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   Abstract—By virtue of alternating direction method of multipli-
ers (ADMM),  Newton-Raphson  method,  ratio  consensus  ap-
proach  and  running  sum  method,  two  distributed  iterative
strategies are presented in this paper to address the economic dis-
patch  problem  (EDP)  in  power  systems.  Different  from  most  of
the  existing  distributed  ED approaches  which  neglect  the  effects
of packet drops or/and time delays, this paper takes into account
both  packet  drops  and  time  delays  which  frequently  occur  in
communication networks.  Moreover,  directed  and  possibly  un-
balanced  graphs  are  considered  in  our  algorithms,  over  which
many  distributed  approaches  fail  to  converge.  Furthermore,  the
proposed schemes can address the EDP with local  constraints of
generators  and  nonquadratic  convex  cost  functions,  not  just
quadratic  ones  required  in  some  existing  ED  approaches.  Both
theoretical  analyses  and  simulation  studies  are  provided  to
demonstrate the effectiveness of the proposed schemes.
    Index Terms—Alternating  direction  method  of  multipliers
(ADMM),  average  consensus,  directed  graph  (digraph),  distributed
algorithm, economic dispatch, packet drops, time delays.
 

I.  Introduction

A S a  key  concern  in  power  systems,  the  economic  dis-
patch problem (EDP) has attracted considerable research

interests during the past few decades, which is to achieve op-
timal power allocation with minimal cost while satisfying both
supply-demand  balance  constraint  and  local  constraints  of
generators. Since the EDP is essentially an optimization prob-
lem,  many  conventional  centralized  optimization  schemes,
such  as  lambda  iteration  method  [1],  [2],  genetic  algorithm
[3],  and  particle  swarm  optimization  [4],  [5], have  been  ap-
plied to solve it.  However, these centralized approaches need
a  single  control  center  to  access  the  system-wide  aggregated
information, and  thus  they  may  be  subject  to  some  perform-
ance limitations,  such as intolerance of a single-point  failure,
requirement of high-level of connectivity, and lack of privacy

protection. Therefore,  it  is  more  desirable  to  design  distrib-
uted algorithms to overcome these limitations.

Recently, many distributed approaches have been developed
to address the EDP in power grids. Especially, a large number
of  consensus-based  approaches  (see  [6]–[13]  and  references
therein)  have  been  proposed  for  solving  the  EDP  in  a
distributed way. In [6], [7], distributed optimal power dispatch
schemes are put forward without considering local constraints
of generators. Based on incremental cost consensus, the work
in [8] presents a distributed algorithm for the EDP with local
constraints of generators. In [9], a distributed continuous-time
approach  is  presented  to  address  the  EDP,  which  can  obtain
the optimal power generation in finite time. The work in [10]
further  studies  the  EDP  with  both  transmission  loss  and
communication  failure.  The  work  in  [11]  presents  a
consensus-based  continuous-time  approach  to  address  the
EDP, where the communication delays are taken into account.
However,  it  is  worth  noting  that  the  results  in  [6]–[11]  only
consider the EDP over undirected graphs rather than directed
ones. Actually, directed graphs are more general and practical
in network systems because of packet loss, equipment failure
and  asymmetric  bandwidth  restriction.  There  also  exist  some
consensus-based results (see, e.g., [12], [13]) which are able to
solve  the  EDP  over  directed  graphs.  However,  all  these
approaches  in  [6]–[13]  require  local  cost  functions  to  be
quadratic, which may fail to solve the EDP with nonquadratic
cost  functions.  In  recent  years,  some  distributed  approaches
(see,  e.g.,  [14]–[20])  have  been  presented  to  solve  the  EDP
with general convex cost functions. The work in [19] proposes
a distributed iterative scheme with packet drops and the work
in  [20]  takes  into  account  communication  delays.  However,
there are few reports on EDP taking into account both packet
drops  and  communication  delays,  even  though  they  always
occur  simultaneously  in  network  systems.  Recently,  some
ADMM-based  distributed  approaches  (see,  e.g.,  [21],  [22])
have  also  been  proposed  to  address  the  EDP in  power  grids.
However, so far, the ADMM-based distributed algorithms for
solving  the  EDP  with  both  packet  drops  and  communication
delays have not been well investigated.

Motivated by the above observation and with the aid of the
ADMM  [23],  [24],  Newton-Raphson  method,  the  ratio
consensus  algorithm [25]  and  running  sum method  [26],  this
paper  presents  two distributed  iterative  algorithms to  address
the EDP over directed graphs without/with both packet drops
and  communication  delays.  In  comparison  with  existing
results  on  the  EDP,  the  main  features  of  this  study  are
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concluded as follows:
1)  Although  there  exist  some  ADMM-based  distributed

approaches  (see,  e.g.,  [21],  [22])  for  the  EDP,  to  the  best  of
our  knowledge,  this  paper  for  the  first  time  presents  an
ADMM-based  distributed  algorithm  to  solve  the  EDP  with
both  packet  drops  and  communication  delays  which  are
ignored in [6]–[22].

2)  Different  from  most  of  the  existing  studies  (see,  e.g.,
[6]–[11])  on  the  EDP  which  require  the  communication
graphs  to  be  undirected,  the  proposed  schemes  can  solve  the
EDP  on  general  digraphs.  Since  general  digraphs  are
considered,  the  symmetry  property  of  graphs  required  in
[6]–[11]  is  no  longer  necessary,  but  our  algorithms  still
converge to the optimal solution.

3) Unlike the works in [6]–[13] requiring the cost functions
to be quadratic,  general convex cost functions are considered
in this paper. In addition, different from the works in [6], [7]
and  [16]  only  considering  the  coupled  equality  constraint,
both  the  coupled  equality  constraint  and  local  constraints  of
generators are taken into account in this paper.

This  paper  is  organized as  follows.  Some preliminaries  are
given  in  Section  II  and  the  ED  problem  is  formulated  in
Section III. In Section IV, two distributed iterative algorithms
for  the  EDP  over  digraphs  are  presented  and  analyzed.
Simulation studies are given in Section V. Finally, concluding
remarks are drawn in Section VI. 

II.  Preliminaries
 

A.  Communication Network Model

G = (V,E,Q)
V = {1,2, . . . ,n} E ⊆ V ×V

Q ∈ Rn×n

G (i, j) ∈ E
i j j

i i
j

(i, i) < E i ∈ V
(i, j)

i j
(i, i1), (i1, i2), . . . , (il, j) ir ∈ V

r = 1, . . . , l N−i = { j ∈ V |(i, j) ∈ E}
i N−i

d−i = |N−i | i
N+i = { j ∈ V |( j, i) ∈ E}

i d+i = |N+i | i
d+i = d−i

Q ∈ Rn×n

Q m > 0
Qm

The communication network in smart grids is modeled as a
general  directed  graph  (digraph)  with

 being  the  set  of  nodes,  being  the
edge set, and  being the weighted adjacency matrix of

.  The  notation  represents  there  exists  a  directed
communication  link  from  node  to  node .  Meanwhile,  is
said  to  be  an  out-neighbour  of  node  and  is  called  an  in-
neighbour of node . Although each node always has access to
its own information, for the sake of notational convenience, it
is assumed that  for all .  A digraph is said to be
strongly connected if for any pair of nodes , there exists a
directed  path  from  node  to  node ,  i.e.,  a  sequence  of
directed  edges  of  the  form  with ,

.  Let  denote  the  set  of  out-
neighbors  of  node .  The  cardinality  of  is  denoted  as

, which is called the out-degree of node . Similarly,
let  denote  the  set  of  in-neighbors  of
node  and let  be the in-degree of node . A digraph
is called a balanced digraph, if . A nonnegative matrix

 is column stochastic if each column sums to 1. The
matrix  is primitive if there exists an integer  such that
each entry of  is positive. 

B.  Standard ADMM Algorithm
Consider the following minimization problem:

 

min
x,y

f1 (x)+ f2 (y) (1a)

 

s.t. S 1x+S 2y = b (1b)

x ∈ Rn1 y ∈ Rn2

S 1 ∈ Rq×n1 S 2 ∈ Rq×n2

b ∈ Rq

where  and  are  the  decision  variables;
 and  are  two  constant  matrices  and

 is a constant vector.
According  to  [23],  the  standard  ADMM  for  solving  the

problem (1) consists of the following iterations:
 

xt+1 = argmin
x

Lρ
(
x,yt,zt

)
(2a)

 

yt+1 = argmin
y

Lρ
(
xt+1,y,zt

)
(2b)

 

zt+1 = zt +ρ
(
S 1xt+1+S 2yt+1−b

)
(2c)

Lρ(x,y,z)where  is  the augmented Lagrangian function of  the
problem (1), defined by
 

Lρ(x,y,z) = f1 (x)+ f2 (y)+ zT (S 1x+S 2y−b)

+ (ρ/2)∥S 1x+S 2y−b∥22
z ∈ Rq

ρ
with  being the Lagrange multiplier associated with the
equality  constraint  (1b)  and  being a  positive  penalty  para-
meter.

ηt
1 ηt

2
t

Let  and  respectively  denote  the  primal  and  dual
residuals of the ADMM iterations (2) at step , defined by
 

ηt
1 = S 1xt +S 2yt −b, and ηt

2 = ρS T
1 S 2

(
yt − yt−1

)
.

The convergence properties of the ADMM iterations (2) are
described in the following lemma.

ρ > 0Lemma 1  [23],  [24]: Assume that  and  the  following
conditions hold:

f1(x) : Rn1 → R∪{+∞} f2(y) : Rn2 →
R∪{+∞}

1)  The  functions  and 
 are proper, closed and convex;

L2)  The  unaugmented  Lagrangian  function  has  a  saddle
point;

S 1 S 23) The matrices  and  have full column ranks.

(x∗,y∗)
z∗

limt→∞
∥∥∥ηt

1

∥∥∥
2 = 0, andlimt→∞

∥∥∥ηt
2

∥∥∥
2 = 0.

Then  the  ADMM  algorithm  (2)  is  asymptotically
convergent  to  the  optimal  solution  and  the  optimal
Lagrange  multiplier  of  the  problem  (1),  with

 

III.  Problem Description

The  EDP  investigated  in  this  paper  is  to  achieve  optimal
power  scheduling  through  local  information  interaction  and
coordination among agents  (generators)  in  the  network while
meeting the power balance constraint and local constraints of
generators.  To  be  specific,  the  EDP  is  formulated  as  the
following constrained optimization problem:
 

min
x

f (x) =
n∑

i=1

fi(xi) (3a)

 

s.t.
n∑

i=1

xi = d (3b)

 

xi ∈ Θi, i = 1, . . . ,n (3c)
x = [x1, . . . , xn]T ∈ Rn xi

i fi(xi) : R→ R+ Θi
i d

where  with  being the  power  genera-
tion of generator ;  and  are respectively the
local cost function and local constraints of generator ;  rep-
resents the total load demand. The equality (3b) is the supply-
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Θi

demand balance constraint. As a general problem description,
all the local inequality constraints are described in the form of
(3c). In other words, the set  is determined by the local in-
equality constraints of generators.

G

For  the  convenience  of  later  analyses,  we  impose  two
assumptions  on  the  problem  (3)  and  one  assumption  on  the
communication graph .

i ∈ {1, · · · ,n}
fi (xi) : R→ R+

Θi

Assumption  1: For  all ,  the  local  cost  function
 is  convex,  closed,  proper,  and  twice

continuously differentiable. Moreover, the local constraint set
 is closed and convex.

x̄i ∈ int(Θi)
i ∈ {1, . . . ,n} ∑n

i=1 x̄i = d int(·)
Assumption 2 (Slater’s Condition): There exists 

for  all  such  that ,  where 
represents the set of interiors of a set.

Remark  1: Assumption  1  implies  that  the  problem (3)  is  a
convex  optimization  problem  and  Assumption  2  is  used  to
guarantee  the  existence  of  feasible  solutions  of  the  problem
(3).  In  addition,  according  to  Assumption  1,  the  local  cost
function does not have to be quadratic, which generalizes the
results in [6]–[13].

G = (V,E,Q)
Q

i
d−i

Assumption  3: The  digraph  is  strongly
connected  and  the  weighted  adjacency  matrix  is  primitive
and column stochastic. Moreover, each node  has access to its
own out-degree .

Remark 2: According to Assumption 3, the communication
graphs  considered  in  this  paper  are  general  directed  graphs
rather  than  the  undirected  ones  considered  in  [6]–[11].  Thus
the symmetric  property  of  communication graphs required in
[6]–[11] is not needed here.

Γ1 = {x ∈ Rn|∑n
i=1 xi = d}

Γ2 = {x ∈ Rn|xi ∈ Θi, i = 1, . . . ,n} h1 h2
Γ1 Γ2

To apply the ADMM, a reformulation of (3) is  considered.
Define  two  convex  sets: ,  and

.  Let  and  be  two
indicator functions for the sets  and , respectively defined by
 

h1 (x) =
{

0, if x ∈ Γ1
+∞, otherwise

h2 (y) =
{

0, if y ∈ Γ2
+∞, otherwise.

Then, the problem (3) can be rewritten as
 

min
x,y

f (x)+h1(x)+h2(y) (4a)

 

s.t. x− y = 0 (4b)
x,y ∈ Rnwhere  are decision variables.

The objective of this paper is to present distributed iterative
strategies  to  solve  the  ED problem (3)  (or  (4))  over  directed
graphs  even  in  the  presence  of  both  packet  drops  and
communication delays. 

IV.  ADMM-based Distributed Algorithms on
Directed Graphs

In this section, two ADMM-based distributed algorithms are
proposed  to  solve  the  problem  (4)  over  directed  graphs,  one
for  reliable  communication  networks  and  the  other  for
unreliable  communication  networks  with  both  packet  drops
and communication delays. 

A.  Distributed Algorithm with Reliable Communication Networks
By applying the ADMM [23] to the problem (4), one has

 

xt+1 = argmin
x

Lρ
(
x,yt,zt

)
(5a)

 

yt+1 = argmin
y

Lρ
(
xt+1,y,zt

)
(5b)

 

zt+1 = zt +ρ
(
xt+1− yt+1

)
(5c)

Lρ (x,y,z)where  is the augmented Lagrangian function for the
problem (4) and is given by
 

Lρ(x,y,z) = f (x)+h1(x)+h2(y)+ zT (x− y)

+ (ρ/2)∥x− y∥22. (6)
z

x
y

Note that the update of , i.e., (5c) is decentralized and thus
we  only  need  to  solve  the  subproblems  (5a)  and  (5b)  in  a
distributed way to obtain the updated values of variables  and
.
First, consider the subproblem (5a). By combining (5a) with

(6), one has
 

xt+1 =argmin
x

( f (x)+h1(x)+h2(yt)+ (zt)T (x− yt)

+
ρ

2
∥x− yt∥22)

=argmin
x

( f (x)+h1(x)+ (zt)T (x− yt)

+
ρ

2
∥x− yt∥22)

=argmin
x

( f (x)+h1(x)+ (zt)T (x− yt)

+
ρ

2
∥x− yt∥22+

1
2ρ
∥zt∥22)

=argmin
x

(
f (x)+h1(x)+

ρ

2

∥∥∥∥∥x−yt+
1
ρ

zt
∥∥∥∥∥2

2

)
=argmin

x∈Γ1

(
f (x)+

ρ

2

∥∥∥∥∥x− yt +
1
ρ

zt
∥∥∥∥∥2

2

)
(7)

h2(yt) 1/(2ρ)∥zt∥22

h1(x)

where  the  second and third  equalities  have  used  the  fact  that
 and  are  both  constants  with  respect  to  the

subproblem (5a), and the last equality follows from the defini-
tion of .

Note  that  the  problem  (7)  is  equivalent  to  the  following
constraint problem:
 

min
x

f̄ (x) =
n∑

i=1

f̄i (xi) (8a)

 

s.t. 1T
n x = d (8b)

f̄ (x) = f (x)+ (ρ/2)
∥∥∥x− yt + (1/ρ)zt

∥∥∥2
2 f̄i(xi) = fi(xi)+

(ρ/2)(xi− yt
i + (1/ρ)zt

i)
2 1n = [1, . . . ,1]T ∈ Rn

where , 
, and .

L̄(x, ζ) =∑n
i=1 f̄i (xi)+ ζ(d−∑n

i=1 xi) f̄i(xi)
ρ > 0 fi(xi)

L̄

L̄

The  Lagrangian  function  of  the  problem  (8)  is 
.  It  is  worth  pointing  out  that 

is  strongly  convex  since  and  is  convex  from
Assumption 1. Thus, the solution to the problem (8) is unique
and  the  stationary  point  of  the  Lagrangian  function  is
exactly  the  solution  to  the  problem  (8).  By  virtue  of  the
Newton-Raphson  approach,  the  stationary  point  of  can  be
obtained by solving the following equation:
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Gλ[△x1, . . . ,△xn,△ζ]T = ∇L̄|λ (9)
λ = [x1, . . . , xn, ζ]T ∇L̄|λ Gλ

L̄ λ

where ,  and  are  respectively  the
gradient and the Hessian matrix of  calculated at the point .
According to (9) and Assumption 1, one has
 

△xi =

d f̄i
dxi
|λ+△ζ − ζ

d2 f̄i
dx2

i

|λ
, i = 1, . . . ,n

−
n∑

i=1

△xi = d−
n∑

i=1

xi =

n∑
i=1

(di− xi)

(10)

di i = 1, . . . ,n∑n
i=1 di = d

where , , is regarded as a virtual local demand sat-
isfying . From (10), it can be obtained that
 

n∑
i=1

d f̄i
dxi
|λ+△ζ − ζ

d2 f̄i
dx2

i

|λ
=

n∑
i=1

(xi−di). (11)

ζ −△ζFurthermore, in light of (11),  can be computed by
 

ζ −△ζ =

n∑
i=1


d f̄i
dxi
|λ

d2 f̄i
dx2

i

|λ
+di− xi


n∑

i=1


1

d2 f̄i
dx2

i

|λ


. (12)

ζ −△ζ

ζ −△ζ
i ui[k]

wi[k]

It  is  worth  noting  that  a  control  center  is  needed  to  gather
system-wide  information  if  is  computed  directly  by
(12).  To  avoid  the  usage  of  any  control  center,  in  the
following,  we  devote  to  calculate  in  a  distributed
fashion.  For  each  node ,  define  two auxiliary  variables 
and , respectively initialized as
 

ui[0] =

d f̄i
dxi
|λ

d2 f̄i
dx2

i

|λ
+di− xi

wi[0] =
1

d2 f̄i
dx2

i

|λ

, i = 1, . . . ,n. (13)

Consider  the  ratio  consensus  algorithm  [25]  used  to  solve
the average consensus problem on digraphs, in which the state
variables are updated according to
 

φi [k+1] =
∑

j∈N+i ∪{i}
q jiφ j [k] (14a)

 

ψi [k+1] =
∑

j∈N+i ∪{i}
q jiψ j [k] (14b)

q ji = 1/(1+d−j ) j ∈ N+i ∪{i}where  for  and  zeros  otherwise.
The  initial  conditions  of  iterations  (14)  are  given  as:

φ [0] = [φ1 [0] , . . . ,φn [0]]T ψ[0] = 1n and .  The convergence of
the consensus algorithm (14) is given in the following lemma.

{φi[k],ψi[k]}Lemma 2 [25]: Let  be the sequence generated
by  (14).  Then  under  Assumption  3,  the  average  consensus
value can be asymptotically obtained via
 

lim
k→∞

φi [k]
ψi [k]

=

n∑
i=1
φi [0]

n
, i = 1, . . . ,n. (15)

φi[0] = ui[0] i ∈ {1, . . . ,n}

ui[k]
φi[k]/ψi[k]→ u∗ =

1
n
∑n

i=1(
d f̄i
dxi
|λ/

d2 f̄i
dx2

i

|λ+di− xi) k→∞
φi[0] = wi[0]
wi[k]

w∗ w∗ =
1
n
∑n

i=1(1/
d2 f̄i
dx2

i

|λ)

ζ −△ζ

Now, let  for all . By performing the
consensus  algorithm  in  (14)  and  in  light  of  Lemma  2,  the
average  consensus  value  for  the  variables  can  be
asymptotically  obtained  via  (15),  i.e., 

 as .  Similarly,  by  letting
,  the  average  consensus  value  for  the  variables

 is  also  asymptotically  obtained  via  (15),  which  is

denoted  by ,  i.e., .  By  combining
these with (12), at each node  can be calculated by
 

ζ −△ζ = u∗

w∗
(16)

△xi

in  a  distributed  fashion.  Moreover,  by  substituting  (16)  into
the first equality in (10),  can be calculated via
 

△xi =

d f̄i
dxi
|λ− (ζ −△ζ)

d2 f̄i
dx2

i

|λ
. (17)

x∗i i = 1, . . . ,nTo  this  end,  the  optimal  solution , ,  to  the
problem (8) can be computed by
 

x∗i = xi−△xi. (18)

x∗ xt+1
In other words, according to (16)–(18), the optimal solution
 to the problem (8), i.e., the solution  to the subproblem

(5a) is computed in a distributed way.
In the following, combining (5b) with (6) yields

 

yt+1 =argmin
y

( f (xt+1)+h1(xt+1)

+h2(y)+ (zt)T (xt+1− y)+
ρ

2
∥xt+1− y∥22)

=argmin
y

(
h2 (y)+

ρ

2

∥∥∥∥∥xt+1− y+
1
ρ

zt
∥∥∥∥∥2

2

)
=argmin

y∈Γ2

ρ

2

∥∥∥∥∥xt+1− y+
1
ρ

zt
∥∥∥∥∥2

2

=PΓ2

(
xt+1+

1
ρ

zt
)

PΓ2

Γ2 ϑ̌t+1
i = xt+1

i + (1/ρ)zt
i, i = 1, . . . ,n

where  represents the projection operator onto the convex
set . To be specific, let  and
the solution to the subproblem (5b) can be given as:
 

yt+1
i =

ϑ̌t+1
i , ϑ̌t+1

i ∈ Θi

ξ̌t+1
i , ϑ̌t+1

i < Θi
(19)

ξ̌t+1
i ∈ ∂Θi ∂Θi

Θi i = 1, . . . ,n xt+1 yt+1
with  and  being  the  set  of  boundary  points  of

, .  By  substituting  and  into (5c),  it  fol-
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lows that
 

zi
t+1 = zi

t +ρ(xt+1
i − yt+1

i ), i = 1, . . . ,n. (20)
Based  on  the  above  discussion,  the  proposed  distributed

algorithm to solve the EDP (3) or (4) on digraphs with reliable
communication networks is  summarized in Algorithm 1.  The
convergence  of  Algorithm  1  is  described  in  the  following
theorem.

Algorithm 1 ADMM-based distributed algorithm for the EDP (3)
on digraphs with reliable communication networks

G = (V,E,Q) qi j

ρ x0
i y0

i z0
i ∀i ∈ V

Input: The  digraph  with  the  edge  weight 
defined in (14); , , , , .

x∗Output: The optimal solution .
t = 0,1,2, . . .1:　for  do

k = 0,1,2, . . .2:　　for  do

ui[k] φi[0]=ui[0] ψi[0]=1
∀i ∈ V

3:　　　For each node, run the iterations (14) for the variable
  with  initial  values  and ,
 .

u∗4:　　　Compute the average consensus value  by

u∗ = lim
k→∞

φi [k]
ψi [k]

.　　　　　　　　　　　　 
w∗

wi[k]
5:　　　Compute the average consensus value  for the variable

  with the same way.
6:　　end for

xt+1
i yt+1

i zt+1
i

∀i ∈ V
7:　　Compute  via (16)–(18),  via (19) and  by (20),

 .
|ηt

1(i)| ≤ ϵ1 |ηt
2(i)| ≤ ϵ2, ∀i ∈ V8:　　if  and   then

x∗i = xt+1
i (i = 1, . . . ,n)9:　　　Let  and break.

10:　   end if
11:　end for

ρ > 0
{(xt,yt,zt)}

(x∗,y∗,z∗) (x∗,y∗) z∗

ηt
1 = xt − yt ηt

2 = −ρ(yt − yt−1)
limt→∞

∥∥∥ηt
1

∥∥∥
2 = 0 limt→∞

∥∥∥ηt
2

∥∥∥
2 = 0

Theorem  1: If  Assumptions  1–3  and  hold,  then  the
sequence  generated  by  Algorithm  1  converges  to

 in  a  distributed  manner,  where  and  are,
respectively,  the  optimal  solution  and  the  optimal  Lagrange
multiplier  of  the  problem  (4),  with  the  primal  residual

 and dual  residual  converging to
zero, i.e.,  and .

xt+1
i yt+1

i zt+1
i

G
Q

ui[k]
wi[k]

u∗ w∗

xt+1

yt+1

zt+1

xt+1
i yt+1

i zt+1
i

Proof: First,  we  show  that  for  each  node,  the  iteration
values ,  and  in  (5)  can  be  calculated  in  a
distributed manner via Algorithm 1. According to Assumption
3,  the  digraph  is  strongly  connected  and  its  weighted
adjacent  matrix  is  primitive  and  column  stochastic.  Carry
out the consensus iterations in (14) for the variables  and

 respectively. Then based on Lemma 2, we can obtain the
average  consensus  values  and  in  a  distributed  way.
Furthermore, in light of (16)–(18), the optimal solution  to
the  subproblem  (5a)  is  calculated  in  a  distributed  manner.
Finally,  the  optimal  solution  to  the  subproblem (5b)  can
be  distributively  obtained  according  to  (19)  and  in  (5c)
can  be  computed  by  (20)  in  a  decentralized  way.  In  a  word,
according  to  Algorithm  1, ,  and  in  (5)  can  be
calculated in a distributed fashion.

ρ > 0
{(xt,yt,zt)}

(x∗,y∗,z∗) (x∗,y∗)

In  the  following,  we  show  that  if ,  the  sequence
 generated  by  the  ADMM  iterations  (5)  is

asymptotically convergent to  with  being the

f (x)+h1(x)+h2(y)
f (x)

h1(x) h2(y)

Θ1× · · ·×Θn

(x∗,y∗)
z∗ (x∗,y∗,z∗)

S 1 S 2

I −I

f1(x) f2(y) S 1 S 2 b f (x)+h1(x)
h2(y) I −I

optimal  solution  to  the  problem  (4).  First,  note  that  the  cost
function  in  the  problem  (4)  is  proper,
closed, and convex because  is convex from Assumption 1
and the indicator functions ,  of the convex sets are
all  proper,  closed,  and  convex.  Moreover,  the  equality
constraint  in  (4b)  is  affine.  From  Assumptions  1  and  2,  the
constraint  set  is  a  closed  convex  set  and  the
Slater’s  Condition  holds.  Thus,  the  strong  duality  property
holds [27] and the optimal solution to the problem (4) exists.
In light of the saddle point theorem [28], the existence of the
optimal solution  to the problem (4) implies that  there
exists a dual optimal solution  such that  is a saddle
point  of  the  Lagrangian  function  of  the  problem  (4).
Furthermore,  note  that  and  in  the  problem  (1)
respectively correspond to  and  in the problem (4) which
have  full  column  ranks.  Therefore,  the  three  conditions
required in Lemma 1 are all satisfied. Thus, the remainder of
the  convergence  proof  is  similar  to  that  in  [24]  only  by
replacing , , ,  and  in  (1)  with ,

, ,  and 0 in the problem (4), respectively. ■
Remark  3: In  Algorithm  1,  the  outer  loop  iterations  are

ADMM  iterations  and  the  inner  loop  iterations  are  average
consensus iterations.  In addition,  it  is  worth pointing out that
the  inner  loop  iterations  in  Algorithm  1  are  only
asymptotically  convergent  to  the  average  consensus  values.
Therefore,  the  stopping  criteria  (threshold  or  number  of
iterations)  for  the  inner  loop  iterations  are  needed  in  actual
implementation. 

B.  Distributed Algorithm With Both Packet Drops and Time
Delays

While  both  packet  drops  and  bounded  communication
delays are considered, an ADMM-based distributed algorithm
for  solving  the  problem  (4)  on  digraphs  is  presented  in  this
subsection.

G = (V,E,Q) p ji[k]

( j, i) ∈ E p ji[k] = 0
( j, i) ∈ E k

p ji[k] = 1 τ ji[k] ≥ 0
j i k

0 ≤ τ ji [k] ≤ τ̄ ji ≤ τ̄ k ≥ 0
τ̄ =max{τ̄ ji}

First, some notations about packet drops and time delays are
introduced.  For  a  digraph ,  let  be  the
indicator variables to denote whether there exist packet drops
over  or  not,  which  is  defined  by:  if  there
exist  packet  drops  over  at  time  instant  and

 otherwise.  Let  the  integer  represent  the
delay of a message sent from node  to node  at time instant 
and it  is  required that  for all ,  where

.  The  following  assumption  on  packet  drops  and
time delays can be found in [25], [26].

pd ji pd ji < 1
p[k]{
p ji[k]|( j, i) ∈ E

}
p[0], p[1], . . .

k
p[k]

pii[k] = 1 pdii = 0 i ∈ V

τ ji ( j, i) ∈ E
τ̄

τ ji ≤ τ̄ <∞ ( j, i) ∈ E
τii = 0 i ∈ V

Assumption 4: For packet drops, we assume that the packet
drop probability  is strictly less than one, i.e., . Let

 be  a  random binary vector  including all  the  variables  in
.  Then  are  independent  and

identically  distributed  (i.i.d.),  but  at  time  instant ,  any  two
variables contained in  may be of dependency. Moreover,

 and  for  all  (i.e.,  the  own  value  of  a
node  is  always  available  without  packet  drop).  For  time
delays,  we assume that  the  delay  on each link  is
time-invariant.  There  exists  a  finite  that  uniformly  bounds
the delays, i.e.,  for all the links  with time
delays. In addition,  for all  (i.e., the own value of a
node is always available without time delay).
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i i ∈ V
φi[k] ψi[k] i

ri[k] si[k] π ji[k] θ ji[k] j ∈ N+i ∪{i} ri[k]
si[k] φi[k]

ψi[k] π ji[k] θ ji[k] ri[k]
si[k] ri [0] = 0 si [0] = 0 i ∈ V

π ji [0] = 0 θ ji [0] = 0 j ∈ N+i ∪{i} i ∈ V
i i ∈ V ri [k+1]

si [k+1]

To solve the EDP (4) over digraphs with both packet drops
and  time  delays,  the  running-sum  method  [26]  and  the  ratio
consensus algorithm with time delays [25] are employed here
to  compute  the  average  consensus  values.  In  particular,  each
node , ,  is  assigned  with  six  variables.  Besides  the
variables  and ,  node  also  maintains  the  variables

, , ,  and  for ,  where  and
 are  respectively  the  running  sums  of  the  variables 

and ;  and  keep track of the running sum 
and  respectively. Let ,  for all  and

,  for  all  and  all .  Then
each  node , ,  computes  the  running  sums  and

 by
 

ri [k+1] = ri [k]+qilφi [k] (21a)
 

si [k+1] = si [k]+qilψi [k] (21b)
k = 0,1,2, . . . qil = 1/(1+d−i ) l ∈ N−i ∪{i}

π ji [k+1] θ ji [k+1]

where ;  for  and zeros
otherwise.  Based  on  Assumption  4,  the  tracking  variables

 and  are computed as
 

π ji [k+1] =
{

r j [k+1], p ji[k] = 1 or j = i
π ji[k], p ji[k] = 0

(22a)

 

θ ji [k+1] =
{

s j[k+1], p ji[k] = 1 or j = i
θ ji[k], p ji[k] = 0.

(22b)

π ji θ ji
( j, i) ∈ E i

πii [k+1] = ri [k+1] θii [k+1] = si [k+1] i ∈ V
τ ji ( j, i) ∈ E φi[k] ψi[k]

According  to  (22),  and  remain  unchanged  if  there
exist  packet  drops  on  link .  Moreover,  each  node 
always  knows  the  running  sum  of  itself,  i.e.,

 and  for  all .  Let
 be the delay on link . The variables  and 

of each node are updated according to:
 

φi [k+1] =
∑

j∈N+i ∪{i}

(
π ji

[
k+1−τ ji

]
−π ji

[
k−τ ji

])
(23a)

 

ψi [k+1] =
∑

j∈N+i ∪{i}

(
θ ji

[
k+1−τ ji

]
− θ ji

[
k−τ ji

])
(23b)

φ [0] = [φ1 [0] , . . . ,φn [0]]T ψ [0] = 1n

φi[k] ψi[k] k < 0
where  and .  Note  that

 and  are set as zero if . Then the convergence
of  the  iterations  (21)–(23)  is  described  in  the  following
lemma.

{φi[k],ψi[k]}Lemma  3: Let  be  the  sequence  generated  by
iterations  (21)–(23).  Then  under  Assumptions  3  and  4,  the
average consensus value can be asymptotically obtained via
 

lim
k→∞

φi [k]
ψi [k]

=

∑n
i=1φi [0]

n
, i = 1, . . . ,n. (24)

G = (V,E,Q)

( j, i) ∈ E
b ji

( j, i) b ji

Proof: First,  we  show  that  with  the  aid  of  the  augmented
graph  representation  method  used  in  [25]  and  [26],  the
directed  graph  with  both  packet  drops  and
bounded  time  delays  can  be  converted  to  an  augmented
directed  graph  without  packet  drop  and  time  delay. “Virtual
buffers” and “virtual nodes” are introduced here to model the
packet drops and the bounded time delays, respectively. To be
specific,  for  each  link ,  we  introduce  a “virtual
buffer” , which stores the information that may be lost due
to  packet  drops  over .  The  information  stored  in  will

i
( j, i) ∈ E p ji[k] = 1 q jiφ j[k] (q jiψ j[k])

b ji i
p ji[k] = 0 i

j b ji
i ∈ V τ̄

i(1), i(2), . . . , i(τ̄) k
i(l) l = 1, . . . , τ̄

i l

be  released  to  node  if  there  is  no  packet  drop  on  link
.  That  is  to  say,  if ,  both  

and the information stored in  will be sent to node ; when
,  no  information  is  received  at  node ,  but  the

information  from  node  will  be  accumulated  in .  On  the
other  hand,  for  each  node ,  we  introduce  “virtual
nodes”: .  At  each  time  step ,  the  virtual  node

 ( )  possesses  the  information  which  is  ready  to
reach  node  after  steps.  The  weights  between  the  original
nodes, “virtual buffers” and “virtual nodes” are shown in Fig. 1.

G1 = (V1,E1, Q̃ [k])
G1

n1 = |V1| = n+m+nτ̄
n G m

n n
G1

m1 = |E1| b ji
φpdi ψpdi φpd [k] ψpd [k]

φpdi [k] ψpdi [k]
i = 1, . . . ,m i(l)

φ(l)
i ψ(l)

i φ(l) [k] ψ(l) [k]
φ(l)

i [k] ψ(l)
i [k]

i = 1, . . . ,n l = 1, . . . , τ̄

Let  denote  the  augmented  graph
described above. It is easy to see that the augmented graph 
has  nodes,  which  are  labeled  in  the
following order:  original nodes from ,  “virtual buffers”,
 “virtual nodes” with one time delay,  “virtual nodes” with

two time delays and so on. Moreover, the augmented graph 
has  edges.  For each “virtual buffer” ,  define two
variables  and . Let  and  be the column
vectors  with  each  entry  being  and ,
respectively,  for  all .  For  each “virtual  node” ,
define two variables  and , and let  and  be
the  column vectors  with  each  entry  being  and ,
respectively, for all  and . Moreover, let

 

φ̃ [k] =
[
φT [k] ,φT

pd [k] ,
(
φ(1) [k]

)T
, . . . ,

(
φ(τ̄) [k]

)T
]T

and
 

ψ̃ [k] =
[
ψT [k] ,ψT

pd [k] ,
(
ψ(1) [k]

)T
, . . . ,

(
ψ(τ̄) [k]

)T
]T
.

φ̃[k] ψ̃[k]In addition, the initial values for the variables  and 
are respectively defined as
 

φ̃l [0] =
{
φl[0], l ∈ V
0, l < V and ψ̃l [0] =

{
1, l ∈ V
0, l < V

V = {1, . . . ,n}where  is the set of original nodes.
According  to  the  above  discussion,  the  iterations  in

(21)–(23)  with  both  packet  drops  and  time  delays  can  be
converted to the following compact form without packet drop
and time delay:
 

φ̃ [k+1] = Q̃ [k] φ̃ [k] (25a)
 

ψ̃ [k+1] = Q̃ [k] ψ̃ [k] (25b)

 

1 1qji pji [k]

qji (1− pji [k])

1− pji [k]

pji [k]

bji

- -

1

... ii(1)i(τ−1)i(τ)j

 
b ji i(1), . . . , i(τ̄) ( j, i)Fig. 1.     “Virtual buffer”  and “virtual node”  on link  and

corresponding weights.
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where
 

Q̃ [k] =



Q(0) [k] Qpd1 [k] In×n 0 · · · 0
Qpd2 [k] Qpd3 [k] 0 0 · · · 0
Q(1) [k] 0 0 In×n · · · 0

...
...

...
...

. . .
...

Q(τ̄−1) [k] 0 0 0 · · · In×n
Q(τ̄) [k] 0 0 0 · · · 0


(26)

Q(l) [k] (l = 0,1, . . . , τ̄)with   being the weighted matrix that de-
pends on both packet drops and time delays and is defined as
 

Q(l)[k] ( j, i) =
{

p ji [k] Q ( j, i) , if τ ji = l, ( j, i) ∈ E
0, otherwise.

( j, i) ∈ E Q(0) [k] ( j, i)
Q(1) [k] ( j, i), . . . ,Q(τ̄) [k] ( j, i) p ji [k] Q ( j, i)

Qpd1 [k] = {p ji [k]}n×m

Qpd2 [k] = {(1− p ji [k])q ji}m×n

Qpd3 [k] = {1− p ji [k]}m×m

Note  that  for  each ,  only  one  of ,
 is  equal  to  and  the

others  are  zero.  is  a  weighted  matrix
which  depends  on  the  weights  of  the  links  from “virtual
buffers” to  original  nodes.  is  a
weighted matrix which relies on the weights of the links from
original  nodes  to “virtual  buffers”. 
is the self-loop weighted matrix of the “virtual buffers”.∑n

i=1φi[0]/n

Q̃[k] Q̃[k]

Q̃[k]Q̃[k−1] · · · Q̃[1]Q̃[0]

G1 = (V1,E1, Q̃[k])

In the following, we show that the average consensus value
 can be asymptotically obtained via the iterations

(21)–(23)  or  the  iterations  (25).  According  to  Assumption  3
and  the  definition  of ,  it  can  be  verified  that  is  a
primitive  and  column-stochastic  matrix.  Then  the  weak
ergodicity of the matrix product  can
be  used  to  show  the  convergence  of  (25).  Based  on  the
augmented  graph  and  in  light  of
Assumption 4, the subsequent convergence proof of (25) is the
same  as  that  in  [26].  Thus,  by  implementing  the  iterations
(21)–(23)  or  the  iterations  (25),  the  average  consensus  value
can be asymptotically obtained by (24) or by
 

lim
k→∞

φ̃i [k]
ψ̃i [k]

=

n∑
i=1
φi [0]

n
, i = 1, . . . ,n. (27)

■
As  both  packet  drops  and  communication  delays  are

considered here, we run the iterations (21)–(23) instead of the
iterations (14)  at  Step 3 in  Algorithm 1 and get  the ADMM-
based distributed algorithm with both packets drops and time
delays, which is named Algorithm 2 in the following statement.

Since Algorithm 2 is in some extent similar to Algorithm 1,
for brevity, we only need to make the following modifications
on  the  basis  of  Algorithm  1  to  get  Algorithm  2:  1)  Add  the
information of packet drops and delays in the “Input” step; 2)
Replace  the  iterations  (14)  in  Step  3  with  the  iterations
(21)–(23).

The following theorem shows the convergence properties of
Algorithm 2.

ρ > 0
{(xt,yt,zt)}

(x∗,y∗,z∗)
(x∗,y∗) z∗

ηt
1 = xt − yt ηt

2 = −ρ(yt − yt−1)

Theorem  2: If  Assumptions  1–4  and  hold,  then  the
sequence  generated  by  Algorithm  2  converges  to

 in a distributed manner even when there exist both
packet  drops  and  bounded  time  delays,  where  and 
are,  respectively,  the  optimal  solution  and  the  optimal
Lagrange  multiplier  of  the  problem  (4),  with  the  primal
residual  and  dual  residual 

limt→∞ ∥ηt
1∥2 = 0 limt→∞ ∥ηt

2∥2 =converging to zero, i.e.,  and  0.

xt+1
i yt+1

i
zt+1

i
ui[k] wi[k]
φi[0] = ui[0]

ψi[0] = 1 i ∈ V
ui[k]

u∗ ui[k]

w∗ wi[k]

ui[k] wi[k]

xt+1
i

yt+1
i zt+1

i

Proof: We  first  show  that  when  there  exist  both  packet
drops and bounded time delays,  the iteration values , 
and  in  (5)  still  can  be  calculated  in  a  distributed  fashion
via  Algorithm  2.  Consider  the  variables  and  with
initial  values  defined  in  (13).  First,  let  and

 for all .  Then carry out the iterations (21)–(23)
for  the  variable .  According  to  Lemma  3,  the  average
consensus value  for the variable  can be asymptotically
obtained  by  (24).  With  a  similar  method,  the  average
consensus value  for the variable  can also be obtained.
That  is  to  say,  based  on  Lemma  3,  the  average  consensus
values for the variables  and  are both calculated in a
distributed  fashion  even  though  packet  drops  and  delays
appear  in  the  communication  network  simultaneously.  Then
according  to  (16)–(18),  is  obtained  in  a  distributed  way
and in light (19)–(20),  and  can also be computed in a
distributed  manner.  The  remaining  proof  is  similar  to  that  of
Theorem 1. ■

Remark 4: Different from the results in [6]–[10], [12]–[18],
and  [21]  only  concerning  reliable  communication  networks
and  the  results  only  considering  communication  delays  [11],
[20]  or  packet  drops  [19],  this  work  takes  into  account  both
packet drops and communication delays. Though the result in
[25]  can  deal  with  communication  delays  while  the  work  in
[26] can handle packet drops, they may fail to solve the issues
considering  both  packet  drops  and  communication  delays.  In
fact,  the  coexistence  of  packet  drops  and  communication
delays may bring difficulties in analyses and execution of the
algorithm.  However,  these  difficulties  are  conquered  here  by
adopting  the  consensus  iterations  (21)–(23),  in  the
convergence  proof  of  which  a  new  augmented  graph
representation has been constructed to transform the problem
with  both  packet  drops  and  time  delays  into  the  one  without
packet drop and delay.

Remark 5: Note that Algorithm 2 is more general and practical
than Algorithm 1 since it takes into account both packet drops
and  time  delays  which  usually  occur  simultaneously  in
communication networks. But on the other hand, the coexistence
of  packet  drops  and  time  delays  may  make  an  effect  on  the
convergence rate of Algorithm 2. That is to say, compared with
Algorithm 1, Algorithm 2 needs more iteration steps to get the
optimal solution of the problem (3).

τ̄
τ ji[k](τ ji[k] , 0)

τ̄

ui[k] wi[k]

Remark 6: For the case of time-varying delays, if each node
in  the  network  has  knowledge  of  the  upper  bound  of  the
time  delays  and  all  the  time-varying  delays 
are  set  as ,  then  the  case  with  time-varying  delays  is
equivalent to the time-invariant delay case. Thus, for the case
with  bounded  time-varying  delays,  the  average  consensus
values for the variables  and  can also be obtained in
a  distributed  manner  via  Algorithm  2  and  the  result  in
Theorem 2 still holds. 

V.  Simulation Study

In  this  section,  several  case  studies  are  provided  to  verify
the  effectiveness  of  the  proposed  strategies  for  solving  the
EDP  over  directed  graphs  without/with  packet  drops  and
communication delays.
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Case Study 1: The simulation results with Algorithm 1

fi(xi)
i

In  this  case  study,  the  proposed  algorithm  with  reliable
communication  networks  is  verified  on  a  power  system with
three generators and the local cost function  of generator
 is given as

 

fi (xi) =

γixi
2+βixi+360exp

(
xi+30

60

)
, i = 1,2

γixi
2+βixi+4×10−6x4

i , i = 3

γi βi
Θi i = 1,2,3

ρ = 1
d = 90 30

1/(1+d−i )
Q

ϵ1
ϵ2

i |φi[k+1]/ψi[k+1]−φi[k]/ψi[k]| < ε1 φi[0] = ui[0]
|φi[k+1]/ψi[k+1]−φi[k]/ψi[k]| < ε2 φi[0] = wi[0]
ε1 > 0, ε2 > 0

0.001

where the  and  are the cost coefficients given in Table I.
The  local  constraint  set  ( ) and  the  initial  condi-
tions are  also provided in Table I.  Let  and the total  de-
mand  MW. The local virtual demands are all set as 
MW.  The  directed  communication  graph  is  shown  in Fig. 2,
where each node chooses its weight and the weights of its out-
going  links  to  be .  It  is  easy  to  verify  that  the
weighted adjacency matrix  corresponding to this digraph is
primitive  and column stochastic.  The threshold  values  and

 in Algorithm 1 are both set as 0.001. The stopping criteria
for  the  inner  loop  iterations  of  Algorithm 1  are  given  as:  for
all ,  with ,
and  with ,
where  are  the  threshold  values  which  are  both
set as  here.

x∗ = [33.038, 36.962,
20.000]T

By  implementing  Algorithm  1,  the  simulation  results  are
shown in Figs. 3(a)–(f) and the number of iterations needed to
reach  the  threshold  is  given  in Table II.  As  can  be  seen,  the
incremental  cost  (IC)  of  each  generator  reaches  consensus
asymptotically and the consensus value is 27.722 $/MWh. The
optimal  solution  to  the  problem  (3)  is 

 MW,  which  satisfies  the  local  constraint  of  each
generator and the supply-demand balance constraint.

Case Study 2: The simulation results with Algorithm 2

pd12 = 0.7 pd21 = 0.5 pd23 = 0.4 pd31 = 0.3
τ12 = τ31 = τ23 = 1 τ21 = 2

τ̄ = 2

In this subsection,  both packet drops and fixed time delays
are considered in the communication network shown in Fig. 2
and the other conditions are the same as those in Case Study
1.  The  packet  drop  probabilities  on  communication  links  are
set  as: , , , .  The
delay profile is given as: , . Note that
the  maximum  time  delay  is .  By  running  Algorithm  2,
the  simulation  results  are  illustrated  in Figs. 4(a)–(f) and  the
number  of  iterations  required  to  reach  the  threshold  is

provided  in Table II.  It  can  be  seen  that  though  there  exist
both  packet  drops  and  fixed  time  delays,  the  optimal
incremental cost and the optimal solution still can be obtained
and are the same as those in Case Study 1. Thus, Algorithm 2
is robust to both packet drops and fixed time delays.

Case Study 3: Test on IEEE 118-bus system with Algorithm 1

1200/14
d = 1200

i Θi = [50,200]
i = 1, . . . ,14 ρ = 1 x0

i = 1000/14 y0
i = 0

z0
i = 0

In  this  case  study,  the  IEEE  118-bus  system  with  14
generators  is  utilized  to  verify  the  scalability  of  Algorithm 1
and  quadratic  cost  functions  considered  in  [6]–[13]  are
employed  here.  The  generator  parameters  are  adopted  from
[29].  The  local  virtual  demands  are  all  set  as  MW.
That  is  to  say,  the  total  demand  MW.  The  local
constraint  of  generator  is  set  as  MW,

.  We  set ,  MW,  MW,
 and the stopping criteria are the same as those in Case

Study  1.  The  directed  communication  graph  is  illustrated  in
Fig. 5.

By  implementing  Algorithm  1,  the  simulation  results  are

 

TABLE I  
Parameters and Initial Conditions of Three Generators

DGi γi βi Θi (MW) x0
i  (MW) y0

i z0
i

1 0.085 4.95 [10, 50] 15 0 0

2 0.065 4.6 [10, 40] 15 0 0

3 0.32 0.72 [5, 20] 10 0 0
 

 

TABLE II  
Comparison of Different Communication Conditions and

Number of Nodes

3-WO 3-W 14-WO 14-W

Iteration number of inner loop 9 32 191 416

Iteration number of outer loop 19 19 28 28

Total iteration number 171 608 5348 11 648
Notations: “WO” denotes the case without packet drops and time delays;
“W” denotes the case with both packet drops and time delays.
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Fig. 2.     Communication graph of three generators.
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Fig. 3.     The simulation results of Case Study 1. (a) Primal and dual resid-
uals; (b) Auxiliary variables ; (c) Auxiliary variables ; (d) Incremental
cost ($/MWh); (e) Power  outputs (MW); (f) Total outputs vs. demand (MW).
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shown  in Figs. 6(a)–(f).  The  number  of  iterations  needed  to
reach the threshold is given in Table II. It can be seen that the
consensus value of incremental costs is 347.2 $/MWh and the
optimal solution is obtained as: x* = [158.2,133.8, 50, 50, 50,
51.6,  50,  50,102.2,102.2,102,200,  50,  50]T MW  which  meets
the  local  constraint  of  each  generator  and  supply-demand
balance constraint.  Hence,  Algorithm 1 is  still  effective for  a
large network.

Case Study 4: Test on IEEE 118-bus system with Algorithm 2

[0.1,0.9]
τ̄ = 2

{1,2}

In  this  subsection,  both  packet  drops  and  time-varying
delays are considered for the network shown in Fig. 5 and the
other  conditions  are  the  same  as  those  in  Case  Study  3.  The
packet  drop  probability  on  each  communication  link  is
randomly selected from the set . The upper bound of
the  time-varying  delays  is  set  as .  In  particular,  at  each
time  step,  the  delays  on  communication  links  vary  randomly
in  the  set .  According  to  Remark  6  and  by  running
Algorithm 2, the simulation results are shown in Figs. 7(a)–(f)
and the number of  iterations needed to reach the threshold is
provided in Table II. As can be seen, the optimal incremental
cost and optimal solution are the same as those in Case Study

3. Therefore, Algorithm 2 is effective for a large network with
both packet drops and bounded time-varying delays.

Remark  7: According  to Table II,  it  can  be  concluded  that
the convergence rate of Algorithm 1 is affected by the number
of  nodes.  The  more  nodes,  the  more  iteration  steps  are
required. The convergence rate of Algorithm 2 is affected not
only by the number of nodes but also by the packet drops and
communication  delays.  That  is  to  say,  even  if  the  number  of
nodes is the same, Algorithm 2 needs more iteration steps than
Algorithm  1  to  get  the  optimal  solution,  which  confirms  the
statement  in  Remark  5.  Moreover,  from Table II,  it  can  be
seen  that  the  iteration  number  of  the  outer  loop  is  only
associated  with  the  number  of  nodes,  not  affected  by
communication  conditions,  but  the  iteration  number  of  the
inner loop is affected by both factors. 

VI.  Conclusions

In this paper, two ADMM-based distributed strategies have
been  proposed  to  address  the  EDP  with  general  convex  cost
functions  over  possibly  unbalanced  digraphs.  The
communication networks without/with both packet  drops and
bounded time delays were considered and the ratio consensus
method  was  employed  to  solve  the  EDP  in  a  distributed
fashion. It has been proved that the ADMM iterations in both
the  reliable  communication  networks  case  and  the  unreliable
communication  networks  case  (with  both  packet  drops  and
time delays) are convergent to the optimal solution of the ED
problem  in  a  distributed  way.  Simulation  results  have
demonstrated the effectiveness of the proposed schemes.
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Fig. 4.     The simulation results of Case Study 2. (a) Primal and dual resid-
uals; (b) Auxiliary variables ; (c) Auxiliary variables ; (d) Incremental
cost ($/MWh); (e) Power outputs (MW); (f) Total generation vs. demand
(MW).
 

 

9 10 11 12 13 14 1

8 7 6 5 4 3 2
 
Fig. 5.     Communication graph of fourteen generators.
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Fig. 6.     The simulation results of Case Study 3. (a) Primal and dual resid-
uals; (b) Auxiliary variables ; (c) Average variables ; (d) Incremental cost
($/MWh); (e) Power outputs (MW); (f) Total outputs vs. demand (MW).
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Fig. 7.     The simulation results of Case Study 4. (a) Primal and dual resid-
uals; (b) Auxiliary variables ; (c) Auxiliary variables ; (d) Incremental
cost ($/MWh); (e) Power outputs (MW); (f) Total generation vs. demand
(MW).
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