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    Abstract—This  study  deals  with  reliable  control  problems  in
data-driven cyber-physical systems (CPSs) with intermittent com-
munication  faults,  where  the  faults  may  be  caused  by  bad  or
broken  communication  devices  and/or  cyber  attackers.  To  solve
them,  a  watermark-based  anomaly  detector  is  proposed,  where
the  faults  are  divided  to  be  either  detectable  or  undetectable.
Secondly, the fault’s intermittent characteristic is described by the
average dwell-time (ADT)-like concept, and then the reliable con-
trol issues, under the undetectable faults to the detector, are con-
verted into stabilization issues of switched systems. Furthermore,
based on the identifier-critic-structure learning algorithm, a data-
driven  switched  controller  with  a  prescribed-performance-based
switching law is proposed, and by the ADT approach, a tolerated
fault  set  is  given.  Additionally,  it  is  shown  that  the  presented
switching laws can improve the system performance degradation
in asynchronous intervals, where the degradation is caused by the
fault-maker-triggered switching rule,  which is unknown for CPS
operators.  Finally,  an illustrative example validates the proposed
method.
    Index Terms—Adaptive dynamic  programming  (ADP),  commu-
nication fault, cyber-physical systems (CPSs), data-driven control, re-
liable control.

I.  Introduction

D RIVEN by  networking,  computing  and  control  tech-
niques, cyber-physical  system  (CPS)  can  greatly  im-

prove  the  work  efficiency  of  existing  industrial  systems
[1]–[5]. On account of the dependence of the CPS’s operation
on data  transmitted  via  the  communication  devices  and  net-
works, the system/control performance of the CPS relies heav-
ily on the quality of the transmitted data [6]. In some practical

control  applications,  bad  or  broken  communication,  sudden
environmental disturbances, or malfunction of either software
or hardware often corrupt the transmitted data. Thus, the char-
acteristics  of  the  communication  devices  may  change  over
time, and there may be partial or complete system failure [7],
which can deteriorate  performance and even diverge systems
in certain cases.

In addition, since communication networks are vulnerable to
attacks,  and such attacks  compromise  transmitted data,  cyber
attacks  are  also  one  of  the  main  reasons  behind
communication faults [8]–[11]. Recently, typical cyber attacks
in  CPSs,  such  as  denial-of-service  (DoS)  attacks  [12],  [13],
false data injection attacks [14], [15], replay attacks [16], [17],
and  other  attacks  [18]–[20],  have  been  reported.  To  defend
them, some works about secure estimation and detection have
been  reported  in  [21]–[28].  In  secure  control  aspects,  [29]
introduced  in  great  detail  and  provided  available  techniques
for  secure  control  designs  against  cyber-physical  attacks,
while  [30]  gives  a  defense  analysis  against  malicious  threats
on cloud control systems via a Stackelberg game. To mitigate
sensor  and  actuator  attacks,  [31]  presents  a  moving  target
defense  control  framework.  Against  the  adversarial  attacks,
[32]  proposes  an  event-triggered  secure  observer-based
control policy. In [33], an adaptive reliable control policy was
presented  to  stabilise  the  CPSs  under  the  frequency-
constrained  sensor  and  actuator  attacks.  In  [34]  and  [35],
resilient  control  methods  against  frequency-  and  duration-
constrained  DoS  attacks  were  proposed.  In  [36],  adaptive
control  architectures  were  presented  for  sensor  attacks  in
CPSs to recover system performance. In [18] and [37], which
consider  simultaneous  sensor  and  actuator  attacks,  adaptive
control  policies  were  proposed  to  ensure  stability  of  the
systems.  In  addition,  for  actuator  attacks,  [38]  presented  an
adaptive integral sliding-mode control strategy such that data-
driven CPSs are stable with an optimal performance.

On  the  other  hand,  it  is  costly  and  difficult  to  attain  a
system’s  accurate  model  due  to  the  complexity  of  industrial
systems.  Furthermore,  for  many  industrial  systems,  data  is
pervasive in every aspect of industrial production, and should
be fully utilized. Due to this, data-driven controls have gained
much  attention  [39].  In  the  research  of  data-driven  controls,
the  adaptive  dynamic  programming  (ADP)  technique  (or
policy  iteration  (PI)  algorithm),  as  an  effective  approach  of
solving  the  algebraic  Riccati  equation  (ARE),  is  widely
applied  in  order  to  obtain  a  data-driven  (or  model-free)
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controller  [40]–[44].  Both  [45]  and  [46]  studied  the  data-
driven  control  problems  via  the  zero-sum  game.  In  order  to
achieve  a  model-free  optimal  controller,  [47]  developed  a
data-based  policy  gradient  ADP  algorithm.  Reference  [48]
presented  an  identifier-critic-based  ADP  structure  to  online
solve  control  problem  of  nonlinear  continuous-time
systems.  Recently,  [49]  developed  a  new  model-free  event-
triggered optimal control algorithm for continuous-time linear
systems.  Finally,  [50]  presented  an  event-triggered  robust
control  policy  for  unknown  nonlinear  systems  via  the  neural
network (NN) and ADP techniques.

Based  on  the  above  discussions,  it  is  noted  that  some
important  problems  need  to  be  further  investigated  for  CPS
security. For instance, 1) most secure control results including
[18], [31]–[34], [36], and [37], are model-based; however, the
exact  system knowledge  for  the  industrial  systems  is  usually
difficult  to  obtain  in  practice.  2)  Optimal/robust  control
problems  of  model-free  systems  without  adversarial
environments have been well solved via ADP-based methods
[40]–[50],  yet  the  secure  control  issue  for  data-driven  CPSs
remains open. 3) The communication faults in [18], [36], and
[37]  are  supposed  to  be  on  a  single  transmission  channels;
nonetheless, the multi-transmission-channel situation has been
not fully studied.

Motivated by these observation, this paper, which is written
from  the  CPS  operator’s  viewpoint,  studies  reliable  control
problems  for  data-driven  CPSs  under  communication  faults,
and  focuses  on  the  intermittent  faults  of  the  multi-
transmission-channel situation. The main contributions of this
paper are summarized as below:

1)  According  to  the  theory  of  the  describing  function,  a
watermark-based  anomaly  detector  is  presented,  so  that  the
faults are classified as either detectable or undetectable to the
detector.  It  can  contribute  to  the  effective  execution  of  the
proposed learning-based switched control policy.

2)  Based  on  the  identifier-critic-structure  learning
algorithm,  a  data-driven  switch  controller  with  a  prescribed-
performance-based  switching  law  is  proposed,  and  with  the
aid  of  the  average  dwell-time  (ADT)  approach,  a  fault  set,
which the closed-loop systems can tolerate, is given.

3) The advantages of the presented method are:
i)  Different  from  the  model-based  secure  control  results

[18], [31]–[34], [36], [37], ours is data-driven;
ii)  Compared  with  most  ADP-based  model-free  methods

[40]–[50], ours guarantees the reliability for the case of a class
of intermittent communication faults;

iii) Contrary to the switched controls under the intermittent
faults [51], [52], the system knowledge and switching rule are
unknown for the CPS operators in this paper;

iv) Distinct from [18], [36] and [37], the presented approach
focuses on the faults in multi-transmission-channel case.

The remainder of the paper is organized as follows. Section
II  states  problem  formulations.  Section  III  presents  a  new
data-driven  control  policy  to  tolerate  a  class  of  intermittent
communication faults. Simulation results are shown in Section
IV. Section V concludes this paper.

Rn ∥ · ∥Notations:  is  the n-dimensional  vector  space. 
indicates the 2-norm of vectors or induced 2-norm of matrices.

X XT X ≥ 0 X > 0
X

diag{x1, x2, . . . , xm}
x1, x2, . . . , xm I

⊗
vec(X) = [xT

1 , . . . , x
T
m]T xi ith

X ∈ Rn×m X He(X) = XT +X
w ∈ L2(0,∞)

r ∞
0 wT (t)w(t)dt <∞

For  a  matrix ,  represents  its  transpose.  ( )
means  that  is  a  symmetric  positive  semi-definite  (positive
definite)  matrix  with  an  appropriate  dimension.

 denotes  a  diagonal  matrix  with
 in  its  main  diagonal.  indicates  an  identity

matrix  with  a  suitable  dimension.  means  the  Kronecker
product. ,  where  is  the  column of

.  For  a  square  matrix , .
 means .

II.  Problem Formulation

This  paper  considers  the  architecture  of  data-driven  CPSs,
as shown in Fig. 1, and the models of the physical system and
communication faults are depicted as follows.

A.  Physical System
The  physical  system  can  be  described  by  the  following

linear time-invariant system

ẋ(t) = Ax(t)+Buu(t)+Bdd(t) (1)
x(t) ∈ Rn u(t) ∈ Rm d(t) ∈ Rp

A Bu Bd
(A,Bu)

d ∈ L2(0,∞)

ẋ x u(t) d(t)
t

where ,  and  are  the  measurable
system state,  control  input  and  external  disturbance,  respect-
ively. ,  and  are all unknown matrices with appropriate
dimensions. It is assumed that the pair  is controllable,

 and  there  is  no  packet  dropout  and  delay  in  the
transmission channels (or network layer). For the sake of sim-
plicity,  the  dependence  of  the  functions  (e.g., , , , ,
etc) on  is omitted in some cases.

Remark  1: This  paper  mainly  focuses  on  reliable  controls
under  the  case  of  no  packet  dropout  and  delay  in  the
transmission channel. Such an assumption was found in [18],
[31]–[33],  [36]  and  [37],  and  contributes  to  simplifying  the
system  models  such  that  we  are  only  concerned  with  the
reliable  controller  design  under  the  faults.  Actually,  in
practice,  the  packet  dropout  and  delay  are  common  in  the
networked  control  systems.  They  may  influence  the  control
performance.  Nevertheless,  [29]  and  [30]  have  developed
some  effective  methods  to  solve  them,  thus,  in  future  work,
we  will  further  investigate  CPS  reliable  controls  for  packet-
dropout and delay cases with the aid of the nice results in [29]
and [30].

B.  Intermittent Communication Fault

δs(x)
δs(x) = ωs(t)x

ωs(t) ∈ R ω(t) . −1

In this paper,  the communication channels used to transmit
sensor  output  signals  are  assumed  to  be  vulnerable  to  the
faults. In reality, communication faults are common in CPSs,
and  have  been  investigated  in  [18],  [36]  and  [37].  Reference
[36]  has  also  reported  that  faults  exist  in  some  practical
systems  such  as  control  systems  of  unmanned  air  vehicles.
The  model  is  usually  represented  by .  In  [18],  [36]  and
[37],  it  is  parameterized  as ,  with  the  gain

 subject to . The system state compromised
by the faults (i.e., that the controller receives) is given by

x̃ = x+δs(x).
x̃ = λ(t)x λ(t) = 1+ωs(t) λ(t) . 0

∥λ(t)∥ ≤ λ̄
It  can  be  written  as  with , 

and  (please  refer  to  [18],  [36]  and  [37]  for  the
interested  reader).  This  means  the  faults  are  on  a  single
transmission  channel.  However,  this  paper  focuses  on  the
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multi-transmission-channel case, namely

x̃(t) = Λx(t) (2)
x̃ = [x̃T

1 , x̃
T
2 , . . . , x̃

T
n ]T

Λ = diag
{
λ1,λ2, . . . ,λn

}where the compromised system state  and
the parameter .

{ti}i∈N t0 ≥ 0

Tk := [t2k+1, t2k+2) k ∈ N
kth

Additionally,  as reported in [51] and [52],  the fault  usually
has intermittent and random characteristics. Then, to describe
the  intermittent  characteristic  of  fault  (2),  we  introduce  the
concept of average dwell-time (ADT), which has been used to
describe intermittent DoS attacks [29], [34], [35]. Inspired by
definitions in [29], [34] and [35], let  with  denote
the sequence of the fault on/off and off/on transitions. Without
loss  of  generality,  let  (for )  mean  the

 time interval where the fault is active. Then, define

Υ(τ, t) :=
∪
k∈N

Tk

∩
[τ, t], Ῡ(τ, t) := [τ, t] \Υ(τ, t)

Υ(τ, t) Ῡ(τ, t) [τ, t]

|Υ(τ, t)| |Ῡ(τ, t)|
[τ, t]

where  and  represent the subsets of , in which
there  is  the  fault  and  no  fault,  respectively.  Meanwhile,  let

 and  indicate  the total  lengths of  the occurring
fault and no fault within the interval . Thus, the gain in (2)
can be denoted as

Λ =

 Λ , I, t ∈ Υ(0,∞)

I, t ∈ Ῡ(0,∞).

n(τ, t)
[τ, t)

Let  represent the number of the faults occurring in the
interval .  Thus,  the  following  assumptions  are  given  to
describe the intermittent characteristic of the fault in (2).

η f ≥ 0 τD > 0
Assumption  1  (Fault  frequency  [34],  [35]): There  exist

constants  and  such that

n(τ, t) ≤ η f +
t−τ
τD

.

κ ≥ 0 T1 ≥ 1 1 ≥ 1/T1 ≥ T2 ≥ 0
Assumption  2  (Fault  duration  [34],  [35]): There  exist

constants ,  and  such that

T2(t−τ) ≤ |Υ(τ, t)| ≤ κ+ t−τ
T1

.

τD
η f

1/T1 T2

Remark 2: In our work, Assumptions 1 and 2 are similar to
those  in  [34]  and  [35],  and  are  used  to  constrain  the  fault
signal  in  terms  of  its  average  frequency  and  duration.
Following [34] and [35],  indicates the average dwell-time
between  consecutive  fault  off/on  transitions;  means  the
chattering  bound;  and  respectively  provide  an  upper
bound and a lower bound on the average duration of the fault

η f κ

T1 T1 ≥ 1
T1 > 1

per  unit  time;  analogous  to ,  plays  the  role  of  a
regularization  term.  Note  that  the  considered  fault  may  be
always  active,  then  in  Assumption  2  satisfies  not

.
The  objective  in  this  paper  is  to  give  a  reliable  control

scheme such that the systems under the communication faults
are stable.

III.  Reliable Control Scheme of Data-Driven CPSs
With Communication Faults

X̃( jω) = ΛX( jω) ω

i
i

G(s)
N(A)

−y2 v
N(A) y1 G(s) r

y1

y2 = y1 y2 = λiy1

From  the  Laplace  transform  of  (2),  it  follows  that
 with  frequency .  This  means that  the  fault

only  damages  the  value  of  the  sensor  data,  and  does  not
change  its  frequency.  According  to  the  characteristic,  a
periodic  oscillation  with  a  known  fixed  frequency  and
amplitude  is  inserted  into  sensor  transmission  channels,  and
then,  based  on  the  amplitude  change  of  the  oscillation,  the
system  checks  whether  it  is  under  faults  or  not;  meanwhile,
according to the characteristic of the fixed frequency, a filter,
equipped  at  the  position  of  the  controller  side,  is  used  to
eliminate the effect of the introduced oscillation. In reality, the
frequency  of  the  introduced  oscillation  can  be  designed  such
that the oscillation, and, the input and output of the system (1)
are in different frequency domains, thus, in such a way, a filter
is  used  to  effectively  eliminate  the  oscillation.  However,  in
theory,  it  is  simple  to  produce  a  periodic  oscillation.  By
contrast,  in  practice,  the  oscillation  is  very  sensitive  to
parameter  changes.  Hence,  according  to  the  describing
function  theory  [53],  we  can  design  an  oscillation  which  is
robust  to  disturbance,  noise  and  uncertainty.  Then,  the
expected  oscillation  is  generated  and  injected  into
communication channels by the way shown in Fig. 2. In Fig. 2,
we  consider  a  smart  sensor ,  which  performs  a  process
measurement (i.e., sensor  to measure the system state), and a
“closed-loop” to  generate  a  desired  oscillation  to  check
whether  the  sensor  communication  channel  is  faulty,  where

 is  the  transfer  function  with  the  sufficient  low-pass
behavior,  and  is  the  describing function of  a  nonlinear
function. In “closed-loop”,  and  are the input and output
of , respectively.  is the output of , and  is zero-
reference  input  of “closed-loop”.  In  addition,  since  is
needed to be fed-back for “closed-loop”, a acknowledgement-
based  protocol  is  needed.  It  is  noted  that,  for  no  fault  case,

;  otherwise, .  To  facilitate  the  analysis,
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Fig. 1.     Subsystem architecture of cyber-physical systems under communication faults.
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x y1

Ii
y1+ xi Ii

y1
v(t) T

G(s)

suppose  that  the  system state  and the  desired  oscillation 
are  low-  and  high-frequency  signals,  respectively,  and,
Receiver  in “closed-loop” has  a  high-pass  behavior.  Thus,
in  this  setting,  after  the  signal  enters  Receiver ,  the
output  of  the  receiver  approximates  to  the  signal .  For  the
Fourier  series  of  the  periodic  signal  with  period ,  the
input and output of transfer function  can be written as

v(t) = a0+

∞∑
n=1

[an cos(nω0t)+bn sin(nω0t)]

y1(t) =G(0)a0+

∞∑
n=1

|G( jnω0)|[an cos(nω0t)+bn sin(nω0t)].

According to the theory of the describing function [53], the
describing function of the nonlinear function is denoted as

N(A) =
v( jω0t)
ey( jω0t)

=
1
A (b1+ ja1)

ey(·) = −y2(·) A

G0(A, jω) = N(A)G( jω) (−1+ j0)
ω

A ω A

where ,  and  denotes  the oscillation amplitude
received  by  the  detector.  From  the  Nyquist  criterion,  it  is
known  that  if  the  open  loop  transfer  function

 crosses the critical point , a
periodic oscillation with the fixed frequency  and amplitude

 will  be  produced,  where  and  satisfy  the  following
equalities

G0(A, jω) = N(A)G( jω) = −1

G( jω) =
−1

N(A)
= NI(A) (3)

NI(A)
A

G(s) N(A) ω

A

where  represents  the  inverse  describing  function,
which  depends  on  the  signal  amplitude .  So,  by  designing

 and ,  a period oscillation with the expected  and
 can be obtained.

x

NI(A) = −πA
4M

A M > 0

A1

Without  loss  of  generality,  it  is  assumed that  the input  and
output  of  system  (1)  are  both  low-frequency  signals,  and
receivers of the controller and detector have the characteristics
of the sufficient low- and high-pass filtering, respectively (it is
worth  noting  that,  under  the  assumption  that  the  receivers  of
the controller have low-pass filtering, the sensor data received
by the  controller  approximates  to ).  To detect  abnormalities
successfully,  a  high-frequency  oscillation  is  generated  and
introduced  into  the  sensor  transmission  channels.  In  this
paper, the nonlinear function is chosen to have the ideal relay
characteristic  because  the  inverse  describing  function

 is  a  linear  function  about ,  where  is
the maximum output of the nonlinear function. From (3), it is
easily  deduced  that  under  the  communication  fault  (2),  the
amplitude  of  the  oscillation  received  by  the  abnormal

detector is obtained as

A1 =
4M|λi|
π
|G( jω)|. (4)

Based  on  (4),  the  detection  criterion  is  given  in  the
following form

H0 : A≤A1 ≤AH1 : A1 <A or A <A1 (5)

A A =
4Mλ

π
|G( jω)|

A = 4Mλ

π
|G( jω)| λ λ

0 < λ < 1 < λ
H0 H1

where  is  the oscillation amplitude. ,  and,

.  and  are known positive constants sat-
isfying , which are set in advance by the CPS op-
erators.  means that the system is normal operation.  in-
dicates that the system is abnormal, thus, the detector triggers
an alarm. The system will then stop running to be checked.

i
|λi| < λ

λ < |λi|
λ ≤ |λi| ≤ λ

Λ

Remark 3: The detection mechanism (5) can detect whether
the th  transmission  channel  is  under  faults  or  not,  and  the
faults  are  divided  into  the  detectable  faults  satisfying 
or ,  and  relatively  undetectable  faults  satisfying

.  By  applying  this  detection  method  to  all  (or
unreliable)  channels,  it  is  checked whether  the overall  sensor
transmission channels are under faults, and it is restricted that
parameter  of the communication faults is invertible.

According to the detection mechanism (5), it  is known that
for no-alarm cases, the communication channels might also be
under  faults  successfully  bypassing  the  proposed  detector,
thus,  the  reliability  of  the  system  may  not  be  guaranteed.  In
the  following  sections,  for  this  situation,  a  reliable  control
policy  is  given  to  stabilise  the  data-driven  CPSs  under  the
communication faults or no faults.

A.  Switching-Based Reliable Control Strategy of CPSs Under
Communication Faults

When  system  (1)  suffers  the  communication  fault  which
successfully bypasses the proposed watermark-based anomaly
detector,  the dynamics of the compromised system states can
be depicted in the following form

˙̃x(t) = Ãx̃(t)+ B̃uu(t)+ B̃dd(t) (6)
Ã = ΛAΛ−1 B̃u = ΛBu B̃d = ΛBd

Λ
limt→∞ ∥x̃∥ = 0

limt→∞ ∥x∥ = 0

where , , . It is known from the
detector  (5)  that  the  parameter  is  an  invertible  matrix.
Clearly,  by  the  fault  (2),  is  equivalent  to

,  then  the  reliable  control  policy  design  of  the
system (1) under the faults (2) is  transformed into the design
of  the  controller  to  stabilise  the  system  (6).  The  following
lemma gives a controllability condition for (6).

Λ Ã, B̃u
A,Bu

Lemma  1: Considering  systems  (1)  and  (6),  and  the
invertible matrix , the pair ( ) is controllable if and only
if the pair ( ) is controllable.
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Fig. 2.     A mechanism of producing a period oscillation with a fixed frequency and amplitude in ith sensor transmission channel.
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Proof: According to Theorem 9.5 in [54], it is easy to prove
Lemma 1, thus, it is omitted. ■

(A,Bu)

u d

From Lemma 1 and the controllable pair , system (6)
is  controllable.  Thus,  to  ensure  the  stability  of  system  (6),  a
control  policy  and  a  disturbance  input  are  given  in  the
following forms

u = −K1 x̃, d = L1 x̃.
K1 L1

u d

The  gains  and  of  control  and  disturbance  inputs  are
determined in the linear quadratic zero-sum game framework,
where  control  and  disturbance  inputs  are  viewed  as  two
players. It is known from the optimal theory [55] that  and 
satisfy the following two-player zero-sum differential game

V∗(x̃(0)) =min
u

max
d

J(x̃,u,d)

where

J(x̃,u,d) =
w ∞

0
(x̃T Qx̃+uT Ru−γ2∥d∥2)dτ (7)

H∞ Q = QT > 0 R = RT > 0
Ã,
√

Q γ > γ∗ H
Ã, B̃u

Ã B̃u B̃d P∗1 ≥ 0

is  the  performance  index,  and .
The  pair  ( )  is  observable  and  is  the -infinity
gain. For the controllable pair ( ) and accurate parameters

,  and , there exists a unique  by solving the fol-
lowing game algebraic Riccati equation (GARE)

0 =P1
(
Ã− B̃uK1+ B̃dL1

)
+

(
Ã− B̃uK1+ B̃dL1

)T P1

+Q+KT
1 RK1−γ2LT

1 L1. (8)
K∗1 L∗1The optimal feedback gain matrix  in (10) and  in (11)

can be determined by

K∗1 = R−1B̃T
u P∗1, and L∗1 =

1
γ2 B̃T

d P∗1

u∗ d∗and  and  satisfy the following inequalities

J(x̃,u∗,d) ≤ J(x̃,u∗,d∗) ≤ J(x̃,u,d∗).

Λ = I
u

d

On  the  other  hand,  it  is  noted  from  (6)  that  if ,  (6)
reduces to  system (1);  thus,  in  that  case,  the control  policy 
and the worst disturbance input  are designed by the above-
mentioned method, and are given by

u = −K∗0 x̃
d = L∗0 x̃

x̃ = x K∗0 = R−1BT
u P∗0 L∗0 =

1
γ2 BT

d P∗0 P∗0 ≥ 0

A Bu Bd K0 L0
H∞

u = −K∗0 x d = L∗0x u = −K∗1 x̃ d = L∗1 x̃
V0 = xT P∗0x V1 = x̃T P∗1 x̃

H∞
V̇0 ≤ −α∗0V0 V̇1 ≤ −α∗1V1

where . , ,  and  is  a
solution  of  (8)  with , , ,  and .  From the  optimal
control  theory,  it  is  known  that  the  control  pairs

,  and ,  can guarantee that
the time derivatives of  and  are less
than  zero,  respectively,  i.e.,  under  the  control  pairs,

 and , where

α∗0 = λ
−1
min(P∗0)λmin

(−He(P∗0A−P∗0BuK∗0 +P∗0BdL∗0)
)

and

α∗1 = λ
−1
min(P∗1)λmin

(−He(P∗1Ã−P∗1B̃uK∗1 +P∗1B̃dL∗1)
)
.

Based  on  the  aforementioned  description  and  the
intermittency  of  the  communication  fault  (2),  the  reliable
control problem of system (1) under fault (2) can be converted
into  a  problem  to  stabilise  the  following  virtual  switched

system, which is switching between subsystems (1) and (6)

˙̄x(t) = Āσ(t) x̄(t)+ B̄uσ(t)uσ′(t)(t)+ B̄dσ(t)dσ′(t)(t) (9)
σ(t) ∈ {0,1}

σ′(t) ∈ {0,1}
uσ′(t) dσ′(t)

where  is  the  switched  signal  of  the  system  (9),
which  is  determined  by  the  fault  maker.  is  the
switched law of  and , to be determined, where

uσ′(t) = −Kσ′(t) x̄ (10)

dσ′(t) = Lσ′(t) x̄ (11)

where {
K0 = K∗0 ,L0 = L∗0, if σ′ = 0
K1 = K∗1 ,L1 = L∗1, otherwise.

σ(t) = 0
σ(t) = 1

 indicates  that  subsystem  (1)  is  active,  i.e.,  the
system  is  under  normal  operation,  otherwise,  means
that  the  subsystem  (6)  is  active.  The  corresponding  system
parameters are given in the following:{

Ā0 = A, B̄u0 = Bu, B̄d0 = Bd, if σ = 0

Ā1 = Ã, B̄u1 = B̃u, B̄d1 = B̃d, otherwise.

σ(t)

σ′(t)
σ(t) σ′(t)
t′2k+1 , t2k+1

k
[
t′2k+1, t2k+1

)[
t2k+1, t′2k+1

)

The  fault  maker  may  be  a  smarter  attacker  and  their  aims
may be to degrade the system/control performance as much as
possible.  On  account  of  their  intelligence,  the  fault-maker-
triggered switching law  is generally unknown for the CPS
operators.  So,  it  is  a  challenging  problem  to  give  a  suitable
switching law  of the controller such that the system (9) is
stable. Fig. 3 describes  the  relationship  of  and .
Without  loss  of  generality,  it  is  assumed that  for
any .  By Fig. 3,  there  always  exists  an  interval 
or  caused  by  the  wrong  switching,  in  which  the
system  may  be  unstable.  To  address  this  problem,  a  new
switching law based on a  prescribed performance function  is
proposed in this paper, and it is given in the following form:
 

on

σ(t)

off

on

σ′(t)

off
t′0

t0 t1 t2

t′2k+1 t′2k+1 t

t

t2k+1

t2k+1 t2k+2

Ⅰ Ⅱ

(b)

(a)

 
σ(t) σ′(t)

↓ ↑ k = 0,1, · · ·
t2k+1

t2k+2

t′2k+1

t′2k+2

Fig. 3.     Relationship between  and . on/off transitions are represen-
ted  as  ,  while  off/on  transitions  are  represented  as  .  For  ,
(a) off/on transitions occurring at  indicate that the faults occur and on/off
transitions occurring at  mean that the faults stop; (b) off/on transitions
occurring at  indicate that the mode 0 of the controller switches the mode
1 (i.e., the CPS operator thinks that the faults occur), and on/off transitions
occurring at  mean that the mode 1 of the controller switches the mode 0
(i.e., the CPS operator thinks that the faults stop).
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σ′(t) =
{

i, V∗i (t) ≤ ϵi(V∗i (t′k))
1− i, V∗i (t) > ϵi(V∗i (t′k))

(12)

i ∈ {
0,1

}
σ′(t−) = i t− < t ϵiwhere . ,  and .  means the prescribed

performance function, and is described by

ϵi(V∗i (t′k)) = η0e−a∗i (t−t′k)V∗i (t′k)+η∞
η0 η∞ η0 ≥ 1 η∞ ≥ 0

V∗i = x̄T P∗i x̄ a∗i > 0 a∗i < α
∗
i a∗i

α∗i = λ
−1
min(P∗i )λmin

(−He(P∗i Āi−P∗i B̄uiK∗i +P∗i B̄diL∗i )
)

i ∈ {0,1}

where ,  are positive constants and satisfy , .
.  satisfies  where  is a known con-

stant,  and
 for

.

[t2i, t2i+1)
[t2i+1, t2i+2) i = 0,1, . . . ,k ι =

(
t0, t1, . . . , t2k+1, t2k+2

)
ι ι′ =

(
t′0, t
′
1, . . . , t

′
2k+1, t

′
2k+2

)
Lemma  2: Denote  the  time  sequence  consisted  of  the  no

fault  time  interval  and  fault-activated  time  interval
, ,  as  and  the

switching  time  sequence  generated  by  the  switched  law  (12)
under  the  sequence  as ,  thus,  the
following inequalities are satisfied

t′2k+1− t2k+1 ≤ (
1
a∗i
+

1
α∗i −a∗i

) ln(η0)

+ (
1
a∗i
+

1
α∗i −a∗i

) ln(µ̄i(t′2k+1, t
′
2k))+ ln(

V∗σ′(t)(t
′
2k)

V∗
σ′(t)(t

′
2k+1)

)

and

t′2k+2− t2k+2 ≤ (
1

a∗1−i
+

1
α∗1−i−a∗1−i

) ln(η0)

+ (
1

a∗1−i
+

1
α∗1−i−a∗1−i

) ln(µ̄1−i(t′2k+2, t
′
2k+1))

+ ln(
V∗σ′(t)(t

′
2k+1)

V∗
σ′(t)(t

′
2k+2)

)

where

µ̄i(t̄1, t̄2) = 1+ e
ln( η∞
V∗
σ′(t)(t̄2) )−ln(η0)+a∗i (t̄1−t̄2)

V∗σ′(t)(t
′
2k+1) = η0e−a∗i (t′2k+1−t′2k)V∗σ′(t)(t

′
2k)+η∞

V∗σ′(t)(t
′
2k+2) = η0e−a∗1−i(t

′
2k+2−t′2k+1)V∗σ′(t)(t

′
2k+1)+η∞

and

V∗σ′(t) = x̄T P∗σ′(t) x̄ (13)

σ′(t) = i t ∈ [t′2k, t
′
2k+1) i ∈ {0,1}where  for  and .

[t2k+1, t′2k+1) [t2k+2, t′2k+2)

[t′2k, t2k+1)
∪

[t2k+1, t′2k+1) σ′(t)
i t ∈ [t′2k, t2k+1)

V∗σ′(t)

Proof: From  the  switching  law  (12),  it  is  known  that  the
time  interval  or  is  caused  by  the
delay  switching.  Without  loss  of  generality,  we  consider  the
time interval , in which the mode 
of  the  controller  is ,  thus,  for ,  the  time
derivatives of  are given by

V̇∗σ′(t)(t) ≤ −α
∗
iV∗σ′(t)(t)

which implies that

V∗σ′(t)(t) ≤ e−α
∗
i (t−t′2k)V∗σ′(t)(t

′
2k).

t = t′2k+1On the other hand, from the switched law (12), for ,
we have

V∗σ′(t)(t
′
2k+1) = η0e−a∗i (t′2k+1−t′2k)V∗σ′(t)(t

′
2k)+η∞

= η0e−a∗i (t′2k+1−t′2k)V∗σ′(t)(t
′
2k)

× (1+η∞η−1
0 ea∗i (t′2k+1−t′2k)(V∗σ′(t)(t

′
2k))−1)

= eln(η0)−a∗i (t′2k+1−t′2k)+ln(V∗
σ′(t)(t

′
2k))eln(µ̄i(t′2k+1,t

′
2k))

and, it is manipulated into

ln(V∗σ′(t)(t
′
2k+1)) = ln(η0)+ ln(µ̄i(t′2k+1, t

′
2k))

+ ln(V∗σ′(t)(t
′
2k))−a∗i (t′2k+1− t′2k).

Furthermore, the above equation can be written as

t′2k+1 = t′2k +
1
a∗i

(ln(η0)+ ln(µ̄i(t′2k+1, t
′
2k))

+ ln(
V∗σ′(t)(t

′
2k)

V∗
σ′(t)(t

′
2k+1)

)). (14)

t = t2k+1In addition, for , one has

V∗σ′(t)(t2k+1) ≤ e−α
∗
i (t2k+1−t′2k)V∗σ′(t)(t

′
2k)

≤ η0e−a∗i (t2k+1−t′2k)V∗σ′(t)(t
′
2k)+η∞

the above inequality can be manipulated into

−α∗i (t2k+1− t′2k)+ ln(V∗σ′(t)(t
′
2k)) ≤ ln(η0)

+ ln(µ̄i(t2k+1, t′2k))+ ln(V∗σ′(t)(t
′
2k))−a∗i (t2k+1− t′2k)

thus, by some mathematical operations, we have

− (t2k+1− t′2k) ≤ 1
α∗i −a∗i

(ln(η0)+ ln(µ̄i(t2k+1, t′2k)))

≤ 1
α∗i −a∗i

(ln(η0)+ ln(µ̄i(t′2k+1, t
′
2k))). (15)

Based on (14) and (15), we have

t′2k+1− t2k+1 = −(t2k+1− t′2k)

+
1
a∗i

(ln(η0)+ ln(µ̄i(t′2k+1, t
′
2k))+ ln(

V∗σ′(t)(t
′
2k)

V∗
σ′(t)(t

′
2k+1)

))

≤ (
1
a∗i
+

1
α∗i −a∗i

) ln(η0)+
1

α∗i −a∗i
ln(µ̄i(t′2k+1, t

′
2k))

+
1
a∗i

ln(µ̄i(t′2k+1, t
′
2k))+ ln(

V∗σ′(t)(t
′
2k)

V∗
σ′(t)(t

′
2k+1)

).

[t′2k+1, t2k+2)
∪

[t2k+2, t′2k+2)
1− i

For  the  interval ,  in  which  the
mode of the controller is , repeat the above process. Then,
we obtain

t′2k+2− t2k+2 ≤ (
1

a∗1−i
+

1
α∗1−i−a∗1−i

) ln(η0)

+ (
1

a∗1−i
+

1
α∗1−i−a∗1−i

) ln(µ̄1−i(t′2k+2, t
′
2k+1))

+ ln(
V∗σ′(t)(t

′
2k+1)

V∗
σ′(t)(t

′
2k+2)

)

■
[t2k+1, t′2k+1)

[t2k+2, t′2k+2)
Remark 4: Note  that,  in  the  time intervals  and

,  the  time  derivative  of  the  Lyapunov  function
(13)  is  greater  than  zero;  thus,  decreasing  the  intervals  can
improve  the  system performance.  From Lemma 2,  it  follows
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t′2k+1− t2k+1 ≤ Tτ,2k+1 t′2k+2− t2k+2 ≤ Tτ,2k+2

Tτ,2k+1 Tτ,2k+2
η0 η∞

that  under  the  switched  law  proposed  in  this  paper,
 and  can  be

guaranteed, and  and  are reduced by decreasing
 and .
In the sequel, a main result can be depicted as follows.

η f κ

P∗σ′ = P∗Tσ′ > 0
σ′(t) ∈ {0,1}

Theorem 1: Consider system (9) with communication faults
(2)  satisfying  Assumptions  1  and  2  with  arbitrary  and .
Denote  as the solution of GARE with the mode

, then,
H∞

limt→∞ ∥x̄∥ ≤ ε
ε = η

1
2
∞λ
− 1

2
min(P∗σ′ )

1) for no controller-switched case,  control pair (10) and
(11)  with  the  switching  law  (12)  guarantees ,
where ;

2)  for  the  controller-switched  case,  if  the  following
conditions are satisfied

α∗0

(
1− 1

T1

)
+α∗1T2 > λ

∗, λ∗ >
Tµ
τD

P∗0 < µP∗1, P∗1 < µP∗0 (16)
Tµ = 2ln(µ)+ (β∗i + α

∗
1−i)Tτ,Mi + (β∗1−i + α

∗
i )Tτ,M(1−i)

β∗i = λ
−1
min(P∗i )λmax

(
He(P∗i Ā1−i − P∗i B̄u(1−i)K∗i + P∗i B̄d(1−i)L∗i )

)
i ∈ {0,1} H∞

where ,
,

, thus,  control pair (10) and (11) with the switch-
ing law (12) guarantees that the system (9) is global asymptot-
ically stable.

Proof: Consider the following Lyapunov function candidate

V∗σ′(t) = x̄(t)T P∗σ′(t) x̄(t). (17)

t ∈ [0,∞]

The proof  starts  from two cases:  one is  where there are  no
switching  controller,  and  the  other  is  the  case  of  switching
controller for .

i σ′(t) = i
Case 1 (No controller-switched case): In this situation, it is

assumed  that  the  mode  of  the  controller  is ,  i.e., .
From the switched law (9), it is known that

λmin(P∗i )∥x̄∥2 ≤ η0e−a∗i (t−t′2k)V∗i (t′2k)+η∞

limt→∞ ∥x̄∥ ≤ η
1
2
∞λ
− 1

2
min(P∗i )which implies that .

t ∈ [t′2k, t2k+1)∪
[t2k+1, t′2k+1)

i σ′(t) = i
[t2k+1, t′2k+1)

β∗i ≥ 0
t ∈ [t2k+1, t′2k+1)

Case 2 (Controller-switched case): We consider 
, in which the mode of the controller is assumed

to be , i.e., , and, in this case, there exists the interval
 in  which  the  time  derivative  of  the  Lyapunov

function is greater than zero, so, it is assumed that . For
, the time derivative of (17) is

V̇∗i (t) ≤ λmax
(
He(P∗i Ā1−i−P∗i B̄u(1−i)K∗i

+P∗i B̄d(1−i)L∗i )
)∥x̄∥2 ≤ β∗iV∗i (t)

further, one has

V∗i (t) ≤ eβ
∗
i (t−t2k+1)e−α

∗
i (t2k+1−t′2k)V∗i (t′2k)

≤ µeβ
∗
i (t−t2k+1)+β∗1−i(t

′
2k−t2k)

× e−α
∗
i (t2k+1−t′2k)−α∗1−i(t2k−t′2k−1)V∗1−i(t

′
2k−1)

≤ µ2eβ
∗
i (t−t2k+1)+β∗1−i(t

′
2k−t2k)+β∗i (t′2k−1−t2k−1)

× e−α
∗
i (t2k+1−t′2k)−α∗1−i(t2k−t′2k−1)−α∗i (t2k−1−t′2k−2)V∗i (t′2k−2)

= µ2eβ
∗
i (t−t2k+1)e(β∗1−i+α

∗
i )(t′2k−t2k)

× e(β∗i +α
∗
1−i)(t

′
2k−1−t2k−1)eα

∗
i (t′2k−2−t2k−2)

× e−α
∗
i (t2k+1−t2k)−α∗1−i(t2k−t2k−1)−α∗i (t2k−1−t2k−2)V∗i (t′2k−2).

t′2k+1− t2k+1 ≤ Tτ,Mi
t′2k − t2k ≤ Tτ,M(1−i) k = 0,1, . . .

From  Lemma  2,  it  is  known  that  and
 for , where

Tτ,Mi ≥ 0 :=max{Tτ,2k+1}∞k=0

Tτ,M(1−i) ≥ 0 :=max{Tτ,2k+2}∞k=0 t′0 = 0
t′0 0

t′0

and ,  thus,  let  (in  fact,
for  being any positive constant, just replace  with the cor-
responding , and the following proof still holds), we have

V∗i (t) ≤ µ2eβ
∗
i Tτ,Mi+α

∗
i Tτ,M(1−i)

× e(β∗1−i+α
∗
i )Tτ,M(1−i)+(β∗i +α

∗
1−i)Tτ,Mi

× e−α
∗
i (t2k+1−t2k)−α∗1−i(t2k−t2k−1)−α∗i (t2k−1−t2k−2)

×V∗i (t′2k−2)

≤ µ2n(0,t)eβ
∗
i Tτ,Mi+α

∗
i Tτ,M(1−i)

× en(0,t)((β∗1−i+α
∗
i )Tτ,M(1−i)+(β∗i +α

∗
1−i)Tτ,Mi)

× e−α
∗
0 |Ῡ(0,t)|−α∗1 |Υ(0,t)|V∗i (0)

|Ῡ(0, t)| [0, t]
|Ῡ(0, t)|∪ |Υ(0, t)| = t |Ῡ(0, t)| ≥ −κ+
where  means the time of no fault in , and satisfies

,  which  implies (1–1/T1)t.
According to Assumptions 1 and 2, one has

V∗i (t) ≤ µαe
t
(

Tµ
τD
−λ∗+λ∗−α∗0

(
1− 1

T1

)
−α∗1T2

)
V∗i (0)

µα = eβ
∗
i Tτ,Mi+α

∗
i Tτ,M(1−i)+η f Tµ+α∗0κ Tµ = 2ln(µ)+ (β∗1−i+

α∗i )Tτ,M(1−i)+ (β∗i +α
∗
1−i)Tτ,Mi

where , 
.  According  to  (16),  it  is  known

that

δT =
Tµ
τD
−α∗0(1−1/T1)−α∗1T2 < 0

thus, one gets

V∗i (t) ≤ µαeδT tV∗i (0)

which  implies  that  system  (9)  is  global  asymptotically
stable. ■

limt→∞ ∥x̃∥ = 0
limt→∞ ∥x∥ = 0

τD T1 T2

Remark  5: Note  that  is  equivalent  to
,  and  it  is  known  from  Theorem  1  that  the

proposed  control  policy  can  ensure  that  the  virtual  switched
system  (9)  is  stable,  which  implies  that  the  system  states  in
CPSs  with  the  controller  (10)  under  the  intermittent
communication  faults  (2)  are  stable.  On  the  other  hand,
parameters ,  and  help  to  depict  the  fault  frequency
and duration; hence, condition (16) also means a fault set that
can be tolerated by controller (10).

H∞

Āσ B̄uσ B̄dσ P∗σ′

Theorem 1 indicates that the  control pair (10) and (11)
can ensure the stability of (9),  where the accurate parameters

, ,  and  need  to  be  used  in  (10)  and  (11).
However, for the data-driven CPSs, the system parameters are
usually  unknown.  In  the  next  section,  an  identifier-critic
learning algorithm is used to obtain the available parameters.
Then,  the  above-mentioned  result  is  extended  to  the  data-
driven case.

B.  Learning-Based Switched Reliable Control Policy of Data-
Driven CPSs

In this section, we first assume that the unknown parameters
(in (10) and (11)) for the systems under the considered faults
and no faults can be estimated. Then, (6) can be written as

˙̃x =WT
1 ψ1(x̃,u,d) (18)

W1 = [Ã B̃u B̃d]T ψ1(x̃,u,d) = [x̃T uT dT ]Twhere  and . In this
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x f Ψ1 f

ς ẋ f + x f = x̃ ςψ̇1 f +ψ1 f = ψ1
x f (0) = 0 ψ1 f (0) = 0 ς > 0

(·) f = (·)/(ςs+1)
x f ψ1 f
(·) f = (·)/(ςs+1) x̃ ψ1

paper, the filtered variables  and  in [56] are introduced
to identify  the  system parameters,  and  the  corresponding  fil-
ters  are denoted as ,  and, ,  where

 and .  is  the “bandwidth” of the fil-
ter , and should be set small to retain robust-
ness [48].  and  are obtained by applying a stable filter
operation  on  and . By this  filter  opera-
tion, (18) can be written as

ẋ f =
x̃− x f

ς
=WT

1 ψ1 f . (19)

P1 ∈
R(n+m+p)×(n+m+p) Q1 ∈ R(n+m+p)×n

Furthermore,  the  following  auxiliary  matrices 
 and  are defined as

Ṗ1 = −l1̄P1+ψ1 fψ
T
1 f (20)

Q̇1 = −l1̄Q1+ψ1 f
(x̃− x f )T

ς
(21)

P1(0) = 0 Q1(0) = 0 l1̄ > 0where  and .  is  a  forgetting  factor,
and should be chosen to trade off the convergence speed and
the robustness [48]. In light of (19)–(21), one gets

Q1 = P1W1.

Ŵ1 W̃1 W1
W̃1 =W1− Ŵ1

Let  and  be the estimate and estimation error of ,
i.e., , then, the weight updating law is given by

˙̂W1 = −Γ1(P1Ŵ1−Q1) (22)
Γ1 > 0where  is a learning gain matrix.

W̃1
ψ1

Lemma  3: Consider  system  (6).  Under  the  adaptive  law
(22), the estimation error  converges to zero exponentially
if  is persistently exciting (PE).

Proof: Similar  to the proof of Theorem 2 in [56],  thus,  the
corresponding proof is omitted. ■

Based  on  Lemma  3,  system  (6)  can  be  written  in  the
following form

˙̃x = ˆ̃Ax̃+ ˆ̃Buu+ ˆ̄Bdd+ e1 (23)
ˆ̃A ˆ̃Bu

ˆ̃Bd Ã B̃u B̃d
˜̃A ˜̃Bu

˜̃Bd e1 =
˜̃Ax̃+ ˜̃Buu+ ˜̃Bdd

where ,  and  are  the  estimations  of ,  and , re-
spectively,  and the  corresponding estimation  errors  are , 
and .  is the system identification error.
According  to  the  optimal  theory  [55]  and  performance  index
(7), it is known that the value function is

V(x̃(t)) =
w ∞

t

(
x̃T Qx̃+uT Ru−γ2∥d∥2

)
dτ. (24)

The Hamiltonian for the system (23) can be written as

0 = H(x̃,u∗,d∗,V∗x̃ ) = x̃T Qx̃+u∗T Ru∗−γ2d∗T d∗

+V∗Tx̃ ( ˆ̃Ax̃+ ˆ̃Buu∗+ ˆ̃Bdd∗+ e1)

where

u∗ = −1
2

R−1 ˆ̃BuV∗x̃ , d∗ =
1

2γ2
ˆ̃BdV∗x̃ , V∗x̃ =

∂V∗

∂x̃
.

By  using  the  critic  network,  the  value  function  can  be
reconstructed as

V∗ =WT
2 ψ2+ e2 (25)

and, its derivative is

V∗x̃ = ∇ψT
2 W2+∇e2

W2 ψ2
e2

∇ψ2 ∇e2 ψ2 e2
x̃ ∥W2∥ ≤ W̄2 ∥ψ2∥ ≤ ψ̄2

∥∇ψ2∥ ≤ ψ̄d2 ∥e2∥ ≤ ē2 ∥∇e2∥ ≤ ēd2 W̄2 ψ̄2 ψ̄d2 ē2
ēd2

where  is  the  weight  of  the  critic  NN.  is  the  activation
function  of  the  critic NN,  is  the  NN  reconstruction  error,
and  and  are the derivatives of  and  with respect
to ,  respectively.  It  is  assumed  that , ,

,  and  where , , , 
and  are  positive  constants  [57]. In  the  sequel,  (25)  is  ap-
proximated by the following critic NN

V = ŴT
2 ψ2 (26)

Ŵ2 W2where  is the estimation of . Thus, one can gain

Vx̃ = ∇ψT
2 Ŵ2,

u = −1
2

R−1 ˆ̃Bu∇ψT
2 Ŵ2 (27)

d =
1

2γ2
ˆ̃Bd∇ψT

2 Ŵ2. (28)

Based on (27) and (28), Hamilton-Jacobilsaacs (HJI) can be
rewritten as

0 = H(x̃,u,d,Vx̃) = x̃T Qx̃+uT Ru−γ2dT d

+WT
2 ∇ψ2( ˆ̃Ax̃+ ˆ̃Buu+ ˆ̃Bdd)+ eHJI

eHJI = (WT
2 ∇ψ2+∇e2)e1+∇e2( ˆ̃Ax̃+ ˆ̃Buu+ ˆ̃Bdd)where  is  a

bounded residual HJI equation error. The above HJI equation
can be rewritten as

Θ = −ΞT W2− eT
HJI

Θ = x̃T Qx̃+uT Ru Ξ = ∇ψ2( ˆ̃Ax̃+ ˆ̃Buu+ ˆ̃Bdd)where , . Similarly,
the auxiliary filters are defined as

Ṗ2 = −l2P2+ΞΞ
T

Q̇2 = −l2Q2+ΞΘ

v̇2 = −l2v2+ΞeT
HJI

P2(0) = 0 Q2(0) = 0 l2where  and .  is a positive constant. Thus,
we have

Q2 = −P2W2− v2.

W̃2 =W2− Ŵ2
Ŵ2

Allowing , then, the updating law of the critic
NN weight  is

˙̂W2 = −Γ2(P2Ŵ2+Q2). (29)

Ξ W̃2
eHJI , 0 eHJI = 0

W̃2

Lemma 4: Consider critic NN (26) with adaptive law (29). If
 is  PE,  then  the  critic  NN  weight  error  converges  to  a

compact set around zero for .  Moreover,  for ,
 converges to zero exponentially.

Proof: Similar  to  the  proofs  of  Theorem  2  in  [56]  and
Theorem 4.1 in [48], thus, the corresponding proof is omitted.

■
Next,  the  stability  of  the  closed-loop  system  (6)  with  (27)

and  (28)  is  analysed.  By  substituting  (27)  and  (28)  into  (6),
one gets

˙̃x = Ãx̃+ B̃u(
1
2

R−1 ˜̃Bu∇ψT
2 Ŵ2+

1
2

R−1B̃u(∇ψT
2 W̃2+∇e2)

+ B̃d(−1
2

R−1 ˜̃Bd∇ψT
2 Ŵ2−

1
2

R−1B̃d(∇ψT
2 W̃2+∇e2))

+ B̃uu∗∗+ B̃dd∗∗ (30)
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˜̃Bu= B̃u− ˆ̃Bu
˜̃Bd= B̃d− ˆ̃Bd u∗∗ = −1/2R−1B̃u(∇ψT

2 W2+

∇e2) d∗∗ = 1/(2γ2)B̃d(∇ψT
2 W2+∇e2) u∗∗ d∗∗

H∞

where  and . 
, ,  where  and  are

the ideal  control pair to minimize the value function (24).
Then, we have the following result.

ψ1 Ξ
x̃ W̃1

W̃2
u d

H∞ u∗∗ d∗∗

Lemma 5: Consider  the  system (6)  equipped with  (27)  and
(28)  with  adaptive  laws  (22)  and  (29).  If  and  are  PE,
then,  the  system  state ,  identifer  error  and  critic  NN
weight  error  are  uniformly  ultimately  bounded  (UUB).
Furthermore,  in  (27)  and  in  (28)  converge  to  a  bounded
set around the ideal  control solutions  and .

Proof. See Appendix A. ■

x̃ V∗ = 1
2 x̃T P∗ x̃ V∗x̃ = P∗ x̃

V∗ =
1
2
(
vec(P∗)

)T (x̃⊗ x̃)
ψ2(x̃) = x̃⊗ x̃

W2 =
1
2
(
vec(P∗)

)T

u∗ = −R−1 ˆ̃BT
u P∗ x̃ d∗ =

1
γ2

ˆ̃BT
d P∗ x̃

e2 = 0
e2 = 0

H∞

Remark  6: From the  optimal  theory  [55],  it  is  known  that,
for the linear system, the value function and its derivative with
respect  to  are  denoted  as  and ,
respectively.  In  addition,  the  value  function  also  can  be

rewritten as . If the activation function
of  the  critic  NN  is  selected  as ,  thus,  the

corresponding weight is , which implies that

, ,  and  there  is  no  NN
reconstruction error, i.e., . So, in this case, according to
the proof of  Lemma 5,  it  is  shown that,  if ,  the system
states can converge to zero and the proposed  control pair
can converge to their ideal solution in ideal case.

Λ = I

A Bu Bd
P∗0 K0 L0

Remark 7: Note that if , the system (6) can be reduced
to (1), thus, by implementing the above identifier-critic based
method, the accurate estimations of the parameters , , ,

,  and  can be obtained.

ψ2(x̃) = x̃⊗ x̃

H∞
V0 = xT P0x

V1 = x̃T P1 x̃

From  Remarks  6  and  7,  it  is  known  that,  if  the  activation
function  of  the  critic  NN  is  selected  as ,  the
unknown  parameters  in  (10)  and  (11)  can  converge  to  the
ideal  ones.  So,  one  has  that  the  following  control  pairs,
which can ensure that the time derivatives of  and

 are less than 0, respectively,

u0 = −K0x, d0 = L0x and u1 = −K1 x̃, d1 = L1 x̃

K0 = R−1B̂T
u P0 K1 = R−1 ˆ̃BT

u P1 L0 =
1
γ2 B̂T

d P0

L1 =
1
γ2

ˆ̃BT
d P1

where , ,  and ,

.
Based  on  the  above-obtained  available  parameters,  the

method  proposed  in  Section  III-A  is  extended  to  the  data-
driven  case.  Thus,  for  the  system  (9)  with  the  unknown
parameters, a switched controller is given by

uσ′(t) = −Kσ′(t) x̄ (31)

dσ′(t) = Lσ′(t) x̄ (32)
σ′(t) ∈ {0,1}where . The available parameters used in the con-

troller are  ˆ̄A0 = Â, ˆ̄Bu0 = B̂u,
ˆ̄Bd0 = B̂d

ˆ̄A1 =
ˆ̃A, ˆ̄Bu1 =

ˆ̃Bu,
ˆ̄Bd1 =

ˆ̃Bd
K0 = R−1B̂T

u P0, L0 =
1
γ2 B̂T

d P0

K1 = R−1 ˆ̃BT
u P1, L1 =

1
γ2

ˆ̃BT
d P1.

A  learning-based  switching  law  is  given  in  the  following
form

σ′(t) =

 i, Vi(t) ≤ ϵi(Vi(tk′ ))

1− i, Vi(t) > ϵi(Vi(tk′ ))
(33)

i ∈ {
0,1

}
σ′(t−) = i t− < t ϵiwhere . , and .  indicates the observa-

tion performance function, and is given in the following form:

ϵi(Vi(t′k)) = η0e−ai(t−t′k)Vi(t′k)+η∞
η0 η∞ η0 ≥ 1 η∞ ≥ 0

Vi = x̄T Pi x̄ ai > 0 ai ≤ αi ai

αi = λ
−1
max(Pi)λmin

(−He(Pi
ˆ̄Ai−Pi

ˆ̄BuiKi+Pi
ˆ̄BdiLi)

)
i ∈ {0,1}

where ,  are positive constants satisfying , .
.  satisfies  where  is a  known con-

stant,  and 
for . In the sequel, one of the main results can be de-
scribed in the following theorem.

Pσ′ σ′ ∈ {0,1}

Theorem 2: Consider system (9),  whose system parameters
are  unknown.  Suppose  that  the  system parameter  estimations
and ,  can be obtained from Lemmas 4 and 5:

H∞
limt→∞ ∥x̄∥ ≤ ε

ε = η
1
2
∞λ
− 1

2
min(Pσ′ )

1) for no controller-switched case,  control pair (31) and
(32)  with  the  switching  law  (33)  guarantees ,
where ;

2)  for  the  controller-switched  case,  if  the  following
conditions are satisfied

α0

(
1− 1

T1

)
+α1T2 > λ

∗, λ∗ >
Tµ
τD

P0 < µP1, P1 < µP0 (34)
Tµ = 2ln(µ)+ (βi+α1−i)Tτ,Mi+ (β1−i+αi)Tτ,M(1−i) βi =

λ−1
min(Pi)λmax

(
He(PiĀ1−i−PiB̄u(1−i)Ki+PiB̄d(1−i)Li)

)
H∞

where , 
, thus, 

control pair (31) and (32) with the switching law (33) guaran-
tees that the system (9) is global asymptotically stable.

Proof: The  proof  is  analogous  to  that  of  Theorem  1  and
omitted. ■

σ(t)

Remark  8: Notice  that  the  existing  results  on  the  switched
controls against the intermittent attacks mainly include 1) [29]
and  [34]  focus  on  the  intermittent  DoS  (I-DoS)  attack  case,
and  2)  [51]  and  [52]  are  concerned  with  the  intermittent
actuator failure (I-AF) case. Then, the differences between the
existing  approached  and  ours  can  be  described  by Table I.
Clearly, due to unknown system knowledge and the switching
law , under the considered faults, the switched controls in
[29], [34], [51] and [52] lose efficacy.

From  the  above  analysis,  the  proposed  reliable  control
policy  can  be  described  in Fig. 4.  In Fig. 4,  ADP-based
learning  module  indicates  the  identification-critic  based
controllers  (27),  and switched controller  represents  controller
(31)  with  the  switching  law  (33).  The  corresponding
implementing process can be depicted as follows:

σ = 0
uσ

(Āσ, B̄uσ, B̄dσ,Pσ,uσ,dσ,σ)

Step 1: Activate the ADP-based learning module. Let .
During  the  learning  process,  decision  module  exports  of
the  ADP-based  learning  module.  It  stops  until  the  available
parameters  are  gained,  and  the
obtained available parameters are sent to switched controller.

uσ

σ = 1

Step  2: After  switched  controller  receives  the  available
parameters, the decision module exports the control signal 
of  switched  controller.  Until  the  system  is  abnormal,  ADP-
based  learning  module  is  reactivated.  Let ,  and  repeat
Step 1.
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IV.  Illustrative Example

In this section, the DC motor speed control system is given
to validate the presented method, where the control system is
shown  in Fig. 5.  It  can  be  seen  that  the  rotating  speed  and
armature  current  signals  of  the  motor  are  transmitted  via  the
network channels  1  and 2,  respectively,  and the  transmission
channels  are  assumed  to  be  vulnerable  to  cyber  attacks.
Furthermore,  the  system parameters  are  borrowed  from [58],
where  they  are  obtained  from  actual  measurements  and
hardware  equipments.  These  parameters  are  summarized  in
Table II.  Additionally,  through  the  working  principle  of  the
DC motor, the dynamics of the motor are represented by

İ = −
(

RT

LT

)
I−

(
CV

LT

)
Ω+

(
1

LT

)
U

Ω̇ = −
(

1
J

)
ML +

(CT

J

)
I

I Ω

U
where  is the armature current;  is the rotating speed of the
motor; and  represents the terminal voltage.

The  desired  rotating  speed  and  the  steady-state  current  of

Ωd Id = ML/CT
∆Ω = Ω−Ωd

∆I = I− Id

the  DC  motor  are  defined  as  and ,
respectively.  Thus,  the  tracking  errors  are  and

. The dynamics of the errors are given by

[
∆İ
∆Ω̇

]
=


− Rt

LT
−CV

LT
CT

J
0


[
∆I
∆Ω

]
+


ξ

LT
0

u

ξ = 2.0039 u = (U −CVΩd −RT Id)/ξ

x = [∆I ∆Ω]T

Bd = [0.1 0.3]T

x = [1 1]T d

where  and  is  denoted  as
the  control  input  of  the  error  dynamics.  Allowing

,  then  the  error  dynamics  can  be  given  in  the
form  of  (1)  with ,  where  the  initial  system
states . The disturbance  is considered as a white
noise with noise power 0.1.

λ = 0.3 λ = 3

Λ = diag{−1.5,−0.5} η f = 0 κ = 0 τD = 75 T1 = 1
T2 = 0.6

In order to verify the proposed algorithm, it is assumed that
the  system  parameters  are  unknown,  the  control  system  is
equipped with the detector (5) with  and , and the
communication channels are subjected to a fault/attack in (2)
with , , , ,  and

.

H∞
H∞ γ = 2 R = 1

Q = diag{1,1} ψ2 = [x2
1 x1x2 x2

2]T

2

Next, the ADP-based learning algorithm in this paper is first
implemented to obtain the system parameters for (1) and (6) and
the  corresponding  critic  weights.  Then  we  consider  the 
performance  index  (7)  with  the  gain ,  and

, and the activation function 
of  the  critic  NN.  In  the  simulation  experiment,  to  accurately
estimate the unknown parameters, a probing noise is introduced
before  s. The initial critic weights are randomly chosen and
all the initial values for the parameters in the adaptive laws are
set to zero. The ADP-based learning process is shown in Fig.
6. Due to similarity to (1), the learning process for the system
(6) is omitted. The obtained optimal estimations of the system
parameters and the critic weights are given by

Â0 =

[
−6.900 −0.0209
7.4580 0

]
, B̂u,0 =

[
6.6797

0

]
, B̂d,0 =

[
0.1
0.3

]

 

TABLE I  
Comparisons of the Existing Switched Controls Against the Intermittent Attacks

Methods [29], [34] [51], [52] Ours

Attack types I-DoS BuΛuI-AF ( ) x̃ = ΛxI-SDSA ( )

Attack parameters — λi = 0 −∞ ≤ λi ≤∞
System knowledge Available Available Unavailable

σ(t)Switching law Known Known Unknown
σ′(t)Switching law σ′(t) = σ(t) σ′(t) = σ(t) σ′(t) , σ(t)

 

 

TABLE II  
DC Motor Speed Control System Parameters

Parameter Symbol Value Unite

Torque constant CT 0.06 Nm/A

Machine load ML 0.1 Nm

Terminal inductance LT 0.3 100H

Terminal resistance RT 2.07 Ohm

Rotor inertia J 80.45×10−4 100 Kg·m2

Voltage constant CV 6.27×10−3 V/rpm
 

 

ADP-Based
learning
module

Switched
controller

(Aσ, Buσ, Bdσ, Pσ, uσ, dσ, σ)
Decision
module

uσ

uσ

u

d

x

u

System abnormality

Activation signal

 
Fig. 4.     Diagrammatic sketch of the learning-based switched reliable con-
trol policy.
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U

 
Fig. 5.     Block diagram of a DC motor speed control system.
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ˆ̃A1 =

[
−6.9000 −0.0627
2.4860 0

]
, ˆ̃Bu,1 =

[
−10.0195

0

]
ˆ̃Bd,1 = −0.15I2, W2,0 = [0.1557 0.2988 0.2776]

and

W2,1 = [0.0713 0.1986 0.5630].

η0 = 1.1 η∞ = 0.05 a0 = 2.6 a1 = 1.7

In  the  sequel,  we  test  the  effectiveness  of  the  reliable
switched controller (31) under the intermittent communication
faults  in  the  simulation  experiment.  In  the  simulation,  the
disturbance  occurs  from  the  initial  time  to  500 s,  and  a
potential  switching  signal  generated  from  the  fault  marker
satisfying  Assumptions  1  and  2  is  considered  and  plotted  by
the blue solid line in Fig. 7(a). And then, the parameters of the
prescribed  performance  function  used  in  switching  law  (33)
are chosen as , ,  and . Then,
under  the  communication  faults,  the  switching  signal  of  the
controller  generated  by  switching  law (33)  is  denoted  by  the
red  dash  line  in Fig. 7(a).  It  can  be  observed  that

Tτ,M0 ≤ 0.353 Tτ,M1 ≤ 0.353 W2,0
W2,1 α0 = 2.6451 α1 = 1.7171 β0 = 94.4412
β1 = 109.6481 µ = 5

λ∗ > Tµ/τD = 1.0240 λ∗ < α0(1−1/T1)+
α1T2 = 1.0302

Vσ′

Vσ′

η∞ = 50 η∞ = 5
η∞ = 0.5 η∞ = 0.05

η∞

 and .  Furthermore,  by  and
,  we  have , ,  and

.  We  chose ,  thus,  by  computing,  it  is
obtained  that ,  and 

,  which implies that  condition (34) is  satisfied.
Under  the  proposed  switching  law  (33),  the  system
performances are exhibited by Fig. 7(b)−(d). It can been seen
that  when  violates  the  prescribed  performance,  the
switching of the controllers is triggered, and prior to switching
controllers,  the  performance  is  inside  the  prescribed
performance. Also, observe that there are some chatters in the
trajectory of the norm of the compromised system states. They
are  caused  by  passively  switching  the  controllers.  These
chatters  can  be  improved  by  reducing  the  parameters  of  the
prescribed performance.  In  order  to  clearly  illustrate  this,  we
consider  the  trajectories  of  the  norm  of  the  compromised
system  states  under  four  cases:  1) ;  2) ;  3)

 and 4) .  The simulation results are plotted
in Fig. 8.  It  verifies  the  chatters  can  be  reduced  through
decreasing .

In  order  to  further  clarify  the  advantages  of  the  presented
method,  a  standard  ADP-based  control  (S-ADPC)  and  an
event-triggered ADP-based control (ET-ADPC) [50] schemes
are  taken  into  account  as  comparisons,  where  ET-ADPC  in
[50]  is  one  of  the  latest  ADP-based  control  methods.  The
control schemes are respectively given as follows:

u = −1
2

R−1

B̂u∇ψT
2 Ŵ2 R = 1 ψ2 = [x2

1 x1x2 x2
2]

B̂u = [6.6797 0]T

Ŵ2 = [0.1557 0.2988 0.2776]

1)  S-ADPC: The  controller  is  the  form  of 
, where ,  and through the

learning  algorithm  mentioned  in  Section  III-B,  the  unknown
parameters  are  obtained  as  and

.
Q = diag{1,1}

R = 1
u(xk) = − 1

2 B̂T
u∇ψc(xk)Ŵc

∥ek∥2 ≤ (1− ı2)λmin(Q)∥x∥2/((1+ℑ2)ᴊ2) xk
∇ψc(xk)

ψc = [x2
k1 xk1xk2 x2

k2] xk ek = xk − x(t)

2) ET-ADPC [50]: Select the parameters  and
 in  the  infinite-horizon  integral  cost.  The  controller  is

form  of  with  the  event-triggered
condition  where  is
the  sampled  state,  is  the  gradient  of

 with  respect  to , ,
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Fig. 6.     The ADP-based learning process for the system (1): (a) System
parameters; (b) Critic NN weights; (c) System states; (d) Control input signal.
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∀t ∈ [tk, tk+1) ı ℑ ᴊ
ı = 0.2 ℑ = 1.732

ᴊ = 1.5 B̂u = [6.6797 0]T

Ŵc = [0.1586 0.3034 0.2867]

,  and  the  parameters ,  and  in  the  event-
triggered  condition  are  chosen  as ,  and

. By the algorithm presented in [50], 
and .

∥x∥
r ∞

0 Vdτ

In  the  following  simulation  experiment,  we  consider  the
same  intermittent  communication  faults  as  those  mentioned
above. Then, under S-ADPC and ET-ADPC, the compromised
system performances are  shown in Fig. 9.  It  can be seen that
the norms  of the compromised system states under the two
control  schemes  are  unstable  and  the  system  performances

 are  degraded  severely.  Accordingly,  through
comparisons,  the  effectiveness  of  the  proposed  scheme  is
verified.  In  future  works,  we  will  further  enrich  the  CPS
secure control study for the more general faults/attacks in the
packet-dropout and delay environments.

V.  Conclusion

This  paper  from  the  CPS  operator’s  viewpoint  studied
reliable  control  problems  of  data-driven  cyber-physical
systems  with  communication  faults  on  multiple  channels.
Based  on  our  previous  result  [11],  a  data-driven  switched
controller with a prescribed-performance-based switching law
was proposed, and through the ADT approach, a fault set, which
the closed-loop systems can tolerate, was given. Then, driven
by the cooperation of the proposed watermark-based anomaly
detector  and  learning-based  switched  control  policy,  the
reliability of the systems under the faults was guaranteed. An
illustrative example verified the effectiveness of the presented
method.

Appendix A
The Proof of Lemma 5

Proof: Consider the following Lyapunov function candidate

L(t) =L1(t)+L2(t)+L3(t)+L4(t) (35)
where

L1 =
1
2

tr(W̃T
1 Γ
−1
1 W̃1), L2 =

1
2

tr(W̃T
2 Γ
−1
2 W̃2)

L3 = Kx̃T x̃+ΓV∗, L4 =
1
2

tr(vT
2 v2).

From Lemmas 3 and 4, it follows that

L̇1 ≤ −c1∥W̃1∥2 (36)

L̇2 ≤ −(c2−
1
2η

)∥W̃2∥2+
η∥v2∥2

2
(37)

c1 c2 > 0 L3where ,  are constants. The time derivative of  is

L̇3 = 2Kx̃ ˙̃x+ΓV̇∗. (38)

V̇∗ = −(x̃T Qx̃+u∗∗T Ru∗∗−γ2d∗∗T d∗∗)
From  the  value  function  (24),  it  is  clear  that

,  and  then,  substituting
(30) into (38) yields

L̇3 = 2Kx̃
(− 1

2γ2 B̃d( ˜̃Bd∇ψT
2 Ŵ2+ B̃d(∇ψT

2 W̃2+∇e2))

+ Ãx̃+
1
2

B̃uR−1( ˜̃Bu∇ψT
2 Ŵ2+ B̃u(∇ψT

2 W̃2+∇e2))

+ B̃uu∗∗+ B̃dd∗∗
)−Γ(x̃T Qx̃+u∗∗T Ru∗∗−γ2∥d∗∗∥2).

ab ≤ η
2 a2+ 1

2ηb2 η > 0From , , we have

L̇3 ≤
(
−Γλmin(Q)+2K(∥Ã∥+1)

+
1
2
ηλmax(R−1)∥B̃u∥(ψ̄d2∥Ŵ2∥+ ∥B̃u∥(ψ̄d2+1))

+
1

2γ2 η∥B̃d∥(ψ̄d2∥Ŵ2∥+ ∥B̃d∥(ψ̄d2+1))
)
∥x̃∥2

+

(
K∥B̃u∥2−Γλmin(R)

)
∥u∗∗∥2+

(
K∥B̃d∥2+Γγ2

)
×∥d∗∗∥2+

( 1
2η

K2λmax(R−1)ψ̄d2∥B̃u∥∥Ŵ2∥

+
1

2ηγ2 ψ̄d2K2∥B̃d∥∥Ŵ2∥
)
∥W̃1∥2

+

( 1
2η

K2λmax(R−1)ψ̄d2∥B̃u∥2+
1

2ηγ2 ψ̄d2K2∥B̃u∥2
)

×∥W̃2∥2+ (
1
2η
λmax(R−1)K2∥B̃u∥2+

1
2ηγ2 K2∥B̃d∥2)ē2

d2.

(39)
L4The time derivative of  is

L̇4 ≤ −(l2Γ3−4η)∥v2∥2+
1
η
Γ3∥ΞεT

HJI∥2. (40)

Substituting (36), (37), (39) and (40) into (35) yields

L̇ ≤−ε1∥v2∥2−ε2∥W̃1∥2−ε3∥W̃2∥2

−ε4∥x̄∥2−ε5∥u∗σ∥2+ε6 (41)
where

ε1 = l2Γ3−
9η
2

ε2 = c1−
1
2η

K2λmax(R−1)ψ̄d2∥B̃u∥∥Ŵ2∥

− 1
2ηγ2 ψ̄d2K2∥B̃d∥∥Ŵ2∥
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Fig. 9.     The system performances: (a) the norm of the system states  under
S-ADPC;  (b)  under S-ADPC; (c) the norm of the system states under
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ε3 = c2−
1
2η
− 1

2η
K2λmax(R−1)ψ̄d2∥B̃u∥2

− 1
2ηγ2 ψ̄d2K2∥B̃u∥2

ε4 = Γλmin(Q)−2K(∥Ã∥+1)

− 1
2
ηλmax(R−1)∥B̃u∥(ψ̄d2∥Ŵ2∥

+ ∥B̃u∥(ψ̄d2+1))− 1
2γ2 η∥B̃d∥(ψ̄d2∥Ŵ2∥

+ ∥B̃d∥(ψ̄d2+1))

ε5 = −K∥B̃u∥2+Γλmin(R)

ε6 =

(
K∥B̃d∥2+Γγ2

)
∥d∗∗∥2+ 1

η
Γ3∥ΞεT

HJI∥2

+ (
1
2η
λmax(R−1)K2∥B̃u∥2+

1
2ηγ2 K2∥B̃d∥2)ē2

d2.

Γ K ηHence,  if  the  designed  parameters ,  and  satisfies  the
following conditions

ε1 > 0, ε2 > 0, ε3 > 0, ε4 > 0, ε5 > 0
x̃ W̃1 W̃2 v2thus, from (41), it is deduced that , ,  and  are UUB.

Next,  the  errors  between  (27),  (28)  and  the  ideal  ones  are
analysed. The corresponding errors are

u−u∗∗ = − 1
2

R−1 ˆ̃BT
u∇ψT

2 Ŵ2+
1
2

R−1B̃T
u (∇ψT

2 W2+∇e2)

=
1
2

R−1B̃T
u∇ψT

2 W̃2+
1
2

R−1B̃T
u∇e2

+
1
2

R−1 ˜̃BT
u∇ψT

2 W2−
1
2

R−1B̃T
u∇ψT

2 W̃2

d−d∗∗ =
1

2γ2
ˆ̃BT

d∇ψ
T
2 Ŵ2−

1
2γ2 B̃T

d (∇ψT
2 W2+∇e2)

=
1

2γ2 B̃T
d∇ψ

T
2 W̃2−

1
2γ2

˜̃BT
d∇ψ

T
2 W2

+
1

2γ2
˜̃BT

d∇ψ
T
2 W̃2−

1
2γ2 B̃T

d∇e2.

According to the above analysis, one has

lim
t→∞
∥u−u∗∗∥ ≤ 1

2
λmin(R)(∥B̃u∥∥∇ψ2∥∥W̃2∥

+ ∥B̃u∥∥∇e2∥+ ∥W̃1∥∥∇ψ2∥∥W2∥
+ ∥W̃1∥∥∇ψ2∥∥W̃2∥) ≤ eu

lim
t→∞
∥d−d∗∗∥ ≤ 1

2γ2 (∥B̃d∥∥∇ψ2∥∥W̃2∥

+ ∥W̃1∥∥∇ψ2∥∥W2∥+ ∥W̃1∥∥∇ψ2∥∥W̃2∥
+ ∥B̃d∥∥∇e2∥) ≤ ed

eu edwhere  and  are positive constants,  which are determined
by the NN approximation errors. ■
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