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    Abstract— In  this  paper,  we  present  an  optimal  neuro-control
scheme for  continuous-time  (CT)  nonlinear  systems  with  asym-
metric input constraints. Initially, we introduce a discounted cost
function  for  the  CT  nonlinear  systems  in  order  to  handle  the
asymmetric input constraints. Then, we develop a Hamilton-Jac-
obi-Bellman equation (HJBE), which arises in the discounted cost
optimal  control  problem.  To  obtain  the  optimal  neurocontroller,
we utilize a critic neural network (CNN) to solve the HJBE under
the framework of reinforcement learning. The CNN’s weight vec-
tor is tuned via the gradient descent approach. Based on the Lya-
punov  method,  we  prove  that  uniform  ultimate  boundedness  of
the  CNN’s weight  vector  and  the  closed-loop  system  is  guaran-
teed.  Finally,  we  verify  the  effectiveness  of  the  present  optimal
neuro-control strategy through performing simulations of two ex-
amples.
    Index Terms—Adaptive  critic  designs  (ACDs),  asymmetric  input
constraint,  critic  neural  network  (CNN),  nonlinear  systems,  optimal
control, reinforcement learning (RL).

I.  Introduction

R EINFORCEMENT  learning  (RL),  known  as  a  research
branch of machine learning, has been an effective tool in

solving  nonlinear  optimization  problems  [1].  The  main  idea
behind RL is to create an architecture to learn optimal policies
without systems’ information. A well-known architecture used
in RL is  the actor-critic  structure,  which is  comprised of two
neural  networks  (NNs),  that  is,  actor  and  critic  NNs.  The
mechanism of implementing the actor-critic structure is as fol-
lows: The  actor  NN  generates  a  control  policy  to  surround-
ings  or  plants,  and  the  critic  NN  (CNN)  estimates  the  cost
stemming from that control policy and gives a positive/negat-
ive  signal  to  the  actor  NN  [2].  Owing  to  this  mechanism  of
actor-critic  structure,  one  is  able  to  not  only  obtain  optimal
policies  without  knowing systems’ prior  knowledge,  but  also
avoid “the curse of  dimensionality” occurring [3].  According
to  [4],  adaptive  dynamic  programming  (ADP)  also  takes  the
actor-critic  structure  as  an  implementation  architecture  and
shares similar spirits as RL. Thus, researchers often use ADP

and  RL  as  two  interchangeable  names.  During  the  past  few
years, quite a few ADP and RL approaches emerged, such as
goal  representation  ADP  [5],  policy/value  iteration  ADP  [6],
[7],  event-sampled/triggered  ADP  [8],  [9],  robust  ADP  [10],
integral  RL  [11],  [12],  online  RL  [13],  [14],  off-policy  RL
[15], [16].

Q

Doubtlessly,  the  actor-critic  structure  utilized  in  RL  has
achieved  great  success  in  solving  nonlinear  optimization
problems  (see  aforementioned  literature).  However,  when
tackling  optimal  control  problems  of  nonlinear  systems  with
available  systems’ information,  researchers  found  that  the
actor-critic structure could be reduced to a structure with only
the critic, i.e., the critic-only structure [17]. The early research
on  solving  optimization  problems  via  a  critic-only  structure
can  be  tracked  to  the  work  of  Widrow et  al. [18].  Later,
Prokhorov  and  Wunsch  [19]  named  this  critic-only  structure
as  a  kind  of  adaptive  critic  designs  (ACDs),  which  were
originated  from RL.  After  that,  Padhi et  al. [20]  suggested  a
single  network  ACD  to  learn  an  optimal  control  policy  for
input-affine  discrete-time  (DT)  nonlinear  systems.  Recently,
Wang et al. [21] introduced a data-based ACD to acquire the
robust  optimal  control  of  continuous-time  (CT)  nonlinear
systems.  Apart  from  the  identifier  NN  used  to  reconstruct
system dynamics, Wang et al. [21] proposed a unique CNN to
implement the data-based ACD. Later, Luo et al. [22] reported
a critic-only -learning method to derive an optimal tracking
control  of  input-nonaffine  DT  nonlinear  systems  with
unknown models.  Following the  line  of  [20]–[22],  this  paper
aims at  presenting a  single  CNN to obtain  an optimal  neuro-
control  law  of  CT  nonlinear  systems  with  asymmetric  input
constraints.

System’s  inputs/actuators  suffering  from  constraints  are
common phenomena. This is because the design of stabilizing
controllers  must  take  safety  or  the  physical  restriction  of
actuators  into  consideration.  In  recent  years,  many  scholars
have paid their attention to nonlinear-constrained optimization
problems.  For  DT  nonlinear  systems,  Zhang et  al. [23]
presented  an  iterative  ADP  to  derive  an  optimal  control  of
nonlinear systems subject to control constraints. To implement
the  iterative  ADP,  they  employed  the  model  NN,  the  CNN,
and the actor NN. By using a similar architecture as [23], Ha
et  al. [24]  suggested  an  event-triggered  ACD  to  solve
nonlinear-constrained optimization problems. The key feature
distinguishing  [23]  and  [24]  is  whether  the  optimal  control
was  obtained  in  an  event-triggering  mechanism.  For  CT
nonlinear systems, Abu-Khalaf and Lewis [25] first proposed
an  off-line  policy  iteration  algorithm  to  solve  an  optimal
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control  problem  of  nonlinear  systems  with  input  constraints.
To  implement  the  policy  iteration  algorithm,  they  employed
aforementioned  actor-critic  structure.  By  using  the  same
structure,  Modares et  al. [26]  reported  an  online  policy
iteration  algorithm  together  with  the  experience  replay
technique  to  obtain  an  optimal  control  of  nonlinear
constrained-input  systems  with  totally  unavailable  systems’
information.  After  that,  Zhu et  al. [27]  suggested  an  ADP
combined with the concurrent learning technique to design an
optimal  event-triggered  controller  for  nonlinear  systems  with
input  constraints  as  well  as  partially  available  systems’
knowledge. Recently, Wang et al. [28] reported various ACD
methods  to  obtain  the  time/event-triggered  robust  (optimal)
control  of  constrained-input  nonlinear  systems.  Later,  Zhang
et  al. [29]  proposed  an  ADP-based  robust  optimal  control
method for nonlinear constrained-input systems with unknown
systems’ prior  information.  More  recently,  unlike  [28]  and
[29]  studying  nonlinear-constrained  regulation  problems,  Cui
et  al. [30]  solved  the  nonlinear-constrained  optimal  tracking
control problem via a single network event-triggered ADP.

Though  nonlinear-constrained  optimization  problems  were
successfully  solved  in  aforementioned  literature,  all  of  them
assumed  that  the  system’s  input/actuator  suffered  from
symmetric input  constraints.  Actually,  in  engineering
industries,  there  exist  many  nonlinear  plants  subject  to
asymmetric input constraints [31]. Thus, one needs to develop
adaptive control strategies, especially adaptive optimal neuro-
control schemes for such systems. Recently,  Kong et al. [32]
proposed an asymmetric bound adaptive control for uncertain
robots  by  using  NNs  and  the  backstepping  method  together.
They tackled asymmetric control constraints via introducing a
switching function. In general, it is challengeable to find such
a  switching  function  owing  to  the  complexity  of  nonlinear
systems.  More  recently,  Zhou et  al. [33]  presented  an  ADP-
based neuro-optimal tracking controller for continuous stirred
tank  reactor  subject  to  asymmetric  input  constraints.  They
analyzed  the  convergence  of  the  proposed  ADP  algorithm.
But  they  did  not  discuss  the  stability  of  the  closed-loop
system.  Moreover,  they  designed  the  optimal  tracking
controller  for  DT  nonlinear  systems,  not  for  CT  nonlinear
systems.  To  the  best  of  authors’ knowledge,  there  lacks  the
work on designing optimal neuro-controller  for CT nonlinear
systems with asymmetric input constraints. This motivates our
investigation.

In this  study,  we develop an optimal  neuro-control  scheme
for  CT  nonlinear  systems  subject  to  asymmetric  input
constraints. First, we introduce a discounted cost function for
the  CT  nonlinear  systems  in  order  to  deal  with  asymmetric
input  constraints.  Then,  we  present  the  Hamilton-Jacobi-
Bellman  equation  (HJBE)  originating  from  the  discounted-
cost optimal control problem. After that, under the framework
of  RL,  we  use  a  unique  CNN to  solve  the  HJBE in  order  to
acquire  the  optimal  neuro-controller.  The  CNN’s  weight
vector  is  updated  through  the  gradient  descent  approach.
Finally,  uniform  ultimate  boundedness  (UUB)  of  the  CNN’s
weight  vector  and  the  closed-loop  system  is  proved  via  the
Lyapunov method.

The novelties of this paper are three aspects.

1)  In  comparison  with  [25]–[30],  this  paper  presents  an
optimal neuro-control strategy for CT nonlinear systems with
asymmetric  input  constraints  rather  than  symmetric  input
constraints.  Thus,  the  present  optimal  control  scheme  is
suitable for a wider range of dynamical systems, in particular,
those  nonlinear  systems  subject  to  asymmetric  input
constraints.

2)  Unlike  [32]  handling  asymmetric  input  constraints  via
proposing  a  switching  function,  this  paper  introduces  a
modified hyperbolic tangent function into the cost function to
tackle  such  constraints  (Note:  here “the  modified  hyperbolic
tangent  function” means  that  the  equilibrium  point  of  the
hyperbolic  tangent  function  is  nonzero).  Thus,  the  present
optimal  control  scheme  can  obviate  the  challenge  arising  in
constructing the switching function.

3)  Though  both  this  paper  and  [31],  [33]  study  optimal
control problems of nonlinear systems with asymmetric input
constraints,  an  important  difference  between  this  paper  and
[31], [33] is that, this paper develops an optimal neruo-control
strategy  for  CT  nonlinear  systems  rather  than  DT  nonlinear
systems.  In  general,  control  methods  developed  for  DT
nonlinear  systems  are  not  applicable  to  those  CT  nonlinear
systems.  Furthermore,  in comparison with [31] and [33],  this
papers  provided  stability  analyses  of  the  closed-loop  system,
which  guarantee  the  validity  of  the  obtained  optimal  neuro-
control policy.

R Rm Rn×m

m n×m
Ω Rn Im

m×m C1

∥x∥ ∥A∥
x ∈ Rm A A(Ω)

Ω V∗(x) = ∂V∗(x)
∂x

Notations: , , and  denote the set of real numbers,
the Euclidean space of real -vectors, and the space of 
real  matrices,  respectively.  is  a  compact  subset  of . 
represents  the  identity  matrix.  means  the  function
with  continuous  derivative.  and  denote  the  norms  of
the  vector  and  the  matrix ,  respectively. 
denotes the set of admissible control on . .

II.  Problem Formulation

We consider the following CT nonlinear systems

ẋ(t) = f (x(t))+g(x(t))u(t), x0 = x(0) (1)
x ∈Ω ⊂ Rn u ∈ U ⊂ Rm

U = {
(u1,u2, . . . ,um) ∈ Rm : umin ≤ ui ≤ umax, |umin| ,

|umax|, i = 1,2, . . . ,m
}

umin umax
ui f (x) ∈ Rn

g(x) ∈ Rn×m
Ω

x0 ∈ Rn

where  is the state variable,  is the con-
trol  input, 

 with  and  being  the  minimum
and  maximum  bound  of ,  respectively,  and

 are  known  continuous  functions  on ,  and
 is the initial state.

f (x) g(x)

Remark  1: Generally  speaking,  the  knowledge  of  system
dynamics is not necessary to be known when one applies RL
to design neuro-controllers for nonlinear systems, such as [34]
and  [35].  Here  we  need  the  prior  information  of  system  (1)
(i.e.,  and ).  This is because the neuro-controller will
be  designed  only  using  a  unique  critic  NN  rather  than  the
typical actor-critic dual NNs.

f (0) = 0 x = 0
u = 0 g(0) = 0

f (x)+g(x)u
x = 0 Ω 0 ∈Ω

Assumption  1: ,  i.e.,  is  the  equilibrium  point
of  system  (1)  if  letting  or .  In  addition,

 satisfies the Lipschitz condition guaranteeing that
 is the unique equilibrium point on  (Note: ).

x ∈Ω ∥g(x)∥ ≤ gM gM > 0
g(0) = 0

Assumption 2: For every ,  with  the
known constant. Moreover, .

Considering  that  system (1)  suffers  from asymmetric  input
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constraints, we propose a discounted cost function as follows

Vu(x(t)) =
w +∞

t
e−α(τ−t)S(x(τ),u(τ)

)
dτ (2)

α > 0 S(x,u) = xT Qx+R(u)
Q ∈ Rn×n R(u) ∈ R
where  is  the  discount  factor, ,

 is a positive-definite constant matrix, and  is
defined as

R(u) = 2β
m∑

i=1

w ui

b
ψ−1

(
β−1(si−b)

)
dsi (3)

where

β =
umax−umin

2
, b =

umax+umin

2
(4)

ψ−1(·) ∈C1(Ω)
ψ−1(0) = 0 ψ−1(·)
ψ−1(·) = tanh−1(·) tanh(·)

and  is  an  odd  monotonic  function  satisfying
.  Observing the characteristic  of ,  we choose

,  where  is  the  hyperbolic  tangent
function.

Remark  2: Two  notes  are  provided  to  make  (2)  and  (3)
better for understanding, i.e.,

tanh(x) = (ex − e−x)/(ex + e−x)
R(u)

u∗(x) b , 0
|umin| , |umax| b , 0

R(u)

a)  Even  if  is  a  symmetric
function,  in (3) still gives rise to asymmetric constraints
on  the  input  (see  in  later  (8)).  This  is  because  in
(4)  (Note:  implies  that ).  This  feature  of

 differs  from  [25]–[30],  which  studied  symmetric  input
constraints.

u∗(x)
u∗(0) , 0

α = 0
e−α(τ−t) Vu(x(t))

b)  Owing  to  the  asymmetric  input  constraints  handled  via
(3),  the  optimal  control  will  not  converge  to  zero  when  the
steady  states  are  obtained  (Note:  According  to  in  later
(8),  we  can  find .  Moreover,  simulation  results  also
verify this conclusion). Therefore, if letting  (i.e., no the
decay term ),  then  might be unbounded. That
is why we introduce the discounted cost function (2).

Vu(x) V∗(x)The optimum of , denoted by , is defined as

V∗(x) = min
u∈A(Ω)

Vu(x). (5)

V∗(x)As pointed out by [4],  is the solution of the HJBE

min
u∈A(Ω)

H
(
x,∇V∗(x),u

)
= 0 (6)

V∗(0) = 0 H
(
x,∇V∗(x),u

)
with  and  given as

H
(
x,∇V∗(x),u

)
=

(∇V∗(x)
)T (

f (x)+g(x)u
)

−αV∗(x)+ xT Qx+R(u) (7)
H(x,∇V∗(x),u)where  in (7) is called the Hamiltonian [4].

∂H(x,∇V∗(x),u∗)
∂u∗ = 0

Applying the  stationary condition [36,  Theorem 5.8]  to  (7)
(that  is, ),  we  have  the  optimal  control
formulated as

u∗(x) = arg min
u∈A(Ω)

H
(
x,∇V∗(x),u

)
= −β tanh

(
1

2β
gT (x)∇V∗(x)

)
+ ℓb (8)

where

ℓb = [b,b, . . . ,b]T ∈ Rm

bwith  being defined as (4).
Inserting (8) into (6), we are able to rewrite the HJBE as

(∇V∗(x)
)T f (x)−αV∗(x)+ xT Qx+

(∇V∗(x)
)T g(x)ℓb

+R
(
−β tanh

( 1
2β

gT (x)∇V∗(x)
)
+ ℓb

)
−β (∇V∗(x)

)T g(x) tanh
(

1
2β

gT (x)∇V∗(x)
)
= 0 (9)

V∗(0) = 0
V∗(x)

with . The  expression  (9)  indicates  that  it  is  in  es-
sence a nonlinear equation with respect to . As emphas-
ized  by  [1]  and  [4],  there  often  does  not  exist  an  analytical
method to solve such a nonlinear equation like (9). In this pa-
per,  we  are  devoted  to  presenting  a  CNN  to  approximately
solve (9) under the framework of RL.

III.  Optimal Neuro-control Strategy

V∗(x) Ω

The  approximation  characteristic  of  NNs  indicated  in  [37]
guarantees that  in (5) can be restated on  in the form

V∗(x) = ωT
c σc(x)+εc(x) (10)

ωc ∈ Rñc ñc

σc(x) ∈ Rñc

ñc

σc1(x) σc2(x), . . . ,σcñc (x) σci(x) ∈ R
σci(0) = 0 i = 1,2, . . . , ñc εc(x)

V∗(x)

where  is the ideal weight vector often unavailable, 
denotes the number of neurons used in the NN,  is
the  vector  activation  function  comprised  of  linearly inde-
pendent elements ,  (Note: 
and  , ), and  is the error originat-
ing from reconstructing .

Then, we obtain from (10) that

∇V∗(x) = ∇σT
c (x)ωc+∇εc(x) (11)

∇C(x) = ∂C(x)
∂x ∇C(·) = ∇σc(·) ∇εc(·)where  with  or .

Inserting (11) into (8), it follows:

u∗(x) = −β tanh(D1(x))+εu∗ (x)+ ℓb (12)
where

D1(x) =
1

2β
gT (x)∇σT

c (x)ωc

εu∗ (x) = −1
2
(
Im−C(ν(x))

)
gT (x)∇εc(x)

C(ν(x)) = diag{tanh2(νi(x))} i = 1,2, . . . ,m ν(x) = [ν1(x),
ν2(x), . . . , νm(x)]T ∈ Rm ν(x) ∈ Rm

(1/(2β))gT (x)∇V∗(x) D1(x)

with , , 
,  and  be  selected  between

 and .
Remark 3: To make (12) easy for understanding, we present

the detailed procedure as follows. Let

T (Dk(x)) = −β tanh(Dk(x)), k = 0,1

where

D0(x) =
1

2β
gT (x)∇V∗(x)

D1(x)and  is given in (12).
Then, using the mean value theorem [36, Theorem 5.10], we

find

T (D0(x))−T (D1(x)) = −β( tanh(D0(x))− tanh(D1(x))
)

= −1
2
(
Im−C(ν(x))

)
gT (x)∇εc(x)

C(ν(x)) = diag{tanh2(νi(x))} i = 1,2, . . . ,m
ν(x) ∈ Rm D0(x) D1(x)
where , ,  and

 is chosen between  and . Thus, we have
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u∗(x) = −β tanh(D0(x))+ ℓb

= T (D1(x))+
(T (D0(x))−T (D1(x))

)
+ ℓb

= −β tanh(D1(x))

− 1
2
(
Im−C(ν(x))

)
gT (x)∇εc(x)+ ℓb.

This verifies that (12) holds.
ωc

u∗(x)
ωc ω̂c

V∗(x) V̂(x)

As  previously  stated,  in  (10)  is  generally  unavailable.
Thus,  in (12) cannot be implemented in control process.
To tackle this issue, we replace  with its estimated value .
Then,  the  estimated  value  of ,  denoted  by ,  can  be
expressed as an output of CNN, that is

V̂(x) = ω̂T
c σc(x). (13)

u∗(x)So, the estimated control policy of  can be expressed as

û(x) = −β tanh(D2(x))+ ℓb (14)
where

D2 (x) =
1

2β
gT (x)∇σT

c (x)ω̂c.

V̂(x) û(x) ∇V∗(x) uUsing  in (13) and  in (14) to replace  and 
in (7), we have the approximate Hamiltonian formulated as

Ĥ
(
x,∇V̂(x), û(x)

)
= ω̂T

c ϕ+ xT Qx+R (û(x))

where

ϕ = ∇σc(x)
(
f (x)+g(x)û(x)

)−ασc(x).

H
(
x,∇V∗(x),u∗

)
Ĥ

(
x,∇V̂(x), û(x)

)
H

(
x,∇V∗(x),u∗

)
= 0

Then,  we  can  describe  the  error  between 
and  as (Note: )

ec = Ĥ
(
x,∇V̂(x), û(x)

)−H
(
x,∇V∗(x),u∗(x)

)
= ω̂T

c ϕ+ xT Qx+R (û(x)) . (15)
ω̂c→ ωc ec→ 0

E = (1/2)eT
c ec/(1+ϕTϕ)2

E

To make ,  we resort to forcing .  To achieve
this  goal,  we  choose  the  target  function  to  be

 and let the gradient descent method
be applied to . Then, we have the tuning rule for the CNN’s
weight vector formulated as

˙̂ωc = −
γ

(1+ϕTϕ)2
∂E
∂ω̂c
= − γϕ

(1+ϕTϕ)2 ec (16)

ec γ > 0
ω̃c = ωc− ω̂c

ω̃c

with  being  defined  as  (15)  and  being  the  adjustable
parameter. Letting  be the CNN’s weight estima-
tion error, we get the error dynamics of  as

˙̃ωc = −γφφT ω̃c+
γφ

1+ϕTϕ
εH (17)

φ = ϕ/(1+ϕTϕ) εH = −∇εT
c (x)

(
f (x)+g(x)û(x)

)
+

αεc(x) εH

with  and 
 (Note: Since  can be obtained via a similar proced-

ure as shown in [38], we omit the process here).
To summarize aforementioned descriptions of the proposed

optimal control scheme, we present a block diagram in Fig. 1.

IV.  Stability Analysis

Before  proceeding  further,  we  give  two  indispensable
assumptions, which were employed in [38] and [39].

x ∈Ω ∥∇εc(x)∥ ≤ bεc

∥∇σc(x)∥ ≤ bσc ∥εH∥ ≤ bεH bεc bσc bεH

Assumption  3: For  all ,  there  are ,
,  and ,  where , ,  and  are

positive constants.
φAssumption  4:  in  (17)  satisfies  the  persistence  of

0 < ρ1 < ρ2 T0 > 0 t
excitation  (PE)  condition.  Specifically,  we  have  constants

 and  such that, for arbitrary time 

ρ1Iñc ≤
w t+T0

t
φ(s)φT (s)ds ≤ ρ2Iñc . (18)

Theorem  1: Consider  system  (1)  with  the  related  control
(14). Given that Assumptions 1–4 hold and the update rule for
CNN’s weight vector is described as (16). Meanwhile, let the
initial control for system (1) be admissible. Then, UUB of all
signals in the closed-loop system is guaranteed.

Proof: Let the Lyapunov function candidate be

L(t) = V∗(x(t))+
1
2
ω̃T

c ω̃c. (19)

V∗(x(t)) dV∗(x(t))
dt

ẋ = f (x)+g(x)û
Considering  the  derivative  of  (i.e., )  along

the solution of , we have

V̇∗(x(t)) =
(∇V∗(x)

)T ( f (x)+g(x)µ̂(x))

=
(∇V∗(x)

)T (
f (x)+g(x)u∗(x)

)
+

(∇V∗(x)
)T g(x)

(
µ̂(x)−u∗(x)

)
. (20)

According to (6)–(8), there holds
(∇V∗(x))T ( f (x)+g(x)u∗(x))

= −xT Qx−R(u∗(x))+αV∗(x)

(∇V∗(x))T g(x) = −2β
(
tanh−1

(
u∗(x)− ℓb

β

))T

.

Then, after performing calculations, (20) can be restated as

V̇∗(x) = −xT Qx−R(u∗(x))+αV∗(x)+π1 (21)
with

π1 = −2β
(
tanh−1

(
u∗(x)− ℓb

β

))T (
û(x)−u∗(x)

)
.

c dNote that, for vectors  and  with suitable dimensions

2cT d ≤ cT c+dT d or 2cT d ≤ ∥c∥2+ ∥d∥2

π1holds. Then, using (12) and (14), we have  in (21) satisfied

π1 ≤ β2

∥∥∥∥∥∥tanh−1
(

u∗(x)− ℓb

β

)∥∥∥∥∥∥2

+
∥∥∥û(x)−u∗(x)

∥∥∥2

≤ β2
m∑

i=1

(
tanh−1

(
u∗i (x)−b

β

))2

+
∥∥∥β( tanh(D1(x))− tanh(D2(x))

)−εu∗ (x)
∥∥∥2︸                                                 ︷︷                                                 ︸

π2

. (22)

∥c+d∥2 ≤ 2∥c∥2+2∥d∥2 c dLikewise,  holds for vectors  and 
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Fig. 1.     Block diagram of the present optimal control scheme.
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∥ tanh(Dk(x))∥ ≤√
m k = 1,2 ∥Im−diag{tanh2(νi(x))}mi=1∥ ≤ 2

π2

with proper dimensions (Note: actually, it is a kind of Young’s
inequalities  [40]).  Thus,  using  the  facts  that 

 ( ) and  [41, Lemma
1]  as  well  as  Assumptions  2  and  3,  we  have  in  (22)
satisfied

π2 ≤ 2β2 ∥tanh(D1(x))− tanh(D2(x))∥2+2∥εu∗ (x)∥2

≤ 4β2
(
∥ tanh(D1(x))∥2+ ∥ tanh(D2(x))∥2

)
+2

∥∥∥∥∥1
2
(
Im−C(ν(x))

)
gT (x)∇εc(x)

∥∥∥∥∥2

≤ 8β2m+2b2
εc g2

M . (23)
ξi = si−b u∗

u R(u∗(x))
R(u∗(x)) R(u∗)

On the  other  hand,  letting  in  (3)  and  using  in
(12) to replace , we can write  as (Note: for brevity,

 is denoted by )

R(u∗) = 2β
m∑

i=1

w u∗i (x)−b

0
tanh−1

(
ξi

β

)
dξi. (24)

R(u∗)
Similar  to  the  proof  of  [42,  Theorem  1],  after  performing

some calculations, we can restate  in (24) as

R (
u∗

)
=−2β2

m∑
i=1

w tanh−1

u∗i (x)−b
β


0

θi tanh2(θi)dθi

+β2
m∑

i=1

(
tanh−1

(
u∗i (x)−b

β

))2

. (25)

Thus,  combining  (22),  (23),  and  (25),  we  find  that  (21)
yields

V̇∗(x) ≤ −λmin(Q)∥x∥2

+2β2
m∑

i=1

w tanh−1

u∗i (x)−b
β


0

θi tanh2(θi)dθi︸                                              ︷︷                                              ︸
£(x)

+αV∗(x)+8β2m+2b2
ϵcg2

M (26)

λmin(Q) Q

£(x)
∥£(x)∥ ≤ δM δM > 0 V∗(x)

u∗(x)

V∗(x)
∥∥∥V∗(x)

∥∥∥ ≤ bV∗

bV∗ > 0

with  being the minimum eigenvalue of  in (2). From
the  process  of  demonstrating  [42,  Theorem  1],  we  can  have
the  conclusion  that  in  (26)  is  bounded.  So,  we  write

 with  the known constant. Note that 
is  associated  with  the  admissible  control  in  (8).  Thus,
according  to  the  definition  of  admissible  control  [25, Defini-
tion  1],  is  bounded.  We  denote  with

 the known constant. Then, from (26), we have

V̇∗(x) ≤ −λmin(Q)∥x∥2+ c0 (27)
where

c0 = 8β2m+2b2
εc g2

M +αbV∗ +δM . (28)
(1/2)ω̃T

c ω̃c
d(1/2)ω̃T

c ω̃c
dt

Second,  we  consider  the  time  derivative  of .
Using (17), we can see that  becomes

d
(

1
2
ω̃T

c ω̃c

)
dt

= −γω̃T
c φφ

T ω̃c+
γ

1+ϕTϕ
ω̃T

c φεH . (29)

2cT d ≤ cT c+dT dBased  on  aforementioned  inequality  and

1/(1+ϕTϕ) ≤ 1the fact that , we get
γ

1+ϕTϕ
ω̃T

c φεH ≤
γ

2
ω̃T

c φφ
T ω̃c+

γ

2
εT

HεH . (30)

Then,  using  Assumptions  3  and  4  as  well  as  (30),  we  can
further write (29) as

d
(

1
2
ω̃T

c ω̃c

)
dt

≤ −γ
2
ω̃T

c φφ
T ω̃c+

γ

2
εT

HεH

≤ −γ
2
λmin

(
φφT

)
∥ω̃c∥2+

γ

2
b2
εH

(31)

λmin(φφT ) φφTwith  being the minimum eigenvalue of .
L(t)Combining  (27)  and  (31),  it  can  be  observed  that  in

(19) satisfies

L̇(t) ≤ −λmin(Q)∥x∥2− γ
2
λmin

(
φφT

)
∥ω̃c∥2+

γ

2
b2
εH
+ c0

c0 L̇(t) < 0
x <Ωx ω̃c <Ωω̃c Ωx Ωω̃c

with  given  as  (28).  Thus,  holds  only  if  we  can
guarantee either  or  with  and  given as
follows:

Ωx =

x : ∥x∥ ≤

√
γb2

εH +2c0

2λmin(Q)
= r1

 (32)

Ωω̃c =

ω̃c : ∥ω̃c∥ ≤

√
γb2

εH +2c0

γλmin
(
φφT ) = r2

 . (33)

x ω̃c
r1 r2

ωc
ω̃c = ωc− ω̂c

ω̂c

This demonstrates UUB of  and . Their ultimate bounds
are  given  as  in  (32)  and  in  (33),  respectively.
Furthermore,  noticing  that  the  ideal  weight  vector  is
typically bounded [1] and , we thus conclude that

 is stable in the sense of UUB. ■

λmin(φφT ) > 0
λmin(φφT ) > 0 φ

Remark 4: The key to making the inequality (31) valid lies
in that there is . Obviously, (18) guarantees that

 holds. That is why we need  to satisfy the PE
condition in Assumption 4.

û(x) u∗(x)
Theorem  2: With  the  same  condition  as  Theorem  1,  the

estimated control policy  in (14) can converge to  in
(12) within an adjustable bound.

Proof: According to (12) and (14) and using the mean value
theorem [36, Theorem 5.10], it follows

û(x)−u∗(x) = β
(
tanh(D1(x))− tanh(D2(x))

)−εu∗ (x)

=
1
2
(
Im−C(ϑ(x))

)
gT (x)∇σT

c (x)ω̃c−εu∗ (x) (34)

where

C(ϑ(x)) = diag{tanh2(ϑi(x))}, i = 1,2, . . . ,m

ϑ(x) = [ϑ1(x),ϑ2(x), . . . ,ϑm(x)]T ∈ Rm

D1(x) D2(x)
with  being  selected
between  and .

∥Im−C(ϑ(x))∥ ≤ 2Noticing  that  and  using  Assumptions  2
and 3, we can derive from (34) that∥∥∥û(x)−u∗(x)

∥∥∥ ≤ (
bσc ∥ω̃c∥+bεc

)
gM . (35)

ω̃c r2According to Theorem 1,  the ultimate bound of  is  in
(33). Hence, from (35), we have∥∥∥û(x)−u∗(x)

∥∥∥ ≤ (
bσcr2+bεc

)
gM .

YANG AND ZHAO : OPTIMAL NEURO-CONTROL STRATEGY FOR NONLINEAR SYSTEMS WITH ASYMMETRIC INPUT CONSTRAINTS 579 



û(x) u∗(x)(
bσc r2+bεc

)
gM r2 bεc

∇εc(x)
εc(x)→ 0 ∇εc(x)→ 0 ñc→∞

r2 bεc(
bσc r2+bεc

)
gM

This  proves  that  converges  to  within  the  bound
.  Here,  and  are  in  essence  the  bounds

connected  with .  As  stated  in  [37]  and  [38],  one  has
 and  when  letting  in  (10).

Therefore, both  and  are adjustable. Or rather, the bound
 is adjustable and made small. ■

V.  Simulation Results

To  test  the  effectiveness  of  established  theoretical  results,
we perform simulations of two examples in this section.

A.  Example 1
We study the plant described by

ẋ =
[−0.5x1+ x2
−2x2

]
+

[
0
−x1

]
u (36)

x = [x1, x2]T x0 = [1,−0.5]T u ∈ U = {u ∈ R :
−1 ≤ u ≤ 3} umin = −1 umax = 3 Q = I2
α = 0.5

where  with ,  and 
 (i.e.,  and ).  Letting  and

 in (2),  we  have  the  discounted  cost  function  for  sys-
tem (36) formulated as

Vu(x(t)) =
w +∞

t
e−0.5(τ−t)

(
∥x(τ)∥2+R(u(τ))

)
dτ (37)

β = 2 b = 1where (Note: according to (4),  and )

R(u(x)) = 2
w u(x)

b
βtanh−1

(
τ−b
β

)
dτ

= 2β
(
u(x)−1

)
tanh−1

(
u(x)−1

β

)

+β2 ln
(
1− (u(x)−1)2

β2

)
. (38)

α

α

α = 0.5

Remark  5: In  this  example,  we  determine  the  value  of  the
discount  factor  via  experiment  studies.  In  fact,  there  is  no
general method to determine the accurate range of . We find
that  selecting  in  this  example can lead to satisfactory
results.

ñc = 3
σc(x) =

[
x2

1, x1x2, x2
2
]T

ω̂c =
[
ω̂c1, ω̂c2, ω̂c3

]T

ω̂initial
c =

[
1.5040,0.5259,1.012

]T

γ = 0.9

φ

To  approximate  (37),  we  use  the  CNN  described  as  (13)
with .  Meanwhile,  we  choose  the  vector  activation
function  as ,  and  denote  its  associated
weight  vector  as .  The  initial  weight
vector  is  set  as  in  order  to
guarantee  the  initial  control  policy  for  system  (36)  to  be
admissible  (Note:  according  to  (14),  the  initial  control  is
associated with the initial weight vector. Thus, we can choose
an appropriate initial weight vector to make the initial control
admissible).  The  parameter  used  in  (16)  is .
Meanwhile,  an exponential  decay signal is  added to system’s
input to guarantee  in (17) to be persistently exciting.

ω̂c =
[
ω̂c1, ω̂c2, ω̂c3

]T

ω̂c ω̂final
c

ω̂final
c = [1.0963,0.6887,0.3783]T

x1(t) x2(t)
û(x)

By  performing  simulations  via  the  MATLAB  (2017a)
software package, we obtain Figs. 2–4. As displayed in Fig. 2,

 is convergent after the first 6 s. Here we
denote the converged value of  as . Then, from Fig. 2,
we  find .  The  evolution  of
system  states  and  is  shown  in Fig. 3.  Meanwhile,
the  control  policy  is  illustrated  in Fig. 4.  It  can  be
observed from Figs. 3 and 4 that the system states converge to

x = 0
ûfinal = 1

the  equilibrium  point  (i.e., )  while  the  control  policy
converges to a nonzero value (i.e., ). This feature is in
accordance  with  the  analyses  provided  in  Remark  2-b).  In
addition, Fig. 4 indicates  that  the  asymmetric  control
constraints are overcome.
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B.  Example 2
We investigate the nonlinear system given as

ẋ =
[ −x1+ x2

−0.5(x1+ x2)+0.5x2 sin2(x1)

]
+

[ 0
sin(x1)

]
u (39)

x = [x1, x2]T x0 = [1,−1]T u ∈ U = {u ∈ R :
−3 ≤ u ≤ 4} umin = −3 umax = 4

β = 3.5
b = 0.5

where  with ,  and 
 (i.e.,  and ). The discounted cost

function for system (39) is similar to (37). A slight difference
is that,  according to (4), in this example we have  and

.
ñc = 8

σc(x) =
[
x2

1, x2
2, x1x2, x4

1, x4
2, x3

1x2, x2
1x2

2, x1x3
2
]T

ω̂c =
[
ω̂c1, ω̂c2, . . . , ω̂c8

]T

ω̂initial
c =

[
0.075,1.3466,0.859,0.9035,1.2197,

0.1188,0.6316,1.545
]T

γ = 0.6
φ

The  CNN  described  as  (13)  (Note: )  is  applied  to
approximate (37). The vector activation function used in (13)
is ,  and  its
associated weight vector is written as .
Similar to Example 1, we choose the initial weight vector for
the  CNN  as 

,  which  guarantees  the  initial  control
policy  for  system  (39)  to  be  admissible.  In  addition,  we  set

 in (16) and add an exponential decay signal to system’s
input to ensure  in (17) to meet the PE condition.

ω̂c =
[
ω̂c1, ω̂c2, . . . , ω̂c8

]T

We perform simulations via the MATLAB (2017a) software
package  and  then  obtain Figs. 5–7. Fig. 5 shows  that  the
CNN’s  weight  vector  converges  to

ω̂final
c =

[
0.3, 0.4432, 0.111,0.582, 0.3317, −0.3627, 0.2622

0.6552
]T

x1(t) x2(t)
û(x)

x = 0

ûfinal = 0.5

,
 after  the  first  24 s. Figs. 6 and 7 present  the

evolution  of  system  states  and  and  the  control
policy ,  respectively.  We can see from Figs. 6 and 7 that
the system states converge to the equilibrium point (i.e., )
while  the  control  policy  converges  to  a  nonzero  value  (i.e.,

). This verifies the analyses provided in Remark 2-
b).  Moreover, Fig. 7 indicates  that  the  asymmetric  control
constraints are conquered.

VI.  Conclusion

An optimal neuro-control scheme has been proposed for CT
nonlinear  systems  with  asymmetric  input  bounds.  To
implement  such  a  neuro-control  strategy,  only  a  CNN  is
employed,  which  enjoys  a  simpler  implementation  structure
compared  with  the  actor-critic  structure.  However,  the  PE
condition  is  needed  to  implement  the  present  neuro-optimal
control scheme. Indeed, the PE condition is a strict limitation
because  of  it  difficult  to  verify.  Recently,  the  experience
replay  technique  was  introduced  to  relax  the  PE  condition
[43],  [44].  In  our  consecutive  work,  we  shall  work  on
combining RL with the experience replay technique to obtain
optimal control policies for nonlinear systems.

g(0) = 0

g(0) , 0

On  the  other  hand,  it  is  worth  emphasizing  here  that  the
steady  states  generally  do  not  stay  at  zero,  when the  optimal
control policy does not converge to zero. That is why we need
the  control  matrix  in  system  (1)  to  satisfy  (see
Assumption  2).  Thus,  this  assumption  excludes  those
nonlinear systems with the control matrix . To remove
this  restriction,  a  promising  way  is  to  allow  the  equilibrium
point to be nonzero. Accordingly, our future work also aims at
developing  optimal  nuero-control  laws  for  nonlinear  systems
with  nonzero  equilibrium  points.  More  recently,  ACDs  have
been introduced to  derive the optimal  tracking control  policy
and the optimal fault-tolerant control policy for DT nonlinear
systems,  respectively  [45],  [46].  Therefore,  whether  the
present  optimal  neuro-control  strategy  can  be  extended  to
solve  the  nonlinear  optimal  tracking  control  problems  or  the
nonlinear  optimal  fault-tolerant  control  problems  is  another
issue to be addressed in our consecutive study.
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