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    Abstract—Stably inverting  a  dynamic  system  model  is  funda-
mental to subsequent servo designs. Current inversion techniques
have provided effective model matching for feedforward controls.
However,  when  the  inverse  models  are  to  be  implemented  in
feedback systems, additional considerations are demanded for as-
suring causality,  robustness,  and stability  under  closed-loop con-
straints. To  bridge  the  gap  between  accurate  model  approxima-
tions  and  robust  feedback  performances,  this  paper  provides  a
new  treatment  of  unstable  zeros  in  inverse  design.  We  provide
first an intuitive pole-zero-map-based inverse tuning to verify the
basic  principle  of  the  unstable-zero  treatment.  From  there,  for
general nonminimum-phase and unstable systems, we propose an
optimal inversion algorithm that can attain model accuracy at the
frequency regions  of  interest  while  constraining  noise  amplifica-
tion elsewhere to guarantee system robustness. Along the way, we
also provide a modern review of model inversion techniques. The
proposed  algorithm  is  validated  on  motion  control  systems  and
complex high-order systems.
    Index Terms—H∞ formulation,  model  inversion,  nonminimum-
phase zeros, unstable systems.

I.  Introduction
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G IVEN a linear time-invariant system model , the inver-
sion  of  has numerous  practical  implementations  in-

cluding iterative learning control (ILC) [1]–[3], repetitive con-
trol [4], [5], two-degree-of-freedom servo in feedforward con-
trol  [6],  [7], as  well  as  Youla  parameterization  and  disturb-
ance observer in feedback control [8]–[12]. Here,  can be an
open-loop plant model or a closed-loop control system. For a
minimum-phase system,  is stable and ready to be imple-
mented.  However,  for  a  system  with  nonminimum-phase
(NMP or unstable) zeros,  is unstable and cannot be imple-
mented directly. To find a stable, rational, and causal replace-
ment  such that  approximates 1 is thus a fundament-
al challenge  in  inversion-based  control  designs.  Such  a  chal-
lenge is more pronounced in discrete-time systems since 1) in-
tegrator-type  plant  dynamics1,  common  in  motion  control,
generate NMP zeros  in  their  zero-order-hold  (ZOH)  equival-
ents when the sampling time is sufficiently small; 2) fraction-

al-order delays induce unstable zeros after discretization [13].

H∞

Considering  the  importance  and  the  challenge  of  model
inversion,  numerous  strategies  have  been  established  in
modern literature. Based on system representations and scopes
of  application,  we  can  classify  these  strategies  into  two
categories:  frequency-  and  time-domain  model  inversions.
The  frequency-domain  strategies  focus  on  expressing  the
transfer functions of the stable inverses and hence can be used
in  both  feedback  and  feedforward  controls.  Examples  in  this
category  include  the  approximate  (e.g.,  NPZ-ignore,  zero-
phase-error-tracking  control  (ZPETC),  and  zero-magnitude-
error-tracking  control  (ZMETC))  [14]–[17],  the  ILC-based
[18]–[20],  and the -based [21]–[23]  model  inversions.  On
the  other  hand,  the  time-domain  strategies  [24]–[27]  aim  at
identifying the optimal control signal that minimizes the error
between a given reference and the output. These time-domain
algorithms are mainly used as feedforward techniques since a
preview of the reference is generally not available in feedback
design.
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This  paper  studies  the  analysis  and  design  of  model
inversion  strategies  in  the  frequency  domain.  Current
strategies  in  this  category  aim  at  achieving  effective  model
matching between  and .  Compared with  the  approximate
and  the  ILC-based  model  inversions,  the -based  model
inversion can automatically identify the inverse model without
knowing  the  exact  NMP  zeros,  which  particularly  benefits
systems  with  complicated  pole-zero  distributions.  However,
when the inverses are to be implemented in feedback systems,
additional  considerations  are  needed for  assuring closed-loop
stability  and  robustness.  In  pursuit  of  bridging  the  gap
between  accurate  model  approximations  and  robust  feedback
performances,  this  study  builds  a  new -based  optimal
inversion  algorithm  that  advances  the  field  by  1)  mitigating
control  efforts  at  customized  frequencies  and  thereby
enhancing  system robustness;  2)  reaching  high  efficiency  for
complex high-order systems and unstable systems.

Before  presenting  the  main  algorithm,  we  first  provide  a
pole-zero-map-based  NMP-zero  modulation  by  replacing
high-frequency NMP zeros with stable ones in motion control
applications.  We  verify  the  feasibility  and  limit  of  this
intuitive  modulation  in  achieving  a  stable  inverse  model  and
meanwhile  capturing the  low-frequency system dynamics  for
high-performance  motion  control.  Then  we  extend  this
intuitive modulation to an optimal design of model inversion.
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1 When actuators take forces or torques as the input and linear/angular posi-
tion  as  the  output,  integrator-type  plant  dynamics  with  a  relative  degree  not
less than two show up.
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H∞
There, replacing the manual adjustment with an automatic and
optimal  search,  we  develop  a  new -based  algorithm  that
can attain model accuracy at the frequency regions of interest
while constraining noise amplification elsewhere to guarantee
system robustness. The design goals are achieved by a multi-
objective  formulation  and  an  all-pass  factorization  that
consider  model  matching,  gain  constraints,  causality  of
transfer functions, and factorization of unstable system modes
in  a  unified  scheme.  The  proposed  algorithm  is  validated  on
motion  control  systems  and  complex  high-order  systems.
Moreover,  along  the  path,  we  unveil  previously  ignored
features  of  existing  inversion  strategies  by  developing  a
general  frequency-domain  analysis  method,  which  also  gives
new  insights  into  comparing  the  performances  of  different
strategies.

The main contributions of this paper are:
1)  conducting  an  up-to-date  review  of  model  inversion

strategies  and  proposing  a  new  frequency-domain  analysis
method;

H∞
2) analyzing the effect of an intuitive NMP-zero modulation

and developing a new -based inversion algorithm;
3) validating the proposed algorithm by presenting detailed

case studies with high-fidelity experimental data.
The remainder of this paper is structured as follows. Section II

conducts  an  in-depth  review  of  literature  and  proposes  the
new frequency-domain analysis method. Section III elucidates
the  effect  of  modulating  NMP  zeros.  The  proposed  optimal
inversion  is  presented  and  verified  in  Section  IV.  Section  V
concludes this paper.

II.  Review and Comparison of Frequency-Domain In-
version Algorithms—an End-Point Perspective

F = Ĝ−1 s z
s z
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The  frequency-domain  inversion  algorithms  aim  at
expressing  the  stable  inverse  models  in  the -  or -
domain  (  and  are  complex  numbers  in  the  Laplace
transform  and -transform,  respectively).  is  the  minimum-
phase  system  model  that  approximates  and  has  a  stable
inverse.  An  optimal  inverse  model  is  desired  for  to
approximate  1.  In  this  section,  we  review and  compare  three
typical  types  of  frequency-domain  inversion  algorithms.  In
addition,  we  unveil  new  features  of  existing  algorithms  by
developing a general frequency-domain analysis method.

H∞A.  -Based Model Inversion
1) Algorithm

H∞
G(s) = (b− s)/(b+ s) b > 0

J = ||W(s)(1−G(s)Ĝ−1(s))||∞
W(s) = (k+ ξs)/(k+ s)

k > 0 0 ≤ ξ < 1 G(s)
J

The  model  inversion  problem  for  NMP  systems  has  been
solved using the  formulation [21]–[23]. For a continuous-
time  NMP  system  with ,  under  a
cost  function ,  where  the
weighting  is  a  low-pass  filter  with

 and , the optimal inverse of  that minimizes
 is a lead filter [22]

Ĝ−1(s) =
k(1− ξ)(b+ s)
(k+b)(k+ ξs)

(1)

G(s)Ĝ−1(s)
that has  high  gains  at  high  frequencies.  The  frequency  re-
sponse of the optimal  is

G( jΩ)Ĝ−1( jΩ) =
k(1− ξ)(b− jΩ)
(k+b)(k+ jξΩ)

(2)

Ωwhere  is in rad/s.
2) Frequency-Domain Analysis

GĜ−1

GĜ−1

∞ π

To  quickly  capture  the  essence  of ,  we  examine  the
frequency response of  at the two frequency endpoints (0
and  for  a  continuous-time  system  or  0  and  in  rad  for  a
discrete-time system) and evaluate the characteristics of model
matching.

b = 2 ξ = 0.3
Ω

∞ G( jΩ)Ĝ−1( jΩ) 0
−180◦

b
(

1− ξ
k+b

)
k
ξ

(
1− ξ
k+b

)
k ξ G(s)Ĝ−1(s)

k
ξ

(
1− ξ
k+b

)
> b

(
1− ξ
k+b

)
k > ξb

k < ξb
k = ξb

Considering , ,  and  different k’s,  we  depict  in
Fig. 1 the frequency responses of (2).  As  increases from 0
to ,  the  phase  of  always  goes  from  to

 (the bottom plot of Fig. 1), and its magnitude goes from

(<0  dB)  to ,  monotonically.  Therefore,
depending on the values of  and ,  is a high-pass

filter  when ,  i.e.,  (0.6  in  this
example),  a  low-pass  filter  when ,  and  has  a  constant
magnitude when  (the top plot of Fig. 1).

B.  Approximate Model Inversions
1) Algorithms
For discrete-time NMP systems, to obtain the basic structure

of the inverse model, approximate model inversions [14]–[17]
first factor out the unstable zeros of the system as

G(z) =
N(z)
D(z)

=
Ns(z)Nu(z)

D(z)
(3)

N(z) D(z) z Ns(z)
Nu(z)

Nu(z)

where  and  are coprime polynomials of , and 
and  contain,  respectively,  the  stable  and  the  unstable
zeros. Here, we define  as

Nu(z) = (z− z1)(z− z2) . . . (z− zn) (4)
z1, z2, . . . , znwhere  are outside the unit circle. Note that

Nu(z−1) = (z−1− z1)(z−1− z2) . . . (z−1− zn)
Nu(z)Nu(z−1)has stable zeros. In addition,  is zero-phase.

G(z)In the general  case,  the approximate inverse model of 
in (3) has a structure of

 

−20
−15
−10
−5

0
5

M
ag

ni
tu

de
 (d

B
)

10−3 10−2 10−1 100 101 102
−180

−135

−90

−45

0

Ph
as

e 
(d

eg
)

k = 5.0
k = 0.6
k = 0.1

Bode diagram

Frequency (Hz)

10−3 10−2 10−1 100 101 102

Frequency (Hz)
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Fig. 1.     Frequency  responses  of   with  ,  ,  and
different values of .
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Ĝ−1(z) =
D(z)

Ns(z)Ñu(z)
(5)

Ñu(z)where  is a design parameter.

Ñu(z)
Nu(z) Ñu(z) =

Nu(1)
G(z)Ĝ−1(z) Ñu(z) = [Nu(1)]2/

Nu(z−1)
G(z)Ĝ−1(z) = Nu(z)Nu(z−1)/[Nu(1)]2

Ñu(z) = Nu(z−1) Nu(1)
[Nu(1)]2

G(z)Ĝ−1(z)

Table I summarizes  three  approximate  model  inversions
with  different  designs  of .  The  NMP  zeros  ignore
method  (NPZ-ignore)  [16],  [17]  replaces  with 

 at  the  cost  of  magnitude  and  phase  mismatch  in
. The ZPETC [14] assigns instead 

 and  achieves  zero-phase  error  dynamics  since
 is zero-phase. The ZMETC

[16],  on  the  other  hand,  eliminates  all  magnitude  errors  by
converting  the  unstable  zeros  to  their  stable  reciprocals,
namely, .  Note  that  in  NPZ-ignore  and

 in  ZPETC  are  added  to  create  a  unity  DC  gain  of
.

Ĝ−1(z)

Ĝ−1(z) z−m

Furthermore, to make the approximate inverse model 
in  (5)  realizable  and  ready  to  be  implemented  as  a  block
during feedback/feedforward implementation, a causal inverse
model is obtained by multiplying  with 

F(z) = z−mĜ−1(z) = z−m D(z)
Ns(z)Ñu(z)

(6)

where

m=Order[Denominator o f Ĝ(z)]−Order[Numerator o f Ĝ(z)]
(7)

Ĝ(z) Order

m

is  the  relative  degree  of  and  the  function calcu-
lates the highest exponent in a transfer function. Next we will
prove  that  is  always  larger  than  0  in  the  NPZ-ignore,
ZPETC, and ZMETC.

Ñu(z)
m

Proof: We can  tell  from Table I that  the  relative  degree  of
 is  0  in  each  of  the  three  designs.  Thus,  from  (5),  the

expression of  in (7) can be reduced to

m = Order[D(z)]−Order[Ns(z)]. (8)
Order[D(z)] ≥ Order[Ns(z)]+Order[Nu(z)]

Order[Nu(z)] > 0
Order[D(z)] > Order[Ns(z)] m > 0

Also,  we  have 
from  (3)  and  for  NMP  systems,  yielding

, that is,  in (8). ■
m > 0 z−mHere, the result  means the delay  should always be

accounted  for  to  make  the  inverse  model  realizable  in  the
feedback/feedforward  applications  of  approximate  model
inversions. In feedforward applications where a preview of the

yd(k) z−m

r(k) = yd(k+m)
desire output  is available, the delay  can be canceled
out by letting .

2) Frequency-Domain Analysis

r(k) y(k)
Y(z)/R(z) = F(z)G(z) = z−mG(z)Ĝ−1(z)

F(z)
Y(z)/R(z)

Ts

Fig. 2 shows  a  block  diagram  to  illustrate  the  goal  of  the
model  inversion  design,  where r, u,  and y represent  the
reference, the input, and the output signals, respectively. Note
that  subsequently F can  be  implemented  as  a  block  in  the
feedback/feedforward controller designs, such as the examples
in  Section  IV-C.  In Fig. 2,  the  overall  transfer  function  from
the  reference  signal  to  the  output  signal  is

,  which  reflects  the
accuracy  of  the  causal  inverse . Table I lists  the  transfer
functions  of  in  the  three  approximate  model
inversions.  We  take  the  hard  disk  drive  (HDD)  system  in
Section III as an illustrative example. The transfer function of
the system with a sampling frequency (1/ ) of 26.4 kHz is

G(z) = z−3 1.447663(z+0.050852)(z+2.494311)
z2−1.978354z+0.978808

. (9)

G(z) −2.5 Nu(z) = z+
Y(z)/R(z) z−4(z+2.494311)/

z−4(z+2.494311)(z−1+2.494311)/
z−4(z+2.494311)/(z−1+2.494311)

Y(z)/R(z)

z = e jω→ 1 Y(z)/R(z)→ 1

Y(z)/R(z)
π z = e jπ∣∣∣Y(e jπ)/R(e jπ)

∣∣∣ |Nu(−1)/Nu(1)|
[Nu(−1)/Nu(1)]2

Y(e jπ)/R(e jπ) −14.72dB
Y(e jπ)/R(e jπ) −7.36dB

−2.5 m = 4 Y(e jπ)/R(e jπ)

Here,  has  one  NMP  zero  at  around , 
2.494311,  and m in  (8)  is  4.  are 
3.494311  for  NPZ-ignore, 
3.4943112 for ZPETC, and 
for ZMETC. Fig. 3 plots the frequency responses of 
of the three approximate designs. At low frequencies close to
0, i.e., , we get the desired result  for
all  three  methods,  and  thereby  the  magnitude  and  phase
responses of  largely overlap with each other (Fig. 3).
At the Nyquist frequency  rad (i.e., 13.2 kHz), where ,

 equals  for  NPZ-ignore  and
equals  for ZPETC; that is to say, in log scale,

 in ZPETC ( ) has twice the magnitude
of  in  NPZ-ignore  ( )  (the  top  plot  of
Fig. 3). Moreover, in this HDD example, since the NMP zero
is a real one at around  and , all three 

 

F: approximate inverse of G Gr u y

 
Fig. 2.     Block diagram to illustrate the goal of the model inversion design.
Note that F can be implemented as a feedback/feedforward controller.
 

 

TABLE I  
Ñu(z) G(z)Ĝ−1(z) Y(z)/R(z) Y(z) R(z), , and  in Approximate Model Inversions.  and  are Transfer Functions of the Output and

Reference Signals Shown in Fig. 2.

Method NPZ-ignore ZPETC ZMETC

Ñu(z) Nu(1)
[Nu(1)]2

Nu(z−1)
Nu(z−1)

G(z)Ĝ−1(z)
Nu(z)
Nu(1)

Nu(z)Nu(z−1)
[Nu(1)]2

Nu(z)
Nu(z−1)

Y(z)
R(z)

z−m Nu(z)
Nu(1)

z−m Nu(z)Nu(z−1)
[Nu(1)]2

z−m Nu(z)
Nu(z−1)

Y(e jω)
R(e jω)

e− jmω Nu(e jω)
Nu(1)

e− jmω Nu(e jω)Nu(e− jω)
[Nu(1)]2 e− jmω Nu(e jω)

Nu(e− jω)∣∣∣∣∣∣Y(e jπ)
R(e jπ)

∣∣∣∣∣∣
∣∣∣∣∣ Nu(−1)

Nu(1)

∣∣∣∣∣ [
Nu(−1)
Nu(1)

]2
1
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have zero phase at the Nyquist frequency (the bottom plot of
Fig. 3).

C.  ILC-Based Model Inversion
1) Algorithm

F(z)
f (k)

ILC,  originally  developed  for  output  tracking  in  repetitive
tasks,  can  be  extended  to  the  field  of  model  inversion
[18]–[20].  Here,  the  inverse  model  is  constructed  by
designing its impulse response  as the feedforward signal
in the following ILC

F(z) =
N/2∑

k=−N/2

f (k)z−k

f (k) = lim
i→∞

ui(k) (10)

ui(k) iwhere  is the learned input at the -th iteration

ui(k) = ui−1(k)+L(z) [r(k)−G(z)ui−1(k)]

=
[
I− (I−L(z)G(z))i

]
G−1(z)r(k). (11)

r(k)
δ(k) L(z)

∥1−L(z)G(z)∥∞ < 1
i→∞ f (k)→ u∞(k)→G−1(z)δ(k)

f (k)
G−1(z) f (k) F(z)

F(z) ≈G−1(z)

Here,  the  training  reference  is  designed  as  the  delta
impulse .  The  ILC  learning  filter  is  built  from  the
approximate  model  inversions  (Section  II-B)  such  that  the
stability  condition  is  satisfied.  With

,  from  (10)  and  (11), ,  that
is,  approximates  the  impulse  response  of  the  unstable

. Recall that  is the impulse response of . Thus,
we obtain .

2) Frequency-Domain Analysis

1−L(z)G(z)

(1−L(z)G(z))i

L(z)
i

(1−L(z)G(z))i

i
i

F(z) G−1(z)

In  the  ILC-based  model  inversion,  the  transfer  function
 determines  not  only  the  stability  condition  but

also  the  convergence  rate. Fig. 4 shows  the  frequency
responses  of ,  taking again  the  HDD system in
(9)  for  example.  Here,  is  built  from  ZPETC.  With
increasing  iteration  number ,  the  magnitudes  of

 at  low  frequencies  start  to  converge  to  zero.
Moreover, a larger  yields a wider low-frequency region with
zero  magnitude.  Therefore,  under  finite  implementation  of ,

 represents  a  low-pass  approximation  of  with  a
tunable  bandwidth.  One  drawback,  however,  is  that  system

Ghardware (or a very accurate model ) is needed for iterative
experiments to run.

D.  Summary of Literature Review and Motivations of This Paper

H∞

Table II summarizes the three model inversion strategies. It
is  noteworthy  that  these  frequency-domain  strategies  can  be
implemented  in  both  feedback  and  feedforward  controls.
Application of each method certainly depends on the specific
problem at  hand.  Compared  with  the  other  two  methods,  the

-based  model  inversion  can  automatically  identify  the
inverse  model  without  knowing the  exact  NMP zeros,  which
particularly benefits unstable systems and high-order systems
with complicated pole-zero distributions.

For  inverse-based  feedback  control,  all  the  surveyed
algorithms have  considered  accurate  model  inversion  but  not
robustness  against  model  mismatch  that  is  also  crucial  for
closed-loop  performance.  In  contrast,  the  algorithm  to  be
proposed  in  Section  IV  enhances  the  system  robustness  by
limiting  the  magnitude  of  the  inverse  model  at  frequency
regions  where  large  model  mismatches  exist.  Before
discussing the main algorithm, we provide in Section III some
preparatory work on the effect of the NMP zeros.

III.  Frequency-Domain Implications of Modulating
NMP Zeros

This  section  studies  the  influence  of  modulating  the  NMP
zeros  (i.e.,  shifting  the  locations  of  the  NMP  zeros)  on  the
frequency response of a system. For concreteness, we take the
HDD  system  in  [10]  as  an  example,  where  model  inversion
underpins servo designs that  control  precisely the position of
the read/write head to provide reliable storage.

The solid line in Fig. 5 shows the frequency response of an
experimentally measured HDD system. The nominal model of
the motors and actuators in the system is [10]

Gc(s) = e−10−5 s 3.74488×109

s2+565.487s+3.19775×105 . (12)

Gc(s)
G(z)
−2.5

The ZOH equivalent of  sampled at 26.4 kHz, namely
, is  expressed in (9) and has one unstable zero at  around
. As plotted in Fig. 5, the frequency response of the NMP
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G(z) matches  well  with  the  actual  system  dynamics  (solid
line).

Nu(e jω) = e jω+

Bp

1/2Ts ωp = 2πBpTs ≈ 2π
0.1
2Ts

Ts = 18◦

Bp = 1300 ωp = 2π×1300/26400 = 17.72◦

ω

17.72◦

e jω+2.494311
−0.8

Ĝ0(z)

We  investigate  next  the  frequency-domain  implications  of
the  NMP-zero  locations  by  analyzing 
2.494311  in  (9).  Consider  the  rule  of  thumb  that  the  closed-
loop  bandwidth  is  around  10% of  the  Nyquist  frequency

(  Hz) or ; in this example,
 Hz,  and .  In  other

words,  sweeps only a small arc on the unit circle from 0 to
 in the main performance region, yielding mild changes

to  the  vector ,  as  shown  in Fig. 6.  Therefore,
when shifting the NMP zero to a stable one, e.g., at  (Fig. 6),
we can get a minimum-phase nominal model  that has a
stable inverse and largely maintains frequency response of the
system in desired low-frequency regions

Ĝ0(z) = z−3 1.447663(z+0.050852)(z+0.8)
z2−1.978354z+0.978808

.

Ĝ0(z) G(z)Normalizing  to retain the DC gain of  in (9), we
get

Ĝ(z) = z−3 (z+0.050852)(z+0.8)
0.355831z2−0.703959z+0.348290

. (13)

Ĝ(e jω)
G(e jω)

3000

As shown in Fig. 5,  (dashed line) matches well with
the NMP  (dotted line) and the actual system dynamics
(solid line) below  Hz. This frequency is large enough for
most servo-enhancement schemes in single-stage HDDs.

In  summary,  a  stable  inverse  is  readily  achievable  through

H∞

modulating the NMP zeros as  long as  the NMP zeros do not
occur  in  the  desired  low-frequency  regions.  This  result
justifies  the  basic  idea  of  the -based  optimal  inversion,
where the manual modulation is upgraded to an automatic and
optimal search, as shall be proposed next.

H∞IV.  Proposed -Based Optimal Inversion

H∞

Ĝ(z)

Based on the frequency-domain analysis in Section III, this
section  develops  an -based  optimal  inversion.  The  design
principle  is  to  automatically  search  for  the  optimal  inverse
model  to  selectively  fit  different  frequency  regions.  At
frequencies  where  no  NMP  zeros  exist  and  no  large  model
uncertainties  occur,  we  impose  an  accurate  model  matching
between  the  minimum-phase  model  and  the  original
NMP  model;  at  other  frequencies,  we  limit  the  magnitude
response  of  the  inverse  model  to  increase  the  system
robustness.  We  explore  the  design  procedures,  case  studies,
and  frequency-domain  analyses  of  the  proposed  algorithm,
first for NMP systems and then for unstable systems.

H∞A.  -Based Optimal Inversion for NMP Systems
1) Algorithm
S

S
F(z) = z−mĜ−1(z)

Let  denote the set of stable, proper, and rational discrete-
time  transfer  functions.  We  search  among  to  find  the
optimal inverse model  that satisfies

F(z) z−m

F(z) m
G(z)

a)  is  realizable/proper: This  relates  to  the  term in
.  To  minimize  the  delays,  can  be  tuned  and  usually

equals the relative degree of .
min ||W1(z)(F(z)G(z)− z−m)||∞b) Model matching: . Namely,

we minimize the maximum magnitude of the model mismatch
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TABLE II  
14 17 18 20 H∞

21 23
Overview of Frequency-Domain Inversion Strategies: Approximate [ ]–[ ], ILC-Based [ ]–[ ], and -Based Methods

[ ]–[ ]. DT and CT are Short for Discrete Time and Continuous Time, Respectively.

Method DT or CT Basic structure or design

Approximate DT F(z) = z−m D(z)
Ns(z)Ñu(z)

ILC-based DT F(z) =
∑N/2

k=−N/2 f (k)z−k , f (k) = limi→∞ ui(k)

H∞-based CT/DT min ||W(s)(1−G(s)Ĝ−1(s))||∞

H∞Proposed -based DT min
F(z)∈S

∥∥∥∥∥∥
[

W1(z)(F(z)G(z)− z−m)
W2(z)F(z)G(z)

]∥∥∥∥∥∥∞ F(z) = z−mĜ−1(z) with 
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F(z)G(z)− z−m W1(z) W1(z)

G−1(z)
F(z) = z−mG−1(z)

 weighted  by .  The  weighting 
determines  the  frequency  regions  for  accurate  model
matching.  If  is  stable,  the  direct  solution  is

.
min ||W2(z)F(z)G(z)||∞

F(z)G(z) W2(z)
W2(z)

F(z) = 0 F(z)

c) Gain  constraint: .  Here,  the
magnitude  of  is  scaled  by  the  weighting .  For
instance,  can  be  a  high-pass  filter  to  constrain  noise
amplification  at  high  frequencies.  The  solution  for  this
condition alone is , that is,  does not amplify any
input signals.

Integrating the above three goals  yields  the multi-objective
optimization principle

min
F(z)∈S

∥∥∥∥∥∥
[

W1(z)(F(z)G(z)− z−m)
W2(z)F(z)G(z)

]∥∥∥∥∥∥∞ . (14)

F(z)

W1(z)
F(z) W2(z)

W1(z) W2(z)

F(z)

The  optimal  inverse  model  given  by  (14)  preserves
accurate model information in the frequency regions specified
by  and,  on  the  other  hand,  penalizes  excessive  high
gains  of  at  frequencies  determined  by .  Typically,

 is  a  low-pass  filter,  and  is  a  high-pass  one,  as
shown  in  the  example  of Fig. 7.  For  one  system  model,  the
weightings can be flexibly designed, yielding different inverse
models .

H∞ F(z)

e1 e2 F(z)

The optimization principle in (14) can be solved within the
framework of  controls.  can be solved by the hinfsyn
function in the robust control toolbox of MATLAB and tuned
for  the  target  performance  by  changing  the  input  arguments
gamTry and gamRange of the function. Fig. 8 shows the block
diagram  realization  of  (14).  Here,  the hinfsyn function
minimizes the two error signals  and . The solution of 

G(z) W1(z) W2(z)
F(z)

exists as long as , , and  are stable. After (14)
is  solved,  a  lower-order  can  be  reached  by  applying
standard model-reduction techniques, if needed.

Remark: When  the  system  model  is  subjected  to
perturbations,  we  can  use  a  multiplicative  uncertainty  model
to lump the various dynamic uncertainties.

Gp(z) =G(z)(1+WI(z)∆I(z)) (15)
∥∆I∥∞ ≤ 1

H∞

F(z) H∞
[e1, e2]T ∆I

where  [28]. Fig. 9 shows the block diagram of  the
proposed -based  optimal  inverse  with  uncertainties  taken
into consideration. The problem now is to find a stabilizing in-
verse model  such that the  norm of the transfer func-
tion between r and is less than 1 for all , that is

min
F(z)∈S

∥∥∥∥∥∥
[

W1(z)(F(z)Gp(z)− z−m)
W2(z)F(z)Gp(z)

]∥∥∥∥∥∥∞ (16)

H∞
µ

which  is  no  longer  a  standard  optimization  but  a  robust
performance  problem.  The -synthesis  and DK-iteration pro-
cedures can be utilized to solve the problem [28], [23].

2) Case Study With Frequency-Domain Analysis
This case study shows efficiency of the proposed algorithm

for  high-order  NMP  systems  with  complicated  pole-zero
distributions.  We  take  for  example  the  active  suspension
system  in  [29]  that  serves  as  a  benchmark  on  adaptive
regulation. The control goal there is to attenuate the vibrations
transmitted to  the  base frame,  and model  inversion is  critical
for the best results achieved in the benchmark [30]. Although
the system is open-loop stable, the existence of the NMP zeros
challenges  model  inversion  in  general  feedback  and
feedforward control.

G(z)

G(z)

F(z) F(z)

F(z)

Ĝ(z) = z−mF−1(z) m = 2

Via  standard  system  identification  methods,  the  system
model  is  experimentally  identified  with  a  sampling  rate
of 800 Hz and has an order of 22. As shown in the pole-zero
plot in Fig. 10, four NMP zeros show up in . Furthermore,
with  the  two  weighting  functions  designed  as  in Fig. 7,  we
solve the optimization principle in (14) and obtain the optimal
inverse . After that, we reduce the order of  to 23 by
applying  the  model-reduction  function reduce in  MATLAB.
The  pole-zero  plot  of  the  23rd-order  is  also  shown  in
Fig. 10. Then the minimum-phase system model is secured by

 ( ).
Ĝ(z) H∞

G(z)
Ĝ(z)

H∞

As shown in Fig. 11,  obtained from the proposed -
based  optimal  inversion  (red  dashed  line)  matches  well  with
the  identified  NMP  (blue  solid  line).  Moreover,  at  high
frequencies  near  the  Nyquist  frequency,  from  the
proposed method (red dashed line) has higher magnitudes than
that  from  the  existing -based  method  without  the  gain-
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H∞Fig. 8.     Block diagram for the -based optimal inverse design.

 

 

F G W1

WI ∆I

z−m

W2

r y
+

e1

e2

−u
+
−

 
H∞Fig. 9.     Block diagram for the -based optimal inverse design considering

uncertainty.
 

WANG AND CHEN : H∞-BASED SELECTIVE INVERSION OF NONMINIMUM-PHASE SYSTEMS FOR FEEDBACK CONTROLS 707 



W2
F(z)

Ĝ(z)
G(z)

Ĝ(z)
Ĝ(z)

H∞

F(z)

constraint  condition  (magenta  solid  line).  That  is  to  say,  the
second weighting  has served to limit the magnitudes of the
inverse model ,  as it  was designed to. Fig. 11 also brings
the approximate methods (Section II-B) into comparison. The
minimum-phase  model  from  ZMETC  has  the  same
magnitude  response  as  the  system  model  but  has  large
phase  errors,  whereas  ZPETC  yields  a  with  no  phase
error but large magnitude mismatch.  obtained from NPZ-
ignore  has  large  errors  in  both  magnitude  and  phase.  The
proposed -based  optimal  inversion  outperforms  the  other
methods  by  not  only  striking  a  balance  between  magnitude
and  phase  matches  but  also  mitigating  control  efforts  (i.e.,
magnitudes of ) at high frequencies for system robustness.

H∞B.  -Based Optimal Inversion for Unstable Systems
1) Algorithm

G(z)

F(z) H∞
G(z)

For  unstable , Fig. 8 and  (14)  are  ill  conditioned,  and
the  MATLAB  function hinfsyn returns  an  empty  solution  of

.  The  first  intuition  for  applying  the -based  optimal
inversion is  perhaps  to  ignore  the  unstable  poles  of  and

take the remaining part as a fictitious system model. However,
ignoring  the  unstable  poles  alters  the  relative  degree  of  the
system  and  may  generate  a  non-causal  system.  Furthermore,
numerical  issues  may  arise  after  changing  the  magnitudes  of
the  system.  To  overcome  these  difficulties,  this  section
introduces an approach by using an all-pass factorization.

G(z).We first factor out the unstable poles of 

G(z) = z−mG0(z)
∏

i

1
z+ pi

(17)

|pi| > 1 G0(z)
G(z)

where  and  contains all the zeros and stable poles
of .

Performing the all-pass factorization gives

G(z) =Gs(z)
∏

i

p̄iz+1
z+ pi

(18)

Gs(z) = z−mG0(z)
∏

i

1
p̄iz+1

(19)

p̄i pi
G(z) Gs(z)∏

i( p̄iz+1)/(z+ pi)
Gs(z)

G(z) G(z) Gs(z)

where  is  the  complex  conjugate  of .  Here,  the  unstable
poles  in  are  replaced  by  their  reciprocals  in .  The
product term  in (18) has unity magnitude,
that  is,  the  stable  has  the  same  magnitude  response  as
the  unstable .  Then  we  can  substitute  with 
when implementing the procedure proposed in Section IV-A.

H∞For  unstable  systems,  the  design  steps  of  the -based
optimal model inversion are modified as

G(z)
m G(z)

a) Write the pole-zero representation of , determine the
relative  degree  of ,  and  then  factor  out  the  unstable
poles as in (17);

G(z)
Gs(z)

b) Perform the all-pass factorization by transforming  in
(17) to  in (19);

Gs(z)
Fs(z) = z−mĜs

−1(z)
c)  Substitute  into  (14),  and  solve  (14)  to  find

;

F(z) = Fs(z)
∏

i(z+ pi)/( p̄iz+1)
Ĝ(z) = z−mF−1(z)

d) Take into account the effect of the unstable poles in (18)
by .  The  minimum-phase
system model is then .

2) Case Study With Frequency-Domain Analysis
H∞In this case study, we show how to implement the -based

optimal inversion in unstable systems.
Consider a discrete-time transfer function

G(z) =
z−1(z+1.5)

z−1.2
(20)

m = 1
G(z)

with  a  relative  degree  of  and  a  sampling  rate  of  26.4
kHz.  contains an unstable pole 1.2 at low frequency and
an unstable zero –1.5 at high frequency. Following the afore-
mentioned design steps for unstable systems, we first get

Gs(z) =
z−1(z+1.5)
(1−1.2z)

. (21)

Gs(z)
Fs(z)

Fs(z) = z−mĜs
−1(z)

Substituting the stable  into the hinfsyn function yields
a  nonempty  solution  of  that  satisfies  the  optimization
principle  in  (14): .  Here,  we  design  the
weighting functions as

W1(z) =
0.5138z+0.5137

z+0.0264
W2(z) =

z−0.6423
z−0.2846
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Fs(z)

G−1
s (z)

F(z) = Fs(z)(z−1.2)/(1−1.2z).
F(z)

using the MATLAB function makeweight. The obtained 
is further  normalized  to  have  the  same  magnitude  as  the  un-
stable  at  800  Hz.  The  inverse  filter  is  thus  given  by

 Using minreal in  MATLAB,
we reduce the order of the inverse filter  from 6 to 3 and
obtain

F(z) =
0.7439z3−1.086z2+0.227z+0.006236

z3+0.5056z2−0.1335z−0.003618
.

Ĝ(z) = z−1F−1(z) Ĝ(z)
G(z)

H∞

Ĝ(z)
F(z)

The  minimum-phase  system  model  is  thereby
.  As  shown  in Fig. 12,  (dashed  line)

matches well with  (solid line) particularly at frequencies
below  5000  Hz,  which  is  large  enough  for  general  feedback
designs.  Besides,  compared  with  the  existing -based
method  (dotted  line),  near  the  Nyquist  frequency,  the  high
gain of  from the proposed method (dashed line) indicates
a  small  magnitude  of ,  which  matches  with  the  gain-
constraint design criterion in Section IV-A.

C.  Feedback Applications of the Proposed Algorithms

H∞

Model  inversion  is  fundamental  to  subsequent  servo
designs, such as Youla-Kucera parameterization and adaptive
disturbance  observers  [8]–[12].  This  section  provides
application  examples  that  experimentally  verify  the
preliminary  NMP-zero  modulation  (Section  III)  and  the -
based optimal inversion (Section IV).

In  laser-based  additive  manufacturing,  a  galvo  scanner
system applies  mirrors  to  reflect  input  laser  beams  to  follow
predefined  trajectories.  In  [12],  the  authors  first  identify
experimentally  the  NMP  system  model.  After  that,  the
minimum-phase  model  is  obtained  by  moving  the  unstable
zero  from –4.419  to –0.6.  Based  on  the  minimum-phase
model, [12] builds an outer-loop inverse-based Youla-Kucera
parameterization  scheme  to  reject  single-frequency  narrow-
band disturbances.

Reference  [10]  studies  the  track-following  problem  in  a
single-stage  HDD  system.  The  system  model  in  (9)  has  one
NMP zero, which is shifted inside the unit circle to make the

inverse model strictly stable, as shown in Fig. 6. Then with the
stable  inverse  model,  [10]  designs  an  adaptive  disturbance
observer  based  on  the  internal  model  principle  to  reject
multiple narrow-band disturbances.

H∞

In  the  active  suspension  benchmark  discussed  in  [30],  the
minimum-phase model (red dashed line in Fig. 11) is obtained
by  applying  the  proposed -based  optimal  inversion.  The
model  is  then used to  build  an adaptive  disturbance observer
with an infinite impulse response structure to reject unknown
or time-varying narrow-band vibrations.

V.  Conclusion

H∞

H∞

In this paper, we discussed new frequency-domain analysis
and design approaches to invert a nonminimum-phase (NMP)
linear  time-invariant  system,  with  a  focus  on  robustness  and
needed  design  constraints  in  feedback  implementations.  We
reveal  that  among  existing  model  inversion  techniques,  the

-based method stands out by automatically identifying the
inverse  model  without  knowing  the  exact  NMP  zeros.
Furthermore, we illustrated that modulating the location of the
NMP  zero  only  changes  the  system  response  at  selective
frequency  regions.  Leveraging  this  fact,  for  general  NMP
systems,  we  propose  a  discrete-time -based  optimal
inversion  to  automatically  design  the  inverse  model  for
selective  frequency  regions  defined  by  two  weighting
functions.  Verifications  in  complex  high-order  systems  and
unstable  systems  show  the  strengths  of  the  proposed
algorithm.
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