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Linguistic Single-Valued Neutrosophic Power
Aggregation Operators and Their Applications
to Group Decision-Making Problems

Harish Garg and Nancy

Abstract— Linguistic single-valued neutrosophic set (LSVNS) is
a more reliable tool, which is designed to handle the uncertainties
of the situations involving the qualitative data. In the present
manuscript, we introduce some power aggregation operators
(AQOs) for the LSVNSs, whose purpose is to diminish the influ-
ence of inevitable arguments about the decision-making process.
For it, first we develop some averaging power operators, namely,
linguistic single-valued neutrosophic (LSVN) power averaging,
weighted average, ordered weighted average, and hybrid aver-
aging AOs along with their desirable properties. Further, we ex-
tend it to the geometric power AOs for LSVNSs. Based on the
proposed work; an approach to solve the group decision-making
problems is given along with the numerical example. Finally, a
comparative study and the validity tests are present to discuss the
reliability of the proposed operators.

Index Terms—Aggregation operator (AO), group decision making,
linguistic neutrosophic numbers, neutrosophic set, power operators.

I. INTRODUCTION

ULTIPLE criteria group decision-making (MCGDM)
Mproblems seek great attention to practical fields, whose
main objective is to determine the most desirable alternative
to the finite alternatives according to the preference values of
the criteria given by different decision makers. However, in
order to process the imprecision in data, fuzzy set (FS) [1] and
intuitionistic fuzzy set (IFS) [2] theories are the most success-
ful ones, which characterize the criterion values in terms of
membership degree. Numerable attempts have been made by
different researchers in processing the information values us-
ing different operators under these environments [3]-[13]. It is
remarked that neither the FS nor IFS theory is able to deal
with indeterminate and inconsistent data. For instance, con-
sider an expert which gives their opinion about a certain ob-
ject in such a way that 0.5 being the “possibility that the state-
ment is true”, 0.7 being the “possibility that the statement is
false” and 0.2 being the “possibility that he or she is not sure”.
To resolve this, Smarandache [14] introduced a new compon-
ent called the “indeterminacy-membership function” and ad-
ded to the “truth membership function” and “falsity member-
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ship function”, all which are independent of each other and ly-
ing in [07, 17], and the corresponding set is known as a neutro-
sophic set (NS). NS theory handles the indeterminate informa-
tion, but this theory is hard to implement on the practical
problems, therefore, Wang et al. [15] presented the single-val-
ued neutrosophic (SVN) set (SVNS), a special case of NSs.
Due to its importance, several researchers have made their ef-
forts to enrich the concept of neutrosophic sets in the decision-
making process.

In order to evaluate the given information in decision-
making, the important aspect of solving the problem is to
design an appropriate mathematical function which aggregates
the different preference of the decision makers into the
collective ones. In that direction, Ye [16] presented the
operational laws of SVNSs and SVN weighted average and
geometric (WAG) AOs (aggregation operators) denoted by
single-valued neutrosophic weighted average (SVNWA) and
single-valued neutrosophic weighted geometric (SVNWG).
Peng et al. [17] defined the improved operations of SVN
numbers (SVNNs) and developed their corresponding ordered
WAG AOs. Nancy and Garg [18] developed the WAG
operators by using the Frank norm operations. Later on, some
different kinds of the AOs have been proposed by the authors
in [19]-{22].

All these above operators, aggregate the given criterion
values without considering the precedence relationship among
them. To get rid of this flaw, Wu et al. [23] defined the
prioritized WAG operators for SVNNs. Liu and Wang [24]
developed the prioritized ordered WAG operators while Ji
et al. [25] established the single-valued prioritized Bonferroni
mean operator by using the Frank operations. Garg and Nancy
[26] developed a nonlinear programming based TOPSIS
(“Technique for order preference by similarity to ideal solution™)
approach for solving the decision-making problems under the
interval NS environment. Yang and Li [27] extend the power
operator to NS domain. Aside from these, various authors
incorporated the idea of NS theory into the different fields
[28]-[32].

In the neutrosophic environment, the information which is
evaluated is quantitative in nature and is expressed by the means
of numeric numbers. But in real applications, the ‘decision-
makers’ opinions or preferences is usually uncertain due to
increase in complexities and the subjective nature of human
thoughts. Thus, the exact numbers are not the best option to
represent such kind of qualitative information. For this, a new
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concept, namely, linguistic variables (LVs) [33] has been
established to access the information which cannot estimate by
exact numbers. Due to the great importance of linguistic
variables, it has become the hot topic of research among the
researchers. Based on this idea, Li et al. [34] introduce the
linguistic neutrosophic sets (LNSs) in which membership,
indeterminacy, and non-membership is expressed as a LV
instead of real numbers and also proposed some Heronian mean
operators. Fang and Ye [35] introduced most basic aggregation
operators, namely, Linguistic neutrosophic number WAG
operators. Garg and Nancy [36] presented some neutrosophic
prioritized AOs under the linguistic SVNS (LSVNS)
environment.

As these basic operators are crucial tools in the aggregating
process and easily gives the best choice according to the given
information, but these operators skip the consideration of the
relationship between the given data. In the present work, we
introduce different types of power AOs in LSVNS
environment. The LSVNS can easily express the uncertain
qualitative information in the best way and power AO
provides more versatility in the information aggregation
process. To get the advantage of both LSVNS and power
aggregation, we proposed power AOs for linguistic single-
valued neutrosophic numbers (LSVNNs) of two types: The
first type of power aggregation operators aggregates the input
data by assigning the weights based on the support function
and the second type of power operators considers not only the
existing evaluated weights but also use the weights evaluated
from support function. Further, the basic properties of these
operators have been figuring out. In the end, a method for
solving the MCGDM problems has been presented and then
applies this approach to a practical example.

The rest of the work is summarized as: Some basic features
related to NSs and the LNSs are presented in Section II. In
Section III, operational laws and based on it, some series of
LSVN power weighted AOs have been proposed along with
their certain properties. Section IV established the group
decision-making approach based on the proposed operators
and validate with a numerical example. Lastly, the conclusion
has been summarized in Section V.

II. PRELIMINARIES

In this section, some basic concepts on NSs over the
universal set X have been reviewed.

Definition 1 [14]: A neutrosophic set (NS) a over X is given
by

@ = {(x,00/(x), Yo (x),00(x)) | x € X} (1)

where for each x, 0,(x), Yo (x), 0o(x) C[07,17] represents the
extent of agreeness, indeterminacy and disagreeness, respect-
ively such that 8,(x) + ¥4 (x) + 0o (x) < 3*. On the other hand,
if 0,(x), Wo(x), oo(x) €[0,1] such that 0<6,(x)+yq(x)+
0q(x) <3 for all x then this set is called SVNS [15]. A pair
@ = (0y,¥q,0) is called SVN number (SVNN).

Definition 2 [35]: Let Q ={so, 51,...,5;} be a linguistic term
set (LTS) with odd cardinality t+1 and O = {sy|sg <
sp < 8;,h €[0,¢]}. Then, a LSVNS 4 in X is defined as

A ={(x,59(x), 54(x), 5o-(x)) | x € X} @)

where s4(x), 54(x), s5(x) € Q represent the linguistic truth, in-
determinacy and falsity degrees of x to A, respectively, with
condition 0 < @+ +0 < 3t. A triplet (sg, sy, o) is called lin-
guistic SVN number (LSVNN). Further, these LTS must be
satisfy the following properties:

Dsp<sp,ok<h

2) Neg(sx) = sp such that h =1 —k.

Definition 3 [35]: In order to compare the LSVNNS, a score
S and an accuracy function H can be represented as
SPB)=QRt+0—-y—0)/3€[0,t] and HB)=@+y+0)/3 for
LSVNN B = (sg, Sy, So). Thus, based on these functions, an
order relation between two LSVNNs S and ¥, denoted by
B >, is defined if either S(B) > S (y) or S(B) =S (y) AH(B) >
H(y).

Definition 4 [37]: Let a1 =(sq¢,,5y,,5-,) and a2 = (ss,,
Sy,,Scs,) be two LSVNNs. Then, the distance between o and
a; is given below:

1
d(ar,a2) = §(|91—92|+|¢'1—¢'2|+|0'1—02 D. ()

Definition 5 [38]: Let a1,as,...,a, be ‘n’ attributes then the
power averaging (PA) operator is defined as

1 1+G(a))
PA(ay,an,...,ay) = - Qj 4)
=1 ¥ (1+G(a))
j=1
n .
where G(a;) = Zk:l ek supp(aj,ax) and supp(ej,ax) is the

support for a; from ay, defined as supp(a;, ax) = 1 —d(aj, ax)
and satisfies the following properties.

1) supp(a;, ax) € [0,1];

2) supp(a;j, ak) = supp(ak, @;);

3) supp(aj, ax) = supp(au, av) if d(aj, ar) < d(ay, ay).

Definition 6 [35], [36]: Let @ = (sg, Sy, So), @1 = (S4;, Sy,»
So,) and a2 = (8g,, Sy, S0, ) be three LSVNNS, then

1) a¢ = (5o, Sy S0);

2) a1 Uay = (max(sg,, Sa,), Min(sy, , Sy, ), Min(Sq,, Sy ))s

3) a1 Nay = (min(sg, , S, ), Max(Sy, , Sy, ), MaX(Se , Sory )3

4) a1 = az if 59, = S6,, Sy, = Sy, aNd S5 = Sery;

5) a1 = as if sg, > gy, Sy, < Sy, and 55, < Sor,y.

Definition 7 [12]: A function ¢:[0,1]x[0,1] — [0,1] is
called t-norm if it satisfies the boundary, monotonicity,
commutativity and associativity. On the other hand, a function
¢ defined by ¢(x,y)=1-4(1—-x,1-y) V¥ x,y€[0,1] is called
t-conorm. The t-norm ¢ is generated by a decreasing function
k as £(x,y) = k=1 (k(x) + k(y)) with k(1) = 0 and the t-conorm ¢
is generated as ¢(x,y) = A~ (h(x) + h(y)), where h(x) = k(1 - x).

III. POWER AGGREGATION OPERATOR FOR LINGUISTIC
NEUTROSOPHIC SETS

In this section, some new power AQOs for linguistic
neutrosophic  sets  namely, linguistic  single-valued
neutrosophic-power ~ weighted average (LSVN-PWA),
linguistic single-valued neutrosophic-power ordered weighted
average (LSVN-POWA), linguistic single-valued neutrosophic-
power weighted geometric (LSVN-PWG), Linguistic single-
valued neutrosophic-power ordered weighted geometric
(LSVN-POWG) etc., have been presented to aggregate the
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LSVNNs.

A. Operations Laws for LSVNNs

In this section, based on generators ¢ and ¢, we defined the
operational laws for LSVNNSs as follows.

Definition 8: Let a1 = (Sq,,Sy,,50,)> @2 = (84,5 Syr» Scr,) and
« = (8¢, Sy, So-) be three LSVNNs and a real A > 0, we have

1) a®a = (S,(,,_l(h(f’;)w(‘?)))’ e ()

sf(k*‘(k(”%)%("%))));
)a1Qap = (st(kl(

>

(a2 ) o ()2

P —

sz(h-](h(?)”’(i?))));
30 = (s e S o
4 at= (st(k’l(/lk(g)))’ Si(n1 (an( 7)) et (lh((?’))))'

Theorem 1: The operations laws defined in Definition 8 are
again LSVNNSs.

Proof: Since k is a decreasing map and h(x) = k(1 —x),
therefore, we get 0 <k~ (k(6)/t) +k(02/0) <1, 0<h~'(h(y /t)+
h(ya /D)< 1,0<h™ (h(o1 /1) + h(o2 /1)) < 1and O < k™ (k(0; /1) +
k(02/0) + b~ (h(p1 /1) + k(2 /D) + B~ (o1 /1) + (02 /1) < 3.
Therefore, a; ® @y is LSVNN. Similarly, a; @ a2, da and at
are LSVNNE. n

Theorem 2: Let ay, @y and a be three LSVNNSs and 2,1, 1,
be three positive real numbers, then

1) a1®ar = day;

2) a1 ®ar =y Ray;

3) A1 ®an) = dag ® Aar;

4) (a1 Qax)t = af@ag;

S) Liad a = (A +)a;

6) 2V ®at? = o1t 2,

Proof: We shall prove only the parts iii) and remaining parts
done similarly.

For real number A > 0, we have

= Ada1 D Aas.
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Remark 1: We inspect some special cases of A and a.

1) If a=(0,0,0), then Aa = (h"'(Ah(0)),k ' (1k(0)),
k~1(Ak(0))) = (0,0,0).
2) If a=(1,0,0), then Aa=(h"'(A(1)),k " (Ak(0)),

k~1(Ak(0))) = (1,0,0).
3) If a=(0,0,1),
k~1(Ak(1))) = (0,0, 1).

then Ao = (A1 (A(0)), k™1 (Ak(0)),

4) If 21—0 then Ada=(h"'AnWO/1), Kk (Ak/1),
k~Y(Ak(o/1))) — (1,0,0).

5 If A=1, then Aa=(R"'An0/1), k' (Aky/1),
kYo /1)) = (59,59, 50).

6) If A—>oc0 then Aa=h"'AKO/D)), k'(AkW/1)),

k=Y (Ak(o /1)) = (1,0,0).

Next, we propose some averaging and geometric power
AOs for a collection of LSVNNs a/jz(sej,s,pj,s,yj)
(j=12,...,n) denoted by Q with the condition that
0j,¢j,0;# 0 for any j.

B. LSVN Power Averaging Operator

Definition 9. A linguistic single-valued neutrosophic- power
averaging (LSVN-PA) aggregation operator is a mapping
LSVN-PA: Q" — Q, defined by

n 1+G(aj)
LSVN-PA(ay,az,...,a,) = © - Qj 5)

a > (1+6(@))

=

where a; € Q and G(a;) = Z supp(a;, ).

n
k=1,j#k
Theorem 3: The aggregated value by LSVN-PA operator is
still a LSVNN and is given as
S 9

| 1+G(a)) h((.})

N
a)
M
5

_.l

n

=Ly (1+G(aj)
j=1

1+G(a; )
(a'j) k?

M=

LSVN-PA (a1, s, ...,a,) =] (k!

n

/=1 _zl (1+G(a}))
f=

S
n 1+G(a; )
Jo| & 146€@)

1S (146G(a;)
=1

(6)

Proof: We will verify (6), by applying the mathematical
induction on n. For the sake of simplicity, we take
&= (1 +G(a j)) /( " (1 +G(a j))). Then, the following steps
of the mathematical induction have been followed for o; = (s9;»
Slpjy SO'j)'

Step 1: For n =2, we have a1 = (sg,, Sy, S0, )> @2 = (89,5 Sy
So,) and real numbers £1,& > 0, we have &1aq =(st(h_1(§1 )
Skt Ekwa /) SN @k ) A0 202 = (8,1 (60, n) )
Sk (eaktwa/n) Si(i (eakiorm))- TheTefore,
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LSVN-PA(a1,ar) = é1a1 ©Eran

[
-~
T
—
<
I
Ny
S
=
N‘\q
)
~—
Neussssend

Thus, (6) is true for n = 2.
Step 2: Assume that (6) is true for n=m. Then, for
n=m+ 1, we have

m
,a'm+l) - 691 é:]a'] ea§m+1a'm+l

) S(h l(fmﬂh(
) o et

LSVN-PA(aq,az,...

(g
5o

&)

Tz
o
S‘
N‘\_

<.

S
- 1

~ ‘\S

k!

Ny
S

EMS

g en) oy
st W l[h[h l[g fjh 971)])+h(h-1(§m+1h( 1)))]]
At (Bt )
RISERE R,

S m 7s m . 9

| h™ 1[ ! gr/ ]] t[k 1[ ilgjk(w—t’)]]
— i=1

s J
{e[go0)

Thus, the result holds for n =m+ 1 and hence it is true for
allneZ*. [ |

Example 1: Let ay = (s7,52,54), @3 =(s5,53,55) and a3 =
(84,53, s3) be three LSVNNSs. Based on the support function of
LSVNNs, we get G| = G(ap) = 1.6250, G, = G(ap) = 1.7083
and G3 =G(a3)=1.6667 and hence £;=(1 +Gj)/(z§:1(1 +G)))
=0.3281, & =0.3385 and & = 0.3334. Take r =8

and by considering the additive generators k(x) = —log(x) if
0<x<1 with k(0) = o0 and A(x) = k(1 —x) if 0 <x <1 with
h(1) = oo corresponding to t-norm and t-conorm, respectively.
Then, by utilizing this information we get

|
|
|

| e
|
|
|

becomes &

ej-’?]’
k3

1-
LSVN-PA(e1,a2,a3) = ( = (
3 (v éJ’S 3 (o
LSRN
=1 J=1
S8(l—( %)03281 (1 %)03 85)((1 %)03334)
- Sg((é)“281 %WSX(% Ow)’

Ss((§)0.3281 >< 0 3334

8

5103385
§

= (85.69745 52.6263 S3.9194)

Further, the LSVN-PA operator satisfies certain properties
which are stated as below. Here, for simplicity, we denote
§j=1+G(e))/(X)(1+G(@)))).

Theorem 4 (Idempotency): If a;j=a = (sg,sy,5s),¥j, then
LSVN-PA(ay,as,...,a,) =«

Proof: As aj=a,Vj. Thus &;=1/n and therefore by
LSVN-PA operator we have LSVN-PA(aj,az,...,a,) =
®j(1/n)a =a. |

Theorem 5 (Monotonicity): Let a;= (500_j9sl/ra_,’s<ra_,) and
Bj= (s%, Sup;s sgﬁj) be two LSVNNSs such that S6a; < S5
Sy > Sup, and S > Sag; for all j, then LSVN-PA(ay,ay,...,
a,) < LSVN-PA(B1,55,...,B,) for a fixed &;.

Proof: Since 9{11. < Oﬁj, Ya; 2 Yp; and Oq; 2 0. Also, k is
decreasing and £ is increasing map. Thus, for a fixed ¢;, the

following equations holds:

n! Zf}h( ”/ <h! zn:é‘jh(e—[:])]
j=1
e ijk/“’ 2 ijk(wﬁ’ ]
= Zgjk(g) >k Zf,k(—)J
j=1

By using the definition of score function of LSVNNSs, we get

S(LSVN-PA(ay,az,...,a))

| Belt e Bt
B

N 2t+h_1[;nlfjh(?)]—k_l{;fjk(@)]
(S

= S(LSVN-PA(B1,52,--.,84))-

Hence, LSVN-PA(ay, s, ...,a,) < LSVN-PA(B,,fs. ...

2Bn)-
|
Theorem 6 (Boundedness): 1If o =(maxj(ng), min;(sy,;),
minj(s{,j)) and a” = (minj(st), max (sy;), maxj(s,,j)) , then
a” <LSVN-PA(ay,ar,..
Proof: For LSVNNs a;, we have min;(6;) <6; <

min;(¥;) < ; <max;(y;), min;(o ;) <o ;<max;(c ;). Since the

Lap) <at.
max ;(6)),
generators k, h are decreasing and increasing maps,

respectively, therefore, by



550

t[h" [ifjh(minj@)]] <t
=1

<t

t[kl [angjk(minj@)]] <t
=

<t

t[k_l (; g{,-k(minj?)]] <t

<t

which implies

min(6;) < t[h_l {
J

min(y ) < r[k’ (Z »

1=
I
=
—_
= |\CD
~——
N———
N —
A
=)
o
»
~
\%
~

n o
mjjn(a'j) < t{k‘1 [Z fjk(T/)J] < mjax(O'j).

J=1

Now, by using Definition 6, we

have

n 9
(m}n(ej), max(y ), max(c J')) = [ (h_l {; 6 h(%)]]

flget)

(max(@ ), min(yr j),m_in(O'j)) e
J Y J

and

[ (Be) (Bt

Hence, = < LSVN-PA(ay,a»,.
Theorem 7  (Shift

ey

Invariance):

efge

[ (S

For LSVNNSs,

]]

|
B =

(S04, Sys>Sos) and a;=(sg,,5y.,5+.), j=1,2,...,n, we have
B> Spr Sop J j2 Y200

LSVN-PA
a,)®p.

(a1 @ﬁ, 0%} @ﬂ .....

@, ®B) = LSVN-PA(ay, 2, ...,

Proof: By using the addition law for any two LSVNNSs, we

get

o=

Thus, by using (6), we have

D)) A ()
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=LSVN- @,)®p.
|
Theorem 8 (Homogeneity): For any real number y >0 , we
have LSVN-PA(yay,yas,..., ya,) = YLSVN-PA(a1,ay,...,
ap).

Proof: As aj=(se;,Sy;,So;) be a LSVNN, Vj and y >0 be
a real value, therefore, we get ya;= (st(,rl(yh(gj 0))>
Si(k1 (vkaw /) Sili (vkior s 1)))- NOWs

LSVN-PA(yay,yas,..., Yn)
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Furthermore, by taking ¢&; = (1 +G(aj))/(2’;.=1(1 +G(a)))
and considering the different generating function k, we obtain
some special AOs as follows:

1) If we take k(x) = —log(x), then (6) becomes

LSVN-PA(ay,a2,...,ay) =

=04 )

and called as LSVN Archimedean power averaging operator.

=

92—
ii) Assume k(x) = log(—x), then (6) becomes
X

sj]f[l( )Jlf[l( 9,)5,-’
A5 i -3
[oeneT
LSVN-PA(@1,@2,...,a)=|  — —
A= A
' 211 (%)
1(2- %)+ 11 (%)
J=1 J=1

and called as LSVN Einstein power averaging operator.
+(1-
iii) If k(x) = log(ny)x), y € (0, 00) then (6) becomes

LSVN-PA(aq,as,...,a,)

it i

1

jli[l(l‘i‘(y - ) +(y_1)j:1—[l(1_97,)1

s y11(%)° ’
. o

ﬁ(1+(7—1)(1_ﬁ))61+(7_1)ﬁ(ﬁ)&

=1 p 1

| V()

1 j= | |

so-n(-)f o f(5f

and called as LSVN Hamacher power averaging AO.

C. Weighted Power Aggregation Operator

In this section, we defined some weighted power AOs for
LSVNNS.

Definition 10: A LSVN power weighted averaging (LSVN-
PWA) operator is a mapping LSVN-PWA : Q" — Q defined
as

LSVN-PWA(a1, 7. ..., ap)= él ¥a; %
s

w;i(1+G(a}))

where ¥ = , @ €Q, w; is the weight vector

n
D wi1+G@))
=1
of a; such that w; > 0, Z;:] wj=1and
G(a)) = Z,’(‘Zl,#k supp(a, a).

Theorem 9: The aggregated value by LSVN-PWA operator
for a collection of LSVNNs a; = (sp;,5y;,50;) is again
LSVNN and is given by

LSVN-PA(ay,az,...,a,) = s[ (

£enl?))
g o) "

Proof: Similar to Theorem 3. [ ]
Example 2: Let a;=(s7,52,54), a3 =(s5,53,55) and
a3 = (84,53, 53) be three LSVNNs and w = (0.3,0.4,0.3) is the
weight vector of aj;j=1,2,3. Based on it, we get
= G(al) = 1.6250, G2 = G(a/z) =1.7083 and G3 = G((Z3) =
1.6667. Take t =8 and consider the additive generator as:
k(x) = —log(x) if 0 < x < 1 with k(0) = oo, we have

LSVN-PWA(a1,a2,a3)
SS(I—(l—%)o'z%gx(l—%)0'4056 (1_7)0 2995)

— Sg((%)0.2949)((%)0A4056X(%)0.2995),

ss((%)0'2949><(§)0‘4056><('

s %)0.2995)

= (55,6348 52.6620 54.0174)-
Further, as similar to LSVN-PA operator, it can be easily

verified that the LSVN-PWA operator also has the properties
of being boundedness, shift-invariance etc.

D. Ordered Weighted Power Averaging Operator

Definition 11: A LSVN power ordered weighted averaging
(LSVN-POWA) operator is a mapping LSVN-POWA:
Q" — Q, that has an associated weight vector w = (wy,wo,...,
wn)T, such that w; >0 and Z;le w; = 1and is defined as

LSVN-POWA(a}, .. .., ap)= _él ¥ i)
J:

()

| e |

)

where 6 is the permutation of (1,2,...,n) such that
as(j-1) = as for j=2,3,...,n

Example 3: Consider the data set as mentioned in Example
2. Then the score values of the LSVNNSs are S () = 5.6667,
S(ap) =4.333 and S(a3)=4.6667. Since S(ay)>S(a3)>
S(az), therefore, asy =a) = (S7, 52, S4), as2) = a3 = (S4, 53, S3)
and as3) =ay = (S5,S3,S5) which gives G1 = G((Il) = 1.6250,
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G2 = G(az) =1.6667 and G3 = G(a3) =1.7083. Thus, we get
LSVN-POWA(ay,as,a3)
SS(l_(1_%)0,2949X(l_%)0A4056X(1_%)0.2995),

— SS((%)0,2949X(%)0.4056X( % )0.2995),

SS((%)0.2949X(%)0.4056X( % )0.2995)

= (85.56155 52.6620» 53.8055)-

Furthermore, LSVN-POWA operator also satisfies the
properties of indempotency and boundedness.

E. Power Hybrid Averaging Operator

Definition 12: A LSVN power hybrid averaging (LSVN-
PHA) operator is a mapping defined as LSVN-PHA: )" — Q
and given by

LSVN-PHA(a1, ... ay) = él W g
j:

Sl[l—l[” ,(éé(j))]]’
G DY ST B
=
N n o .
= t[k—l[ 5 tyjk(i’éy))]]
=
N

(10)

where w = (w1, ws, ...,w,)T is the associated weight vector of
LSVN-PHA operator satisfying w; >0 and ¥'}_j w; =1, ds()
is the jth largest of the weighted LSVNNs ¢&; =nw;a;,
j=1,2,...,n, n is the number of LSVNNs, w = (w,wy,...,
w,)T is the normalized weight vector of aji(j=1,2,...,n) and
G(aj) = 22:1,_#1{ supp(a;, ax).

Example 4: Let ay=(s7,52,54), a=(s5,53,55) and
@3 = (54,53,53) be three LSVNNs, w = (0.25,0.55,0.20)” be
corresponding weight vector, then, we evaluate ¢; = 3w;a;,
by using the additive operator k(x) = —log(x) as below:

ap = (St(l_(l_%)sxo.zs), St((%)zxozs), St((%)3x025))
= (53.2432, 55.6569> 56.7272)

ap = (St(l_(l_%)sxo.ss), St((%)zxoﬁ), S[((%)MOASS))
= (53.3355, 54.66455 56.1777)

a3 = (St(l_(l_%>5x0.20), St((%)sxo.zo), St((%)3x0.20))
= (851.03565 56.57505 56.5750)-

Then, the
@5(1) = (533355, $4.6645, 56.1777)s  A6(2) = (832432, 85,6569, 56.7272),
and d5(3) = (51.0356> $6.5750» 56.5750)- Assume that w = (0.3, 04,
0.3)T is the importance associated with LSVN-PHA operator
and by using support we have, G| = 1.6250, G, = 1.7083 and
G = 1.6667 and therefore ¥'; = (w;(1+G)/(Z, wj(1+G)))
becomes W =(0.2949,0.4056,0.2995). Thus, by
additive operator k(x) = —log(x), we get

based on score values of «&; we get

taking
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LSVN-PHA(a, 2, 3)

= SS[I_F[ (1_%)\"/']’ ss[ﬁ (@)ij sg(ﬁl(@)q’j]
i1 ! j=

J J=1 =

Ss(l—(l—%)0‘2949><(1—%)0‘405&(1—%)0'2995)’

=1 S P ( ( % )02949 ><( 5,6;69 )0-4056 % ( 6. 5g50 )0,2995 ) ,

58(( 6_1%)0.2949X(%272)0.4056X( 6'5g50 )0.2995)

= (5269855 55.5904» 56.5154)-

F. LSVN Power Geometric AOs

In this section, we presents some series of LSVN power
geometric aggregation operators.

Definition 13: A LSVN power geometric (LSVN-PG)
operator is a map LSVN-PG : Q" — Q, defined on a collection
of LSVNN «a; as

LSVN-PG(ay,as,...,a,) = éla'?
j=

frlgo)

1+G(@)) e
G(@)) = Yoy jer SUPP(@ s i)

where ¢ = ——————,
XL+ Glay)
Definition 14: A LSVN power weighted geometric (LSVN-
PWG) operator is a mapping LSVN-PWG: Q" - Q and
defined as
¥j

LSVN-PWG(ay,as,...,a,) = él a;
j:

| el
i)

where w = (wi,ws,...,w,)" is the weight vector of a; such
thatw; >0 and 3} w; = 1.

Definition 15: A LSVN power ordered weighted geometric
(LSVN-POWG) operator is a mapping LSVN-POWG:
Q" — Q, that has an associated weight vector w = (wy,ws,
...,wp)T, such that w; >0 and Z;le w;j =1, and is defined as

LSVN-PWG(ay,a3,...,a,) = S( n
tk"(

) ‘Pfk(eaT(j))]]’

Jj=

(B o £ o)

J= J=
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where (6(1),6(2),...
as(j-1) = as) forall j=2,3,...,n

Definition 16: A LSVN power hybrid geometric (LSVN-
PHG) operator is a mapping LSVN-PHG : Q" — Q defined on

,0(n)) is a permutation of (1,2,...,n) with

a collection of LSVNN «j,j=1,2,...,n as
‘{’
LSVN-PHG(a,as,...,a,) = 6(])
s n T ’
el
j=1
s n Jop o B
| )
j=1
s
Z \P h 0(j) ])
(& ens2)
where w = (w1, ws,...,w,)T is their associated weight vector

such that w; > 0 and Z’;zl wj =1, and &sj) is the jth largest of
the weighted LSVNNs ¢&; (&;=a/™/, j=12,...,n),
w= (Wi, wa,...,w,)! is the standardized weight vector of ;.
Further, as similar to power averaging AOs, it has been
observed that the above defined geometric operators also have

the property of boundedness and idempotent.

IV. MCGDM APPROACH BASED ON PROPOSED OPERATORS

In this section, an approach to decision-making problems
has been established by using the above AOs which is
followed by a practical example.

A. Proposed Approach

Consider a decision-making problem which consists of m

alternatives A1, A»,..., A, and n criteria C1,C»,...,C,, having

the weight vector w = ,w,)T such that w ;>0 and

n
Qi

Dl ’ D2, LR}
preferences in terms of LSVNNSs and their overall preference

(w1, w2,...

w;=1. Assume that a set of ‘I’ decision makers

D; have evaluated these alternatives and give their

values are summarized in the decision matrix R = (rgjq,)) y
mxn

where r .,1. Based on these

= (S0, 8,05 5,@), 4= 1.2,.
ij ij 1
1nformat10n the following steps of the proposed approach, to

find the best alternative(s), have been summarized as follows:
Step 1: Calculate G( (q)) as follows:

l

G(rg?)) = Zsupp( @, 7)) (11)
G
where supp( @ (Z))—l d( l(;]), S)) i=1,2,....mj=1,

2,...,0q,z= 1,2,...,l.

Step 2: Utilize the power average or geometric aggregation
operator to aggregate the preference values of each decision
the
rij = (8,5 Sy;;» So;) Which are computed as:

i) By using LSVN-PA operator

maker into collective one and represented as

rij = LSVN-PA(r{), D, .17}

@ ||
5wt o)
q

= (E (1+G6(+))

N

i (q) (@)
= &k —11+G( ()) k[w;j

g=1 q

3 (1+6(4)
s

(@) ()
o k1 l —1+G( q) k[ lj
= 5 ()

ii) By using LSVN-PG operator
iy =LSVN-PG (1,7, 1))

N 5
n 146G e)(")]
k!
7= §1(1+G(r;g>)) '
e
N >
s tele) (v
= h-1 —_—
t peril @ t
EI(HG(’?; )
1 [e 1eal) (o0
1| h! . —
A 3 (1+6(57)) !
e

Step 3: Calculate G(ryj),i=1,2,...,m;j=1,2,...,n, as
" .

G(rij) = » supp(7ij, Fiu)

where

supp(#ij, i) = 1—d(rij,riu), i=12,....mu,j=1,2,....n

Step 4: Calculate the comprehensive evaluation value r; of
each alternative by using LSVN-PWA or LSVN-POWA or
LSVN-PHA or LSVN-PWG or LSVN-POWG or LSVN-PHG
operator.

Step 5: Calculate the score function S(r;),i=1,2,...,n, by
using Definition 3.

Step 6: Rank all the alternatives according to the descending
order of score values of alternatives.

B. Ilustrative Example

The above mentioned approach has been illustrated with a
numerical example taken from Garg and Nancy [36] as:

Goods and services tax (GST) is one indirect tax for the whole
nation, which will make India a unified common market. While
GST promises to a user in an era of the unified indirect tax
regime, integrating India into a single homogeneous market, it
comes with certain complications inherited from the legacy tax
regime. With the government gearing up to enforce the GST in
Punjab from July 1, the issue of traders having limited computer
knowledge and poor connectivity. In order to counter this, the
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state government has planned to train more than 2000 youths as
“GST Mitra” to cater the traders. Punjab GST Mitra Scheme,
which has to be started as a pilot project from Patiala, proposes
to assist taxpayers in furnishing the details of outward supplies,
inward supplies and returns, filing claims or refunds, filing any
other applications etc., in GST Regime. It aims to create a group
of Tax professionals available in the locality or at the doorstep
of the taxpayer, at affordable costs throughout the State of
Punjab.

The poor internet connectivity in far-flung areas has emerged
as a big stumbling block in the success of “GST Mitra” scheme.
In order to provide the online services to run this scheme, the
state government is planning to give contract combinedly to
private mobile service provider along with state-owned BSNL.
For this purpose, committee formed by the government short-
listed the four internet service provider, namely, “Bharti Airtel”
(A1), “Reliance Communications” (A;), “Vodafone India”
(A3) and “Mahanagar Telecom Nigam” (A4) under the criteria:
“Customer Services” (C1), “Bandwidth” (C,), “Package Deal”
(C3), “Total Cost” (C4) with weight vector w = (0.2, 0.3, 0.1, 0.
4)T . Assume that weight vector associated with hybrid operator
is w=(0.2575,0.3316,0.1292,0.2817)T. Government has
selected three decision makers Di,D, and D3 who have the
responsibilities to evaluate the given alternatives and rate their
preferences in terms of linguistic term set Q = {5, = “extremely
poor”, s, = “very poor”, s, = “poor” ,s; = “slightly poor”, s, =
“fair”, s5 = “slightly good”, s, = “good”, s, = “very good”,
sg = “extremely good”}. The rating values of these decision
makers are summarized as

Ci Cy C3 Cy
ALl (54,54,53) (53,51,85) (86,53,55) (82,53,56)
RO = Az | (54,83,52) (51,52,83) (85,51,83) (83,51,54)
Az| (s5,53,53) (52,53,54) (S6,54,53) (51,54,53)
Agl (s3,85,51) (87,52,82) (53,82,53) (S5,52,52)
Ay [ (s3,85,82) (S4,54,57) (85,51,54) (82,51,83) ]
R® Az | (s5,51,52) (52,85,81) (83,85,54) (55,54,52)
Az | (s7,54,83) (s52,83,85) (s7,52,54) (53,51,52)
Ay | (52,56,55) (86,53,83) (85,51,52) (84,52,51) |
Ar [ (s6551,51)  (55,82,81) (57,52,51)  (86,51,52) ]
RO = Ay | (s5,52,52) (52,52,83) (S6,52,56) (53,54,55)
Az | (86,52,83) (52,56,54) (53,54,53) (54,52,51)
Ay | (53,85,54) (55,52,56) (84,85,82) (56,52,51)

Without loss of generality, we have taken the additive
generator k(x) = —log(x) and hence the following steps of the
proposed approach have been summarized as

Step 1: By utilizing (11), we get

[ 1.5833 1.5417 13750 |
G| 17917 18333 18750
1.7917 1.7500 1.7917

[ 1.6250 1.6250 1.7500 |

[ 15417 15417 14167
G _| 17083 15417 17500
1.8333  1.7917 1.7083

[ 17083 1.7917 1.6667 |
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[ 1.5833 1.5833  1.500 |
GO _| 155000 13750 14583
1.7917  1.6250 1.7500

| 1.6250 1.6250 1.5833 |

[ 1.3750 1.5833 13750 |
G _| 15417 15000 16250
14583  1.625 1.5833
| 1.8333 1.8333 1.8333

Step 2: Aggregate the values of the decision matrices by
using either LSVN-PA or LSVN-PG operators and their
results are summarized in Tables I and II respectively.

TABLE I
AGGREGATED MATRIX BY USING LSVN-PA

C (&)
Ay (5453605 52,7813, 51.8465) (54.0677, $1.5813, $3.3363)
Az (5470275 51.8135» 52.0000) (51.67865 52.6758> $2.1161)
Az (56.1774> $2.8798 > $3.0000) (52.00005 $3.7580> $4.3105)
Ay (52,6918 5530825 52.7309) (56.1857» 52.62805 $2.8808)

C3 Cy
Ay (56.17105 51.81525 52.7440) (537963 51.4273, $3.2929)
Ap (54.9101552.12465 54.1543) (5376725 52.5262 $3.4441)
Az (56.16535 5320115 $3.2906) (52,8338, 51.9701 51.8033)
Aq (54.08565 52.1448 52.2911) (55.11555 $2.00005 §1.2599)

TABLE II
AGGREGATED MATRIX BY USING LSVN-PG

C1 C2
Ay (54.12565 53.66815 52.0833) (53.8989, 51.67825 55.2836)
A (5412565 $2.0508 > $2.0000) (51,5817, $3.1859, $2.4359)
Az (55.93915 53.06245 $3.0000) (52.0000, 54.2877, $4.3675)
Ay (5262635 553737 $3.6267) (55.9497, 52.6933» $3.0616)

C3 Cy
Ay (55.9334, 52,0567 53.6427) (52.8546» 51.7227» 54.0578)
Ar (54.5047 52.9478 > 54.5788) (53.54385 53.1846 53.8328)
A3 (55,9293, $3.4432, 53.3461) (52,3240, $2.44605 $2.0390)
Aq (53.9144, 52,9730, 52.3556) (54.9324, 52,0000, $1.3506)

Step 3: Compute G;;,i =1,2,3,4;j=1,2,3,4:
a) By using the data given in Table I, we have

[ 2.5751 2.7268 2.5942 2.6950 ]
G= 2.5930 2.4421 2.5521 2.6286
24817 2.2818 2.4827 2.3071

| 2.2282  2.4660 2.5677 2.4697 |

b) By using the data given in Table II, we have

[ 2.3506 2.5090 2.4642 2.5278 ]
G= 24853 2.4446 2.5485 2.6082
T | 24808 2.2991 2.4816 2.3501
| 2.1881 2.4579 2.5426 2.4011

Step 4: By utilizing LSVN-PWA or LSVN-POWA or
LSVN-PHA or LSVN-PWG or LSVN-POWG or LSVN-PHG
operators, we get the aggregated values r; of the alternatives
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r3

r4

TABLE III
Operators ry 2

LSVN-PWA (54,3438 5171695 52.9015) (53.61845 52.36125 52.7298)
LSVN-POWA (54.6520» 51.8513» 52.6680) (53.67385 52,3002, $2.6714)
LSVN-PHA (54.49145 522938 52.9237) (5337165 52.5596> $2.8466)
LSVN-PWG (53.6218552.1747, 54.1532) (53.02405 $2.95535 $3.2358)
LSVN-POWG (54.1687» 52.4317, 54.0928) (52.88355 52,9087, 53.2459)
LSVN-PHG (53.8239, 52,4989, 54.4578) (52.4989, 52,9087, $2.8745)

(54.0957, $2.71035 $2.7560)
(547434, 531721, $3.3734)
(54.4097, 53.0225» $3.0346)
(52,9797, $3.2807 $3.1541)
(534973, 53,6412, 53.6086)

(52,9550, 53.8349, §3.8232)

(55.09815 52,6299, 51.9928)
(54.6887, 53,2484, 52.3560)
(5478725 52,7422, $2.2625)
(54.5290, $3.1437, 52.4846)
(5452905 $3.92815 $2.9560)

(53.8255 53,8724, $2.7130)

A;,i=1,2,3,4 and the results are summarized in Table III.

Step 5: The score values of these aggregated numbers are
summarized in Table IV.

Step 6: Based on these score values, the ranking order of the
alternatives is summarized in the last column of the Table I'V.
From this table, we can see that corresponding to the different
pairs, the best alternative is either A4 or Aj.

C. Comparative Analysis

To compare the performance of the proposed approach with
the existing operators, namely linguistic neutrosophic number
(LNN) weighted averaging and geometric aggregation
operators denoted by LNNWAA and LNNWGA as proposed
by Fang and Ye [35], LNN weighted power Heronian average
(LNWPHA) proposed by Liu et al. [21] and Linguistic single-
valued neutrosophic Prioritized aggregation (LNPA) proposed
by Garg and Nancy [36]. For it, the considered data of the
problem has been taken and then the following steps of their
approaches have been implemented which are summarized as
follows:

Step 1: Aggregate the different preferences of decision
makers by using LNNWAA or LNNWGA operators. The
results of it are summarized in Tables V and VI respectively.
On the other hand, if we apply LNWPHA operator (with
p =1,g=2) to calculate the overall values of each alternative
for each decision maker then their results are summarized in
Table VII. On the other hand, the values of each alternative by
LNPA operator are summarized in Table VIII.

Step 2: Based on these aggregated values, the overall rating
values r;,i = 1,2,3,4 of the alternatives are obtained by using
LNNWAA are r| = (54,3842, 517238, 52.8652)> 72 = (53.60.2, $2.3761
52.6987)s 73 = (54,0426, $2.7280, $2.7629) and r4 = (550746, $2.6567,
51.9992) while by wusing LNNWGA operator we get
r1 = (530083, $2.1872, S4.1251)s F2 =(82.5467, 529720, $3.2029),
r3 = (52,5529, $3.3087, 53.1670) and 74 = (545233, 53.1853, $2.4984)-
However, by using LNWPHA operator to calculate the
collective LSVN given in Table VII, we can get r| = (555054,
509201, $1.7792), T2 =(54.7183, 512941, 515345), 73 = (851725,
516739, $1.7312) and r4 = (562089, 514063, S1.1454). By LNPA
operator, these values are r| = (550259,52.2665,53.2699),
2 = (8421765 520214, 52.6403)> 73 = (55.4767, 53.0336, $3.0597) and
r4 = (5508715 $2.2943, 51.8710)-

Step 3: The score values and the final ranking of the
alternatives are obtained by using values of r; and results are
represented in Table IX.

It is noted from this table that the best alternative obtained by
the existing approaches is still A4 which coincides with the

proposed approach. However, the computational procedure of
the proposed approach is different from the existing studies. For
instance, Fang and Ye [35] weighted averaging and geometric
aggregation operators were introduced based on the algebraic
sum and product and do not consider the dependency factor
between the attributes. Liu ef al. [21], they considered the PA
and Heronian mean operator simultaneously to interact with the
different pairs of LNNs. In [36], authors have aggregated the
values by using prioritized aggregation operators. On the other
hand, the proposed operator takes the advantages of LSVNS
and power aggregation to aggregate the process by using the
support function for solving MCGDM problems.

D. Further Discussion

To justify the importance of the proposed work with respect
to the existing work, an investigation is done in the form of
their characteristics comparison. The results are summarized
in Table X.

The approaches in [16]-[18], [25] are based on a weighted
averaging operators by utilizing the quantitative information
only. Also, in their approaches, they had assumed that all the
input arguments are independent of each other. Therefore, their
approaches are limited and unable to apply to the linguistic
information. However, on the contrary, the proposed approach
can capture the interrelationship among input arguments and
also describe for the qualitative with linguistic information.
Hence, the present approach is much better than the methods in
[16]-[18], [25]. In [35], authors have considered the linguistic
features during the information extract phase and hence
proposed the weighted averaging and geometric operators to
aggregate them. But again, during their formulation, they
assumed that all the collective information is independent of
each other. Thus, their approach is limited. In [21] approach,
authors have proposed power Heronian mean by utilizing the
linguistic information by considering the interdependency
between the pairs of the input arguments. Also, in [36], the
authors have presented prioritized weighted operators for the
linguistic SVNNs. However, the computational process in the
proposed approach is entirely different from the existing one. In
the proposed approach, the information used for the analysis is
based on the linguistic nature which can reflect the inherent
thoughts of decision makers more accurately. Also, the
information about the attribute weights are extracted from the
support measures instead of the priori assigned. In addition, it
considers the interaction between the pair of the input
arguments during the analysis.
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TABLE IV
SCORE VALUES OF AGGREGATED LSVNNS
Operators S(r1) S(r2) S(r3) S(rg) Ranking
LSVN-PWA 5.2418 4.8425 4.8764 5.4918 Ag > A > A3 > Ay
LSVN-POWA 5.3776 4.9007 4.7327 5.0281 Al > Ay > Ay > A3
LSVN-PHA 5.0913 4.6551 4.7842 5.2608 Ay > A > Az > Aj
LSVN-PWG 44313 4.2776 4.1793 4.9669 Ag > A > A3 > Ay
LSVN-POWG 4.5481 4.2430 4.0825 4.3584 Al > Ay > Ay > Az
LSVN-PHG 4.2891 4.1841 3.7656 4.4134 Ay > A > Az > As
TABLE V TABLE VII
AGGREGATED MATRIX BY USING LNNWAA AGGREGATED VALUES OF THE ALTERNATIVES BY LNWPHA
C G RM R® R®
Al (54.58005 52.7144 $1.8171) (54.0851, 51,5874, 3.2711) A1 (538346, 51.8184,54.3324) (537278, 51.82465 53.0596)  (56.4868> 50.9092, 50.7986)
Az (54.6981, 51.8171> $2.0000) (51.68365 $2.7144, $2.0801) Az (835145, 51,1608, 52.4493) (546719, 527618, 51.2733) (542265, 51.9832, 52.9664)
A3 (56,1829, $2.8845 $3.0000) (52,0000, $3.7798 $4.3089) A3 (535673, 52.8156552.6579) (553880, 51.6848,52.6011) (54,6120, 52,4765, 51.8543)
Ag (52.68675 5531335 52.7144) (56.18295 52,6207 52.8845) A4 (559348, 51.8753,51.2836) (552285, 52.0137,51.7473) (555571, 52,1654, 52.2540)
C3 Cy
Ay (56.1829, 51.8171552.7144) (53.8398, §1.44225 53.3019) TABLE VIII
Az (54.8928» $2.1544> S4.1602) (53.78285 52.5198 $3.4200) AGGREGATED VALUES OF THE ALTERNATIVES BY LNPA
A3 (56.1829, 53.1748 $3.3019) (52.8075» $2.0000, 51.8171) Ci &)
Ay (5408515 52.1544 §2.2894) (55.1155» $2.00005 $1.2599) Ay (54,1449, $3.4758, 52.2553) (53.60405 $1.66715 $4.6022)
Az (54,5581, 51.9737, 52.0000) (51.4475, 52,5985, 52.1918)
TABLE VI Az (56.02705 53.01605 53.0000) (52.00005 $3.25075 $4.2559)
AGGREGATED MATRIX BY USING LNNWGA A4 (527009 $5.2991 51.8998) (56,3733, 92,2969, $2.9492)
Cy Cy C3 Cy
Al (51.8171, 83.6205> $2.0561) (53.9149, 51.68365 55.2411) Ay (56.03325 52,0011 53.4079) (52.83985 51,9924 54.3836)
Az (52.00005 $2.0561 $2.0000) (51.5874, $3.2378 $2.4066) Ay (54,6146, 519564, 53.6782) (53.7092, $1.9633, $3.3888)
A3z (53.00005 $3.06765 $3.0000) (52.00005 $4.31605 4.3089) Az (56.0265> 532439, §3.2725) (52,1207, $2.5390 $2.2678)
Ay (52.7144, §5.37935 53.6205) (55.9439, 52.6867> $3.0676) Ay (53,8890, 51.9966> 52.4444) (54.9995 > 52.0000, $1.3684)
Cs Cy
A (55.9439, 52.0561 > §3.6205) (52.8845, §1.7427, $4.0851) the. Table IV, the LSVN-PWA operator resul.ts As as non-
Az (54.4814, 52,9867 54.5800) (53.55695 $3.1797, 53.8398) OpFlmal and 4; as the worst one. For execution o.f the te'st
Criteria 1 on the proposed approach, the alternative Ajz is
As (559439, 53,011, 53.3584) (522894, S2.4822, S2.0561) replaced with less desirable alternative in the original decision
Ay (53.9149, 52,9867, $2.3538) (54.9324, $2.00005 51.3506)

E. Test Criteria for Evaluating the Decision-making Methods

To validate the proposed method, Wang and Triantaphyllou
[6] gave some test criteria’s for validation of the decision-
making approach which are given as follows:

Test criterion 1: “A valid decision-making approach should
give the same best alternative even if a non-optimal
alternative is changed by another worse one.”

Test criterion 2: “An valid decision-making approach
should have transitive property.”

Test criterion 3: “Decomposition of decision-making
problem into smaller problems should not affect the ranking
of the original problem.”

To investigate the validity of the proposed approach, these
three test criteria have been tested as follows.

1) Validity Under Criterion 1: As, it can be easily seen from

matrices. The changed data for the alternative Az is given in
Table XI.

Apply the LSVN-PA operator to aggregate the modified
decision-making metrics and then apply the LSVN-PWA
operator to get the final aggregated values which are
summarized as 7| = (543438, 517169, $2.9015)s 72 = (5361845

523612, $2.7298), 13 = (827451, S3.4168> $3.5128) and r4 = (85,0081,
$2.6299, S$1.9928). The score values of these numbers are

S(r1) =5.2418, S(r) =4.8425, S(r3) =3.9385 and S(r4) =
5.4918. Thus, alternatives are ranked as Az > Aj > Ay > Aj
which indicates A4 is the best alternative as given by the actual
problem. From this, we conclude that the given approach does
not reverse the original decision after replacing the non-optimal
alternative by some other alternative. Therefore, the proposed
method is effective according to test Criteria 1.

2) Validity Under Criteria 2 and 3: For testing the validity
of the above method by using the remaining two test criteria’s,
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TABLE IX
SCORE AND RANKING VALUES BY USING THE EXISTING OPERATORS
S(r1) S(r) S(r3) S(rg) Ranking
LNNWAA([35] 5.2651 4.8428 4.8506 5.4729 As>A1 > Az > A
LNNWGA[35] 4.2620 4.1240 4.0257 4.9465 Ag>A1 > Ay > Az
LNWPHA[21] 6.2687 5.9633 5.9225 6.5524 Ay > A1 >Ar > A3
LNPA[36] 5.1631 5.1853 5.1278 5.6406 Ag>Ar > A > Az
TABLE X
THE CHARACTERISTIC COMPARISONS OF DIFFERENT METHODS
Properties
Methods Whether attribute weights Whether describe Whether consider the . .
derived from the support information using linguistic interrelationship between input Whether consider multiple
group of decision makers
measures features arguments
Peng et al. [17] X X X X
Ye [16] X X X X
Nancy and Garg[18] X X X X
Jietal. [25] X X X X
Fang and Ye [35] X v X X
Garg and Nancy [36] X \ N \
The proposed method \/ \ N \/
TABLE XI we can conclude that the proposed approach can be

RATING OF A3 FOR EACH DECISION MAKER

Cy C C3 Cy
Dy (54, 53,54) (52,54, 54) (54, 5, 56) (51, 55,53)
D, (55,54,54) (51,53,55) (55,53,54) (52,53,52)
Ds (54,52,53) (52,56,55) (53,54,54) (53,52,53)

we decompose the original problem into various smaller
decision-making problems as {A|,A;,A3}, {A2,A3,A4}, and
{A3,A4,A1}. After applying the proposed approach, we get the
ranking of decomposed decision-making problems as
A > A3> Ay, Ay > Az > Ay, and Ag > A| > Az respectively. If
we combine the ranking of these decomposed problems, we
get the final ranking as A4 > A| > A3 > A, which is same as
that of the original (un-decomposed) problem and also
performs the transitive property. Thus, both test criteria's
verify the proposed approach.

V. CONCLUSION

In this paper, an attempt has been made to present the power
aggregation operators from both arithmetic and geometric
points of view, under the LSVN environment for various
decision-making problems. The important characteristic of the
proposed work is that they consider the supporting degree
between the criteria’s and ignore the effect of biased
assessments on the results by giving little importance to those
false and biased ones compared to other ones. The proposed
operators involve the simple power aggregation, power
weighted aggregation, power ordered weighted aggregation,
and power hybrid aggregation operators. These operators have
been used to develop the group decision-making approach and
then apply to a practical problem related to decision making.
Further, from the comparative analysis and the validity tests,

successfully utilized in evaluating the best alternative and is
more reliable than simple algebraic and geometric operators as
it considers the relationships among the criteria and overlooks
the useless biased data. Future research will focus on
introducing the various other operators [39]-[43] or to extend

the approach to the linguistic interval neutrosophic
environment [44]-[48].
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