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    Abstract—Linguistic single-valued neutrosophic set (LSVNS) is
a more reliable tool, which is designed to handle the uncertainties
of  the  situations  involving  the  qualitative  data.  In  the  present
manuscript,  we  introduce  some  power  aggregation  operators
(AOs) for  the  LSVNSs,  whose  purpose  is  to  diminish  the  influ-
ence  of  inevitable  arguments  about  the  decision-making  process.
For it, first we develop some averaging power operators, namely,
linguistic  single-valued  neutrosophic  (LSVN)  power  averaging,
weighted average,  ordered  weighted  average,  and  hybrid  aver-
aging AOs along with their desirable properties.  Further,  we ex-
tend  it  to  the  geometric  power  AOs  for  LSVNSs.  Based  on  the
proposed work; an approach to solve the group decision-making
problems  is  given  along  with  the  numerical  example.  Finally,  a
comparative study and the validity tests are present to discuss the
reliability of the proposed operators.
    Index Terms—Aggregation operator (AO),  group decision making,
linguistic neutrosophic numbers, neutrosophic set, power operators.

I.  Introduction

MULTIPLE  criteria  group  decision-making  (MCGDM)
problems seek great  attention to  practical  fields,  whose

main  objective  is  to  determine  the  most  desirable  alternative
to the finite alternatives according to the preference values of
the  criteria  given  by  different  decision  makers.  However,  in
order to process the imprecision in data, fuzzy set (FS) [1] and
intuitionistic fuzzy set (IFS) [2] theories are the most success-
ful  ones,  which  characterize  the  criterion  values  in  terms  of
membership  degree.  Numerable  attempts  have  been made by
different researchers in processing the information values us-
ing different operators under these environments [3]–[13]. It is
remarked  that  neither  the  FS  nor  IFS  theory  is  able  to  deal
with indeterminate  and  inconsistent  data.  For  instance,  con-
sider an  expert  which  gives  their  opinion  about  a  certain  ob-
ject in such a way that 0.5 being the “possibility that the state-
ment  is  true”,  0.7  being  the “possibility  that  the  statement  is
false” and 0.2 being the “possibility that he or she is not sure”.
To resolve this, Smarandache [14] introduced a new compon-
ent  called  the “indeterminacy-membership  function” and ad-
ded to the “truth membership function” and “falsity member-

[0−,1+]
ship function”, all which are independent of each other and ly-
ing in , and the corresponding set is known as a neutro-
sophic set (NS). NS theory handles the indeterminate informa-
tion,  but  this  theory  is  hard  to  implement  on  the  practical
problems, therefore, Wang et al. [15] presented the single-val-
ued  neutrosophic  (SVN)  set  (SVNS),  a  special  case  of  NSs.
Due to its importance, several researchers have made their ef-
forts to enrich the concept of neutrosophic sets in the decision-
making process.

In  order  to  evaluate  the  given  information  in  decision-
making,  the  important  aspect  of  solving  the  problem  is  to
design an appropriate mathematical function which aggregates
the  different  preference  of  the  decision  makers  into  the
collective  ones.  In  that  direction,  Ye  [16]  presented  the
operational  laws  of  SVNSs  and  SVN  weighted  average  and
geometric  (WAG)  AOs  (aggregation  operators)  denoted  by
single-valued  neutrosophic  weighted  average  (SVNWA)  and
single-valued  neutrosophic  weighted  geometric  (SVNWG).
Peng et  al.  [17]  defined  the  improved  operations  of  SVN
numbers (SVNNs) and developed their corresponding ordered
WAG  AOs.  Nancy  and  Garg  [18]  developed  the  WAG
operators by using the Frank norm operations. Later on, some
different kinds of the AOs have been proposed by the authors
in [19]–[22].

All  these  above  operators,  aggregate  the  given  criterion
values without considering the precedence relationship among
them.  To  get  rid  of  this  flaw,  Wu et  al.  [23]  defined  the
prioritized  WAG  operators  for  SVNNs.  Liu  and  Wang  [24]
developed  the  prioritized  ordered  WAG  operators  while  Ji
et al. [25] established the single-valued prioritized Bonferroni
mean operator by using the Frank operations. Garg and Nancy
[26]  developed  a  nonlinear  programming  based  TOPSIS
(“Technique for order preference by similarity to ideal solution”)
approach for solving the decision-making problems under the
interval NS environment. Yang and Li [27] extend the power
operator  to  NS  domain.  Aside  from  these,  various  authors
incorporated  the  idea  of  NS  theory  into  the  different  fields
[28]–[32].

In  the  neutrosophic  environment,  the  information  which  is
evaluated is quantitative in nature and is expressed by the means
of  numeric  numbers.  But  in  real  applications,  the ‘decision-
makers’ opinions  or  preferences  is  usually  uncertain  due  to
increase  in  complexities  and  the  subjective  nature  of  human
thoughts.  Thus,  the  exact  numbers  are  not  the  best  option  to
represent such kind of qualitative information. For this, a new
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concept,  namely,  linguistic  variables  (LVs)  [33]  has  been
established to access the information which cannot estimate by
exact  numbers.  Due  to  the  great  importance  of  linguistic
variables,  it  has  become the  hot  topic  of  research  among  the
researchers.  Based  on  this  idea,  Li et  al.  [34]  introduce  the
linguistic  neutrosophic  sets  (LNSs)  in  which  membership,
indeterminacy,  and  non-membership  is  expressed  as  a  LV
instead of real numbers and also proposed some Heronian mean
operators. Fang and Ye [35] introduced most basic aggregation
operators,  namely,  Linguistic  neutrosophic  number  WAG
operators. Garg and Nancy [36] presented some neutrosophic
prioritized  AOs  under  the  linguistic  SVNS  (LSVNS)
environment.

As these basic operators are crucial tools in the aggregating
process and easily gives the best choice according to the given
information,  but  these operators  skip the consideration of  the
relationship  between  the  given  data.  In  the  present  work,  we
introduce  different  types  of  power  AOs  in  LSVNS
environment.  The  LSVNS  can  easily  express  the  uncertain
qualitative  information  in  the  best  way  and  power  AO
provides  more  versatility  in  the  information  aggregation
process.  To  get  the  advantage  of  both  LSVNS  and  power
aggregation,  we  proposed  power  AOs  for  linguistic  single-
valued  neutrosophic  numbers  (LSVNNs)  of  two  types:  The
first type of power aggregation operators aggregates the input
data  by  assigning  the  weights  based  on  the  support  function
and the second type of power operators considers not only the
existing evaluated weights but also use the weights evaluated
from  support  function.  Further,  the  basic  properties  of  these
operators  have  been  figuring  out.  In  the  end,  a  method  for
solving  the  MCGDM  problems  has  been  presented  and  then
applies this approach to a practical example.

The rest of the work is summarized as: Some basic features
related  to  NSs  and  the  LNSs  are  presented  in  Section  II.  In
Section  III,  operational  laws  and  based  on  it,  some  series  of
LSVN  power  weighted  AOs  have  been  proposed  along  with
their  certain  properties.  Section  IV  established  the  group
decision-making  approach  based  on  the  proposed  operators
and validate with a numerical example. Lastly, the conclusion
has been summarized in Section V.

II.  Preliminaries

In  this  section,  some  basic  concepts  on  NSs  over  the
universal set X have been reviewed.

αDefinition 1 [14]: A neutrosophic set (NS)  over X is given
by

α = {(x, θα(x),ψα(x),σα(x)) | x ∈ X} (1)
x θα(x) ψα(x) σα(x) ⊆ [0−,1+]

θα(x)+ψα(x)+σα(x) ≤ 3+

θα(x) ψα(x) σα(x) ∈ [0,1] 0 ≤ θα(x)+ψα(x)+
σα(x) ≤ 3 x
α = (θα,ψα,σα)

where for each , , ,  represents the
extent of  agreeness,  indeterminacy and disagreeness,  respect-
ively such that .  On the other hand,
if , ,   such  that 

 for  all  then  this  set  is  called  SVNS [15].  A  pair
 is called SVN number (SVNN).

Q = {s0, s1, . . . , st}
t+1 Q̄ = {sh|s0 ≤

sh ≤ st,h ∈ [0, t]}

Definition 2 [35]: Let  be a linguistic term
set  (LTS)  with  odd  cardinality  and 

. Then, a LSVNS A in X is defined as

A = {(x, sθ(x), sψ(x), sσ(x)) | x ∈ X} (2)

sθ(x), sψ(x), sσ(x) ∈ Q̄
x

0 ≤ θ+ψ+σ ≤ 3t. (sθ, sψ, sσ)

where  represent the  linguistic  truth,  in-
determinacy  and  falsity  degrees  of  to A,  respectively,  with
condition  A triplet  is called  lin-
guistic  SVN  number  (LSVNN).  Further,  these  LTS  must  be
satisfy the following properties:

sk ≤ sh⇔ k ≤ h;1) 
(sk) = sh h = t− k.2) Neg  such that 

S (β) = (2t+ θ−ψ−σ)/3 ∈ [0, t] H(β) = (θ+ψ+σ)/3
β = (sθ, sψ, sσ)

β γ
β ≻ γ S (β) > S (γ) S (β) = S (γ)∧H(β) >
H(γ)

Definition 3 [35]: In order to compare the LSVNNs, a score
S and  an  accuracy  function H can  be  represented  as

 and  for
LSVNN .  Thus,  based  on  these  functions,  an
order  relation  between  two  LSVNNs  and ,  denoted  by

, is defined if either  or 
.

α1 = (sθ1 , sψ1 , sσ1 ) α2 = (sθ2 ,
sψ2 , sσ2 ) α1
α2

Definition  4  [37]: Let  and 
 be two LSVNNs. Then, the distance between  and

 is given below:

d(α1,α2) =
1
3t

(| θ1− θ2 | + | ψ1−ψ2 | + | σ1−σ2 |) . (3)

α1,α2, . . . ,αn nDefinition 5 [38]: Let  be ‘ ’ attributes then the
power averaging (PA) operator is defined as

PA(α1,α2, . . . ,αn) =
n∑

j=1

1+G(α j)
n∑

j=1
(1+G(α j))

α j (4)

G(α j) =
∑n

k=1, j,k
supp(αj,αk) supp(αj,αk)

α j αk supp(αj,αk) = 1−d(αj,αk)

where  and  is  the

support for  from , defined as 
and satisfies the following properties.

supp(αj,αk) ∈ [0,1];1) 
supp(αj,αk) = supp(αk,αj);2) 
supp(αj,αk) ≥ supp(αu,αv) d(α j,αk) ≤ d(αu,αv).3)  if 

α = (sθ sψ sσ) α1 = (sθ1 sψ1

sσ1 ) α2 = (sθ2 , sψ2 , sσ2 )
Definition  6  [35],  [36]: Let , , , , ,

 and  be three LSVNNs, then
αc = (sσ, sψ, sθ);1) 
α1∪α2 = (max(sθ1 , sθ2 ),min(sψ1 , sψ2 ),min(sσ1 , sσ2 ));2) 
α1∩α2 = (min(sθ1 , sθ2 ),max(sψ1 , sψ2 ),max(sσ1 , sσ2 ));3) 
α1 = α2 sθ1 = sθ2 sψ1 = sψ2 sσ1 = sσ2 ;4)  if ,  and 
α1 ⪰ α2 sθ1 ≥ sθ2 sψ1 ≤ sψ2 sσ1 ≤ sσ2 .5)  if ,  and 

ζ : [0,1]× [0,1]→ [0,1]

ς ς(x,y) = 1− ζ(1− x,1− y) ∀ x,y ∈ [0,1]
ζ

k ζ(x,y) = k−1(k(x)+ k(y)
)

k(1) = 0 ς

ς(x,y) = h−1(h(x)+h(y)
)

h(x) = k(1− x)

Definition  7  [12]: A  function  is
called  t-norm  if  it  satisfies  the  boundary,  monotonicity,
commutativity and associativity. On the other hand, a function
 defined by    is  called

t-conorm. The t-norm  is generated by a decreasing function
 as  with  and the t-conorm 

is generated as , where .

III.  Power Aggregation Operator for Linguistic
Neutrosophic Sets

In  this  section,  some  new  power  AOs  for  linguistic
neutrosophic  sets  namely,  linguistic  single-valued
neutrosophic-power  weighted  average  (LSVN-PWA),
linguistic single-valued neutrosophic-power ordered weighted
average (LSVN-POWA), linguistic single-valued neutrosophic-
power  weighted  geometric  (LSVN-PWG),  Linguistic  single-
valued  neutrosophic-power  ordered  weighted  geometric
(LSVN-POWG)  etc.,  have  been  presented  to  aggregate  the
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LSVNNs.

A.  Operations Laws for LSVNNs
ζ ςIn this section, based on generators  and , we defined the

operational laws for LSVNNs as follows.
α1 = (sθ1 , sψ1 , sσ1 ) α2 = (sθ2 sψ2 sσ2 )

α = (sθ, sψ, sσ) λ > 0
Definition 8: Let , , ,  and

 be three LSVNNs and a real , we have

α1⊕α2 =

(
s

t
(
h−1

(
h
(
θ1
t

)
+h

(
θ2
t

))), s
t
(
k−1

(
k
(
ψ1
t

)
+k

(
ψ2
t

)))
st

(
k−1

(
k
(σ1

t

)
+k

(σ2
t

))))
1) ,

;

α1⊗α2 =

(
s

t
(
k−1

(
k
(
θ1
t

)
+k

(
θ2
t

))), s
t
(
h−1

(
h
(
ψ1
t

)
+h

(
ψ2
t

)))
st

(
h−1

(
h
(σ1

t

)
+h

(σ2
t

))))
2) ,

;

λα =
(
st

(
h−1

(
λh

(
θ
t

))), st
(
k−1

(
λk

(
ψ
t

))), st(k−1(λk(σt )))
)

3) ;

αλ =
(
st

(
k−1

(
λk

(
θ
t

))), st
(
h−1

(
λh

(
ψ
t

))), st(h−1(λh(σt )))
)

4) .

Theorem 1: The operations laws defined in Definition 8 are
again LSVNNs.

k h(x) = k(1− x)
0≤k−1(k(θ1/t)+ k(θ2/t))≤1 0≤h−1(h(ψ1/t)+

h(ψ2/t))≤1 0≤h−1(h(σ1/t)+h(σ2/t))≤1 0 ≤ k−1(k(θ1/t)+
k(θ2/t)

)
+h−1(h(ψ1/t) +h(ψ2/t)

)
+h−1(h(σ1/t) +h(σ2/t)

) ≤ 3.

α1⊗α2 α1⊕α2 λα αλ

Proof: Since  is  a  decreasing  map  and ,
therefore, we get , 

,  and 

Therefore,  is  LSVNN.  Similarly, ,  and 
are LSVNNs. ■

α1 α2 α λ,λ1,λ2Theorem 2: Let ,  and  be three LSVNNs and 
be three positive real numbers, then

α1⊕α2 = α2⊕α11) ;
α1⊗α2 = α2⊗α12) ;
λ(α1⊕α2) = λα1⊕λα23) ;
(α1⊗α2)λ = αλ1 ⊗α

λ
24) ;

λ1α⊕λ2α = (λ1+λ2)α5) ;
αλ1 ⊗αλ2 = αλ1+λ26) .

Proof: We shall prove only the parts iii) and remaining parts
done similarly.

λ > 0For real number , we have

λ(α1⊕α2)

= λ

(
s

t
(
h−1

(
h
(
θ1
t

)
+h

(
θ2
t

))),
s

t
(
k−1

(
k
(
ψ1
t

)
+k

(
ψ2
t

))), st
(
k−1

(
k
(σ1

t

)
+k

(σ2
t

))))

=


s

t
(
h−1

(
λh

(
h−1

(
h
(
θ1
t

)
+h

(
θ2
t

))))),
s

t
(
k−1

(
λk

(
k−1

(
k
(
ψ1
t

)
+k

(
ψ2
t

))))),
st

(
k−1

(
λk

(
k−1

(
k
(σ1

t

)
+k

(σ2
t

)))))

 =


s
t
(
h−1

(
λ
(
h
(
θ1
t

)
+h

(
θ2
t

)))),
s

t
(
k−1

(
λ
(
k
(
ψ1
t

)
+k

(
ψ2
t

)))),
st

(
k−1

(
λ
(
k
(σ1

t

)
+k

(σ2
t

))))


=


s

t
(
h−1

(
h
(
h−1

(
λh

(
θ1
t

)))
+h

(
h−1

(
λh

(
θ2
t

))))),
s

t
(
k−1

(
k
(
k−1

(
λk

(
ψ1
t

)))
+k

(
k−1

(
λk

(
ψ2
t

))))),
st

(
k−1

(
k
(
k−1

(
λk

(σ1
t

)))
+k

(
k−1

(
λk

(σ2
t

)))))


= λα1⊕λα2.

■

λ αRemark 1: We inspect some special cases of  and .
α = (0,0,0) λα =

(
h−1(λh(0)),k−1(λk(0))

k−1(λk(0))
)
= (0,0,0)

1)  If ,  then ,
.

α = (1,0,0) λα =
(
h−1(λh(1)),k−1(λk(0))

k−1(λk(0))
)
= (1,0,0)

2)  If ,  then ,
.

α = (0,0,1) λα =
(
h−1(λh(0)),k−1(λk(0))

k−1(λk(1))
)
= (0,0,1)

3)  If ,  then ,
.

λ→ 0 λα =
(
h−1(λh(θ/t)) k−1(λk(ψ/t))

k−1(λk(σ/t))
)→ (1,0,0)

4)  If  then , ,
.

λ = 1 λα =
(
h−1(λh(θ/t)) k−1(λk(ψ/t))

k−1(λk(σ/t))
)→ (sθ, sψ, sσ)

5)  If ,  then , ,
.

λ→∞ λα =
(
h−1(λh(θ/t)) k−1(λk(ψ/t))

k−1(λk(σ/t))
)→ (1,0,0)

6)  If  then , ,
.

α j = (sθ j , sψ j , sσ j )
( j = 1,2, . . . ,n) Ω

θ j,ψ j,σ j , 0 j

Next,  we  propose  some  averaging  and  geometric  power
AOs  for  a  collection  of  LSVNNs 

 denoted  by  with  the  condition  that
 for any .

B.  LSVN Power Averaging Operator

Ωn→Ω

Definition 9: A linguistic single-valued neutrosophic- power
averaging  (LSVN-PA)  aggregation  operator  is  a  mapping
LSVN-PA: , defined by

LSVN-PA(α1,α2, . . . ,αn) =
n
⊕
j=1

1+G(α j)
n∑

j=1

(
1+G(α j)

)α j (5)

α j ∈Ω G(α j) =
∑n

k=1, j,k
supp(α j,αk)where  and .

Theorem 3: The aggregated value by LSVN-PA operator is
still a LSVNN and is given as

LSVN-PA(α1,α2, . . . ,αn)=



s

t


h−1


n∑

j=1

1+G(α j)
n∑

j=1
(1+G(α j))

h
(
θ j
t

)


,

s

t


k−1


n∑

j=1

1+G(α j)
n∑

j=1
(1+G(α j))

k
(ψ j

t

)


,

s

t


k−1


n∑

j=1

1+G(α j)
n∑

j=1
(1+G(α j))

k
(σ j

t

)




.

(6)

n
ξ j =

(
1+G(α j)

)
/
(∑n

j=1

(
1+G(α j)

))
α j = (sθ j ,

sψ j , sσ j )

Proof: We  will  verify  (6),  by  applying  the  mathematical
induction  on .  For  the  sake  of  simplicity,  we  take

. Then, the following steps
of the mathematical induction have been followed for 

.
n = 2 α1 = (sθ1 , sψ1 , sσ1 ) α2 = (sθ2 sψ2

sσ2 ) ξ1, ξ2 > 0 ξ1α1=(st(h−1(ξ1h(θ1/t)))
st(k−1(ξ1k(ψ1/t))) st(k−1(ξ1k(σ1/t)))) ξ2α2 = (st

(
h−1

(
ξ2h(θ2/t)

))
st
(
k−1

(
ξ2k(ψ2/t)

)) st
(
k−1

(
ξ2k(σ2/t)

)))
Step 1: For , we have , , ,

 and real numbers , we have ,
,  and ,
, . Therefore,
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LSVN-PA(α1,α2) = ξ1α1⊕ ξ2α2

=


s

t
(
h−1

(
h
(
h−1

(
ξ1h

(
θ1
t

)))
+h

(
h−1

(
ξ2h

(
θ2
t

))))),
s

t
(
k−1

(
k
(
k−1

(
ξ1k

(
ψ1
t

)))
+k

(
k−1

(
ξ2k

(
ψ2
t

))))),
st

(
k−1

(
k
(
k−1

(
ξ1k

(σ1
t

)))
+k

(
k−1

(
ξ2k

(σ2
t

)))))


=

s
t
(
h−1

(
ξ1h

(
θ1
t

)
+ξ2h

(
θ2
t

))), s
t
(
k−1

(
ξ1k

(
ψ1
t

)
+ξ2k

(
ψ2
t

))),
st

(
k−1

(
ξ1k

(σ1
t

)
+ξ2k

(σ2
t

)))


=


s

t

h−1

 2∑
j=1

ξ jh(
θ j
t )

, st

k−1

 2∑
j=1

ξ jk(
ψ j
t )

,
s

t

k−1

 2∑
j=1

ξ jk(
σ j
t )



 .
n = 2Thus, (6) is true for .

n = m
n = m+1

Step  2: Assume  that  (6)  is  true  for .  Then,  for
, we have

LSVN-PA(α1,α2, . . . ,αm+1) =
m
⊕
j=1
ξ jα j⊕ ξm+1αm+1

=



s
t

h−1

 m∑
j=1

ξ jh
(
θ j
t

),
s

t

k−1

 m∑
j=1

ξ jk
(
ψ j
t

),
s

t

k−1

 m∑
j=1

ξ jk
(
σ j
t

)


⊕


s

t
(
h−1

(
ξm+1h

(
θm+1

t

))),
s

t
(
k−1

(
ξm+1k

(
ψm+1

t

))),
st

(
k−1

(
ξm+1k

(σm+1
t

)))



=



s
t

h−1

hh−1

 m∑
j=1

ξ jh
(
θ j
t

)+h
(
h−1

(
ξm+1h

(
θm+1

t

))),
s

t

k−1

kk−1

 m∑
j=1

ξ jk
(
ψ j
t

)+k
(
k−1

(
ξm+1k

(
ψm+1

t

))),
s

t

k−1

kk−1

 m∑
j=1

ξ jk
(
σ j
t

)+k
(
k−1

(
ξm+1k

(σm+1
t

)))


=


s

t

h−1

m+1∑
j=1

ξ jh
(
θ j
t

), st

k−1

m+1∑
j=1

ξ jk
(
ψ j
t

),
s

t

k−1

m+1∑
j=1

ξ jk
(
σ j
t

)

 .
n = m+1

n ∈ Z+
Thus,  the  result  holds  for  and hence  it  is  true  for

all . ■
α1 = (s7, s2, s4) α2 = (s5, s3, s5) α3 =

(s4, s3, s3)
G1 =G(α1) = 1.6250 G2 =G(α2) = 1.7083

G3=G(α3)=1.6667 ξ j= (1+G j)/(
∑3

j=1(1+G j))
ξ1 = 0.3281 ξ2 = 0.3385 ξ3 = 0.3334 t = 8

k(x) = − log(x)
0 < x ≤ 1 k(0) =∞ h(x) = k(1− x) 0 < x ≤ 1
h(1) =∞

Example  1: Let ,  and 
 be three LSVNNs. Based on the support function of

LSVNNs,  we  get , 
and  and hence 
becomes ,  and . Take 
and  by  considering  the  additive generators  if

 with  and  if  with
 corresponding to t-norm and t-conorm, respectively.

Then, by utilizing this information we get

LSVN-PA(α1,α2,α3) =


s

8

1− 3∏
j=1

(
1−

θj
8

)ξj ,
s

8

 3∏
j=1

(
ψ j
8

)ξ j
, s8

 3∏
j=1

(
σ j
8

)ξ j



=


s

8
(
1−

(
1− 7

8

)0.3281×
(
1− 5

8

)0.3385×
(
1− 4

8

)0.3334
),

s
8
((

2
8

)0.3281×
(

3
8

)0.3385×
(

3
8

)0.3334
),

s
8
((

4
8

)0.3281×
(

5
8

)0.3385×
(

3
8

)0.3334
)


= (s5.6974, s2.6263, s3.9194)

ξ j = (1+G(α j))/(
∑n

j=1(1+G(α j)))

Further,  the  LSVN-PA  operator  satisfies  certain  properties
which  are  stated  as  below.  Here,  for  simplicity,  we  denote

.

α j = α = (sθ, sψ, sσ),∀ j

LSVN-PA(α1,α2, . . . ,αn) = α

Theorem  4  (Idempotency): If ,  then
.

α j = α,∀ j ξ j = 1/n

(α1,α2, . . . ,αn) =

⊕ j(1/n)α = α

Proof: As .  Thus  and  therefore  by
LSVN-PA  operator  we  have  LSVN-PA

. ■
α j = (sθα j

, sψα j
, sσα j

)

β j = (sθβ j
sψβ j

sσβ j
) sθα j

≤ sθβ j

sψα j
≥ sψβ j

sσα j
≥ sσβ j

j (α1,α2, . . . ,

αn) ≤ LSVN-PA(β1,β2, . . . ,βn) ξ j

Theorem  5  (Monotonicity): Let  and

, ,  be  two  LSVNNs  such  that ,
 and  for all , then LSVN-PA

 for a fixed .
θα j ≤ θβ j ψα j ≥ ψβ j σα j ≥ σβ j k

h ξ j

Proof: Since ,  and .  Also,  is
decreasing  and  is  increasing  map.  Thus,  for  a  fixed ,  the
following equations holds:

h−1

 n∑
j=1

ξ jh(
θα j

t
)

 ≤ h−1

 n∑
j=1

ξ jh(
θβ j

t
)


k−1

 n∑
j=1

ξ jk(
ψα j

t
)

 ≥ k−1

 n∑
j=1

ξ jk(
ψβ j

t
)


k−1

 n∑
j=1

ξ jk(
σα j

t
)

 ≥ k−1

 n∑
j=1

ξ jk(
σβ j

t
)

 .
By using the definition of score function of LSVNNs, we get

S (LSVN-PA(α1,α2, . . . ,αn))

=
1
3


2t+h−1

 n∑
j=1

ξ jh
(
θα j

t

)− k−1

 n∑
j=1

ξ jk
(
ψα j

t

)
−k−1

 n∑
j=1

ξ jk
(σα j

t

)



≤ 1
3


2t+h−1

 n∑
j=1

ξ jh
(
θβ j

t

)− k−1

 n∑
j=1

ξ jk
(
ψβ j

t

)
−k−1

 n∑
j=1

ξ jk
(σβ j

t

)


= S (LSVN-PA(β1,β2, . . . ,βn)).

LSVN-PA(α1,α2, . . . ,αn) ≤ LSVN-PA(β1,β2, . . . ,βn).Hence, 
■

α+ =
(
max j(sθ j ) min j(sψ j )

min j(sσ j )
)

α− =
(
min j(sθ j ) max j(sψ j ) max j(sσ j )

)
α− ≤ LSVN-PA(α1,α2, . . . ,αn) ≤ α+

Theorem  6  (Boundedness): If , ,

 and , ,  ,  then
.

α j min j(θ j) ≤ θ j ≤ max j(θ j)

min j(ψ j)≤ψ j≤max j(ψ j) min j(σ j)≤σ j≤max j(σ j)

k h

Proof: For LSVNNs ,  we have  ,
, . Since the

generators ,  are  decreasing  and  increasing  maps,
respectively, therefore, by
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t

h−1

 n∑
j=1

ξ jh
(
min j

(θ j)
t

)
 ≤ t

h−1

 n∑
j=1

ξ jh
(
θ j

t

)


≤ t

h−1

 n∑
j=1

ξ jh
(
max j

(θ j)
t

)


t

k−1

 n∑
j=1

ξ jk
(
min j

(ψ j)
t

)
 ≤ t

k−1

 n∑
j=1

ξ jk
(
ψ j

t

)


≤ t

k−1

 n∑
j=1

ξ jk
(
max j

(ψ j)
t

)


t

k−1

 n∑
j=1

ξ jk
(
min j

(σ j)
t

)
 ≤ t

k−1

 n∑
j=1

ξ jk
(σ j

t

)


≤ t

k−1

 n∑
j=1

ξ jk
(
max j

(σ j)
t

)


which implies

min
j

(θ j) ≤ t

h−1

 n∑
j=1

ξ jh
(
θ j

t

)
 ≤max

j
(θ j)

min
j

(ψ j) ≤ t

k−1

 n∑
j=1

ξ jk
(
ψ j

t

)
 ≤max

j
(ψ j)

min
j

(σ j) ≤ t

k−1

 n∑
j=1

ξ jk
(σ j

t

)
 ≤max

j
(σ j).

Now, by using Definition 6, we have(
min

j
(θ j), max

j
(ψ j),max

j
(σ j)

)
≤

t
h−1

 n∑
j=1

ξ jh
(
θ j

t

)
 ,

t

k−1

 n∑
j=1

ξ jk
(
ψ j

t

)
 , t

k−1

 n∑
j=1

ξ jk
(σ j

t

)



and(
max

j
(θ j), min

j
(ψ j),min

j
(σ j)

)
≥


t

h−1

 n∑
j=1

ξ jh
(
θ j

t

)

 ,

t

k−1

 n∑
j=1

ξ jk
(
ψ j

t

)
 , t

k−1

 n∑
j=1

ξ jk
(σ j

t

)



α− ≤ LSVN-PA(α1,α2, . . . ,αn) ≤ α+Hence, . ■
β =

(sθβ , sψβ , sσβ ) α j = (sθ j , sψ j , sσ j ) j = 1,2, . . . ,n
(α1⊕β,α2⊕β, . . . ,αn⊕β) = LSVN-PA(α1,α2, . . . ,

αn)⊕β

Theorem  7  (Shift  Invariance): For  LSVNNs, 
 and , ,  we  have

LSVN-PA 
.

Proof: By using the addition law for any two LSVNNs, we
get

α j⊕β =
s

t
(
h−1

(
h
(
θ j
t

)
+h

(
θβ
t

))), s
t
(
k−1

(
k
(
ψ j
t

)
+k

(
ψβ
t

))),
s

t
(
k−1

(
k(σ j)+k

(
σβ
t

))))
Thus, by using (6), we have

LSVN-PA(α1⊕β,α2⊕β, . . . ,αn⊕β)

=



s
t

h−1

 n∑
j=1

ξ jh
(
h−1

(
h
(
θ j
t

)
+h

(
θβ
t

))),
s

t

k−1

 n∑
j=1

ξ jk
(
k−1

(
k
(
ψ j
t

)
+k

(
ψβ
t

))),
s

t

k−1

 n∑
j=1

ξ jk
(
k−1

(
k
(
σ j
t

)
+k

(
σβ
t

)))



=



s
t

h−1

 n∑
j=1

ξ j

(
h
(
θ j
t

)
+h

(
θβ
t

)),
s

t

k−1

 n∑
j=1

ξ j

(
k
(
ψ j
t

)
+k

(
ψβ
t

)),
s

t

k−1

 n∑
j=1

ξ j

(
k
(
σ j
t

)
+k

(
σβ
t

))



=



s
t

h−1

hh−1

 n∑
j=1

ξ jh
(
θ j
t

)+h
(
θβ
t

),
s

t

k−1

kk−1

 n∑
j=1

ξ jk
(
ψ j
t

)+k
(
ψβ
t

),
s

t

k−1

kk−1

 n∑
j=1

ξ jk
(
σ j
t

)+k
(
σβ
t

)



=



s
t

h−1

 n∑
j=1

ξ jh
(
θ j
t

),
s

t

k−1

 n∑
j=1

ξ jk
(
ψ j
t

),
s

t

k−1

 n∑
j=1

ξ jk
(
σ j
t

)


⊕

(
sθβ , sψβ , sσβ

)

= LSVN−PA(α1,α2, . . . ,αn)⊕β.
■

γ > 0
LSVN-PA(γα1,γα2, . . . ,γαn) = γLSVN-PA(α1,α2, . . . ,

αn)

Theorem 8 (Homogeneity): For any real number  ,  we
have 

.
α j = (sθ j , sψ j , sσ j ) ∀ j γ > 0

γα j =
(
st(h−1(γh(θ j/t)))

st(k−1(γk(ψ j/t))) st(k−1(γk(σ j/t)))
)

Proof: As  be a LSVNN,  and  be
a  real  value,  therefore,  we  get ,

, . Now,

LSVN-PA(γα1,γα2, . . . ,γαn)

=



s
t

h−1

 n∑
j=1

ξ jh
(
h−1

(
γh

(
θ j
t

))),
s

t

k−1

 n∑
j=1

ξ jk
(
k−1

(
γk

(
ψ j
t

))),
s

t

k−1

 n∑
j=1

ξ jk
(
k−1

(
γk

(
σ j
t

)))



=



s
t

h−1

 n∑
j=1

ξ j

(
γh

(
θ j
t

)),
s

t

k−1

 n∑
j=1

ξ j

(
γk

(
ψ j
t

)),
s

t

k−1

 n∑
j=1

ξ j

(
γk

(
σ j
t

))



=



s
t

h−1

γh

h−1

 n∑
j=1

ξ jh
(
θ j
t

),
s

t

k−1

γk

k−1

 n∑
j=1

ξ jk
(
ψ j
t

),
s

t

k−1

γk

k−1

 n∑
j=1

ξ jk
(
σ j
t

)


= γLSVN-PA(α1,α2, . . . ,αn).
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ξ j = (1+G(α j))/(
∑n

j=1(1+G(α j)))
k

Furthermore,  by  taking 
and considering the different generating function , we obtain
some special AOs as follows:

k(x) = − log(x)i) If we take , then (6) becomes

LSVN-PA(α1,α2, . . . ,αn) =s
t

1− n∏
j=1

(
1−

θ j
t

)ξ j
, st

 n∏
j=1

(
ψ j
t

)ξ j
, st

 n∏
j=1

(
σ j
t

)ξ j



and called as LSVN Archimedean power averaging operator.

k(x) = log
(

2− x
x

)
ii) Assume , then (6) becomes

LSVN-PA(α1,α2,. . .,αn)=



s

t



n∏
j=1

(
1+ θ j

t

)ξ j
−

n∏
j=1

(
1− θ j

t

)ξ j

n∏
j=1

(
1+ θ j

t

)ξ j
+

n∏
j=1

(
1− θ j

t

)ξ j



,

s

t


2

n∏
j=1

(ψ j
t

)ξ j

n∏
j=1

(
2− ψ j

t

)ξ j
+

n∏
j=1

(ψ j
t

)ξ j



,

s

t


2

n∏
j=1

(σ j
t

)ξ j

n∏
j=1

(
2− σ j

t

)ξ j
+

n∏
j=1

(σ j
t

)ξ j




and called as LSVN Einstein power averaging operator.

k(x) = log
(
γ+ (1−γ)x

x

)
γ ∈ (0,∞)iii) If ,  then (6) becomes

LSVN-PA(α1,α2, . . . ,αn)

=



s

t



n∏
j=1

(
1+ (γ−1) θ j

t

)ξ j
−

n∏
j=1

(
1− θ j

t

)ξ j

n∏
j=1

(
1+ (γ−1) θ j

t

)ξ j
+ (γ−1)

n∏
j=1

(
1− θ j

t

)ξ j



,

s

t


γ

n∏
j=1

(ψ j
t

)ξ j

n∏
j=1

(
1+ (γ−1)

(
1−

ψ j

t

))ξ j

+ (γ−1)
n∏

j=1

(
ψ j

t

)ξ j



,

s

t


γ

n∏
j=1

(σ j
t

)ξ j

n∏
j=1

(
1+ (γ−1)

(
1−

σ j

t

))ξ j
+ (γ−1)

n∏
j=1

(σ j

t

)ξ j




and called as LSVN Hamacher power averaging AO.

C.  Weighted Power Aggregation Operator
In  this  section,  we  defined  some  weighted  power  AOs  for

LSVNNs.

LSVN-PWA :Ωn→Ω
Definition 10: A LSVN power weighted averaging (LSVN-

PWA)  operator  is  a  mapping  defined
as

LSVN-PWA(α1,α2, . . . ,αn)=
n
⊕
j=1
Ψ jα j (7)

Ψ j =
ω j(1+G(α j))

n∑
j=1

ω j(1+G(α j))

α j ∈Ω ω j

α j ω j > 0
∑n

j=1ω j = 1

where , ,  is the weight vector

of  such that ,  and
G(α j) =

∑n
k=1, j,k supp(α j,αk).

α j = (sθ j , sψ j , sσ j )
Theorem 9: The aggregated value by LSVN-PWA operator

for  a  collection  of  LSVNNs  is  again
LSVNN and is given by

LSVN-PA(α1,α2, . . . ,αn) =

s
t

h−1

 n∑
j=1
Ψ jh

(
θ j
t

) ,

s
t

k−1

 n∑
j=1
Ψ jk

(
ψ j
t

), s
t

k−1

 n∑
j=1
Ψ jk

(
σ j
t

)
 . (8)

   Proof: Similar to Theorem 3. ■
α1 = (s7, s2, s4) α2 = (s5, s3, s5)

α3 = (s4, s3, s3) ω = (0.3,0.4,0.3)
α j; j = 1,2,3

G1 =G(α1) = 1.6250 G2 =G(α2) = 1.7083 G3 =G(α3) =
t = 8

k(x) = − log(x) 0 < x ≤ 1 k(0) =∞

Example  2: Let ,  and
 be three LSVNNs and  is the

weight  vector  of .  Based  on  it,  we  get
,  and 

1.6667.  Take  and  consider  the  additive  generator  as:
 if  with , we have

LSVN-PWA(α1,α2,α3)

=


s

8
(
1−

(
1− 7

8

)0.2949×
(
1− 5

8

)0.4056×
(
1− 4

8

)0.2995
),

s
8
((

2
8

)0.2949×
(

3
8

)0.4056×
(

3
8

)0.2995
),

s
8
((

4
8

)0.2949×
(

5
8

)0.4056×
(

3
8

)0.2995
)


= (s5.6348, s2.6620, s4.0174).

Further,  as  similar  to  LSVN-PA  operator,  it  can  be  easily
verified that the LSVN-PWA operator also has the properties
of being boundedness, shift-invariance etc.

D.  Ordered Weighted Power Averaging Operator

Ωn→Ω ω = (ω1,ω2, . . . ,

ωn)T ω j > 0
∑n

j=1ω j = 1

Definition 11: A LSVN power ordered weighted averaging
(LSVN-POWA)  operator  is  a  mapping  LSVN-POWA:

, that has an associated weight vector 
, such that  and  and is defined as

LSVN-POWA(α1,α2, . . . ,αn)=
n
⊕
j=1
Ψ jαδ( j)

=



s
t

h−1

 n∑
j=1
Ψ jh

(
θδ( j)

t

),
s

t

k−1

 n∑
j=1
Ψ jk

(
ψδ( j)

t

),
s

t

k−1

 n∑
j=1
Ψ jk

(
σδ( j)

t

)


(9)

δ (1,2, . . . ,n)
αδ( j−1) ≥ αδ( j) j = 2,3, . . . ,n
where  is  the  permutation  of  such  that

 for .

S (α1) = 5.6667
S (α2) = 4.333 S (α3) = 4.6667 S (α1) > S (α3) >
S (α2) αδ(1) = α1 = (s7, s2, s4) αδ(2) = α3 = (s4, s3, s3)

αδ(3) = α2 = (s5, s3, s5) G1 =G(α1) = 1.6250

Example 3: Consider the data set as mentioned in Example
2.  Then the score values of the LSVNNs are ,

 and .  Since 
, therefore, , 

and  which  gives ,
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G2 =G(α2) = 1.6667 G3 =G(α3) = 1.7083 and . Thus, we get

LSVN-POWA(α1,α2,α3)

=


s

8
(
1−

(
1− 7

8

)0.2949×
(
1− 4

8

)0.4056×
(
1− 5

8

)0.2995
),

s
8
((

2
8

)0.2949×
(

3
8

)0.4056×
(

3
8

)0.2995
),

s
8
((

4
8

)0.2949×
(

3
8

)0.4056×
(

5
8

)0.2995
)


= (s5.5615, s2.6620, s3.8055).

Furthermore,  LSVN-POWA  operator  also  satisfies  the
properties of indempotency and boundedness.

E.  Power Hybrid Averaging Operator

Ωn→Ω
Definition  12: A  LSVN  power  hybrid  averaging  (LSVN-

PHA) operator is a mapping defined as LSVN-PHA: 
and given by

LSVN-PHA(α1,α2, . . . ,αn) =
n
⊕
j=1
Ψ jα̇δ( j)

=



s
t

h−1

 n∑
j=1
Ψ jh

(
θ̇δ( j)

t

),
s

t

k−1

 n∑
j=1
Ψ jk

(
ψ̇δ( j)

t

),
s

t

k−1

 n∑
j=1
Ψ jk

(
σ̇δ( j)

t

)


(10)

ω = (ω1,ω2, . . . ,ωn)T

ω j > 0
∑n

j=1ω j = 1 α̇δ( j)

α̇ j = nw jα j

j = 1,2, . . . ,n n w = (w1,w2, . . . ,

wn)T α j( j = 1,2, . . . ,n)
G(α j) =

∑n
k=1, j,k supp(α j,αk)

where  is the associated weight vector of
LSVN-PHA operator satisfying  and , 
is  the jth  largest  of  the  weighted  LSVNNs ,

,  is  the  number  of  LSVNNs, 
 is the normalized weight vector of  and

.

α1 = (s7, s2, s4) α2 = (s5, s3, s5)
α3 = (s4, s3, s3) w = (0.25,0.55,0.20)T

α̇ j = 3w jα j

k(x) = − log(x)

Example  4: Let ,  and
 be  three  LSVNNs,  be

corresponding  weight  vector,  then,  we  evaluate ,
by using the additive operator  as below:

α̇1 = (s
t
(
1−

(
1− 7

8

)3×0.25
), s

t
((

2
8

)3×0.25
), s

t
((

4
8

)3×0.25
))

= (s3.2432, s5.6569, s6.7272)
α̇2 = (s

t
(
1−

(
1− 5

8

)3×0.55
), s

t
((

3
8

)3×0.55
), s

t
((

5
8

)3×0.55
))

= (s3.3355, s4.6645, s6.1777)
α̇3 = (s

t
(
1−

(
1− 4

8

)5×0.20
), s

t
((

3
8

)5×0.20
), s

t
((

3
8

)3×0.20
))

= (s1.0356, s6.5750, s6.5750).

α̇ j

α̇δ(1) = (s3.3355, s4.6645, s6.1777) α̇δ(2) = (s3.2432, s5.6569, s6.7272)
α̇δ(3) = (s1.0356, s6.5750, s6.5750) ω =

G1 = 1.6250 G2 = 1.7083

G3 = 1.6667 Ψ j = (ω j(1+G j))/(
∑3

j=1ω j(1+G j))

Ψ = (0.2949,0.4056,0.2995)
k(x) = − log(x)

Then,  based  on  the  score  values  of  we  get
, ,

and .  Assume that  (0.3,  0.4,
0.3)T is  the  importance  associated  with  LSVN-PHA operator
and by using support we have, ,  and

 and therefore 
becomes .  Thus,  by  taking
additive operator , we get

LSVN-PHA(α1,α2,α3)

=

s
8

1− 3∏
j=1

(
1−

θ̇δ( j)
8

)Ψ j
, s8

 3∏
j=1

(
ψ̇δ( j)

8

)Ψ j
, s8

 3∏
j=1

(
σ̇δ( j)

8

)Ψ j



=


s

8
(
1−

(
1− 3.3355

8

)0.2949×
(
1− 3.2432

8

)0.4056×
(
1− 1.0356

8

)0.2995
),

s
8
((

4.6645
8

)0.2949×
(

5.6569
8

)0.4056×
(

6.5750
8

)0.2995
),

s
8
((

6.1777
8

)0.2949×
(

6.7272
8

)0.4056×
(

6.5750
8

)0.2995
)


= (s2.6985, s5.5904, s6.5154).

F.  LSVN Power Geometric AOs
In  this  section,  we  presents  some  series  of  LSVN  power

geometric aggregation operators.

LSVN-PG :Ωn→Ω
α j

Definition  13: A  LSVN  power  geometric  (LSVN-PG)
operator is a map , defined on a collection
of LSVNN  as

LSVN-PG(α1,α2, . . . ,αn) =
n
⊗
j=1
α
ξ j
j

=



s
t

k−1

 n∑
j=1

ξ jk
(
θ j
t

),
s

t

h−1

 n∑
j=1

ξ jh
(
ψ j
t

),
s

t

h−1

 n∑
j=1

ξ jh
(
σ j
t

)


ξ j =

1+G(α j)∑n
j=1(1+G(α j))

G(α j) =
∑n

k=1, j,k supp(α j,αk)where , .

LSVN-PWG :Ωn→Ω
Definition 14: A LSVN power weighted geometric (LSVN-

PWG)  operator  is  a  mapping  and
defined as

LSVN-PWG(α1,α2, . . . ,αn) =
n
⊗
j=1
α
Ψ j
j

=



s
t

k−1

 n∑
j=1
Ψ jk

(
θ j
t

),
s

t

h−1

 n∑
j=1
Ψ jh

(
ψ j
t

),
s

t

h−1

 n∑
j=1
Ψ jh

(
σ j
t

)


ω = (ω1,ω2, . . . ,ωn)T α j

ω j > 0
∑n

j=1ω j = 1
where  is  the  weight  vector  of  such
that  and .

LSVN-POWG :
Ωn→Ω ω = (ω1,ω2,

. . . ,ωn)T ω j > 0
∑n

j=1ω j = 1

Definition 15: A LSVN power ordered weighted geometric
(LSVN-POWG)  operator  is  a  mapping 

,  that  has  an  associated  weight  vector 
, such that  and , and is defined as

LSVN-PWG(α1,α2, . . . ,αn) =

s
t

k−1

 n∑
j=1
Ψ jk

(
θδ( j)

t

),

s
t

h−1

 n∑
j=1
Ψ jh

(
ψδ( j)

t

), st

h−1

 n∑
j=1
Ψ jh

(
σδ( j)

t

)
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(δ(1), δ(2), . . . , δ(n)) (1,2, . . . ,n)
αδ( j−1) ≥ αδ( j) j = 2,3, . . . ,n
where  is a permutation of  with

 for all .

LSVN-PHG :Ωn→Ω
α j, j = 1,2, . . . ,n

Definition  16: A  LSVN  power  hybrid  geometric  (LSVN-
PHG) operator is a mapping  defined on
a collection of LSVNN  as

LSVN-PHG(α1,α2, . . . ,αn) =
n
⊗
j=1
α̇
Ψ j
δ( j)

=



s
t

k−1

 n∑
j=1
Ψ jk

(
θ̇δ( j)

t

),
s

t

h−1

 n∑
j=1
Ψ jh

(
ψ̇δ( j)

t

),
s

t

h−1

 n∑
j=1
Ψ jh

(
σ̇δ( j)

t

)


ω = (ω1,ω2, . . . ,ωn)T

ω j > 0
∑n

j=1ω j = 1 α̇δ( j)

α̇ j α̇ j = α j
nw j j = 1,2, . . . ,n

w = (w1,w2, . . . ,wn)T α j

where  is  their  associated  weight  vector
such that  and , and  is the jth largest of
the  weighted  LSVNNs  ( , ),

 is the standardized weight vector of .
Further,  as  similar  to  power  averaging  AOs,  it  has  been

observed that the above defined geometric operators also have
the property of boundedness and idempotent.

IV.  MCGDM Approach Based on Proposed Operators

In  this  section,  an  approach  to  decision-making  problems
has  been  established  by  using  the  above  AOs  which  is
followed by a practical example.

A.  Proposed Approach

m
A1,A2, . . . ,Am n C1,C2, . . . ,Cn

ω = (ω1,ω2, . . . ,ωn)T ω j > 0∑n

j=1
ω j = 1 l

D1,D2, . . . ,Dl

R(q) =
(
r(q)

i j

)
m×n

r(q)
i j = (s

θ
(q)
i j
, s
ψ

(q)
i j
, s
σ

(q)
i j

) q = 1,2, . . . , l

Consider  a  decision-making  problem  which  consists  of 
alternatives  and  criteria , having
the  weight  vector  such  that  and

.  Assume  that  a  set  of ‘ ’ decision  makers

 have evaluated these alternatives and give their
preferences in terms of LSVNNs and their overall  preference
values  are  summarized  in  the  decision  matrix 

where , .  Based  on  these
information, the following steps of the proposed approach, to
find the best alternative(s), have been summarized as follows:

G
(
r(q)

i j

)
Step 1: Calculate , as follows:

G
(
r(q)

i j

)
=

l∑
z=1
z,q

supp
(
r(q)

i j ,r
(z)
i j

)
(11)

supp
(
r(q)

i j ,r
(z)
i j

)
= 1−d

(
r(q)

i j ,r
(z)
i j

)
; i = 1,2, . . . ,m; j = 1,

2, . . . ,n;q,z = 1,2, . . . , l

where 
.

ri j = (sθi j , sψi j , sσi j )

Step 2: Utilize the power average or geometric aggregation
operator  to  aggregate  the  preference  values  of  each  decision
maker  into  the  collective  one  and  represented  as

 which are computed as:
i) By using LSVN-PA operator

ri j = LSVN-PA
(
r(1)

i j ,r
(2)
i j , . . . ,r

(l)
i j

)

=



s

t


h−1


n∑

q=1

1+G
(
r(q)

i j

)
l∑

q=1

(
1+G

(
r(q)

i j

))h

θ
(q)
i j

t






,

s

t


k−1


l∑

q=1

1+G
(
r(q)

i j

)
l∑

q=1

(
1+G

(
r(q)

i j

))k

ψ
(q)
i j

t






,

s

t


k−1


l∑

q=1

1+G
(
r(q)

i j

)
n∑

q=1

(
1+G

(
r(q)

i j

))k

σ
(q)
i j

t








.

ii) By using LSVN-PG operator

ri j =LSVN-PG
(
r(1)

i j ,r
(2)
i j , . . . ,r

(l)
i j

)

=



s

t


k−1


n∑

q=1

1+G(r(q)
i j )

l∑
q=1

(
1+G

(
r(q)

i j

))k

θ
(q)
i j

t






,

s

t


h−1


l∑

q=1

1+G
(
r(q)

i j

)
l∑

q=1

(
1+G

(
r(q)

i j

))h

ψ
(q)
i j

t






,

s

t


h−1


l∑

q=1

1+G
(
r(q)

i j

)
n∑

q=1

(
1+G

(
r(q)

i j

))h

σ
(q)
i j

t








.

G(ri j), i = 1,2, . . . ,m; j = 1,2, . . . ,n
G(ri j) =

∑n

u=1, j,u
supp(ri j,riu)

Step  3: Calculate ,  as

where
supp(ri j,riu) = 1−d

(
ri j,riu

)
, i = 1,2, . . . ,m;u, j = 1,2, . . . ,n .

riStep  4: Calculate  the  comprehensive  evaluation  value  of
each  alternative  by  using  LSVN-PWA  or  LSVN-POWA  or
LSVN-PHA or LSVN-PWG or LSVN-POWG or LSVN-PHG
operator.

S (ri), i = 1,2, . . . ,nStep  5: Calculate  the  score  function ,  by
using Definition 3.

Step 6: Rank all the alternatives according to the descending
order of score values of alternatives.

B.  Illustrative Example
The  above  mentioned  approach  has  been  illustrated  with  a

numerical example taken from Garg and Nancy [36] as:
Goods and services tax (GST) is one indirect tax for the whole

nation, which will make India a unified common market. While
GST  promises  to  a  user  in  an  era  of  the  unified  indirect  tax
regime, integrating India into a single homogeneous market, it
comes with certain complications inherited from the legacy tax
regime. With the government gearing up to enforce the GST in
Punjab from July 1, the issue of traders having limited computer
knowledge and poor connectivity. In order to counter this, the
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state government has planned to train more than 2000 youths as
“GST Mitra” to cater the traders. Punjab GST Mitra Scheme,
which has to be started as a pilot project from Patiala, proposes
to assist taxpayers in furnishing the details of outward supplies,
inward supplies and returns, filing claims or refunds, filing any
other applications etc., in GST Regime. It aims to create a group
of Tax professionals available in the locality or at the doorstep
of  the  taxpayer,  at  affordable  costs  throughout  the  State  of
Punjab.

(A1) (A2)
(A3) (A4)

(C1) (C2)
(C3) (C4) ω

w = (0.2575,0.3316,0.1292,0.2817)T

D1,D2 D3

The poor internet connectivity in far-flung areas has emerged
as a big stumbling block in the success of “GST Mitra” scheme.
In order to provide the online services to run this scheme, the
state  government  is  planning  to  give  contract  combinedly  to
private mobile service provider along with state-owned BSNL.
For this purpose, committee formed by the government short-
listed the four internet service provider, namely, “Bharti Airtel”

, “Reliance  Communications” , “Vodafone  India”
 and “Mahanagar Telecom Nigam”  under the criteria:

“Customer Services” , “Bandwidth” , “Package Deal”
, “Total Cost”  with weight vector  = (0.2, 0.3, 0.1, 0.

4)T . Assume that weight vector associated with hybrid operator
is .  Government  has
selected  three  decision  makers  and  who  have  the
responsibilities to evaluate the given alternatives and rate their
preferences in terms of linguistic term set Q = {s0 = “extremely
poor”, s1 = “very poor”, s2 = “poor” ,s3 = “slightly poor”, s4 =
“fair”, s5 = “slightly  good”, s6 = “good”, s7 = “very  good”,
s8 = “extremely  good”}.  The  rating  values  of  these  decision
makers are summarized as

C1 C2 C3 C4

R(1) =

A1

A2

A3

A4


(s4, s4, s3) (s3, s1, s5) (s6, s3, s5) (s2, s3, s6)
(s4, s3, s2) (s1, s2, s3) (s5, s1, s3) (s3, s1, s4)
(s5, s3, s3) (s2, s3, s4) (s6, s4, s3) (s1, s4, s3)
(s3, s5, s1) (s7, s2, s2) (s3, s2, s3) (s5, s2, s2)



R(2) =

A1
A2
A3
A4


(s3, s5, s2) (s4, s4, s7) (s5, s1, s4) (s2, s1, s3)
(s5, s1, s2) (s2, s5, s1) (s3, s5, s4) (s5, s4, s2)
(s7, s4, s3) (s2, s3, s5) (s7, s2, s4) (s3, s1, s2)
(s2, s6, s5) (s6, s3, s3) (s5, s1, s2) (s4, s2, s1)



R(3) =

A1
A2
A3
A4


(s6, s1, s1) (s5, s2, s1) (s7, s2, s1) (s6, s1, s2)
(s5, s2, s2) (s2, s2, s3) (s6, s2, s6) (s3, s4, s5)
(s6, s2, s3) (s2, s6, s4) (s3, s4, s3) (s4, s2, s1)
(s3, s5, s4) (s5, s2, s6) (s4, s5, s2) (s6, s2, s1)


k(x) = − log(x)

Without  loss  of  generality,  we  have  taken  the  additive
generator  and hence the following steps of the
proposed approach have been summarized as

Step 1: By utilizing (11), we get

G(1) =


1.5833 1.5417 1.3750
1.7917 1.8333 1.8750
1.7917 1.7500 1.7917
1.6250 1.6250 1.7500


G(2) =


1.5417 1.5417 1.4167
1.7083 1.5417 1.7500
1.8333 1.7917 1.7083
1.7083 1.7917 1.6667



G(3) =


1.5833 1.5833 1.500
1.5000 1.3750 1.4583
1.7917 1.6250 1.7500
1.6250 1.6250 1.5833


G(4) =


1.3750 1.5833 1.3750
1.5417 1.5000 1.6250
1.4583 1.625 1.5833
1.8333 1.8333 1.8333

 .
Step  2: Aggregate  the  values  of  the  decision  matrices  by

using  either  LSVN-PA  or  LSVN-PG  operators  and  their
results are summarized in Tables I and II respectively.

Gi j, i = 1,2,3,4; j = 1,2,3,4Step 3: Compute :
a) By using the data given in Table I, we have

G =


2.5751 2.7268 2.5942 2.6950
2.5930 2.4421 2.5521 2.6286
2.4817 2.2818 2.4827 2.3071
2.2282 2.4660 2.5677 2.4697

 .
b) By using the data given in Table II, we have

G =


2.3506 2.5090 2.4642 2.5278
2.4853 2.4446 2.5485 2.6082
2.4808 2.2991 2.4816 2.3501
2.1881 2.4579 2.5426 2.4011

 .

ri

Step  4: By  utilizing  LSVN-PWA  or  LSVN-POWA  or
LSVN-PHA or LSVN-PWG or LSVN-POWG or LSVN-PHG
operators,  we  get  the  aggregated  values  of  the  alternatives

 

TABLE I  
Aggregated Matrix by Using LSVN-PA

C1 C2

A1 (s4.5360, s2.7813, s1.8465) (s4.0677, s1.5813, s3.3363)

A2 (s4.7027, s1.8135, s2.0000) (s1.6786, s2.6758, s2.1161)

A3 (s6.1774, s2.8798, s3.0000) (s2.0000, s3.7580, s4.3105)

A4 (s2.6918, s5.3082, s2.7309) (s6.1857, s2.6280, s2.8808)

C3 C4

A1 (s6.1710, s1.8152, s2.7440) (s3.7963, s1.4273, s3.2929)

A2 (s4.9101, s2.1246, s4.1543) (s3.7672, s2.5262, s3.4441)

A3 (s6.1653, s3.2011, s3.2906) (s2.8338, s1.9701, s1.8033)

A4 (s4.0856, s2.1448, s2.2911) (s5.1155, s2.0000, s1.2599)
 

 

TABLE II  
Aggregated Matrix by Using LSVN-PG

C1 C2

A1 (s4.1256, s3.6681, s2.0833) (s3.8989, s1.6782, s5.2836)

A2 (s4.1256, s2.0508, s2.0000) (s1.5817, s3.1859, s2.4359)

A3 (s5.9391, s3.0624, s3.0000) (s2.0000, s4.2877, s4.3675)

A4 (s2.6263, s5.3737, s3.6267) (s5.9497, s2.6933, s3.0616)

C3 C4

A1 (s5.9334, s2.0567, s3.6427) (s2.8546, s1.7227, s4.0578)

A2 (s4.5047, s2.9478, s4.5788) (s3.5438, s3.1846, s3.8328)

A3 (s5.9293, s3.4432, s3.3461) (s2.3240, s2.4460, s2.0390)

A4 (s3.9144, s2.9730, s2.3556) (s4.9324, s2.0000, s1.3506)
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Ai, i = 1,2,3,4 and the results are summarized in Table III.
Step  5: The  score  values  of  these  aggregated  numbers  are

summarized in Table IV.

A4 A1

Step 6: Based on these score values, the ranking order of the
alternatives is summarized in the last column of the Table IV.
From this table, we can see that corresponding to the different
pairs, the best alternative is either  or .

C.  Comparative Analysis
To compare the performance of the proposed approach with

the existing operators, namely linguistic neutrosophic number
(LNN)  weighted  averaging  and  geometric  aggregation
operators denoted by LNNWAA and LNNWGA as proposed
by Fang and Ye [35], LNN weighted power Heronian average
(LNWPHA) proposed by Liu et al. [21] and Linguistic single-
valued neutrosophic Prioritized aggregation (LNPA) proposed
by  Garg  and  Nancy  [36].  For  it,  the  considered  data  of  the
problem has been taken and then the following steps of  their
approaches have been implemented which are summarized as
follows:

p = 1,q = 2

Step  1: Aggregate  the  different  preferences  of  decision
makers  by  using  LNNWAA  or  LNNWGA  operators.  The
results of it  are summarized in Tables V and VI respectively.
On  the  other  hand,  if  we  apply  LNWPHA  operator  (with

) to calculate the overall values of each alternative
for  each  decision  maker  then  their  results  are  summarized  in
Table VII. On the other hand, the values of each alternative by
LNPA operator are summarized in Table VIII.

ri, i = 1,2,3,4
r1 = (s4.3842, s1.7238, s2.8652) r2 = (s3.60.2, s2.3761

s2.6987) r3 = (s4.0426 s2.7280 s2.7629) r4 = (s5.0746 s2.6567
s1.9992)
r1 = (s3.0983 s2.1872 s4.1251) r2 = (s2.5467 s2.9720 s3.2029)
r3 = (s2.5529 s3.3087 s3.1670) r4 = (s4.5233 s3.1853 s2.4984)

r1 = (s5.5054
s0.9201 s1.7792) r2 = (s4.7183 s1.2941 s1.5345) r3 = (s5.1725
s1.6739 s1.7312) r4 = (s6.2089 s1.4063 s1.1454)

r1 = (s5.0259, s2.2665, s3.2699)
r2 = (s4.2176, s2.0214, s2.6403) r3 = (s5.4767, s3.0336, s3.0597)
r4 = (s5.0871, s2.2943, s1.8710)

Step 2: Based on these aggregated values, the overall rating
values  of the alternatives are obtained by using
LNNWAA are , ,

, , ,  and , ,
 while  by  using  LNNWGA  operator  we  get

, , , , , ,
, ,  and , , .

However,  by  using  LNWPHA  operator  to  calculate  the
collective LSVN given in Table VII,  we can get ,

, , , , , ,
,  and , , .  By  LNPA

operator,  these  values  are ,
,  and
.

ri

Step  3: The  score  values  and  the  final  ranking  of  the
alternatives are obtained by using values of  and results  are
represented in Table IX.

A4

It is noted from this table that the best alternative obtained by
the  existing  approaches  is  still  which  coincides  with  the

proposed approach. However, the computational procedure of
the proposed approach is different from the existing studies. For
instance, Fang and Ye [35] weighted averaging and geometric
aggregation operators were introduced based on the algebraic
sum  and  product  and  do  not  consider  the  dependency  factor
between the attributes. Liu et al. [21], they considered the PA
and Heronian mean operator simultaneously to interact with the
different pairs of LNNs. In [36], authors have aggregated the
values by using prioritized aggregation operators. On the other
hand,  the  proposed  operator  takes  the  advantages  of  LSVNS
and power  aggregation to  aggregate  the  process  by using the
support function for solving MCGDM problems.

D.  Further Discussion
To justify the importance of the proposed work with respect

to  the  existing  work,  an  investigation  is  done  in  the  form  of
their  characteristics  comparison.  The  results  are  summarized
in Table X.

The approaches in [16]–[18],  [25] are based on a weighted
averaging  operators  by  utilizing  the  quantitative  information
only. Also, in their approaches, they had assumed that all the
input arguments are independent of each other. Therefore, their
approaches  are  limited  and  unable  to  apply  to  the  linguistic
information. However, on the contrary, the proposed approach
can  capture  the  interrelationship  among  input  arguments  and
also  describe  for  the  qualitative  with  linguistic  information.
Hence, the present approach is much better than the methods in
[16]–[18], [25]. In [35], authors have considered the linguistic
features  during  the  information  extract  phase  and  hence
proposed  the  weighted  averaging  and  geometric  operators  to
aggregate  them.  But  again,  during  their  formulation,  they
assumed  that  all  the  collective  information  is  independent  of
each other.  Thus,  their  approach is  limited.  In [21] approach,
authors have proposed power Heronian mean by utilizing the
linguistic  information  by  considering  the  interdependency
between  the  pairs  of  the  input  arguments.  Also,  in  [36],  the
authors  have  presented  prioritized  weighted  operators  for  the
linguistic SVNNs. However, the computational process in the
proposed approach is entirely different from the existing one. In
the proposed approach, the information used for the analysis is
based  on  the  linguistic  nature  which  can  reflect  the  inherent
thoughts  of  decision  makers  more  accurately.  Also,  the
information about the attribute weights are extracted from the
support measures instead of the priori assigned. In addition, it
considers  the  interaction  between  the  pair  of  the  input
arguments during the analysis.

 

TABLE III  
Aggregated LSVNNS by Using Different Operators

Operators r1 r2 r3 r4

LSVN-PWA (s4.3438, s1.7169, s2.9015) (s3.6184, s2.3612, s2.7298) (s4.0957, s2.7103, s2.7560) (s5.0981, s2.6299, s1.9928)

LSVN-POWA (s4.6520, s1.8513, s2.6680) (s3.6738, s2.3002, s2.6714) (s4.7434, s3.1721, s3.3734) (s4.6887, s3.2484, s2.3560)

LSVN-PHA (s4.4914, s2.2938, s2.9237) (s3.3716, s2.5596, s2.8466) (s4.4097, s3.0225, s3.0346) (s4.7872, s2.7422, s2.2625)

LSVN-PWG (s3.6218, s2.1747, s4.1532) (s3.0240, s2.9553, s3.2358) (s2.9797, s3.2807, s3.1541) (s4.5290, s3.1437, s2.4846)

LSVN-POWG (s4.1687, s2.4317, s4.0928) (s2.8835, s2.9087, s3.2459) (s3.4973, s3.6412, s3.6086) (s4.5290, s3.9281, s2.9560)

LSVN-PHG (s3.8239, s2.4989, s4.4578) (s2.4989, s2.9087, s2.8745) (s2.9550, s3.8349, s3.8232) (s3.8255, s3.8724, s2.7130)
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E.  Test Criteria for Evaluating the Decision-making Methods
To validate the proposed method, Wang and Triantaphyllou

[6]  gave  some  test  criteria’s  for  validation  of  the  decision-
making approach which are given as follows:

Test criterion 1: “A valid decision-making approach should
give  the  same  best  alternative  even  if  a  non-optimal
alternative is changed by another worse one.”

Test  criterion  2: “An  valid  decision-making  approach
should have transitive property.”

Test  criterion  3: “Decomposition  of  decision-making
problem  into  smaller  problems  should  not  affect  the  ranking
of the original problem.”

To investigate  the  validity  of  the  proposed approach,  these
three test criteria have been tested as follows.

1) Validity Under Criterion 1: As, it can be easily seen from

A3
A2

A3

A3

the Table IV,  the  LSVN-PWA  operator  results  as  non-
optimal  and  as  the  worst  one.  For  execution  of  the  test
Criteria  1  on  the  proposed  approach,  the  alternative  is
replaced with less desirable alternative in the original decision
matrices.  The  changed  data  for  the  alternative  is  given  in
Table XI.

r1 = (s4.3438 s1.7169 s2.9015) r2 = (s3.6184
s2.3612 s2.7298) r3 = (s2.7451 s3.4168 s3.5128) r4 = (s5.0981
s2.6299 s1.9928)
S (r1) = 5.2418 S (r2) = 4.8425 S (r3) = 3.9385 S (r4) =

A4 ≻ A1 ≻ A2 ≻ A3
A4

Apply  the  LSVN-PA  operator  to  aggregate  the  modified
decision-making  metrics  and  then  apply  the  LSVN-PWA
operator  to  get  the  final  aggregated  values  which  are
summarized  as , , , ,

, , , ,  and ,
, .  The  score  values  of  these  numbers  are

, ,  and 
5.4918.  Thus,  alternatives  are  ranked  as 
which indicates  is the best alternative as given by the actual
problem. From this, we conclude that the given approach does
not reverse the original decision after replacing the non-optimal
alternative by some other alternative. Therefore, the proposed
method is effective according to test Criteria 1.

2) Validity Under Criteria 2 and 3: For testing the validity
of the above method by using the remaining two test criteria’s,

 

TABLE IV  
Score Values of Aggregated LSVNNs

Operators S (r1) S (r2) S (r3) S (r4) Ranking

LSVN-PWA 5.2418 4.8425 4.8764 5.4918 A4 ≻ A1 ≻ A3 ≻ A2

LSVN-POWA 5.3776 4.9007 4.7327 5.0281 A1 ≻ A4 ≻ A2 ≻ A3

LSVN-PHA 5.0913 4.6551 4.7842 5.2608 A4 ≻ A1 ≻ A3 ≻ A2

LSVN-PWG 4.4313 4.2776 4.1793 4.9669 A4 ≻ A1 ≻ A3 ≻ A2

LSVN-POWG 4.5481 4.2430 4.0825 4.3584 A1 ≻ A4 ≻ A2 ≻ A3

LSVN-PHG 4.2891 4.1841 3.7656 4.4134 A4 ≻ A1 ≻ A3 ≻ A2
 

 

TABLE V  
Aggregated Matrix by Using LNNWAA

C1 C2

A1 (s4.5800, s2.7144, s1.8171) (s4.0851, s1.5874, s3.2711)

A2 (s4.6981, s1.8171, s2.0000) (s1.6836, s2.7144, s2.0801)

A3 (s6.1829, s2.8845, s3.0000) (s2.0000, s3.7798, s4.3089)

A4 (s2.6867, s5.3133, s2.7144) (s6.1829, s2.6207, s2.8845)

C3 C4

A1 (s6.1829, s1.8171, s2.7144) (s3.8398, s1.4422, s3.3019)

A2 (s4.8928, s2.1544, s4.1602) (s3.7828, s2.5198, s3.4200)

A3 (s6.1829, s3.1748, s3.3019) (s2.8075, s2.0000, s1.8171)

A4 (s4.0851, s2.1544, s2.2894) (s5.1155, s2.0000, s1.2599)
 

 

TABLE VI  
Aggregated Matrix by Using LNNWGA

C1 C2

A1 (s1.8171, s3.6205, s2.0561) (s3.9149, s1.6836, s5.2411)

A2 (s2.0000, s2.0561, s2.0000) (s1.5874, s3.2378, s2.4066)

A3 (s3.0000, s3.0676, s3.0000) (s2.0000, s4.3160, s4.3089)

A4 (s2.7144, s5.3793, s3.6205) (s5.9439, s2.6867, s3.0676)

C3 C4

A1 (s5.9439, s2.0561, s3.6205) (s2.8845, s1.7427, s4.0851)

A2 (s4.4814, s2.9867, s4.5800) (s3.5569, s3.1797, s3.8398)

A3 (s5.9439, s3.4211, s3.3584) (s2.2894, s2.4822, s2.0561)

A4 (s3.9149, s2.9867, s2.3538) (s4.9324, s2.0000, s1.3506)
 

 

TABLE VII  
Aggregated Values of the Alternatives by LNWPHA

R(1) R(2) R(3)

A1 (s3.8346, s1.8184, s4.3324) (s3.7278, s1.8246, s3.0596) (s6.4868, s0.9092, s0.7986)

A2 (s3.5145, s1.1608, s2.4493) (s4.6719, s2.7618, s1.2733) (s4.2265, s1.9832, s2.9664)

A3 (s3.5673, s2.8156, s2.6579) (s5.3880, s1.6848, s2.6011) (s4.6120, s2.4765, s1.8543)

A4 (s5.9348, s1.8753, s1.2836) (s5.2285, s2.0137, s1.7473) (s5.5571, s2.1654, s2.2540)
 

 

TABLE VIII  
Aggregated Values of the Alternatives by LNPA

C1 C2

A1 (s4.1449, s3.4758, s2.2553) (s3.6040, s1.6671, s4.6022)

A2 (s4.5581, s1.9737, s2.0000) (s1.4475, s2.5985, s2.1918)

A3 (s6.0270, s3.0160, s3.0000) (s2.0000, s3.2507, s4.2559)

A4 (s2.7009, s5.2991, s1.8998) (s6.3733, s2.2969, s2.9492)

C3 C4

A1 (s6.0332, s2.0011, s3.4079) (s2.8398, s1.9924, s4.3836)

A2 (s4.6146, s1.9564, s3.6782) (s3.7092, s1.9633, s3.3888)

A3 (s6.0265, s3.2439, s3.2725) (s2.1207, s2.5390, s2.2678)

A4 (s3.8890, s1.9966, s2.4444) (s4.9995, s2.0000, s1.3684)
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{A1,A2,A3} {A2,A3,A4}
{A3,A4,A1}

A1 ≻ A3 ≻ A2 A4 ≻ A3 ≻ A2 A4 ≻ A1 ≻ A3

A4 ≻ A1 ≻ A3 ≻ A2

we  decompose  the  original  problem  into  various  smaller
decision-making  problems  as , ,  and

. After applying the proposed approach, we get the
ranking  of  decomposed  decision-making  problems  as

, , and  respectively. If
we  combine  the  ranking  of  these  decomposed  problems,  we
get  the  final  ranking  as ,  which  is  same  as
that  of  the  original  (un-decomposed)  problem  and  also
performs  the  transitive  property.  Thus,  both  test  criteria's
verify the proposed approach.

V.  Conclusion

In this paper, an attempt has been made to present the power
aggregation  operators  from  both  arithmetic  and  geometric
points  of  view,  under  the  LSVN  environment  for  various
decision-making problems. The important characteristic of the
proposed  work  is  that  they  consider  the  supporting  degree
between  the  criteria’s  and  ignore  the  effect  of  biased
assessments on the results by giving little importance to those
false  and  biased  ones  compared  to  other  ones.  The  proposed
operators  involve  the  simple  power  aggregation,  power
weighted  aggregation,  power  ordered  weighted  aggregation,
and power hybrid aggregation operators. These operators have
been used to develop the group decision-making approach and
then apply to a practical  problem related to decision making.
Further,  from the  comparative  analysis  and the  validity  tests,

we  can  conclude  that  the  proposed  approach  can  be
successfully  utilized  in  evaluating  the  best  alternative  and  is
more reliable than simple algebraic and geometric operators as
it considers the relationships among the criteria and overlooks
the  useless  biased  data.  Future  research  will  focus  on
introducing the various other operators [39]–[43] or to extend
the  approach  to  the  linguistic  interval  neutrosophic
environment [44]–[48].
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