filtering methods

1) Particle depletion phenomenon is inevitable
2) Need enough historical data and time to guarantee good
results when encountering higher dimension

ANNs

1) Performance good in approximating, classifying and denoising
due to the nonlinear processing ability
2) Capable of capturing and modelling complex phenomena
without priori knowledge
3) Be faster in computing and real time operating because of the
parallel network structure

1) The number of node and parameters of network are difficult
to determine in some cases
2) Run like the black box without the detail qualitative
description about the model
3) Need the data pre-processing techniques to restrict the
inputs and simplified the model
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effectiveness is demonstrated through simulation and real case
studies.

4) Isolation  Estimation  Method:  The  isolation  estimation
method  is  able  to  realize  fault  prognosis  for  multiple  faults
simultaneously.  This  method  often  requires  to  establish
corresponding degradation models for each possible fault [85]
offline. Each of the currently existing faults can be separately
predicted  to  determine  the  current  health  state  in  the  actual
fault  prognosis  process.  Yu et  al.  [86]  believed  that  it  was
impossible  to  completely  detect  all  faults  in  the  system  only
based  on  one  observation  of  the  abnormal  behaviors.
Therefore,  a  new  fault  prognosis  method  for  implementing
multi-fault  mode  is  proposed,  which  is  applied  to  determine
all  the  faults  using  multiple  fault  detection  methods.  The
hybrid differential evolution algorithm is used to estimate the
degradation behavior of each faulty component and determine
the health status of industrial systems. Ragab et al.  [87] used
the local data learning method to analyze and establish model
for  each  fault  respectively,  and  analysed  the  interaction
coefficients between different faults to achieve fault prognosis
under  multiple  fault  modes.  The simulation results  show that
the novel methodology has a stable prediction performance in
the presence of multiple failure modes.

5) Discussions:  In  this  part,  we  mainly  want  to  emphasize
the multimode character, which is also closely related to time.
Hence,  the  fault  prognoses  for  time-varying  and  multimode
system  and  the  dynamic  system  are  analyzed  respectively  in
this  paper.  From  the  analysis  and  research  of  the  above
subsection,  generally  speaking,  the  multimodel  methods  and
isolation  estimation  methods  mainly  realize  the  fault
prognosis  for  multimode  industrial  process,  which  has  some
stable  operation  states  and  switches  from  one  to  another.  In
contrast,  the  adaptive  methods,  such  as  adaptive  PCA/PLS,
are  mainly  applied  to  time-varying  process  prognosis  whose
operation condition changes from time to time, frequently. For
the isolation estimation prognosis method, it may handle both
the  multimode  and  the  time-varying  objects,  so  long  as  the
possible  faults  are  correctly  separated  from  each  other.  And
the  detailed  advantages  and  disadvantages  of  those  different
methods are shown in Table V.

E.  Non-Stationary System Fault Prognosis
1) Problem Statement: As we all know, process variables of

industrial  systems  are  impossible  to  keep  stationary  all  the
time  in  reality  and  some  of  them  may  follow  non-stationary
distributions.  Different  from  the  stationary  process,  non-
stationary  systems  are  always  more  complicated.  Especially,
the non-stationarity may exist in both the linear and nonlinear
systems  in  the  form  of  time  variations  when  describing  the

systems,  which  is  often  modelled  by  continuous  time
stochastic models.  And the non-stationary property is usually
caused by the variance fluctuations of the process as well as a
smoothly varying trend component with shifts in the mean of
the  process  [88].  Hence,  when  the  process  data  is  non-
stationary,  the  prognosis  results  obtained  by  the  stationary
based  methods  are  not  reliable.  To  improve  the  prognosis
accuracy  of  the  non-stationary  systems,  some  kinds  of
advanced methods have been proposed in the past  years,  and
the detailed analyses of them are given as below.

2) Match Matrix Method: The match matrix (MM) method
is firstly proposed by Liu et al.  [89].  The MM based method
proposed  in  the  paper  is  able  to  achieve  high  long-term
prediction  accuracy  through  comparing  signatures  from  any
two  degradation  processes.  Based  on  this,  the  new  method
obtained  the  noticeable  improvement  of  long-term prediction
accuracy  in  regard  to  mean  prediction  errors  over  other
competitors.  Recently,  [90]  proposed  a  systematic  review  to
design  a  PHM  system  and  select  proper  tools,  which  has
provided a tutorial and source of references for fault prognosis
researchers.  Besides,  the  paper  also  showed  that  the  MM
method is feasible for non-stationary processes.

3) Hidden  Markov  Model: HMM  is  a  statistical  method
based  on  the  principle  of  Markov  chains  for  describing  the
signals by a limited number of states. It has also been proven
to be efficient in widespread applications [91]. As for the fault
prognosis based on HMM, there are also a lot of publications.
For  example,  Dong et  al.  [92]  proposed  the  hidden  semi-
Markov  model  (HSMM)  based  on  the  standard  HMM  to
prognose  the  health  status  of  a  component,  which  has  been
verified in real world applications. Furthermore, the authors of
[93] developed the hybrid approach based on HMM and grey
model,  in which HMM is used to model the time duration of
the hidden states and the grey model is carried out to compute
the expected residual life (ERL). In the works of [94], a novel
online  health  prognostic  method  based  on  HSMM  and
sequential  Monte  Carlo  (SMC)  is  provided  to  estimate  the
RUL  values  of  equipment  by  Liu et  al.  And  the  superior
performance  of  this  method  is  demonstrated  by  a  real  case
study.

4) Support  Vector  Machine: Support  vector  machines
(SVM)  is  a  popular  machine  learning  algorithm,  which  is
often  used  to  find  an  optimal  separating  hyperplane  with  the
maximum  distance  between  the  plane  and  the  nearest  data
[95]  and  it  is  first  used  to  realize  pattern  recognition.
However,  the  fault  prognosis  by  SVM  also  received  widely
attention. Chen et al. [14] set up the novel prognostics model
based  on  multivariable  SVM  and  relative  features  to  predict
the  RUL of  rolling  bearing  with  small  samples  directly.  And

 

TABLE IV  
Comparisons of the Fault Prognosis Methods for Non-Gaussian System

Method Advantage Disadvantage

ICA
1) Able to extract the multivariate information
2) Extract mutually independent potential variables
3) Easy to carry out and understand

1) Control limit is difficult to determine
2) Assume that the components are independent of each other
3) Hard to confirm the number of independent components

GMM 1) The application range is quite wide
2) High accuracy in predictiing the Non-Gaussian system

1) Depend on the choice of resampling method
2) Critically depend on the initial state
3) Computational complexity is large when processing
multidimensional data
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the  results  on  run-to-failure  and  simulation  experiments
validated the novel model is practical for the fault  prognosis.
The  authors  of  [96]  showed  a  literature  review  about  SVM
based RUL estimation in the past  decades.  The paper mainly
introduced different SVM algorithms and their applications to
fault  prognosis,  and  also  outlooked  the  future  research
direction for RUL estimation by SVM-based methods.

5) Sequential  Monte  Carlo: SMC  is  usually  referred  to  a
representative particle filter method, which was first proposed
by  Gordon et  al.  [65]  for  recursive  Bayesian  filters.  They
termed  the  technique  as  bootstrap  filter,  known  by  others  as
the  sampling  importance  resampling  (SIR)  filter.  Using  the
SIR filter, the number of samples required to approximate the
future  state  probability  distributions  can  be  significantly
reduced  and  hence,  the  computation  can  be  more  efficient.
Point mass, or particles, representing probability densities can
be applied to any state-space model [97]. The particles contain
information of unknown parameters, which are estimated and
updated as a form of the probability density function (PDF) in
the  Bayesian  update  process  using  observations  [98].  This
powerful  sampling-based  inference  algorithm  for  dynamic
Bayesian  networks  is  feasible  for  any  kind  of  probability
distribution, non-linearity and non-stationarity [99] and shows
satisfactory fault prediction results.

6) Gaussian  Process  Regression: The  Gaussian  process
regression  (GPR)  is  one  of  the  applications  of  GPs.  The
prediction output is a Gaussian probability distribution and is
expressed by its  mean and variance.  Variance is  the  measure
of confidence in the predicted mean value of the output [100].
GPR  needs  a  prior  knowledge  of  the  form  of  covariance
function  [101].  Selection  of  covariance  function  must  be
carried  out  by  users,  but  corresponding  hyperparameters  can
be  learnt  from  the  training  data  using  a  gradient  based
optimizer  such  as  maximizing  the  marginal  likelihood  of  the
observed  data  with  respect  to  hyperparameters.  Although
stationarity  is  assumed  when  specifying  a  GP  prior,  several
approaches  for  specifying  nonstationary  GP  models  can  be
adopted  to  make  the  model  applicable  to  non-stationarity.  In
[102],  the  GPR  models  with  three  different  kinds  of
covariance  functions  are  discussed  for  feature  tracking  and
RUL evaluation and realize a better accuracy prognosis of the
bearing  RUL  by  analyzing  two  important  features.  What  is
more,  the  authors  of  [103]  used  two  common  covariance
functions  and  a  composite  covariance  function  of  GPR  was
introduced  to  realize  a  better  assessment  by  analyzing  some
important features. The experimental results showed that GPR

model  can  achieve  a  high  prognosis  performance,  and  the
composite  covariance  function  can  improve  the  prediction
precision.

7) Discussions: Among  all  the  aforementioned  developed
non-stationary systems fault prognosis methods, both the MM
method and HMM method require sufficient training data for
modeling.  In  contrast,  the  SVM  method  is  efficient  for  both
small  and  large  datasets  regarding  real-time  analysis.  Note
that the SMC can deal with nonlinear and non-Gaussian noise
situations,  as  well  as  multivariate  and  non-standard  posterior
distributions. What is more, HMM and SMC can also perform
fault  prognosis  and  RUL  estimation  for  dynamic  and
nonlinear  systems  as  described  in  Sections  IV-A  and  IV-B,
respectively.  And  more  researches  are  needed  to  make  the
GPR be able to process and train online data as well as handle
high dimensional data. In conclusion, detailed advantages and
disadvantages  of  non-stationary  systems  fault  prognosis
methods have been listed in Table VI.

F.  Summary
After  a  systematic  review  of  the  data-based  process

prognosis  methods  through  various  practical  problems,  a
detailed conclusion of different data-based prognosis methods
and some additional instructions are given in this part.

In  general,  the  data  in  industrial  systems  often  shows
multiple distribution characteristics, such as dynamic variable
relationships,  nonlinear  data  correlations,  non-Gaussian  data
distribution  and  time-varying  multimode  characteristics.
Under this background, a lot of works have been proposed for
solving  the  above  specific  problem  till  now  for  both  the
continuous and discrete systems. Nevertheless, a predominant
fault  prognosis  method  should  be  able  to  handle  the  two  or
more  data  distribution  characteristics  in  industrial  processes
simultaneously.  In  recent  decades,  there  were  already  many
works  given  to  dispose  multiple  data  characteristics  of  the
industrial  processes.  Hence,  though  we  have  divided  the
process  prognosis  methods  into  different  classes  based  on
different industrial processes and reviewed the corresponding
the  prognosis  methods,  some  of  them  may  interweave  with
each other among different classes. And the systematic survey
of various data-based fault prognosis methods is given in Fig. 5.

V.  Research Challenges and Future Trends

The  purpose  of  fault  prognosis  for  industrial  systems  can
now be regarded as achieving the CBM, which determines the
maintenance plan of the system based on the predicted health
status  [104].  With  the  increased  complexity  of  industrial

 

TABLE V  
Comparisons of the Fault Prognosis Methods for Time-Varying Multimode System

Method Advantage Disadvantage

Multimodel method 1) Need the offline prediction process only
2) Every model is only suitable for the certain mode

1) Need to accurately determine the degradation process in
different modes
2) Cannot describe the process of mode transition

Adaptive method
1) Be able to track the slow-varying process very well
2) Have a good model for every moment
3) No need to determine the current specific mode

1) The prediction process is complicated due to model
updates
2) Unable to determine current specific prediction model in
real time

Isolation estimation
method

1) Avoid the establishment of large number of multi-fault models
2) Flexible to handle multiple different failure modes

1) Cannot model the process of mode transition
2) Need to consider the impact between different faults

 

 338 IEEE/CAA JOURNAL OF AUTOMATICA SINICA, VOL. 7, NO. 2, MARCH 2020



systems  and  the  improvement  of  stability  requirements,  the
data-driven fault prognosis methods may exhibit new research
trends and challenges. In this part, the research challenges and
future  trends  of  data-based  methods  for  fault  prognosis  are
illustrated based on the context of above sections.

A.  Research Challenges
Though lots of research works have been carried out to date,

aiming  at  reducing  model  complexity  and  improving  the
prediction accuracy and applicable  ability  of  data-based fault
prognosis  methods  in  real-world  industrial  systems.  Most  of
the prognosis techniques reviewed in this work can meet these
requirements.  However,  there  are  still  some  research
challenges  that  are  worth  continuing  and  in-depth  study,
which are listed and analysed as below.

1) Feature  Extraction  Techniques: With  the  growing  of
database  scale  and  the  development  of  data  collection  and
storage  devices,  the  field  of  fault  prognosis  in  industrial
systems  is  beginning  to  focus  on  big  data  analysis  methods.
What  is  more,  with  the  improvement  of  complication  and
automation  level  for  modern  industrial  systems,  multiple
measurement  variables  must  be  monitored  simultaneously  to
ensure  high-precision  fault  prognosis.  However,  not  every
detected variable is related to faults.  The existence of a large
number  of  measurement  variables  will  inevitably  lead  to
increased  computational  complexity  and  degraded  model
performance.  As  a  preprocessing  skill,  the  feature  extraction
method  can  help  extract  variables  containing  more  health
status  information  to  improve  the  efficiency  of  fault
prognosis.  Therefore,  it  is  gradually  becoming  an

 

TABLE VI  
Comparisons of the Fault Prognosis Methods for Non-Stationary Systems

Method Advantage Disadvantage

MM

1) Be able to handle high dimensional space
2) Be able to predict which fault will occur when corresponding fault modes
are provided
3) Obtains higher prediction accuracy than ARMA (Auto-regressive and
moving average model)

1) It needs enough historical datasets from each of the
working stages
2) The computational efficiency will be low when
encountering the large data

HMM
1) Be able to model the degradation at different times to keep the failure
trends to be multiple
2) Be able to supervise the incomplete data quickly

1) When there are many hidden states, computational
efficiency will be low
2) Predictive projection depends on the fault
threshold

SVM 1) It is still efficient when encounter small samples
2) Excellent generalization performance under limited learning modes

1) There is no uniform standard to select the kernel
function for SVM model
2) It can not predict the RUL directly

SMC
1) Applicable to the non-stationary systems
2) Can extend to state estimation in multi-step-ahead prediction by applying
with a recursive integration process

1) Can be more computationally intensive than basic
Kalman filters
2) Requires significant resources including
computation time and historical data to perform well
in systems with higher dimension

GPR

1) Can be directly applied to model non-stationary underlying functions
2) Allow non-parametric learning of regression function from noisy data,
avoiding parametric assumptions
3) Provide both a regression function and uncertainty estimates according to
the variability of the data

1) Heavy computation burden when the training
samples are huge
2) Only suitable for Gaussian likelihood
3) Assume that all points are normally distributed and
error between every point is correlated
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Fig. 5.     Systematic view of different data-based prognosis methods.
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indispensable  step  in  the  implementation  process  of  fault
prognosis.

Another  application  of  feature  extraction  is  to  convert
measurement  data  into  the  form  that  facilitates  health
assessment. The feature extraction method owns irreplaceable
effect,  especially  when dealing with  signals  that  are  versatile
and difficult to process, such as vibration. However, due to the
characteristics  of  this  signal,  it  is  susceptible  to  time-varying
noise  during  the  monitoring  process,  which  is  not  conducive
to accurate fault prognosis. Therefore, reducing or filtering out
the  effects  of  these  noises  during  feature  extraction  may
become  an  important  research  direction.  Extracting  multi-
heterogeneous information therein can achieve fault diagnosis
and  prognosis,  which  is  beneficial  to  the  reliability  of
industrial systems.

In summary, the function of the feature extraction method is
to  obtain  the  variables  in  the  monitoring  data  that  have
contributed to fault analysis. However, this does not mean that
simply  extracting  the  fault-related  variables  will  definitely
improve  the  accuracy  of  fault  diagnosis  and  prognosis  [25].
And in some cases,  the single feature extraction algorithm of
conventional  multivariate  statistical  analysis  often  appear  to
be  powerless.  Improved  algorithms  based  on  system
measurement  data  characteristics  and  the  types  of  prediction
model  with  more  flexible  forms  may  become  a  promising
development  tendency  [105]–[107].  Specifically,  the  merit
and  demerit,  applied  ranges  of  feature  extraction  algorithm
should be analyzed, the integration forms of feature extraction
methods  and  fault  prognosis  model  should  be  explicit  and
things like these.  Therefore,  we have every reason to believe
that more elaborate feature extraction methods will emerge as
the promising research topic in the near future.

2) Combined Prognostic  Models: Recently,  though various
data-based  fault  prognosis  methods  have  received  great
success,  each  of  these  approaches  has  certain  application
scope.  Hence,  a  method  working  well  under  one  process
situation may not be efficient under another situation. That is
to  say,  the  effectiveness  of  each  method  mainly  depends  on
the data characteristic of different industrial systems and there
is  no  conclusive  evidence  that  a  certain  method  will  prevail
over  all  others  in  all  cases.  Specially,  for  the  processes  that
have multiple operating situations, it is reasonable to combine
several  prognosis  methods  together  for  complementarity
effects.  In  this  case,  the  fault  prognosis  performance  can  be
improved by taking advantages of  different  methods,  and the
weakness  of  each method can also be offset.  In  recent  years,
this  kind  of  methods  have  received  more  and  more  attention
due to their synergy properties [108]–[111].

Since  the  integration  of  different  data-driven  prognosis
approaches introduced above is totally dependent on historical
data, if the process data are not available, the practicability of
the method will  be greatly reduced. Even if  such data can be
fully  saved  and  provided,  the  pure  data-driven  integrated
approaches  still  suffer  from  some  bottlenecks  in  complex
environments,  such  as  being  unable  to  incorporate  the
expertise  experience  and  the  system  mechanism  knowledge.
Based  on  this,  the  integration  of  expert  knowledge  and
mechanism knowledge to build the hybrid prognostic models

is in badly need now [112], [113]. Hence, more investigations
still  need  to  be  carried  out  for  enhanced  prognosis  results,
especially on the model combination mechanism analysis and
local performance analysis for different approaches.

3) Multi-Source Information Fusion: As far as we know, the
current  data-based  prognosis  model  just  incorporates  the
ordinary process data, such as velocity, temperature and so on.
However,  there  are  various  measurement  devices  installed  in
modern  industrial  processes,  which  may  bring  abundant  data
information  for  fault  prognosis.  For  example,  both  the  color,
brightness,  geometric,  shape  feature  provided  by  image
sensors  and  the  different  sounds  provided  by  voice  sensors
can  be  used  to  analyze  the  operating  conditions,  then
combined with the machine learning algorithm to realize fault
prognosis and state estimation.

On other hand,  the above single aspect  of data information
may  be  unable  to  fully  reflect  or  understand  the  operating
conditions of  the entire production process.  It  is  necessary to
combine the conventional process data with the new sensor to
obtain  more  comprehensive  operation  data  for  the  fault
prognosis  [114].  Hence,  the  multi-source  information  fusion
method  based  on  mechanism,  process  data  and  expert
knowledge  for  abnormal  condition  prediction  is  worthy  of
study  in  the  future,  which  is  beneficial  to  realize  long-term
prediction with high accuracy.

4) Long-Term  Fault  Prognosis: Apart  from  the  comparing
the prognosis accuracy of different prognostic techniques, the
prediction  step  is  also  one  of  the  core  issues  regarding  fault
prognosis, and the fault prognosis methods can be divided into
short-term prognosis and long-term prognosis according to the
size  of  prediction  step.  The  short-term  or  one-step-ahead
prognosis  is  unable  to  set  aside  enough  lead  time  for  taking
the maintenance operations. Hence, the long-term prognosis is
still  necessary  before  a  prognostic  system  is  completed,
especially  for  the  systems  with  the  components  that  are
difficult  to  produce  or  replace,  or  the  faults  that  are  easy  to
cause catastrophic consequence.

In addition, actual industrial systems are complex and have
countless  uncertainty  factors  that  can  affect  the  prognosis
accuracy, it is not unrealistic to maintain a higher accuracy and
a  longer  prediction  step  simultaneously.  Generally  speaking,
the  longer  the  prediction  step  is,  the  lower  the  prediction
accuracy is, and vice versa. Hence, more efforts should be made
in  keeping  a  balance  between  the  prediction  accuracy  and
prediction  step  according  the  characteristics  of  different
industrial systems and ultimately, the prognostic performance
in real-world industries can be significantly improved.

5) Towards Industry 4.0: Industry 4.0 tends to improve the
level  of  intelligence in  manufacturing industry,  to  establish  a
smart  factory  with  adaptability,  resource  efficiency  and
ergonomics,  and to integrate customers and business partners
in  business  processes  and  value  processes  [115].  Thus,  the
process data analysis for improving decision-making level is a
key  step  to  adapt  the  manufacturing  policies  against  the
around-the-clock changing economic conditions. As far as we
know, product quality or process based databases have already
been  combined  in  the  last  few  years  to  establish  predictive
models for process control,  monitoring and optimization, and
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the  common  techniques  include  the  soft  sensors  and
inferential model [116]–[118].

With the  coming of  Industry  4.0  era,  both the  unstructured
and  structured  data  will  become  more  and  more  accessible
from  the  industry  process.  And  from  the  view  point  of
Shewhart’s theory, some special causes are unpredictable due
to the systematization of variations, which is concentrated on
“Systems  Health”.  Nevertheless,  fault  prognosis  is  strongly
associated  with “Systems  Health”.  That  is  to  say,  fault
prognosis may benefit from the disciplines, such as industrial
process monitoring (IPM) and reliability and maintenance (R *
M). Therefore, the various forms of interactions between them
are still necessary in the arrived Industry 4.0 era.

6) Big Data Perspective: In recent years, the rise of big data
has led to a great development of data-driven fault prognosis.
However,  it  generally  has  the  character  of  large  amount  of
data  and  low  value  density.  It  is  difficult  to  obtain  results
efficiently  while  processing  these  data  directly.  Meanwhile,
low  value  density  data  can  be  considered  as  less  complete
evolution data available in the field of fault prognosis. A large
amount of historical data may also adversely affect the result
during the fault prognosis process. Ge [119] proposed a data-
driven modeling framework to deal with the problem of plant-
wide  faulty  data  analysis.  After  a  series  of  feature  extraction
and variable selection methods, an offline model is established
to  process  online  monitoring  data.  The  offline  model  can  be
evaluated  and  updated  by  the  online  process.  It  may  become
an  important  development  direction.  An  offline  model  is
established to  process  online  measurement  data  after  a  series
of feature extraction and variable selection methods. Then the
offline model is evaluated and updated by the online process.
The  method  can  effectively  reduce  the  computational
complexity  of  online  fault  analysis  process  and  is  a  reliable
way to deal with large-scale data.

Big  data  created  enormous  challenges  not  only  for  feature
extraction,  but  also  for  model  evaluation.  In  order  to  reduce
the  false  alarm  rate  caused  by  various  special  factors  in  the
industrial system monitoring process, it is necessary to obtain
a  plurality  of  different  measurement  variables  at  the  same
time.  The  existence  of  these  measurement  variables  can
effectively  expand  the  monitoring  range  of  the  health  status.
However,  especially  for  large-scale  industrial  systems,  these
variables  will  inevitably  impose  a  heavy  burden  on  the
complete  fault  prognosis  process.  A  large  number  of
monitoring variables will  delay the prediction of failure even
if  it  undergoes  preprocessing.  With  the  development  of
computer technology, more and more distributed technologies
are  being  applied  to  deal  with  large-scale  data  problems.
Distribute  large  amount  of  data  across  multiple  servers  and
process  simultaneously,  which  can  speed  up  the  calculation
[120].  Similarly,  a  large-scale  industrial  system  fault
prognosis  problem  can  be  solved  by  using  each  server  to
process  a  monitoring  data  subblock  [121].  However,  this
method  has  a  very  high  cost  performance,  so  the  fault
prognosis  of  distributed  computing  processing  big  data  may
become  the  important  future  research  hotspot,  which  is  still
underway.

B.  Future Trends
The  data-driven  based  fault  prognosis  methods  have  been

developed widely in the past decades due to the increase in the
stability  requirements  of  industrial  systems.  This  part  will
illustrate  the  future  trends  of  this  research  topic  through  the
different databases and the details are shown as below.

1) Trends  Analysis: Figs. 6 and 7 show  the  number  of
papers  about  data-driven  fault  prognosis  and  publications  of
fault prognosis applications in the light of Engineering Village
database  and Web of  Science  database,  respectively.  We can
obtain the following two trends from this two figures. On the
one  hand,  the  research  of  data-driven  fault  prognosis
technology  shows  a  clear  upward  trend  during  2008–2018,
which  proves  that  fault  prognosis  is  a  promising  domain
worthy  of  study.  On  the  other  hand,  the  engineering
applications have taken up the largest proportion over the past
years. That means the content of this paper is a frontier subject
with theory and practical significance, and it  will  continue to
maintain in the leading position.

2) Trends  Prediction:  According  to  the  analysis  above,  we
have  reason  to  believe  that  the  data-driven  fault  prognosis
technology  will  become  more  and  more  widely  applied  in
industrial  systems,  and  various  industrial  processes  have
begun to use this technology for intelligent maintenance since
the  modern  industry  is  involving  higher  volume  of  data  and
more information, becoming more and more complicated.

VI.  Conclusion

With  the  development  of  CBM,  the  data-driven  fault
prognosis  will  be  one  of  the  most  important  research
directions. In this paper, we offer a review for the realization
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Fig. 6.     The papers of fault prognosis published each year during 2008–
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and development of fault prognosis. Some issues of the data-
driven  fault  prognoses  are  firstly  introduced,  such  as  the
common  fault  prognosis  methods,  the  relationship  between
fault  prognosis  and  fault  diagnosis.  We  also  summarize  the
current research status of data-driven fault prognoses to show
their  main  contributions  and  weakness  as  well  as  the
comparisons  between  them.  What  is  more,  this  paper
summarizes  the  research  challenges  that  may be  faced  in  the
current industrial systems regarding fault prognosis and looks
forward  to  the  possible  development  directions  for  future
researches.

We have entered the age of big data, and a large number of
intelligent  algorithms  have  been  provided  and  the
industrialization  level  is  improved,  which  will  put  forward
higher  requirements  for  the  long-term  stability  of  industrial
systems.  As  a  consequence,  the  real-time  maintenance
strategy  using  historical  data,  specifically  tailored  for
industrial  systems  deserves  further  and  deeper  explorations.
We  hope  that  this  review  will  be  useful  for  researchers  and
developers  to  understand  the  enormous  perspectives,
applications,  challenges  of  the  data-driven  fault  prognosis
methods. And we believe that data-driven fault prognosis will
create  big  evolution  in  industrial  system  maintenance  in  the
near future.
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