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   Abstract—Base on the accurate inverse of a system, the feedfor-
ward compensation method can compensate the tracking error of
a  linear  system  dramatically.  However,  many  control  systems
have  complex  dynamics  and  their  accurate  inverses  are  difficult
to obtain. In the paper, a variable parameter model is proposed to
describe  a  system and a  multi-step adaptive  seeking approach is
used to obtain its parameters in real time. Based on the proposed
model, a  variable-parameter-model-based  feedforward compens-
ation method is  proposed,  and a disturbance observer is  used to
overcome the influence of the model uncertainty. Theoretical ana-
lysis  and  simulation  results  show  that  the  variable-parameter-
model-based feedforward  compensation  method  can  obtain  bet-
ter performance than the traditional feedforward compensation.
    Index Terms—Disturbance observer, feedforward compensation, it-
erative learning control, parameter identification, system model.

I.  Introduction

G ENERALLY, feedforward  compensation  is  used  to  re-
duce the tracking error of a control system, and then the

control  accuracy  can  be  improved  [1]–[4].  The  inverse  of  a
system is commonly obtained from the system model, and the
compensation values of the feedforward compensator are cal-
culated according to the inverse and the planned trajectory.

Many  methods  were  proposed  to  identify  system  models
and  achieve  their  inverses.  A  simple  method  is  to  use  the
parameter identification to obtain a system model, and then its
inverse can be obtained by inversing the system model. Least
squares  (LS)  and  recursive  least  squares  (RLS)  [5],  [6]  are
effective to identify the transfer function of a linear system. In
[1],  the  system  model  of  a  permanent  magnet  linear  motor
(PMLM) was obtained by the RLS identification method and
an  adaptive  feedforward  component  based  on  the  inverse
dominant linear model was used to reduce the tracking error.
In  [7],  an  inverse  Preisach  model  was  used  for  feedforward
compensation  of  hysteresis  compliance  and  the  model  was

identified  from  drive  experiments.  In  [8],  measured  data  in
every  task  was  used  for  system  identification  and  the
feedforward  controller  could  be  updated  after  each  task.  In
[9],  a  multi-model  adaptive  preview  control  using  a  set  of
augmented systems was proposed to enhance the feedforward
performance.

The  accurate  model  is  difficult  to  obtain  in  a  real  control
system  with  complex  dynamics,  so  the  effectiveness  of
feedforward compensation may be limited. Some methods are
able  to  avoid  the  difficulties  to  build  accurate  models.  For
example,  ILC  (iterative  learning  control)  adjusts  its  control
signal to a control system in every iteration by using feedback
information  from  previous  iterations,  which  can  improve  the
control accuracy without knowing the accurate system model
[10]–[13].  In  effect,  ILC  can  find  the  perfect  inverse  of  a
system for a repetitive trajectory, which makes ILC be able to
compensate  for  the  disturbances  optimally  [14]–[16].  ILC,
however,  performs  badly  in  the  systems  with  uncertain
factors.  For  example,  the  change  of  reference  trajectory  will
result  in  varying  disturbances,  and  changing  the  moment  of
inertia  will  result  in  the  change  of  system  model.  Both
uncertainties above will result in performance deterioration.

The  paper  proposes  to  use  a  variable  parameter  model  to
describe  a  system  with  uncertain  factors  and  achieve  the
inverse  of  the  system  in  real  time.  The  basic  idea  is  to
calculate  the  parameters  of  the  variable  parameter  model  by
solving  the  strict  equality  between  variable  parameter  model
output and actual output.

The  contribution  of  the  paper  includes:  Firstly,  a  variable
parameter model with constraints is proposed and a multi-step
adaptive seeking approach is used to obtain the parameters of
the  proposed  model  in  real  time.  The  multi-step  adaptive
seeking  approach  can  obtain  the  optimal  parameter  in  every
control  period  by  adaptive  control  approaches  [17],  [18].
Secondly,  a  variable-parameter-model-based  feedforward
compensation  method  is  proposed.  The  proposed  variable-
parameter-model-based  feedforward  compensation  method
can  reduce  the  tracking  error  effectively.  Thirdly,  a
disturbance  observer  is  used  to  compensate  for  the  model
uncertainty,  which  helps  to  reduce  the  influence  of
disturbances.

The remaining of the paper is organized as follows. Section
II gives the problem formulation, Sections III and IV propose
the  variable  parameter  model  and  variable-parameter-model-
based  feedforward  compensation  method,  respectively.
Section V presents the experimental results. Section VI gives
the conclusion and future works.
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II.  Problem Formulation

A  single  input  single  output  system  is  depicted  in Fig. 1.
The plant is described as a fixed transfer function P(z), and the
disturbances  at  time k are d(k).  The  control  configuration
consists  of  a  feedback  controller C(z)  and  a  feedforward
controller F(z). With the input r(k), the output is y(k), and then
the  tracking  error e(k)  can  be  calculated.  The  closed-loop
system output can be calculated by

y(k) = (u f f (k)+d(k))
P(z)

1+P(z)C(z)
+ r(k)

P(z)C(z)
1+P(z)C(z)

(1)

u f f (k)where  is the feedforward compensation value at time k.

The feedforward controller can be described by

u f f (k) = r(k)F(z). (2)
Substituting (2) into (1), we have

y(k) = d(k)
P(z)

1+P(z)C(z)
+ r(k)

P(z)(C(z)+F(z))
1+P(z)C(z)

. (3)

According  to  Stearns et  al.  [11],  the  ideal  feedforward
controller is

F(z) = P−1(z). (4)
If  the  disturbance  is  zero  and  will  be  considered  in  the

following  uncertainty  portion,  the  obtained  inverse  of  the
system has three possible solutions.

Solution 1: Substituting (4) into (3), we have

y(k) = r(k). (5)

e(k) = r(k)− y(k)
From  (5),  it  can  be  concluded  that  the  tracking  error

 will be reduced to zero with the feedforward
controller.

Solution  2: If  the  ideal  feedforward  controller  is  not
available  because  the  number  of  zeros  is  bigger  than  that  of
poles, the feedforward controller can be described by

u f f (k) = r(k+d)(z−dP−1(z)). (6)
The feedforward controller becomes

F(z) = z−dP−1(z). (7)
r(k) r(k+d)

r(k) F(z)
And the reference input  becomes  by previewing

 d time  steps.  Obviously,  is  realizable  and  the
feedforward compensation effect remains unchanged.

P(z)Solution  3: If  has  an  unstable  zero,  zero  phase  error
tracking control  (ZPETC) can be  used to  reduce the  tracking
error [19]. In this method, the feedforward tracking control is
designed as

F(z) =GZPETC(z) =
zlBu

c(z)Ac(z−1)

Ba
c(z−1)[Bu

c(1)]2 (8)

GZPETC(z)
Ac(z−1) P(z) Ba

c(z−1) Bu
c(z)

Bu
c(1)

where  is  the  zero  phase  error  tracking  controller,
 is the denominator of .  and  are two

parts of  the  numerator,  which  contain  cancelable  and  un-
cancelable zeros, respectively.  is a scale.

Equation  (8)  does  not  produce  the  perfect  inverse,  but  can
help reduce the tracking error effectively. Because the variable
parameter  model  is  the  main  point,  the  paper  simply  focuses
on (5) and (7).

F(z)
When  the  plant  has  realtime  changing  parameters  and  the

system becomes a variable parameter one,  should follow
the corresponding changes in order  to ensure the last  term in
(3) be equal to one.

P1(z, θ) P(z)
F(z, θ) θ

θ

The  variable  parameter  system  is  shown  in Fig.1.  The
variable  parameter  plant  is  instead  of  and  the
corresponding  feedforward  controller  is ,  where  is  a
variable  parameter.  For  every  value  of ,  the  ideal
feedforward  controller  can  be  obtained  according  to  (4),  (7),
and (8)

F(z, θ) = P1−1(z, θ) or z−dP1−1(z, θ) or GZPETC(z, θ) (9)
θ

P1(z, θ) Pv(z, θ)

Pv(z, θ) θ
GZPETC(z, θ)

θ

d(k)

At every control period, the parameter  should be identified
and the corresponding variable parameter function is obtained.
the  identified  function  of  is  supposed  to  be ,
which  is  a  variable  parameter  model  shown  in Fig. 2.  The
variable  parameter  model  means  the  identified  transfer
function  will  be  changing  with  the  parameter .

 is  the  zero  phase  error  tracking  controller  with
variable parameter . And the uncertainty in the identification
process  will  be  resolved  by  the  model  uncertainty
compensation  based  on  disturbance  observer  in  Section  IV.
For  example,  the  disturbance  will  be  considered  as  an
uncertainty portion in the paper.

 

P(z)+
−

C(z) + +

F(z)

+ +r(k)

d(k)

uff (k)

y(k)e(k)

System with a fixed
transfer function

P1(z,θ)+
−

C(z) + +

F(z,θ)

+ +r(k)

d(k)

uff (k)

y(k)e(k)

Variable parameter
system

 
Fig. 1.     A system with a fixed transfer function is changed to a variable
parameter system.
 

 

P1(z,θ)+
−

C(z)r(k) y(k)e(k)

Pv(z,θ)+
−

C(z)
ya(k)

ɛ(k) = y(k) − ya(k)multi-step adaptive
seeking approach

QS

ea(k) ua(k)

u(k)

 
Fig. 2.     variable parameter model.
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Pv(z, θ)
θ = [θ1, θ2, . . . , θn]

θ(0) = [11 . . .1]
P1(z, θ) Pv(z, θ)

P1(z, θ)

Remark  1: If  a  variable  parameter  model ,  where
 is  a  variable  parameter  and  its  the  initial

value  is ,  has  the  same  input  and  output  as
 at  every  discrete  time k,  is  the  perfect

description of .

Pv(z, θ)
F(z, θ)

Therefore,  if  we  can  find  a  variable  parameter  model
 meeting  the  requirements  in  Remark  1  in  every

sampling instant, the feedforward controller  will result
in a very perfect tracking performance according to (4)–(9). In
the  next  section,  the  variable  parameter  model  will  be
proposed.

III.  The Variable Parameter Model With Constraints

Pv(z, θ)
P1(z, θ) θ

Pv(z, θ) Pv(z, θ)

Pv(z, θ)

A  variable  parameter  model  can  have  the  same
output  as  by  tuning  the  variable  parameter ,  but
realtime  performance  to  obtain  the  optimal  parameters  of

 is very difficult to be guaranteed because  is a
complex  variable  parameter  system.  This  paper  proposes  a
variable  parameter  model  with  constraints  and  a  multi-step
adaptive seeking approach to obtain the optimal parameters of

 in real time.
The  constraints  of  the  variable  parameter  model  are  set  to

limit  the  variation  range  of  parameters,  which  ensure  the
optimal parameters be achieved within a limited seeking range
[20].

In this section, a structure combining a variable gain and an
identified  transfer  function  is  used  to  simplify  the  variable
parameter  model.  And  the  multi-step  adaptive  seeking
approach  computes  the  optimal  parameters  within  the
constrained range in real time.

A.  Variable Parameter Model With Constraints
P1(z, θ)

Pv(z, θ) Pv(z, θ)

ya(k)

As  shown  in Fig. 2,  the  object  under  study  is .  No
disturbance is applied and the influence of disturbance will be
discussed in the next section. Given a reference trajectory, we
can get the output y. At the same time, a parallel identification
system QS is  set  up  with  the  variable  parameter  model

.  Except ,  the  identification  system QS has  the
same structure as the given system and the output is assumed
to be . Then the identification error is

ε(k) = y(k)− ya(k). (10)
Pv(z, θ)

Pv(z, θ)
At every period, the parameters of  need to be sought

because  is a variable parameter model.

Pv(z, θ) ya
ε(k)

The  proposed  multi-step  adaptive  seeking  approach  can
iteratively run QS and tune its model parameters. The goal of
the  multi-step  adaptive  seeking  approach  is  to  obtain  the
optimal parameters of  to let  be equal to y, that is, to
let  every  be  equal  to  zero.  Constraints  of  a  variable
parameter  model  will  be  used  to  accelerate  the  seeking
process by restricting the seeking range of parameters.

Assumption 1: It is assumed that every variable parameter of
the variable  parameter  model  has  an upper  and lower  bound,
which is to reduce the seeking range and guarantee the system
stability. In other words, it can be described by

θi ∈ [θi, θ̄i]

1,2, . . . θi θ̄iwhere i = , n, and  and  are upper and lower bounds

θiof the ith parameter , respectively.
θi

θi
θi θ̄i

θi

With  Assumption  1,  is  within  the  range.  If  the  actual
parameter  violates  the  constraints  due  to  big  parameter
change or disturbances,  is equal to  at the upper bound or

 at  the  lower  bound.  In  this  case,  the  model  uncertainty
needs  to  be  compensated  by  the  disturbance  observer  in
Section IV.

It  is  supposed  that  there  are  multiple  steps  of  seeking
process to achieve the optimal value θ. The optimal value of θ
at every time k can be obtained by the seeking approach

θ∗(k) = argmin
j

J(θx, j(k)) (11)

θ∗(k)
θx, j(k) = [θ1, j(k) θ2, j(k) . . . θn, j(k)]

θn, j(k) θn
J(θx, j(k)) θx, j(k)

where  is  the  optimal  value  at  time k.  At  the jth  step  of
seeking  process, ,  where

 is the value of the nth parameter , is the value of the
parameter θ at time k.  is the cost function of 

J(θx, j(k)) =
1
2

(ε j(k))2 (12)

ε j(k)where  is the identification error at the jth step of seeking
process, respectively.

P(z)

Considering the real-time performance and complexity,  too
many  variable  parameters  are  not  practical.  In  the  proposed
variable parameter model, the identified transfer function 
is used as a fixed plant and a variable gain is used to tune the
output, so only one variable parameter is used in the variable
parameter model.

The variable parameter model is described as

Pv(z, θ) = P(z) f (θ) (13)
f (θ) θ

θ1 f (θ) = θ1
where  is a variable proportional gain, and  includes only
one variable parameter , that is, .

B.  Multi-step Variable Parameter Seeking Approach

f (θ)
f (θ)

y(k) ya(k)

θ(k)

A  multi-step  variable  parameter  seeking  approach  is
proposed to seek the optimal parameter  in (13). The goal
is to adjust the variable proportional gain  by a multi-step
adaptive  seeking  approach  to  let  equal  at  every
moment k.  Here “multi-step” means  the  optimal  parameter

 is  achieved  through  multiple  calculations  within  one
control period.

C(k)

From Fig. 2,  it  can  be  seen  that  the  given  system  and  the
parallel  identification  system QS have  the  same  controller

. With the same reference input, there exists

u(k) = ua(k). (14)
The outputs of the two systems are

y(k) = u(k)P1(z, θ) (15)

ya(k) = ua(k)Pv(z, θ). (16)
Pv(z, θ)

P1(z) y(k) ya(k)
Substituting (14) into (16), it can be concluded that 

will be equal to  only if  equals  at every time k.
f (θ) can be described by

f (θ(k)) = θ(k) = θ1(k), k = 1,2, . . . ,n. (17)
y(k)

θ(k)
θ(k) θ1, j(k) ya(k)

At  time k,  the  actual  output  is ,  and  the  seeking
approach  is  to  run  the  variable  parameter  system QS in
parallel to adaptively find the optimal value of . At the jth
step,  is  supposed  to  be  equal  to ,  can  be
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ε j(k)
θ(k)

obtained at the step, then  is obtained. The optimal value
of  can be obtained by

θ∗(k) = argmin
j

J(θ1, j(k)) (18)

θ∗(k) ε j(k)where  is the optimal value,  is the jth identification
error.

θ∗(k)

θ1, j(k)
θ∗(k)

It  must  be  noticed  that  is  obtained  in  one  control
period  by  multiple  steps  of  seeking  process.  The  traditional
adaptive  method runs  only  one  step  and the  seeking result  is

,  but  the  variable  parameter  seeking  approach  obtains
the optimal parameter  by (18). So the variable parameter
seeking  approach  works  better  than  the  traditional  adaptive
method.  Considering  the  realtime  performance,  limited  steps
will be used in the multi-step adaptive seeking approach. The
detailed  procedure  for  the  multi-step  variable  parameter
seeking approach is shown in Algorithm 1.

Algorithm 1 Multi-step variable parameter seeking approach

θ θ1: Initialize:  and its change range of 
2: For k = 1 : n

r(k) y(k)3: 　Run the system to sample  and 
4: 　j = 1
5: 　Repeat

θ1, j(k)6: 　　Use the update law in (16) to adjust 
ε j(k) ξ(k)7: 　　Calculate  and  at every step j

J(θ1, j(k))8: 　　Choose the minimum 
9: 　　j = j + 1

ε j(k) < δ j = Nmax10: 　Until  or 
θ∗(k)11: 　Set  according to (15)

12: End for
f (θ) θ∗(k)13: Obtain  by collecting all 

jThe th parameter update law is

ξ̇ j(k) = κθ(k)×ε j(k)ε̇ j(k) (19)
ξ(k) θ1, j(k)

ξ(k) ξ̇1(k)+ ξ̇2(k)+ · · ·+ ξ̇ j(k)+ · · ·
|ξ(k)|

κθ(k) ε̇ j(k)
ε j(k)
κθ(k) ε j(k)ε̇ j(k)

ε j(k)ε̇ j(k)

where  is the increment of  at the jth step of seeking
process and  is equal to . Here

 is set to be smaller than a positive constant φ to avoid an
excessive parameter  change within one control  period,  other-
wise, the seeking process ends.  is a constant and  is
the differential of . In fact, one can avoid the difficulty in
choosing a best  if  is set for a product of a con-
stant and a sign function of .
θ1, j(k) ε j(k) θ∗(k)

θ1, j(k) ε j(k)
 and  are  recorded  at  every  step  and  is

obtained by selecting  when  is smaller enough.

θ∗(k) θ(k−1)

[θi, θ̄i]
θ(k−1)+ θopt(k)
θ(k−1)+ θopt(k) θ(k)

In  order  to  reduce  the  number  of  steps  for  obtaining  the
optimal  value ,  the  last  parameter  value  can  be
used as the present initial value, because the system does not
change  dramatically  during  a  very  small  period. m values
within  are  tested  to  seek  an  optimal  value

.  Then  the  initial  value  can  be  set  as
 and the parameter  can be obtained by

θ(k) = θ(k−1)+ θopt(k)+ ξ(k), k > 2 (20)
θopt(k)

θ(k−1)+ θopt(k)
[θi, θ̄i]

In  order  to  avoid  local  minima,  can  be  replaced  by
random  values  every h steps  in  Algorithm  1  under  the
conditions  that  (18)  is  met  and  is  within

.

θ∗(k)∣∣∣ε j(k)
∣∣∣ < δ δ

After n steps  of  running,  the  optimal  value  can  be
obtained by (20) if  where  is a very small positive
constant  or  when j reaches  maximum Nmax.  Then  the
equivalent variable parameter model in Fig. 2 can be obtained.

It can be seen that the variable parameter model in (13) and
its parameter seeking approach are simple and practical.

IV.  Variable-Parameter-Model-Based Feedforward
Compensation Method

With  the  built  variable  parameter  model,  the  feedforward
compensation  in Fig. 1 becomes  variable-parameter-model-
based feedforward compensation.

A.  Variable-Parameter-Model-Based Feedforward Compensa-
tion Method

P(z) F(z) Pv(z, θ) F(z, θ)

The  proposed  variable-parameter-model-based  feedforward
compensation method is shown in Fig. 3. Compared with Fig. 1,

 and  are replaced by  and .

With the variable parameter model in (13), the feedforward
controller can be obtained by

F(z, θ) = F(z) f −1(θ). (21)

F(z, θ)
The  basic  variable-parameter-model-based  feedforward

compensation  method  uses  in  (21)  to  compensate  the
tracking error.

f (θ) θ1

θ1 ∈ [θ1, θ̄1]

Q(z) f (θ)

Because  consists  of  only  one  parameter  where
,  the  corresponding  feedforward  compensation

value can be obtained easily by the inverse of  the parameter.
To avoid the influence of high-frequency disturbances, a low-
pass  filter  is  used  in  (13)  and  (21),  then  can  be
rewritten as

f (θ) = f (θ1)Q(z). (22)

P(z) P1(z, θ)
P1(z, θ) Pv(z, θ)

With the proposed variable parameter system shown in Fig. 1,
the fixed plant  becomes . Under the conditions in
Remark 1,  can be identified as  by the method
in  Section  III.  If  the  disturbance d(k)  is  zero  and  will  be
considered in the next section, (1) becomes

y(k) = u f f (k)
Pv(z, θ)

1+Pv(z, θ)C(z)
+ r(k)

Pv(z, θ)C(z)
1+Pv(z, θ)C(z)

. (23)

u f f (k) = r(k) ·F(z, θ)From Fig. 1,  we  have .  Then
substituting it into (23), we have

 

Pv(z,θ)+
−

C(z) +
+

F(z,θ)

+ +r(k)

uff(k)

y(k)e(k)

z−1/Pv(z,θ)
+

Qd(z)

−

ud(k)

u*(k)

z−1

+ +
du(k)

Disturbance
observer

 
Fig. 3.     The variable-parameter-model-based feedforward compensation.
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y(k) =
r(k)F(z, θ)Pv(z, θ)
1+Pv(z, θ)C(z)

+ r(k)
Pv(z, θ)C(z)

1+Pv(z, θ)C(z)

=
r(k)F(z) f −1(θ)P(z) f (θ)

1+Pv(z, θ)C(z)
+ r(k)

Pv(z, θ)C(z)
1+Pv(z, θ)C(z)

=
r(k)F(z)P(z)

1+Pv(z, θ)C(z)
+ r(k)

Pv(z, θ)C(z)
1+Pv(z, θ)C(z)

. (24)

F(z) F(z)P(z) y(k)
r(k)
If  has Solution 1,  will be one and  is equal

to .
F(z)

r(k+d) = r(k)zd
If  has  Solution  2,  substituting  (6)  into  (23)  and  let

, we have the same result.
F(z) u f f (k)Pv(z, θ)

y(k) r(k)
If  has  Solution  3,  will  be  equal  to  one

and  is equal to .
Therefore, the tracking error is theoretically equal to zero.
However,  the  variable  parameter  model  has  difficulties  in

obtaining the  accurate  model  under  the  following conditions:
1)  large  disturbances  cause  too  big  parameter  deviation;  2)
parameter value exceeds the upper or lower bounds.

B.  Model Uncertainty Compensation Based on Disturbance Ob-
server

Pv(z, θ) P1(z, θ)
d(k) d(k)

du(k) P1(z, θ) Pv(z, θ) du(k)

To  filter  disturbances  and  improve  the  control  accuracy,  a
disturbance  observer  [21],  [22]  can  be  applied.  Based  on  the
variable  parameter  model,  the  designed  disturbance  observer
is  shown in Fig. 3.  It  can be seen that  the variable parameter
model  has  replaced  in  the  disturbance
observer. If  in (1) is not zero,  is supposed to become

 with  replaced  by .  will  be
compensated by the disturbance observer.

Qd(z)
Pv(z, θ)

F(z)

In Fig. 3,  is  a  low-pass  filter.  Before  running  the
disturbance  observer,  the  variable  parameter  model 
should  be  sought  and  the  feedforward  controller  can  be
obtained by (21).

It  is  supposed  that  the  model  uncertainty  is ΔP,  which  is
calculated by

∆P = P1(z, θ) −Pv(z, θ). (25)
From Fig.3,  the  output  of  the  disturbance  observer  can  be

obtained by

ud(k) = (u∗(k)z−1− y(k)
z−1

Pv(z, θ)
)Qd(z)

= (u∗(k−1)− y(k)
1

z ·Pv(z, θ)
F(z, θ))Qd(z) (26)

u∗(k)
C(z) F(z)

where  is the sum of the outputs of the feedback control-
ler  and feedforward controller .

u∗(k)
From  the  schematic  diagram  of  the  variable-parameter-

model-based feedforward compensation shown in Fig. 3, 
can be calculated by

u∗(k) = e(k)C(z)+ r(k)F(z, θ)+ud(k). (27)

e(k) ea(k)

P1(z, θ)

Remark  2: With  a  disturbance  observer  helping  to  observe
the model uncertainty,  is close to  if the disturbance
is  fully  compensated,  then  the  variable  parameter  model  is
able to acquire the optimal estimation of the system .

du(k) H′DE(z)

HDE(z)

Proof: Suppose  the  transfer  function  from  the  disturbance
 to the tracking error is  in the proposed variable-

parameter-model-based feedforward compensation in Fig. 3. It
is noticed that the transfer function is  in the traditional

feedforward  compensation  method.  According  to  Yu  and
Tomizuka  [21],  the  following  relationship  exists  if  the
feedforward controller replaces the ILC in the paper

H′DE(z) ≈ HDE(z)(1− z−1Qd(z)). (28)
Qd(z) Qd(z)

H′DE(z)
Because  is a low-pass filter,  is equal to one and

 can be considered as zero when the frequency is low.
According to (26) the model uncertainty at low frequency can
be  estimated  by  the  disturbance  observer  and  then
compensated.  So  the  tracking  error  can  be  further  reduced
compared  with  the  traditional  feedforward  compensation
method.

e(k) ea(k)
u(k) ≈ ua(k)

y(k) ≈ ya(k)
P1(z, θ)

From Fig. 2, it can be concluded that  is close to  if
the  disturbance  observer  is  applied,  so  it  exists 
and ,  which  implies  that  the  variable  parameter
model is able to acquire the optimal estimation of . For
a  traditional  disturbance  observer  used  in  the  paper,  a  more
accurate model will help achieve more accurate estimation of
uncertainty.  So  the  variable  parameter  model  works  better
with the realtime update of the model parameter.

P1(z, θ)
θ

In summary, there are two cases for the variable parameter
model.  On  the  one  hand,  the  variable  parameter  model  is
theoretically  equal  to  under  the  conditions  that  the
disturbance is small and  can be sought within its bounds. On
the  other  hand,  if  the  above  conditions  cannot  be  met,  the
model uncertainty resulted from the variable parameter model
can  be  obtained  by  the  disturbance  observer.  Therefore,  the
feedforward  controller  can  reduce  the  tracking  error  to  the
greatest degree in the two cases.

C.  Advantage Analysis Compared With the Fixed Parameters
Feedforward Compensation Method

P1(z, θ)Considering  the  model  uncertainty ΔP,  in  every
control period can be estimated as

P1(z, θ) = Pv(z, θ)+∆P. (29)
du(k)In Fig. 3,  it  is  supposed  that ΔP is  caused  by .  The

output can be obtained by

y(k) = r(k)
Pv(z, θ)F(z, θ)+Pv(z, θ)C(z)

1+Pv(z, θ)C(z)

+du(k)
Pv(z, θ)

1+Pv(z, θ)C(z)
. (30)

F(z, θ)With the variable parameter model, if  has Solution 1
or Solution 2, then (30) becomes

y(k) = r(k)+du(k)
Pv(z, θ)

1+Pv(z, θ)C(z)
. (31)

The tracking error can be calculated by

e(k) = r(k)− y(k)

= −du(k)
Pv(z, θ)

1+Pv(z, θ)C(z)
. (32)

F(z, θ) f −1(θ) F(z, θ) f (θ)
Pv(z, θ)

r(k)

If  has  Solution  3,  in  and  in
 can be canceled, so the feedforward controller can be

considered  as  a  single  ZPETC  and  the  tracking  error  can  be
reduced. According to the theory of ZPETC, the tracking error
can  also  be  estimated  by  (32)  if  the  frequency  of  meets
the requirement of ZPETC.
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du(k)
From  (32),  it  can  be  concluded  that  the  tracking  error  is

determined by .
With  the  variable-parameter-model-based  feedforward

compensation,  the  model  uncertainty  can  be  reduced  to  be  a
very low level  by using the variable parameter  model,  which
implies

du(k) ≈ 0. (33)

P1(z, θ)
ud(k)

e(k)

When  the  parameters  is  over  the  setting  constraints,  the
disturbance-observer-based  compensation  will  help  achieve
the optimal estimation of  according to Remark 2 and
model  uncertainty  is  compensated  by  obtained  by
disturbance  observer.  According  to  (29),  can  be
controlled to be a very small value

e(k) ≈ 0. (34)

du(k)

With  the  fixed  parameters  model,  the  model  uncertainty  is
big if disturbances exist or a model has variable parameters. In
this case, the tracking error is determined by  and can be
estimated by (29).

In  summary,  the  above  theoretical  analysis  shows  that  the
variable-parameter-model-based feedforward compensation is
able  to  achieve  a  smaller  tracking  error  than  the  fixed
parameters model.

V.  Illustrative Examples

P(z)

Servo systems are often used in robots or numerical control
machine  tools.  Two  categories  of  application  examples  in
servo  systems  are  investigated:  the  one  is  that  has  a
varying  proportional  gain;  the  other  is  that  a  servo  system is
influenced by complex disturbances.

Generally, a servo system can be described by [23]

P(z) =
b0zm+b1zm−1+ · · ·+bm

a0zn+a1zn−1+ · · ·+an
, m ≤ n. (35)

P(z) ai b j
i = 0,1, . . . ,n j = 0,1, . . . ,m

If  is  a  fixed  transfer  function,  and  are  constants
where  and .

ai b j
Pv(z, θ)

θ ai b j

θ

P(z) f (θ)
du(k)

If  the  servo  system  has  variable  parameters,  and  are
varying coefficients and the transfer function will  be ,
where  is  a  vector  composed  of  and .  But  it  is  time-
consuming  to  identify  the  parameters  and  very  difficult  to
achieve  the  accurate  values  of  the  vector .  According  to
Section  III,  the  variable  model  in  (13)  can  be  used  if  the
conditions  in  Remark  1  are  met.  As  a  result,  the  variable
parameter model is described by the product of  and ,
and the model uncertainty is considered as  which can be
compensated by the disturbance observer in Fig. 3.

P(z)The plant  of  a  servo  system  is  set  for  a  fixed  transfer
function

P(z) =
0.7979e−5z+0.7957e−5

z2−1.992z+0.992
. (36)

The  feedback  controller  is  a  proportional-derivative  (PD)
controller, whose transfer function is

C(z) = 4+
10(z−1)

Ts× z
. (37)

Tswhere  is the sampling period and set for 0.004 s.
The reference input is a sine curve

r(k) = 1.4sin(kTs). (38)
This  section  verifies  the  effectiveness  of  the  variable-

parameter-model-based feedforward compensation method by
analyzing  the  performance  of  the  variable  parameter  model
and  comparing  with  ILC  and  a  traditional  feedforward
compensation  method.  And  the  advantages  of  the  variable-
parameter-model-based  feedforward  compensation  are  also
illustrated by examples with model uncertainty.

A.  Performance Analysis of the Variable Parameter Model

f (θ) f (θ)
θ1

To analyze the performance of the variable parameter model
the  identification  system  in Fig. 2 is  used  to  estimate  the
variable  parameter .  Because  in  (13)  has  only  one
parameter , the variable parameter model becomes

Pv(z, θ) = P(z)θ1 (39)
θ1 θ1 ∈ [θ1, θ̄1]where  is a variable scalar coefficient and .

θ1

θ1

In  order  to  evaluate  the  performance  of  the  proposed
variable parameter model, the variable parameter  is set with
different changing rules and the torque disturbance d is set as
a  complex  function.  The  changing  rules  of  the  variable
parameter  are given as follows:

1) a line

θ1 = 1.0+0.01kTs. (40)
2) a sine

θ1 = 1.0+0.1sin(kTs). (41)
3) a sine over the set seeking range

θ1 = 1.0+0.4sin(kTs). (42)
4) the sine in (41) with the following disturbance added

d(k) = 0.01cos(0.2y(k−1)). (43)
θ1 ∈ [0.8,1.4]

θ1

Within  the  set  seeking  range ,  the  variable
parameter  can  be  obtained  in  every  time k by  the  seeking
method  in  Section  III.  By  using  (40)–(43),  the  variable
parameters are obtained and the results are shown in Figs. 4(a)–
(d),  respectively.  In  the  figure, “identified” and “actual”
represent the identified and actual parameters, respectively.

θ1 θ1

y(k−1)

From  the  results,  it  can  be  seen  that  the  proposed  seeking
method  can  obtain  the  values  of  the  variable  parameter
accurately. But there is model uncertainty when the parameter

 is out of the set seeking range. For example, in Fig. 4(c) 
can be obtained when its value is within the seeking range, but
not  when  its  value  is  over  the  seeking  range,  which  implies
that  the  model  uncertainty  exists.  In  this  case,  the  parameter
over  the  seeking  range  is  set  as  the  boundary  value.  The
disturbance  in  (43)  is  complex  because  it  changes  with  the
change of the output . And its result in Fig. 4(d) shows
that  the  identified  variable  parameter  is  not  fully  in
accordance  with  (41),  especially  at  6.2  s,  18.8  s  and  31.4  s.
The  disturbance  causes  the  inconsistency  of  the  parameters,
but when the identified variable parameter is used in Fig. 5(d)
the  excellent  compensation  effectiveness  verifies  that  the
identified  variable  parameter  matches  the  real  system model.
So it can be concluded that the variable parameter is able to be
identified  when  the  disturbance  is  compensated  by  a
disturbance observer.

 698 IEEE/CAA JOURNAL OF AUTOMATICA SINICA, VOL. 7, NO. 3, MAY 2020



B.  Comparison With a Traditional Feedforward Compensation
Method

Qd(z) Q(z)

By using the variable parameters sought in Section V-A, the
variable-parameter-model-based  feedforward  compensation
method is used to compensate the tracking error. A traditional
feedforward controller shown in Fig. 1 is used to compare the
compensation  performance.  In Fig. 3,  and  are
designed  as  the  same  second  ordered  Butterworth  low-pass
filter whose transfer function is shown as follows:

Qd(z) = Q(z) =
0.2929z2+0.5858z+0.2929

z2−1.301e−16z+0.1716
. (44)

The  compensation  results  are  shown  in Figs. 5(a)–(d),
respectively. “proposed  method”, “traditional  method” and
“without compensation” represent the tracking errors obtained
by the proposed variable-parameter-model-based feedforward
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Fig. 5.     The tracking errors. Different conditions, that is, (a) a line, (b) a sine
curve, (c) constant 1 with the disturbance and (d) a sine over the set seeking
range, (e) with a varying transfer function, are considered.
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compensation  method,  traditional  feedforward  method  and
without compensation, respectively.

From  the  results,  it  can  be  concluded  that  the  variable-
parameter-model-based  feedforward  compensation  method  is
much better than the traditional feedforward compensation. Just
like  the  theoretical  analysis,  the  traditional  feedforward
compensation  can  compensate  the  tracking  error,  but  the
inaccurate plant model limits its effectiveness. Fig. 5 shows that
the  proposed  variable-parameter-model-based  feedforward
compensation method has much lower tracking errors than the
traditional  feedforward  compensation. Fig. 5(c) and Fig. 5(d)
show that the tracking error can be compensated by the variable-
parameter-model-based  feedforward  compensation  with
disturbance observer, even if the model uncertainty exists, i.e.,
the variable parameter is over the set seeking range in Fig. 5(c),
and there are the disturbance inputs in Fig. 5(d). Fig. 5(d) uses
the obtained parameters in Fig. 4(d), and the result shows the
tracking error can be compensated to a very small level, which
implies that the disturbance can be overcome by the proposed
variable-parameter-model-based  feedforward  compensation
method.

θ1

θ1
P(z)

In  addition  to  the  variable  parameter ,  a  more  complex
condition is considered in the paper. Under the condition that
the variable parameter  is set with the rule in (41), at the 6th
second, the plant of the servo system  in (36) is changed
as follows:

P′(z) =
0.85e−5z+0.4e−5

z2−1.992z+0.992
. (45)

θ1

In  this  case,  numerator  polynomial  coefficients  in  (35)  are
changed except for the varying parameter .

P(z)But  in  the  variable  parameter  model  (39)  remains
unchanged. Fig. 5(e) shows  that  the  tracking  error  by  the
traditional  method  becomes  bigger  after  6  s,  but  that  by  the
proposed  variable-parameter-model-based  feedforward  com-
pensation  method  remains  a  small  value.  This  result  further
verifies  that  the  proposed  method  is  effective  to  reduce  the
tracking error when the parameters of a system are varying.

VI.  Conclusion and Future Works

In the paper, a variable-parameter-model-based feedforward
compensation method is proposed to reduce the tracking error.
Based  on  the  built  variable  parameter  model,  the  nonlinear
plant  is  constructed  as  a  variable  parameter  model  with
constraints. A multi-step adaptive seeking approach is used to
obtain  the  parameter  of  the  variable  parameter  model,  and
then  the  inverse  of  the  system  can  be  calculated  by  the
variable  parameter  model.  Finally,  the  proposed  variable-
parameter-model-based  feedforward  compensation  method
can compensate the tracking error to the greatest degree.

By  an  example  of  a  servo  system,  the  effectiveness  of  the
variable-parameter-model-based  feedforward  compensation
method is verified.

1)  The  proposed  multi-step  adaptive  seeking  method  can
obtain the variable parameter accurately;

2)  The  variable-parameter-model-based  feedforward  com-
pensation  method  can  achieve  smaller  tracking  errors  than  a
traditional  feedforward  compensation  method,  and  the

disturbance observer can help achieve good effectiveness even
when the model uncertainty exists.

In  the  future,  more  real  systems  are  expected  to  use  the
variable-parameter-model-based  feedforward  compensation
method to reduce the tracking error.
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