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    Abstract — This  paper  proposes  a  novel  locally  linear  back-
propagation  based  contribution  (LLBBC)  for  nonlinear  process
fault diagnosis. As a method based on the deep learning model of
auto-encoder  (AE),  LLBBC  can  deal  with  the  fault  diagnosis
problem through extracting nonlinear features. When the on-line
fault diagnosis task is in progress, a locally linear model is firstly
built  at  the  current  fault  sample.  According  to  the  basic  idea  of
reconstruction based contribution (RBC), the propagation of fault
information is  described  by  using  back-propagation  (BP)  al-
gorithm. Then, a contribution index is established to measure the
correlation between the variable and the fault,  and the final dia-
gnosis result is obtained by searching variables with large contri-
butions. The smearing effect, which is an important factor affect-
ing the performance of fault diagnosis, can be suppressed as well,
and the theoretical analysis reveals that the correct diagnosis can
be guaranteed  by  LLBBC.  Finally,  the  feasibility  and  effective-
ness of the proposed method are verified through a nonlinear nu-
merical example and the Tennessee Eastman benchmark process.
    Index Terms—Auto-encoder  (AE),  deep  learning,  fault  diagnosis,
locally linear  model,  nonlinear  process,  reconstruction  based  contri-
bution (RBC).

I.  Introduction

IN order to keep modern industrial plants to work in normal
operation and  improve  product  qualities,  process  monitor-

ing  technique  has  been  widely  developed  in  recent  decades.
With  the  advanced  computer  and  networked  control  system
techniques, a  large number of  the process  data  have been re-
corded  and  stored  in  industrial  databases  in  recent  years.
Meanwhile, data-driven multivariable statistical process mon-
itoring (MSPM) has received great attention as extracting use-
ful information from process data can be more convenient and
flexible  than  traditional  mechanism-based  methods  [1]–[3].
Most  of  the  primitive  MSPM  methods  are  based  on  linear
models, such as principal component analysis (PCA) and par-
tial  least  square  (PLS),  which  assume  that  the  correlation

between different process variables are linear. However, in ac-
tual industry processes, nonlinear correlations are widespread,
which  will  seriously  affect  the  monitoring  performance  of
those  methods.  Thus,  several  extensions  of  MSPM  methods
have been proposed to handle the nonlinear problem with the
kernel  PCA  [4],  the  support  vector  data  description  (SVDD)
[5]  and  neural  network  based  methods  like  auto-associative
neural networks [6] and principal curve based nonlinear PCA
[7].

As a crucial  part  of  the process monitoring,  fault  diagnosis
aims  to  find  the  faulty  part  or  component  of  the  process,
which can help engineers to locate the root causes of the faults
and fix the responsible part in the entire process after the fault
detection. And one way to do it is to find the critical variables
to  the  detected  fault,  also  known  as  fault  identification.
Contribution  plots  and  reconstruction  based  contribution
(RBC)  are  two  traditional  data-based  methods  for  fault
diagnosis [8].  Contribution plots can find the faulty variables
by calculating the contribution of each process variable to the
fault  detection  index  [9],  Tan et  al. [10],  [11]  improve  the
performance  of  the  contribution  plot  by  combining  this
method  with  different  monitoring  models.  However,  because
of  the  existence  of  the  smearing  effect,  the  contribution  plot
may not be able to give the correct diagnosis results, and RBC
is  proposed  to  solve  this  problem.  Compared  to  the
contribution  plots  method,  RBC  considers  the  fault
information  propagation  in  the  model,  which  is  able  to
suppress  the  smearing  effect  and  has  been  proven  to  have
better  diagnosis  performance  [12].  The  traditional  RBC
method is  established based on the linear PCA model,  which
is  not  suitable  for  the  nonlinear  process.  To  address  the
nonlinear issue in the process, several improvements on RBC
have been proposed. Alcala et al. [13] have extended RBC to
the kernel PCA (KPCA) model as a nonlinear version (KPCA-
RBC).  However,  since  the  dimension  of  the  kernel  matrix
equals  the  number  of  samples,  the  calculation  would  be
severely  time-consuming  when  dealing  with  large-scale
datasets, which makes KPCA-RBC hard to be implemented in
practice.  Ge et  al. [14]  approximate  the  nonlinear  feature
space  with  several  linear  subspaces  to  build  linear  RBC  in
each  of  them and  combine  the  results  by  Bayesian  inference
PCA  (BSPCA).  It  is  effective  and  easy  to  construct,
nevertheless,  it  may  not  be  able  to  capture  strong  nonlinear
features of processes. According to the recent works, variable
selection  methods  are  used  to  locate  the  critical  variables  to
the  fault.  Yan et  al.  propose  a  least  absolute  shrinkage  and
selection  operator  (LASSO)  based  method  to  identify  the
faulty  variable  [15]  and  further  combine  LASSO  with  PLS
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and  discriminant  analysis  to  improve  the  performance  [16].
Yu et  al. [17]  build  a  fault  relevance  based  on  the  kernel
canonical  correlation  analysis  (KCCA)  to  describe  the
correlation  between  variables  and  faults.  Compared  to  the
contribution  plot  and  RBC,  these  methods  have  better
performance  when  dealing  with  multi-variate  fault,  however,
the variable selecting process is time-consuming and some of
the  works  can  only  be  performed  when  a  fault  dataset  has
been  built,  which  means  that  these  methods  cannot  give  the
result in time when used online.

Deep learning has become a hot research topic in the fields
of  artificial  intelligent  and  machine  learning  in  the  recent
years.  It  includes a series of powerful feature extract models,
such  as  auto-encoder  (AE),  restricted  Boltzman  machine
(RBM),  deep  brief  network  (DBN),  etc.  These  models  can
learn  the  representation  of  the  data  and  extract  complex
nonlinear  features  [18],  [19].  Several  works  have  been
conducted  to  handle  the  practical  industry  problem  such  as
quality  predicting  and  process  monitoring  with  the  help  of
deep learning models. Yuan et al. [20]–[22] developed several
novel nonlinear feature extraction methods based on variable-
wise  weighted  stacked  AE  and  long  short-term  memory
network  (LSTM).  Yan et  al.  [23]  proposed  a  variant  AE
method  to  solve  the  nonlinear  fault  detection  problem.  Jiang
et al. [24] further improved the monitoring performance of AE
with a denoising criterion. Besides, Zhao [25] proposed a new
monitoring  model  by  combining  AE  and  PCA.  For  fault
diagnosis, most work based on deep learning models treated it
as  a  classification  task.  Shao et  al.  [26]  proposed  a  tracking
deep  wavelet  auto-encoder  method  for  fault  diagnosis  of
electric  locomotive  bearings,  Tamilselvan et  al.  [27]  applied
DBN for health diagnosis. Wang et al. [28] proposed a novel
extended  DBN  model  to  perform  fault  diagnosis  task  in
chemical  process.  However,  few  methods  can  be  found  for
analyzing  the  critical  variables  of  process  faults  with  deep
learning models.

The motivation of the paper is  to develop a fault  diagnosis
method  based  on  the  deep  learning  model  for  industrial
processes with strong nonlinear relationships between variables.
A novel  method called  locally  linear  back-propagation  based
contribution  (LLBBC)  is  proposed  for  fault  diagnosis  in  this
paper. In LLBBC, an AE model is firstly trained offline. When
a  fault  sample  is  detected,  a  local  linear  model  at  the  fault
sample is built to approximate the whole AE model. Then the
basic  idea  of  RBC is  utilized  to  calculate  the  contribution  of
each variable.  Due to the similarity of  the propagation of the
fault information and the training error, back-propagation (BP)
algorithm  is  used  to  describe  the  propagation  of  the  fault  in
calculating  the  contribution.  Theoretically,  the  nonlinear
features  extracted  by  AE  make  the  method  suit  for  the  fault
diagnosis  of  nonlinear  process,  and  the  local  linear  model  of
LLBBC can prevent diagnosis results from the smearing effect.
Two case studies presented in the paper will  demonstrate the
superiority of the proposed method.

The organization of the remaining paper is given as follows:
Section II presents a brief review about AE and stacked auto-
encoder (SAE) and the training strategy of denoising criterion.
In  Section  III,  two  fault  diagnosis  methods  in  AE,  including

back-propagation based contribution (BBC) and the proposed
LLBBC  are  introduced,  theoretical  proof  of  the  validity  of
LLBBC  and  the  relationship  between  LLBBC  and  RBC  are
also  given  in  this  section.  Section  IV  provides  two  case
studies  including  a  numerical  example  and  the  Tennessee
Eastman benchmark process. Finally, conclusions are made.

II.  Preliminaries

A.  Auto-encoder (AE) Model
The  auto-encoder  model  is  an  unsupervised  feed-forward

neural  network,  which  is  widely  used  for  feature  extraction
[19].  The  architecture  of  the  simplest  AE  model  consists  of
three layers: an input layer, a hidden layer and an output layer
(as shown in Fig. 1).

The  total  mapping  function  of  AE  contains  two  parts,  an
encoder  function,  which  maps  the  input  to  the  feature  space,
and a decoder function, which is used to reconstruct the input
[29]. And the parameters of AE are trained by minimizing the
reconstruction error.

x(n) ∈ RmAssume  that  the nth  input  sample  is  denoted  by ,
where m is  the  number  of  variables.  Firstly,  the  samples  are
mapped  to  the  feature  space  (hidden  layer)  by  encoder
function as follows:

t(x(n)) = σ(WT
e x(n)+ be) (1)

σ(∗)
σ(∗) = 1/

(
1+ e−∗

)
We ∈ Rm×d be ∈ Rd

where  is  the  sigmoid  function  and  calculated  as
.  and  denote the weights

and the bias of the encoder function, respectively, where d is
the number of the node in the hidden layer, i.e., the dimension
of the feature space.

Then  the  feature  expression  of  the  hidden  layer  is
reconstructed to input space by the decoder function, given as
follows:

x̂(n) =WT
d t(x(n))+ bd (2)

Wd ∈ Rd×m bd ∈ Rmwhere  and  denote the weights and the bi-
as  of  the  decoder  function,  respectively.  The  total  mapping
function from the  input  layer  to  the  output  layer  is  shown as
follows:

r(x(n)) =WT
d σ(WT

e x(n)+ be)+ bd. (3)
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Fig. 1.     Architecture of the basic AE.
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W= {We,Wd, be, bd}
Finally, the BP algorithm can be utilized to optimize all the

parameters  of  the  AE  model  by
minimizing the reconstruction error as follows:

W = argmin
W

1
N

N∑
n=1

∥∥∥x̂(n)− x(n)
∥∥∥2 (4)

where N is the number of the training samples.

B.  Denoising Criterion
The  denoising  criterion  is  a  training  strategy  that  can  help

AE  to  extract  more  robust  feature  and  structure  in  the  input
distribution,  then  AE  can  obtain  better  representation  [24].
The  AE  model  trained  by  denoising  criterion  is  also  called
denoising auto-encoder (DAE) [30].

The  key  point  of  the  denoising  criterion  is  adding  some
noise  to  the  input  data  before  training  the  whole  AE  model,
and  then  use  the  corrupted  data  to  reconstruct  the  original
data.  The  loss-function  of  DAE  can  be  described  by  the
following equation:

W = argmin
W

1
N

N∑
n=1

∥∥∥r(x(n)+ε)− x(n)
∥∥∥2 (5)

ε ∼ N(0,σ2I)where  is the random noise, and the same as the
AE model,  parameters  of  DAE can  be  obtained  by  minimiz-
ing the loss-function with BP algorithm.

When  the  training  of  the  DAE  model  is  completed,  the
original  uncorrupt  data  is  used  as  input  to  map  these  data  to
the hidden layer to get the feature representation.

C.  Stacked Auto-encoder (SAE) Model
The  stacked  auto-encoder  model  can  be  used  to  extract

features  that  are  more  complex,  and  a  common  method  to
train  SAE  is  the  greedy  layer-wise  approach,  which  means
training each layer in turn [31].  Use the original data to train
the  first  AE,  and  then  use  the  features  obtained  by  the  first
AE, i.e.,  the output of the first AE’s hidden layer to train the
second AE. In a similar fashion, the ith AE can be trained in
the  same way.  After  the  training  of  the ith  AE is  completed,
connect them together as the architecture shown in Fig. 2.

As an example, consider the two layers SAE that is stacked
by  two  AEs.  The  total  mapping  function  of  the  SAE  is
expressed as follows:

rSAE(x(n))=WT
1d(WT

2dσ(WT
2eσ(WT

1ex(n)+ b1e)+ b2e)+ b2d)+ b1d
(6)

W1e,W1d, b1e, b1d
W2e,W2d, b2e, b2d

where  are  the  parameters  of  the  first  AE,
and  are the parameters of the second AE.

Wne,Wnd, bne, bnd

And  it  is  easy  to  extend  it  to  the  multilayer  SAE  that  is
stacked  by n AEs,  as  shown  in  (7),  where 
denote the parameters of the nth AE.

rSAE(x(n)) =WT
1d(· · · (WT

(n−1)d(WT
ndσ(WT

ne · · ·
σ(WT

2eσ(WT
1ex(n)+ b1e)

+ b2e) · · ·+ bne)+ bnd)+ b(n−1)d) · · · )+ b1d. (7)
Denoising criterion can also be used in the training of every

single AE, which helps us  to  build a  stacked denoising auto-
encoder  (SDAE)  to  extract  the  more  robust  and  complex

nonlinear features.

III.  Fault Diagnosis Method Based on Auto-encoder

A.  Back-propagation Based Contribution (BBC)
Back-propagation  based  contribution  is  a  fault  diagnosis

method  based  on  the  AE  model.  In  BBC,  nonlinear  features
extracted  by  the  AE  model  can  be  used  to  obtain  better
performance  in  fault  diagnosis  task.  Moreover,  when  a  fault
happens,  the  fault  information  will  propagate  around  the
whole  AE model,  so  all  the  output  variables  will  contain  the
fault  information,  which  will  lead  to  the  smearing  effect  and
seriously  affect  the  diagnosis  result.  Therefore,  if  we  just
calculate  the  contribution  plot  using  the  input  and  the  output
of  the  AE  model,  we  may  not  get  the  correct  result.  With
BBC,  the  smearing  effect  can  be  suppressed  by  considering
the propagation of the fault using the BP algorithm.

fi
xi

fi

Similar to the RBC, the basic idea of the BBC contains two
parts.  First  of  all,  find  an  to  adjust  the ith  variable  of  the
online  sample x (denoted  by )  such  that  the  corresponding
fault  detection  index  is  minimized  [12].  Secondly,  build  an
index to measure the magnitude of , and the final diagnosis
result is obtained based on the magnitude of the index.

When the fault detection task is performed in the AE model
that  is  trained  by  denoising  criterion,  the  squared  prediction
error  (SPE)  is  chosen  as  the  fault  detection  index,  which  is
calculated by the following equation [12]:

S PEAE=(x̂− x)T (x̂− x) (8)
x̂where  is the output of the AE model.

fi

fi
x+ ξi fi ξi

In  order  to  calculate  the ,  Back-propagation  (BP)
algorithm  is  used  to  describe  the  propagation  of  the  fault
information.  BP is  a  traditional  algorithm for  neural  network
training, and the most important part of the BP algorithm is to
calculate  the  partial  derivative  of  the  predictive  error  with
respect  to  the weight,  then the value of  the derivative can be
used  to  update  the  weights  until  the  loss  function  has
approached its minimum. When we are performing the RBC,
the first step is to calculate the magnitude , so as to minimize
fault detection index of , where  is the ith column of
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Fig. 2.     Training procedure of stacked auto-encoder model.
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the identity matrix, and this is similar to the purpose of the BP
algorithm.

al
i

zl
i

In Fig. 3,  a  structure  of  AE  is  illustrated  and  the  formulas
below  the  structure  show  the  procedure  of  the  error  back
propagation,  where  denotes  the  output  of  the ith  nodes  in
the lth layer and  denotes the input of the ith nodes in the lth
layer,  different  formulas  have  different  colors,  and  each  of
them  corresponds  to  a  path  of  the  same  color  in  the  AE
structure.

xi

As  shown  in Fig. 3,  when  the  BP  algorithm  calculates  the
gradient  of  the  weight,  the  error  propagates  in  an established
path at the same time. Due to the similarity of the propagation
of the fault information and the error, the BP algorithm can be
regarded as a method to describe the propagation of the fault
and help to calculate the magnitude of the fault reconstruction.
Thus,  when  a  fault  sample  is  obtained,  calculate  the  error E
between the input and output of the AE model first, and then
calculate  the  differential  of E with  respect  to  by  BP
algorithm as shown in (9) and (10).

E = x− x̂ (9)

∂E
∂xi
=
∂(x− x̂)
∂xi

(10)

xi fi
fi

Assume the  fault  magnitude  of  the  variable  is  and  do
the integral in the both sides of (10), the  can be calculated
by (11).

E =
w xi+ fi

xi

∂E
∂xi

dxi

fi = ET ∂xi

∂E
. (11)

xiThe  fault  detection  index  of  variable  is  built  as  the
following equation:

BBCindex
i =

∥∥∥ξi fi− ξ̂i fi
∥∥∥2 (12)

ξi ξ̂i
ξi

where  is  the ith  column  of  the  identity  matrix  and  de-
notes the reconstruction result of  by the trained AE model.

Finally, the fault diagnosis task can be completed by finding

the variables with significantly large contributions.

B.  Locally Linear Back-propagation Based Contribution (LLB-
BC)

Although BBC has considered the propagation of the fault,
it  cannot  prevent  the smearing effect  from affecting the right
diagnosis  result  thoroughly.  In  this  section,  a  locally  linear
back-propagation  based  contribution  (LLBBC)  method  is
proposed  to  solve  this  problem and  get  the  correct  diagnosis
with the smearing effect.

It  can  be  seen  that  the  nonlinear  part  exists  in  the
contribution  index  of  BBC,  which  represents  the  mapping
function of neural  network and is hard to interpret.  Thus,  the
contribution  index  of  BBC  is  difficult  to  be  described
theoretically,  and  the  contribution  of  the  most  relevant
variables  may  not  have  the  largest  magnitude.  However,  we
need  the  nonlinear  mapping  to  make  use  of  the  nonlinear
features extracted by AE. In this  situation,  a  number of  local
linear models can be used to approximate the whole nonlinear
AE model (as shown in the Fig. 4), which can help us to build
a  contribution  index  in  a  linear  model.  The  nonlinear  AE
model can be specifically described and the nonlinear features
extracted by AE can be effectively utilized at the same time.

x∗

The  basic  steps  of  LLBBC  are  the  same  as  the  BBC’s,
however,  the  construction  of  the  contribution  index  needs  to
be changed. First of all, AE is trained by the dataset from the
normal  operating  state  offline  using  the  denoising  criterion.
When  a  fault  occurs,  the  model  is  linearized  at  the  fault
sample .  Since  the  use  of  the  linear  decoder,  the  nonlinear
part  of  the  original  mapping  function  only  exists  in  the
encoder function. Then we only need to linearize the encoder
function, which can be expressed as

t(x) =
(
∂t(x)
∂x

∣∣∣∣∣x∗
)T

(x− x∗)+σ(WT
e x∗+ be)

= (We−Ke)T (x− x∗)+σ(WT
e x∗+ be). (13)

The  total  mapping  function  of  the  local  linear  model
becomes

x̂(x) =WT
d KeWT

e x−WT
d KeWT

e x∗+WT
d σ(WT

e x∗+ be)+ bd

= Kdex+Bde. (14)
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Fig. 3.     Error propagation path in BP algorithm.
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Fig. 4.     Description of a locally linear model.
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Kde BdeThe  parameters  and  in   (14)  can  be  calculated  by
the following equations:

Ke =


t1(x)

(
1− t1(x)

)
. . . 0

...
. . .

...

0 · · · td(x)
(
1− td(x)

)
 ∈ Rd×d

Kde =WT
d KeWT

e

Bde = −WT
d KeWT

e x∗+WT
d σ(WT

e x∗+ be)+ bd (15)
ti(x)

Ke

where  is the output of the ith node of hidden layer. The
calculation  method  of  shown  here  is  based  on  sigmoid
function. If other activation functions are used, we only need
to  change  diagonal  elements  to  corresponding  derivatives
value.

fiThen  the  value  of  can  be  obtained  by  minimizing  the
square predictive error.

fi = argmin
fi
∥Kde (x−ξi fi)+Bde− (x−ξi fi)∥2. (16)

J = ∥Kde (x−ξi fi)+Bde− (x−ξi fi)∥2Assuming  that ,  the
minimization  can  be  completed  by  taking  the  first  derivative
of J and equating it to zero.

∂J
∂ fi
= −[(Kde− I)ξi

]T [
Kde (x−ξi fi)+Bde− (x−ξi fi)

]
= 0.

(17)
It can be further changed to the following form:[
(I−Kde)ξi

]T Bde =
[
(I−Kde)ξi

]T [
(Kde− I)

(
x∗−ξi fi

)][
Kξi

]T Bde =
[
Kξi

]T [
K

(
x∗−ξi fi

)]
ξi

T KT Kξi fi =
[
Kξi

]T [
Kx∗−Bde

]
. (18)

fiThen the solution of  can be expressed as

fi =
[
ξi

T KT Kξi
]−1[

Kξi
]T [

Kx∗−Bde
]

(19)

K = I−Kde
fi

where .  Since  parameters  of  the  AE  are  always
full-rank,  can be calculated as

fi =
[
ξi

T KT Kξi
]−1 [
ξi

T KT K
] [

x∗−K−1Bde
]
. (20)

M = KT K

xi

The  next  step  is  to  build  a  contribution  index.  Follow  the
idea of building the contribution of the RBC, where a positive
semi-definite matrix M is formed to give the correct diagnosis
with the smearing effect. We can see from (20) that the matrix
M can be calculated by ,  because the matrix K can
be used to map the original data to the feature space, which is
similar  to  the  loading  matrix  in  the  PCA  model.  However,
differently  from  the  RBC,  the  matrix M in  LLBBC  changes
with the sample. Thus, the contribution of the LLBBC of the
variable  can be built as follows:

LLBBCi =
(
x∗

)T
[
KT Kξi

] [
ξi

T KT Kξi
]−1 [
ξi

T KT K
] (

x∗
)

=
(
x∗

)T [
Mξi

] [
ξi

T Mξi
]−1 [
ξi

T M
] (

x∗
)

=

[(
ξi

T M
)

x∗
]2

mii
(21)

M = KT Kwhere  is  symmetrical  and  positive  semi-definite.
Equation (21) shows that LLBBC is calculated by reconstruc-

tion  along  each  variable,  however,  like  RBC,  the  diagnostic
problem  that  LLBBC  can  deal  with  is  not  limited  to  single
variable  fault.  With  the  help  of  the  nonlinear  features,  the
faulty  variables  will  have  significantly  larger  LLBBC  values
than those irrelevant variables.

The steps of the LLBBC can be summarized as follows and
showed in Fig. 5:

1)  Use  the  normal  state  data  to  train  AE  offline  with
denoising criterion.

x∗

x∗

2) When the fault sample  has been obtained, calculate the
parameters  of  the  locally  linearized  AE  model  at  the  fault
sample  by (15).

xi3) Calculate the contribution index of variable  by (21).
4) Complete the diagnosis task by finding the variables with

large values of contributions.

C.  LLBBC in SAE
In  order  to  extract  deeper  features,  SAE  can  be  used  to

substitute  AE.  Then,  LLBBC  can  be  easily  constructed  in
SAE with a similar structure as AE, where only a few changes
are needed in the calculation of parameters.

Kde

Because  SAE  contains  several  encoders  and  decoders,  the
parameters of each AE should be calculated first, and then, the
parameter  can be obtained as shown in (22).

Ki
ei
=


ti
1 (x)

(
1− ti

1 (x)
)
. . . 0

...
. . .

...

0 · · · ti
di

(x)
(
1− ti

di
(x)

)
 ∈ Rdi×di

Ke =

nl∏
i=1

Ki
ei

WT
ei

Kd =

nl∏
i=1

WT
di

Kde = Kd Ke (22)
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Fig. 5.     Flowchart of LLBBC.
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di

ti
j(x)

nl Wei Wdi

where  is  the  number  of  hidden  layer  nodes  of  the ith  AE,
 denotes the output of jth hidden layer node in the ith AE,

 represents  the  number  of  AE,  and ,  denote  the
weights of the ith AE.

M = (I−Kde)T (I−Kde) (23)
KdeAfter  has  been  calculated, M can  be  calculated  as

shown in (23) and the index of the contribution can be given
by the same way as LLBBC.

D.  Fault Smearing in LLBBC
In this section, it is proved that the smearing effect will not

affect the diagnosis result in LLBBC. As shown in (21), after
using  the  local  linear  model,  the  calculation  of  the
contribution  index  is  the  same  as  RBC.  Thus,  the  same
procedure can be used in the proof here [12].

x∗
x∗ = ξ j f

Assume  that  the  fault  sample  is  exactly  in  the jth
direction,  that  is, .  Then  the  index  can  be  calculated
by the following equations:

LLBBCi =

[
ξi

T Mξ j f
]2

mii

=

m−1
ii

m2
i j

f 2, i , j

m j j f 2, i = j.
(24)

According  to  the  property  of  the  semi-definite  matrix,  we
have [

ξi ξ j
]T

M
[
ξi ξ j

]
=

(
mii mi j
mi j m j j

)
≥ 0 (25)

which implies

det
[

mii mi j
mi j m j j

]
= miim j j−mi jmi j ≥ 0

m j j ≥ m−1
ii m2

i j. (26)

LLBBC j ≥ LLBBCiIt  shows  that ,  which  guarantees  that
LLBBC can give the correct diagnosis.

E.  The Relationship Between LLBBC and RBC
If  LLBBC  is  used  in  the  linear  PCA  model,  then  the

parameters of LLBBC can be given as follows:

M = (I− P)T (I− P)
Bde=0 (27)

where P denotes the loading matrix of the PCA model.
f LLBBC
iThen,  put P into  (20),  and  the  value  of  can  be

obtained by

f LLBBC
i =

ξi
T
(
I− PT P

)
x∗

ξi
T (

I− PT P
)
ξi
. (28)

Finally, the contribution index of LLBBC can be described
by the following equations:

LLBBCi =

[
ξi

T
(
I− PT P

)
x
]2

mii
. (29)

fi
From the above two equations,  it  can be seen that  both the

value  of  and  the  index  are  the  same  as  those  of  RBC.

Hence,  it  can  be  concluded  that  LLBBC  equals  RBC  in  the
PCA model.

Fig. 6 shows  the  relationship  between  RBC,  BBC  and
LLBBC. The three methods are based on different models, but
have  similar  ideas.  PCA  and  AE  have  similar  model
structures, while locally linearized AE is built on the basis of
AE  by  performing  local  linearization  at  the  online  sample.
And LLBBC can adapt to nonlinearity better.

IV.  Case Study

k(x,y) = exp(−∥x− y∥2/c)

c = 10m

| f (k−2)− f (k)| < 0.0001 f (k)

In this section, the proposed fault diagnosis method LLBBC
is applied to a nonlinear numerical example and the simulated
Tennessee  Eastman  process,  and  the  performances  are
compared  with  RBC  (SPE  index),  BSPCA,  KPCA-RBC  and
BBC.  The  number  of  the  principle  components  in  the  PCA
model is determined by the cumulative variance of 90%.  The
Gaussian  kernel  is  used  in  the
KPCA  model  here  and  the  parameter c is  selected  by  the
empirical  formula ,  where m is  the  dimension  of  the
input  space  [4].  The  maximum  number  of  iteration  is  20  in
KPCA-RBC,  and  the  convergence  condition  is  set  to

 , where  denotes the value of the
contribution  in  KPCA-RBC  after  the kth  iteration.  All  the
simulations  are  performed  in  environment  of  Core  i7-6700
CPU.

A.  A Nonlinear Numerical Example
The data of the nonlinear numerical  example are generated

by (30).

x1
x2
x3
x4
x5
x6


=



−0.2 −0.08 −0.3
−0.3 0.7 −0.2
−0.2 −0.3 −0.5
−0.4 −0.3 −0.4
−0.6 0.3 0.2
−0.5 −0.4 0.6




sin(t2

1)

t3
2

exp(t3)

+ε (30)

t1 t2 t3
ε

where , ,  are the latent variables subject to the zero-mean
Gaussian  distribution  with  variance  0.6,  and  denotes  the
noises, which follow the zero-mean Gaussian distribution with
variance 0.02.

xfault = x∗+ξi f x∗
ξi

The faults  are  set  by the  form ,  where  is
the  normal  state  data  generated  by  (30),  is  the  fault
direction, which is out of the six possible variable directions.

N(0,0.09)

The  training  dataset  includes  1000  normal  state  samples.
The  number  of  the  hidden  nodes  in  AE  is  3,  and  the  whole
model  is  trained  with  the  denoising  criterion.  The  noise
chosen  to  corrupt  the  original  normal  state  data  follows

.  The  testing  dataset  includes  1000  samples  and  6
types of faults are set in the latter 600 samples. The details of
the 6 fault modes are listed in Table I.

Fig. 7 illustrates the detailed fault diagnosis results given by
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Fig. 6.     Relationship diagram between the three method.
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RBC,  BSPCA,  KPCA-RBC,  BBC  and  LLBBC.  The  blue
points in the Fig. 7 indicate the variable that owns the biggest
contribution  from  sample  401  to  sample  1000,  i.e.,  the
diagnosis  result.  And Table II shows  the  average  fault
diagnosis accuracy of different methods after testing 10 times.

According  to  the Fig. 7 and Table II,  we  can  see  that  both
BBC and LLBBC have better performance than other methods
in the most faults, especially in the faults 1, 2, 3 and 6. Since
BBC and LLBBC can utilize the nonlinear features extracted
by AE, the diagnostic performance was improved enormously.
Moreover,  on  the  basis  of  BBC,  LLBBC  improves  the
construction  of  the  contribution  index  to  have  better
suppression of the smearing effect. Thus, from those results, it
can be seen that LLBBC has higher accuracy than BBC in all
faults,  especially  in  fault  5,  where  BBC  has  the  worst
performance among all the methods, but LLBBC still has the
highest accuracy.

B.  Tennessee Eastman Process
The Tennessee  Eastman (TE)  process  is  a  chemical  testing

experimental  platform  that  developed  from  a  realistic
chemical  joint  reaction  process.  It  has  been  widely  used  for
the evaluation and comparison of the performance of various
process  monitoring  methods  in  recent  years  [32].  The  TE
benchmark  process  contains  five  major  operating  units:
reactor,  condenser,  compressor,  separator,  and  stripper.  The
schematic diagram of the TE process is illustrated in Fig. 8.

Among  all  the  52  process  variables,  33  measurement
variables are selected for fault diagnosis in the TE process and
the  descriptions  are  illustrated  in Table III.  Besides,  5  faults
are chosen and listed in Table IV for the comparison of fault
diagnosis  performance.  The  training  dataset  includes  500
samples  that  are  acquired  from  the  normal  operating
condition,  and  five  testing  datasets  are  set  with  100  fault
samples in each fault mode.

N(0,0.09)

The  performances  of  RBC,  BSPCA,  KPCA-RBC,  BBC,
LLBBC and LLBBC in SAE are compared in this subsection.
AE  is  also  trained  with  denoising  criterion,  the  noise  for
corruption  follows ,  and  the  number  of  the  hidden
layer  nodes  in  AE  is  28.  The  structure  of  SAE  in  this
simulation  is  33-60-28-60-33,  which  means  that  the  input
layer  has  33  nodes,  the  first  hidden  layer  has  60  nodes,  the
number of the second hidden layer nodes is 28.

Figs. 9–13 illustrate  the  detailed  fault  diagnosis  results  for
the  five  faults  and  the  length  of  each  bar  represents  the
contribution  of  each  variable  in  different  methods.  And  the
contributions shown in these figures are the averaged result in
the corresponding testing dataset. Table V collects the average
time  required  for  KPCA-RBC  and  LLBBC  to  diagnose  one
sample after testing 10 times. Note that the diagnosis time of
LLBBC  listed  in  the Table V is  the  sum  of  the  time  for
establishing the local linear model and the time for computing
the contribution.
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Fig. 7.     Fault diagnosis results for the numerical example (a) RBC; (b) BSPCA; (c) KPCA_RBC; (d) BBC; (e) LLBBC.
 

 

TABLE I  
Fault Descriptions in the Numerical Example

Fault Variable Sample Type Magnitude

1 x1 401–500 Random noise N(0,1)

2 x2 501–600 Step 0.5

3 x3 601–700 Random noise N(0,1.2)

4 x4 701–800 Step 0.8

5 x5 801–900 Random noise N(0,1.5)

6 x6 901–1000 Step 1
 

 

TABLE II  
Average Fault Diagnosis Accuracy of Different

Methods (%)

Fault RBC BSPCA KPCA-RBC BBC LLBBC

1 88.3 94.1 94.2 94.6 97

2 25.7 25.3 50 76.7 85.3

3 84.9 84.4 92.5 94.7 96.2

4 94.5 99.6 98.1 99.9 99.9

5 92.7 91.1 93.4 90.1 94.5

6 80.5 80.9 87.3 91.3 98.2
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Figs. 9 and 10 illustrate  the diagnosis  results  of  fault  1  and
fault  4.  According  to  the  fault  description  listed  in Table IV,
the  most  relevant  variables  to  fault  1  are  variable  1  and
variable  25,  and  the  most  relevant  variable  to  fault  4  is
variable  32.  It  can  be  seen  from the Fig. 9 that  the  nonlinear

methods,  KPCA-RBC,  BBC,  LLBBC,  and  LLBBC  in  SAE
can  all  give  the  correct  diagnosis,  while  the  results  given  by
RBC and BSPCA are not  correct.  This  is  because RBC, as  a
linear diagnosis method, cannot handle the nonlinear problem,
and  BSPCA  has  limited  ability  to  extract  nonlinear  features.
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Fig. 8.     Schematic diagram of the TE process.
 

 

TABLE III  
Description of the Variables in TE Process

No. Measured variable No. Measured variable No. Measured variable

1 feed A 12 product separator level 23 feed D  flow valve

2 feed D 13 product separator pressure 24 feed E  flow valve

3 feed E 14 product separator underflow 25 feed A  flow valve

4 total feed 15 stripper level 26 total feed flow valve

5 recycle flow 16 stripper pressure 27 compressor recycle valve

6 reactor feed rate 17 stripper underflow 28 purge valve

7 reactor pressure 18 stripper temperature 29 separator pot liquid flow valve

8 reactor level 19 stripper steam flow 30 stripper liquidproduct flow valve

9 reactor temperature 20 compressor work 31 stripper steam valve

10 purge rate 21 reactor cooling water outlet temperature 32 reactor cooling water flow

11 product separator temperature 22 separator cooling water outlet temperature 33 Condenser cooling water flow
 

 

TABLE IV  
Fault Descriptions in the TE Process

Fault Description Type

1 feed A/C ratio, B composition constant
(stream 4) step

4 reactor cooling water inlet temperature step

5 condenser cooling water inlet temperature
(stream 2) step

10 feed C temperature (stream 4) random
variation

14 reactor cooling water valve sticking
 

 

TABLE V  
Diagnostic Time for KPCA-RBC and LLBBC (s)

Fault
Methods

KPCA_RBC LLBBC

Fault 1 1.18814 0.00034

Fault 4 1.97411 0.00051

Fault 5 2.35078 0.00090

Fault 10 2.40957 0.00150

Fault 14 1.18813 0.00043
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Fig. 10 shows that the results given by RBC and BSPCA are
confusing  for  the  contributions  of  the  variable  9  have  large
magnitudes.  LLBBC  can  utilize  the  nonlinear  features
extracted by AE and have better  suppression of the smearing
effect.  Therefore,  LLBBC  can  make  the  contributions  of  the
irrelevant variables lower than other methods.

Fig. 11 shows the diagnosis results of fault 5. And the most

relevant  variable  of  the fault  5  is  variable  33.  And according
to Fig. 11,  we  can  find  that  RBC  and  BSPCA  give  a  high
contribution to the variable 17, which is irrelevant to the fault
5.  Comparison  among Figs. 11 (c)–(f) shows  that  LLBBC
outperforms BBC for  the  variable  17  in  LLBBC has  a  lower
contribution,  and  we  can  see  from Fig. 11 (f) that  when
LLBBC  is  used  in  SAE  model,  the  contribution  of  the  key
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Fig. 10.     Fault diagnosis of fault 4 (a) RBC; (b) BSPCA; (c) KPCA_RBC; (d) BBC; (e) LLBBC; (f) LLBBC in SAE.
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variable  is  more  obvious,  which  means  the  deeper  features
extracted by SAE help to provide a more convincing diagnosis
result.

As for feed C temperature fault (fault 10), the most relevant
variable  is  variable  18,  because  material C is  sent  directly  to
the stripper, the temperature of material C can be reflected in
the temperature of the stripper. As shown in Fig. 12, all the 6

methods can give the correct diagnosis. And Fig. 13 illustrates
the  diagnosis  result  of  the  fault  14,  and  the  key  variables  of
fault  14  are  variable  9,  variable  21,  and  variable  32.  And
according to the results shown in Fig. 13, we can see that RBC
and  BSPCA  can  only  identify  the  variable  21.  All  the  other
four  nonlinear  methods  can  give  the  correct  diagnosis.
However, it should be emphasized that LLBBC in contrast to
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Fig. 11.     Fault diagnosis of fault 5 (a) RBC; (b) BSPCA; (c) KPCA_RBC; (d) BBC; (e) LLBBC; (f) LLBBC in SAE.
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Fig. 12.     Fault diagnosis of fault 10 (a) RBC; (b) BSPCA; (c) KPCA_RBC; (d) BBC; (e) LLBBC; (f) LLBBC in SAE.
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BBC  can  perform  better,  for  all  the  irrelevant  variables  in
LLBBC have very low contribution.

The  results  illustrated  in Figs.9–13 show  that  the
performance of the KPCA-RBC is as good as that of LLBBC,
however,  after  comparing  the  diagnostic  times  listed  in  the
Table V, we can see that the time required for KPCA-RBC to
diagnose  one  sample  is  about  2500  times  as  long  as  that  of
LLBBC.  When  RBC  is  performed  in  KPCA  model,  it  needs
an  iterative  process  to  get  the  final  contribution,  and  in  each
iteration, a kernel vector needs to be calculated, so it will take
a  long  time  to  get  the  final  diagnosis  results,  while  LLBBC
can  get  diagnosis  result  immediately,  once  the  sample  is
obtained.  Thus,  LLBBC  is  more  suitable  for  the  online  fault
diagnosis than KPCA-RBC.

In  summary,  it  can  be  seen  from the  above  fault  diagnosis
results that with the help of the nonlinear features extracted by
AE,  both  BBC  and  LLBBC  have  stronger  fault  diagnosis
capabilities  than  RBC  and  BSPCA.  Besides,  compared  to
BBC,  LLBBC  can  give  a  more  accurate  diagnosis  result,
giving  those  irrelevant  variables  a  lower  contribution.  Also,
the  suppression  of  the  smearing  effect  can  be  seen  in  the
results  of  LLBBC.  Moreover,  compared  to  KPCA-RBC,
LLBBC  has  much  faster  diagnostic  speed.  Since  few  deeper
features  exist  in  the  simulation  case,  the  improvement  given
by  SAE  is  not  so  obvious.  However,  after  comparing  the
performance of LLBBC in AE and LLBBC in SAE, it can be
seen that the performance of LLBBC in SAE is slightly better
in  some  of  the  diagnosis  results,  for  the  contributions  of  the
key variables are more obvious among the whole variables.

V.  Conclusion

In this paper, a novel locally linear back-propagation based

contribution is proposed for industrial process fault diagnosis.
The  basic  idea  behind  this  method  is  similar  to  that  of  the
traditional RBC method. However, compared to the traditional
RBC method, the LLBBC method is based on the AE model,
which  can  use  the  nonlinear  features  extracted  by  the  AE
model  to  improve  the  fault  diagnosis  accuracy.  Besides,
instead of using the trained AE model directly, LLBBC uses a
locally linear model at the current fault sample to calculate the
contribution, which can always give the correct diagnosis with
the  smearing  effect  because  of  the  special  structure  of  the
contribution.  Furthermore,  LLBBC  can  be  easily  used  in  the
SAE model, which is able to extract more complex nonlinear
features.  The  results  of  two  case  studies,  including  one
nonlinear numerical process and the TE process show that the
LLBBC owns a better diagnosis performance.

The  local  linearization  skill  used  in  LLBBC  can  also  be
considered  as  a  solution  to  connect  the  RBC  and  nonlinear
model,  which  can  help  RBC  to  be  more  suitable  for  the
nonlinear fault diagnosis task and suppress the smearing effect
at the same time.

References
 S.  J.  Qin, “Survey  on  data-driven  industrial  process  monitoring  and
diagnosis,” Annual Reviews in Control,  vol. 36,  no. 2,  pp. 220–234,
2012.

[1]

 Z.  Q.  Ge,  Z.  H.  Song,  and  F.  R.  Gao, “Review  of  recent  research  on
data-based  process  monitoring,” Industrial & Engineering  Chemistry
Research, vol. 52, no. 10, pp. 3543–3562, 2013.

[2]

 Z.  Q.  Ge,  Z.  H.  Song,  S.  X.  Ding  and  H.  Biao, “Data  mining  and
analytics  in  the  process  industry:  the  role  of  machine  learning,” IEEE
Access, vol. 5, pp. 20590–20616, 2017.

[3]

 J.-M.  Lee,  C.  Yoo,  S.  W.  Choi,  P.  A.  Vanrolleghem,  and  I.-B.  Lee,
“Nonlinear  process  monitoring  using  kernel  principal  component
analysis,” Chemical Engineering Science,  vol. 59,  no. 1,  pp. 223–234,

[4]

 

Variables
0

100
80
60
40
20
0

C
on

tri
bu

tio
n

150

100

50

0

C
on

tri
bu

tio
n

200

150

100

50

0

200

150

100

50

0

C
on

tri
bu

tio
n

C
on

tri
bu

tio
n

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34
Variables

0

100
80
60
40
20
0

C
on

tri
bu

tio
n

100
80
60
40
20
0

C
on

tri
bu

tio
n

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34

Variables
0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34

Variables
0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34

Variables
0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34

Variables
0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34

(a) (b)

(c) (d)

(e) (f) 
Fig. 13.     Fault diagnosis of fault 14 (a) RBC; (b) BSPCA; (c) KPCA_RBC; (d) BBC; (e) LLBBC; (f) LLBBC in SAE.
 

 774 IEEE/CAA JOURNAL OF AUTOMATICA SINICA, VOL. 7, NO. 3, MAY 2020

http://dx.doi.org/10.1016/j.arcontrol.2012.09.004
http://dx.doi.org/10.1109/ACCESS.2017.2756872
http://dx.doi.org/10.1109/ACCESS.2017.2756872
http://dx.doi.org/10.1016/j.ces.2003.09.012
http://dx.doi.org/10.1016/j.arcontrol.2012.09.004
http://dx.doi.org/10.1109/ACCESS.2017.2756872
http://dx.doi.org/10.1109/ACCESS.2017.2756872
http://dx.doi.org/10.1016/j.ces.2003.09.012


2004.
 Z.  Q.  Ge  and  Z.  H.  Song, “Bagging  support  vector  data  description
model for batch process monitoring,” J. Process Control,  vol. 23, no. 8,
pp. 1090–1096, 2013.

[5]

 M. A.  Kramer, “Nonlinear  principal  component  analysis  using  autoas-
sociative  neural  networks,” AIChE Journal,  vol. 37,  no. 2,  pp. 233–243,
1991.

[6]

 D. Dong and T.  J.  McAvoy, “Nonlinear  principal  component  analysis-
based on principal curves and neural networks,” Computer & Chemical
Engineering, vol. 20, no. 1, pp. 65–78, 1996.

[7]

 K.  Wang,  J.  H.  Chen,  and  Z.  H.  Song, “Fault  diagnosis  for  processes
with  feedback  control  loops  by  shifted  output  sampling  approach,” J.
Franklin Institute, vol. 355, no. 7, pp. 3249–3273, 2018.

[8]

 J.  A.  Westerhuis,  S.  P.  Gurden,  and  A.  K.  Smilde, “Generalized
contribution  plots  in  multivariate  statistical  process  monitoring,”
Chemometrics and Intelligent Laboratory Systems, vol. 51, no. 1, pp. 95–
114, 2000.

[9]

 R.  M.  Tan  and  Y.  Cao, “Multi-layer  contribution  propagation  analysis
for  fault  diagnosis,” Int. J. Autom. and Computing,  vol. 16,  no. 1,
pp. 40–51, 2019.

[10]

 R.  M.  Tan  and  Y.  Cao, “Deviation  contribution  plots  of  multivariate
statistics,” IEEE  Trans.  Industrial  Informatics,  vol. 15,  no. 2,
pp. 833–841, 2018.

[11]

 C.  F.  Alcala  and  S.  J.  Qin, “Reconstruction-based  contribution  for
process monitoring,” Automatica, vol. 45, no. 7, pp. 1593–1600, 2009.

[12]

 C.  F.  Alcala  and  S.  J.  Qin, “Reconstruction-based  contribution  for
process  monitoring  with  kernel  principal  component  analysis,”
Industrial & Engineering  Chemistry  Research,  vol. 49,  no. 17,
pp. 7849–7857, 2010.

[13]

 Z. Q. Ge, M. G. Zhang, and Z. H. Song, “Nonlinear process monitoring
based  on  linear  subspace  and  bayesian  inference,” J. Process Control,
vol. 20, no. 5, pp. 676–688, 2010.

[14]

 Z.  B.  Yan  and  Y.  Yao, “Variable  selection  method  for  fault  isolation
using  least  absolute  shrinkage  and  selection  operator  (LASSO),”
Chemometrics and Intelligent Laboratory Systems,  vol. 146,  pp. 136–
146, 2015.

[15]

 Z. B.  Yan,  T.-H  Kuang,  and  Y.  Yao, “Multivariate  fault  isolation  of
batch  processes  via  variable  selection  in  partial  least  squares
discriminant analysis,” ISA Trans., vol. 70, pp. 389–399, 2017.

[16]

 J.  X.  Yu,  K.  Wang,  L.  J.  Ye,  and  Z.  H.  Song, “Accelerated  kernel
canonical correlation analysis with fault relevance for nonlinear process
fault  isolation,” Industrial & Engineering Chemistry  Research,  vol. 58,
no. 39, pp. 18280–18291, 2019.

[17]

 Y.  Bengio,  A.  Courville,  and  P.  Vincent, “Representation  learning:  A
review  and  new  perspectives,” IEEE Trans. Pattern Analysis and
Machine Intelligence, vol. 35, no. 8, pp. 1798–1828, 2013.

[18]

 G. E. Hinton and R. R. Salakhutdinov, “Reducing the dimensionality of
data  with  neural  networks,” Science,  vol. 313,  no. 5786,  pp. 504–507,
2006.

[19]

 X. F. Yuan, B. Huang, Y. L. Wang, C. H. Yang, and W. H. Gui, “Deep
learning-based feature representation and its application for soft sensor
modeling  with  variable-wise  weighted  SAE,” IEEE Trans. Industrial
Information, vol. 14, no. 7, pp. 3235–3243, 2018.

[20]

 X.  F.  Yuan,  C.  Ou,  Y.  L.  Wang,  C.  H.  Yang,  and  W.  H.  Gui, “Deep
quality-related  feature  extraction  for  soft  sensing  modeling:  a  deep
learning approach with hybrid VM-SAE,” Neurocomputing, Apr. 2019.
DOI: 10.1016/j.neucom.2018.11.107.

[21]

 X.  F.  Yuan,  L.  Li,  and  Y.  L.  Wang, “Nonlinear  dynamic  soft  sensor
modeling  with  supervised  long  short-term  memory  network,” IEEE
Trans.  Industrial  Information,  Feb.  2019.  DOI: 10.1109/TII.2019.
2902129.

[22]

 W. W.  Yan,  P.  J.  Guo,  L.  Gong,  and  Z.  K.  Li, “Nonlinear  and  robust
statistical  process  monitoring  based  on  variant  autoencoders,”
Chemometrics and Intelligent Laboratory Systems,  vol. 158,  pp. 31–40,
2016.

[23]

 L. Jiang, Z. H. Song, Z. Q. Ge, and J. H. Chen, “Robust self-supervised
model and its application for fault detection,” Industrial & Engineering
Chemistry Research, vol. 56, no. 26, pp. 7503–7515, 2017.

[24]

 H.  T.  Zhao, “Neural  component  analysis  for  fault  detection,” Chemo-
metrics and Intelligent Laboratory Systems, vol. 176, pp. 11–21, 2018.

[25]

 H. D. Shao, H. K. Jiang, K. Zhao, D. D. Wei,  and X. Q. Li, “A novel
tracking  deep  wavelet  auto-encoder  method  for  intelligent  fault
diagnosis  of  electric  locomotive  bearings,” Mechanical Systems and
Signal Processing, vol. 110, pp. 193–209, 2018.

[26]

 P.  Tamilselvan  and  P.  F.  Wang, “Failure  diagnosis  using  deep  belief
learning  based  health  state  classification,” Reliability  Engineering &
System Safety, vol. 115, pp. 124–135, 2013.

[27]

 Y.  L.  Wang,  Z.  F.  Pan,  X.  F.  Yuan,  C.  H.  Yang,  and  W.  H.  Gui, “A
novel deep learning based fault diagnosis approach for chemical process
with extended deep belief network,” ISA Trans., 2019. DOI: 10.1016/j.
isatra.2019.07.001.

[28]

 G.  Alain  and  Y.  Bengio, “What  regularized  auto-encoders  learn  from
the  data-generating  distribution,” The  J.  Machine  Learning  Research,
vol. 15, no. 1, pp. 3563–3593, 2014.

[29]

 P.  Vincent,  H.  Larochelle,  I.  Lajoie,  Y.  Bengio,  and  P.-A.  Manzagol,
“Stacked  denoising  autoencoders:  learning  useful  representations  in  a
deep  network  with  a  local  denoising  criterion,” J.  Machine  Learning
Research, vol. 11, no. 12, pp. 3371–3408, Dec. 2010.

[30]

 L. Jiang, Z. Q. Ge, and Z. H. Song, “Semi-supervised fault classification
based on dynamic sparse stacked auto-encoders model,” Chemometrics
and Intelligent Laboratory Systems, vol. 168, pp. 72–83, 2017.

[31]

 P.  R.  Lyman  and  C.  Georgakis, “Plant-wide  control  of  the  tennessee
eastman  problem,” Computer & Chemical  Engineering,  vol. 19,  no. 3,
pp. 321–331, 1995.

[32]

Jinchuan Qian received the  B.Eng.  degree  in  auto-
mation  from  Hefei  University  of  Technology,  in
2017. He is currently working towards the Ph.D. de-
gree at the College of Control Science and Engineer-
ing, Zhejiang  University. His  research  interests  in-
clude  deep  learning,  process  monitoring,  and  fault
diagnosis.

Li Jiang received the B.Eng. and Ph.D. degrees from
the  College  of  Control  Science  and  Engineering,
Zhejiang University, in 2011 and 2018, respectively.
He currently works for Huawei Technology Co., Ltd.
His research interests include deep learning, fault de-
tection, and fault diagnosis.

Zhihuan  Song received the  B.Eng.  and  M.Eng.  de-
grees in industrial automation from Hefei University
of  Technology, in  1983  and  1986,  respectively,  and
the Ph.D. degree in industrial automation from Zheji-
ang  University,  in  1997.  Since  1997,  he  has  been
with the College of Control Science and Engineering,
Zhejiang University, where he was at first a Postdoc-
toral  Research  Fellow,  then  an  Associate  Professor,
and currently  a  Professor.  His  research  interests  in-
clude modeling and fault diagnosis of industrial pro-

cesses, embedded  control  systems,  and  advanced  process  control  technolo-
gies. He has published more than 200 papers in journals and conference pro-
ceedings.

QIAN et al.: LLBBC FOR NONLINEAR PROCESS FAULT DIAGNOSIS 775 

http://dx.doi.org/10.1016/j.jprocont.2013.06.010
http://dx.doi.org/10.1002/aic.690370209
http://dx.doi.org/10.1016/j.jfranklin.2018.02.027
http://dx.doi.org/10.1016/j.jfranklin.2018.02.027
http://dx.doi.org/10.1016/S0169-7439(00)00062-9
http://dx.doi.org/10.1007/s11633-018-1142-y
http://dx.doi.org/10.1016/j.automatica.2009.02.027
http://dx.doi.org/10.1016/j.jprocont.2010.03.003
http://dx.doi.org/10.1016/j.chemolab.2015.05.019
http://dx.doi.org/10.1016/j.isatra.2017.06.014
http://dx.doi.org/10.1109/TPAMI.2013.50
http://dx.doi.org/10.1109/TPAMI.2013.50
http://dx.doi.org/10.1126/science.1127647
http://dx.doi.org/10.1109/TII.2018.2809730
http://dx.doi.org/10.1109/TII.2018.2809730
http://dx.doi.org/10.1016/j.neucom.2018.11.107
http://dx.doi.org/10.1109/TII.2019.2902129
http://dx.doi.org/10.1109/TII.2019.2902129
http://dx.doi.org/10.1016/j.chemolab.2016.08.007
http://dx.doi.org/10.1016/j.chemolab.2018.02.001
http://dx.doi.org/10.1016/j.chemolab.2018.02.001
http://dx.doi.org/10.1016/j.ymssp.2018.03.011
http://dx.doi.org/10.1016/j.ymssp.2018.03.011
http://dx.doi.org/10.1016/j.isatra.2019.07.001
http://dx.doi.org/10.1016/j.isatra.2019.07.001
http://dx.doi.org/10.1016/j.chemolab.2017.06.010
http://dx.doi.org/10.1016/j.chemolab.2017.06.010
http://dx.doi.org/10.1016/j.jprocont.2013.06.010
http://dx.doi.org/10.1002/aic.690370209
http://dx.doi.org/10.1016/j.jfranklin.2018.02.027
http://dx.doi.org/10.1016/j.jfranklin.2018.02.027
http://dx.doi.org/10.1016/S0169-7439(00)00062-9
http://dx.doi.org/10.1007/s11633-018-1142-y
http://dx.doi.org/10.1016/j.automatica.2009.02.027
http://dx.doi.org/10.1016/j.jprocont.2010.03.003
http://dx.doi.org/10.1016/j.chemolab.2015.05.019
http://dx.doi.org/10.1016/j.isatra.2017.06.014
http://dx.doi.org/10.1109/TPAMI.2013.50
http://dx.doi.org/10.1109/TPAMI.2013.50
http://dx.doi.org/10.1126/science.1127647
http://dx.doi.org/10.1109/TII.2018.2809730
http://dx.doi.org/10.1109/TII.2018.2809730
http://dx.doi.org/10.1016/j.neucom.2018.11.107
http://dx.doi.org/10.1109/TII.2019.2902129
http://dx.doi.org/10.1109/TII.2019.2902129
http://dx.doi.org/10.1016/j.chemolab.2016.08.007
http://dx.doi.org/10.1016/j.chemolab.2018.02.001
http://dx.doi.org/10.1016/j.chemolab.2018.02.001
http://dx.doi.org/10.1016/j.ymssp.2018.03.011
http://dx.doi.org/10.1016/j.ymssp.2018.03.011
http://dx.doi.org/10.1016/j.isatra.2019.07.001
http://dx.doi.org/10.1016/j.isatra.2019.07.001
http://dx.doi.org/10.1016/j.chemolab.2017.06.010
http://dx.doi.org/10.1016/j.chemolab.2017.06.010
http://dx.doi.org/10.1016/j.jprocont.2013.06.010
http://dx.doi.org/10.1002/aic.690370209
http://dx.doi.org/10.1016/j.jfranklin.2018.02.027
http://dx.doi.org/10.1016/j.jfranklin.2018.02.027
http://dx.doi.org/10.1016/S0169-7439(00)00062-9
http://dx.doi.org/10.1007/s11633-018-1142-y
http://dx.doi.org/10.1016/j.automatica.2009.02.027
http://dx.doi.org/10.1016/j.jprocont.2010.03.003
http://dx.doi.org/10.1016/j.chemolab.2015.05.019
http://dx.doi.org/10.1016/j.isatra.2017.06.014
http://dx.doi.org/10.1109/TPAMI.2013.50
http://dx.doi.org/10.1109/TPAMI.2013.50
http://dx.doi.org/10.1126/science.1127647
http://dx.doi.org/10.1109/TII.2018.2809730
http://dx.doi.org/10.1109/TII.2018.2809730
http://dx.doi.org/10.1016/j.neucom.2018.11.107
http://dx.doi.org/10.1109/TII.2019.2902129
http://dx.doi.org/10.1109/TII.2019.2902129
http://dx.doi.org/10.1016/j.chemolab.2016.08.007
http://dx.doi.org/10.1016/j.jprocont.2013.06.010
http://dx.doi.org/10.1002/aic.690370209
http://dx.doi.org/10.1016/j.jfranklin.2018.02.027
http://dx.doi.org/10.1016/j.jfranklin.2018.02.027
http://dx.doi.org/10.1016/S0169-7439(00)00062-9
http://dx.doi.org/10.1007/s11633-018-1142-y
http://dx.doi.org/10.1016/j.automatica.2009.02.027
http://dx.doi.org/10.1016/j.jprocont.2010.03.003
http://dx.doi.org/10.1016/j.chemolab.2015.05.019
http://dx.doi.org/10.1016/j.isatra.2017.06.014
http://dx.doi.org/10.1109/TPAMI.2013.50
http://dx.doi.org/10.1109/TPAMI.2013.50
http://dx.doi.org/10.1126/science.1127647
http://dx.doi.org/10.1109/TII.2018.2809730
http://dx.doi.org/10.1109/TII.2018.2809730
http://dx.doi.org/10.1016/j.neucom.2018.11.107
http://dx.doi.org/10.1109/TII.2019.2902129
http://dx.doi.org/10.1109/TII.2019.2902129
http://dx.doi.org/10.1016/j.chemolab.2016.08.007
http://dx.doi.org/10.1016/j.chemolab.2018.02.001
http://dx.doi.org/10.1016/j.chemolab.2018.02.001
http://dx.doi.org/10.1016/j.ymssp.2018.03.011
http://dx.doi.org/10.1016/j.ymssp.2018.03.011
http://dx.doi.org/10.1016/j.isatra.2019.07.001
http://dx.doi.org/10.1016/j.isatra.2019.07.001
http://dx.doi.org/10.1016/j.chemolab.2017.06.010
http://dx.doi.org/10.1016/j.chemolab.2017.06.010
http://dx.doi.org/10.1016/j.chemolab.2018.02.001
http://dx.doi.org/10.1016/j.chemolab.2018.02.001
http://dx.doi.org/10.1016/j.ymssp.2018.03.011
http://dx.doi.org/10.1016/j.ymssp.2018.03.011
http://dx.doi.org/10.1016/j.isatra.2019.07.001
http://dx.doi.org/10.1016/j.isatra.2019.07.001
http://dx.doi.org/10.1016/j.chemolab.2017.06.010
http://dx.doi.org/10.1016/j.chemolab.2017.06.010

