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   Abstract—This work deals with the robust D-stability test of lin-
ear time-invariant (LTI) general fractional order control systems
in a closed loop where the system and/or the controller may be of
fractional order.  The concept of  general  implies  that  the charac-
teristic equation of the LTI closed loop control system may be of
both  commensurate  and  non-commensurate  orders,  both  the
coefficients  and the orders  of  the characteristic  equation may be
nonlinear functions of  uncertain parameters,  and the coefficients
may be complex numbers. Some new specific areas for the roots
of  the  characteristic  equation  are  found  so  that  they  reduce  the
computational  burden of  testing the robust D-stability.  Based on
the value set of the characteristic equation, a necessary and suffi-
cient condition for testing the robust D-stability of these systems is
derived.  Moreover,  in  the  case  that  the  coefficients  are  linear
functions of the uncertain parameters and the orders do not have
any uncertainties,  the condition is  adjusted for further computa-
tional burden reduction. Various numerical examples are given to
illustrate the merits of the achieved theorems.
    Index Terms—Fractional order control system, LTI system, robust
D-stability, value set.

I.  Introduction

F RACTIONAL order  calculus,  is  nowadays  a  well-known
theory which deals with integrals and derivatives of arbit-

rary  orders  [1].  The  superiority  of  fractional  order  calculus
with respect to its integer counterpart is its ability to more ac-
curate model the behaviour of many systems in the real world,
such as viscoelastic materials  [2],  chaotic systems [3],  waves
propagation  [4],  biological  systems  [5],  multi-agent  systems
[6],  and  human  operator  behaviors  [7].  Further  applications
can be found in [8] and references therein. Moreover, because
of the robustness and fast performance of fractional order con-
trollers,  their  implementation  are  spreading  widely  [9]–[12].
Furthermore, modeling  real  world  systems often  leads  to  un-
certain  mathematical  models.  Hence,  the  robust  stability  and
performance  analysis  of  fractional  order  control  systems,
where the controller and/or the system may be of fractional or-
der, have attracted much interest from many researchers.

Over  the  last  decade,  many  papers  have  been  published  to
present criteria for the robust stability analysis of linear time-
invariant (LTI) fractional order systems by different methods.
Some  sufficient  criteria  using  the  linear  matrix  inequality
(LMI) approach were introduced in [13]–[15].  For the robust
stability  of  fractional  order  systems  of  commensurate  orders
between 0 and 2,  some necessary and sufficient  criteria  were
produced  in  [16],  [17].  However,  finding  a  solution  for  the
LMI may lead to conservatism [18], [19]. Moreover, the LMI
approach  can  be  applied  only  to  systems  of  commensurate
order,  and  not  to  the  ones  of  non-commensurate  order.  The
robust  stability  of  fractional  order  systems  of  commensurate
order  was  also  studied  in  [20]  in  the  roots  space  of  the
characteristic  equation.  The  aforementioned  papers  studied
systems  having  uncertainties  only  in  the  coefficients  of  their
characteristic  equations.  Some criteria  for  the  robust  stability
of  fractional  order  systems  of  both  commensurate  and  non-
commensurate  orders  with  uncertainties  in  both  the
coefficients and the orders were reported in [21] using Young
and Jensen inequalities,  but these criteria were sufficient;  not
necessary and sufficient.

Another  efficient  tool  to  check  the  robust  stability  of  LTI
fractional  order  systems,  which  can  be  less  conservative  and
also  employed  for  systems  of  both  commensurate  and  non-
commensurate  orders,  is  the  value  set.  Initially,  a  sufficient
criterion  was  introduced  in  [22]  for  the  robust  stability  of
fractional  order  systems  with  uncertainties  only  in  the
coefficients by using the value set tools and extending the zero
exclusion  condition  to  fractional  order  systems.  Then,  in
works  [23]–[25],  some  necessary  and  sufficient  criteria  were
presented.  Sufficient  criteria  were  also  presented  in  [26]  for
fractional  order  systems  having  multi-linear  uncertainties  in
their  coefficients.  Moreover,  the  robust  stability  of  fractional
order  systems  having  uncertainties  in  both  their  orders  and
coefficients was studied in [27]–[29].

All  the  above-surveyed  works  focused  on  stability  of  the
system;  not  performance. D-stability  analysis  is  a  method by
which one can analyze both the stability and the performance.
The D-stability  of  an  LTI  system implies  that  all  roots  of  its
characteristic  equation  lie  in  a  desired  area  of  the  complex
plane [30]. This desired area can be chosen from the open left
half-plane;  therefore, D-stability can embrace performance in
addition to the stability because the poles of a stable factional
order  system lie  in  the  open  left  half-plane  [31,  Theorem 5].
By extending some results  on the D-stability of integer order
systems  to  fractional  order  ones,  the  robust D-stability  of
fractional  order  systems  was  first  investigated  in  [32],  and
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some  sufficient  criteria  were  produced.  Then,  necessary  and
sufficient criteria for the robust D-stability of fractional order
systems  with  linear  and  real  uncertainties  only  in  the
coefficients were reported in [33],  [34].  Based on [35],  if  the
uncertainties exist anywhere other than in the coefficients, the
value  set  of  the  characteristic  equation  gets  a  nonconvex
shape, and consequently the results presented in [32]–[34] are
not applicable anymore.

References [32]–[34] considered only specific cases of LTI
fractional  order  systems,  i.e.,  systems  with  linear  and  real
uncertainties  only  in  the  coefficients.  Generally,  in  LTI
fractional  order  systems,  both  the  coefficients  and  the  orders
of  the  characteristic  equation  can  include  uncertainties  [21],
[28].  These  uncertain  coefficients  and  orders  can  also  be
nonlinear  functions of  the uncertainties  [27],  [36].  Moreover,
the  coefficients  of  an  LTI  system  may  be  complex  numbers
[37], especially in aerospace applications where the dynamics
of  a  system  in  different  directions  with  real  coefficients  are
compacted  into  one  dynamical  equation  with  complex
coefficients  (for  more  detail  see,  e.g.,  [38]).  Furthermore,  an
LTI fractional order system can be of either commensurate or
non-commensurate  order  [39].  LTI  fractional  order  control
systems which have all  aforementioned features together will
be  referred  to  as  a  general  fractional  order  control  system
throughout  this  paper.  Regarding  the  aforementioned  works,
the  existence  of  a  necessary  and  sufficient  condition  for
checking  the  robust D-stability  of  general  fractional  order
control  systems  is  an  open  problem  which  is  tackled  in  this
paper.

The main contribution of this paper is presenting a condition
for  checking  the  robust D-stability  of  LTI  general  fractional
order  control  systems  with  the  following  merits.  It  is  a
sufficient  and  necessary  condition,  applicable  to  the  systems
of  both  commensurate  and  incommensurate  orders  with
uncertainties  in  both  the  coefficients  and  the  orders,  and
applicable to the systems whose coefficients may be complex
numbers and also may be nonlinear functions of the uncertain
parameters.  Since the condition is  based on the characteristic
equation of  the systems,  it  is  applicable to systems described
by  any  state-space  and  transfer  function  models.  As  further
contributions,  some  new  specific  areas  for  the  roots  of  the
characteristic  equation  of  general  fractional  order  control
systems  are  found  so  that  they  reduce  the  computational
burden  of  testing  the  condition  in  some  important  cases,
including  for  robust  stability.  Moreover,  in  the  case  that  the
coefficients are linear function of the uncertain parameters and
the  orders  do  not  have  any  uncertainties,  the  condition  is
adjusted to further reduce computational burden.

The  reminding  sections  of  this  work  are  organized  as
follows.  In  Section II,  some definitions and preliminaries  are
given. The main results are provided in Section III. In Section
IV, illustrative examples are presented. A conclusion is given
in Section V.

II.  Definitions and Preliminaries

N R+,R C

W = N∪{0} I1 > I2
∑I2

i=I1
ci = 0 ci ∈ C

Notations: Suppose  that , ,  and  denote  natural,
positive  real,  real,  and  complex  numbers,  respectively,  and

.  For  let  for  any .

P ⊂ R P≤i = {p ∈ P|p ≤ i} S ⊂ C
S C ∂S

S z ∈ C
arg(z) z

arg(z) ∈ (−π,π] arg(0) = 0

Considering ,  define .  Given ,
assume  that  and  denote  respectively  the  complement
and the boundary points of .  For any ,  unless specified
otherwise,  means the argument principal value of  such
that  and .

δ(s) =
∑I

i=0αisβi I ∈ N βi ∈ R+ i ∈ N≤I

βI > . . . > β1 > β0 = 0 αi ∈ C i ∈W≤I δ(s)
β

β ∈ R+ βi /β ∈ N
i ∈ N≤I δ(s)

δ(s)
β

δint(s) =
∑I

i=0αisβi/β

Definition 1: Take into account the fractional order function
 where ,  for  any ,

,  and  for  any .  Then, 
is called a fractional order function of commensurate order 
if  and  only  if  there  is  a  such  that  for  any

. Otherwise,  is called a fractional order function of
non-commensurate order. In the case where  is a fractional
order  function  of  commensurate  order ,  define

.
Definition  2: Consider  an  LTI  general  fractional  order

system described  by  any  model  with  a  controller  in  a  closed
loop  control  system  where  any  one  of  the  system  and  the
controller  may  be  of  fractional  order.  The  characteristic
equation of the corresponding general fractional order control
system can be written as

δ (s,u) =
I∑

i=1

αi (u) sβi(u)+α0 (u) (1)

u ∈ U U ⊂ RM

M, I ∈ N αi : U → C
β j : U → R+ U i ∈W≤I j ∈ N≤I

βI(u) > βi(u) > 0 αI(u) , 0 u ∈ U
i ∈ N≤I−1

δ(s,u)
u ∈ U δ(s,u)

where ,  is a closed, non-null,  and bounded set,
and .  Suppose  the  functions  and

 are continuous on  for any  and .
Assume ,  and  for  any  and

. The characteristic equation in (1) is of commensur-
ate  order  if  and  only  if  is  of  commensurate  order  for
any . Otherwise,  is of non-commensurate order.

δ(s,u) δpb(s,u) = δ(spb,u)
spb = |s|e jarg(s)

δ(s,u) z ∈ C
δvs(z,U) = {δpb(z,u)|u ∈ U}

Definition  3: The  principal  branch  of  the  characteristic
equation  of  a  general  fractional  order  control  system such  as

 in  (1)  is  defined  as  where
.  Moreover,  the  value  set  of  a  fractional  order

function  such  as  for  a  is  defined  as
.

δ(s)
β

δint(s) δpb(s)
sβ

Remark  1  ([40]): Consider  in  Definition  1  as  a
fractional order function of commensurate order . It follows
that  the roots of  are the mapped roots of  on the
first Riemann sheet by the mapping .

D ⊂ C

u0 ∈ U δpb(s,u0) DC

δpb(s,u) DC u ∈ U

Definition 4: Assume that  be an open set.  Then,  the
characteristic  equation  stated  in  (1)  and  its  corresponding
general fractional order control system are said to be D-stable
for  a  if  and  only  if  has  no  roots  in .
Moreover,  they  are  said  to  be  robust D-stable  if  and  only  if

 has no roots in  for all .
D

{s ∈ C|Im(s) ≥ 0,Re(se− jϕ1 ) < 0,ϕ1 ∈ [0,π/2)}∪ {s ∈ C|Im(s) ≤
Re(se jϕ2 ) < 0 ϕ2 ∈ [0,π/2)}

D ϕ Φ

{s ∈ C|Im(s) ≥ 0
Re(s) < σ1}∪ {s ∈ C|Im(s) ≤ 0,Re(s) < σ2}

D σ
Σ Φ Σ

Definition  5: If  mentioned  in  Definition  4  is  defined  as

0, , ,  then  robust D-stability  and
region  are  referred  to  as  robust -stability  and  region ,
respectively. Furthermore, if D is defined as ,

,  then  robust D-
stability and region  are referred to as robust -stability and
region ,  respectively.  Examples  of  the  regions  and  are
shown  in Fig. 1 [41].  If  the  coefficients  of  the  characteristic
equation are real, since the roots are symmetric with respect to
the real axis, D can be chosen symmetrically, and therefore we
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ϕ = ϕ1 = ϕ2 σ = σ1 = σ2
ϕ1 = ϕ2 = 0 σ1 = σ2 = 0 ϕ σ
use  and .  In  the  case  where

 or ,  the  robust -stability  or -
stability  (D-stability)  is  equivalent  to  the  robust  stability  [31,
Theorem 5].

δ(s)
β

δ(s) ϕ
δint(s) {s ∈ C|Im(s) ≥ 0 arg(s) ≤ β(π/2+ϕ1)}
∪{s ∈ C|Im(s) ≤ 0 arg(s) ≥ −β(π/2+ϕ2)}

Remark  2: Suppose  that  stated  in  Definition  1  is  a
fractional order function of commensurate order . According
to Remark 1, it  is  deduced that  is -stable if  and only if

 has  no  roots  in , 
, .

δ(s)
δpb(s) {s ∈ C|Êmin ≤ |s| ≤ Êmax}

Lemma  1  (Lemma  4  of  [23]): Given  as  defined  in
Definition 1, all roots of  lie in 
where

Êmin =max
{
Ê1min, Ê2min

}
Êmax =min

{
Ê1max, Ê2max

}
Ê1min =min

1,

|α0|/
I∑

i=1

|αi|


1
β1


Ê1max =max

1,

 I−1∑
i=0

|αi|/|αI |


1
βI−βI−1


Ê2min =

 |α0|
|α0|+max

{
|αi|

∣∣∣i ∈ N≤I
} max

{
i
βi

∣∣∣∣i∈N≤I
}

Ê2max =

1+ max
{
|αi|

∣∣∣i ∈W≤I−1
}

|αI |


max

{
I−i
βI−βi

∣∣∣∣i∈W≤I−1
}
.

f (z)
Γ

Γ K
w w = f (z) ΘΓ arg( f (z))

arg( f (z)) z Γ

p
f (z) Γ

Lemma  2  (Theorem  1.2  of  [42]): Let  be  analytic
interior to a simple closed Jordan curve  and continuous and
different from zero on . Let  be the curve described in the

-plane by the point  and let  denote the
net change in  as point  traverses  once over in the
counterclockwise  direction.  Then  the  number  of  zeros  of

 interior to , counted with their multiplicities, is

p =
1

2π
ΘΓ arg( f (z)) = 1/ (2π j)

w
⟲
Γ

ḟ (z)/ f (z)dz.

p K
w = 0

that  is,  is  the  net  number  of  times  that  winds  about  the
point .

III.  Main Results

On  the  issues  related  to  the  robust  stability  of  fractional
order systems using the value set concept,  the zero exclusion
condition plays a key role. In this section, some areas for the
roots  of  the  characteristic  equation  of  a  general  fractional

order  control  system  are  obtained,  and  then  by  using  these
areas,  the  zero  exclusion  condition  is  extended  for  checking
the  robust D-stability  of  general  fractional  order  control
systems.

A.  Areas for the Roots
The  following  theorem  presents  areas  for  the  roots  of  the

characteristic  equation  of  a  general  fractional  order  control
system. These areas will be used to extend and check the zero
exclusion  condition  of  the  robust D-stability  of  general
fractional order control systems.

δ(s,u)

αi β j αi(u) β j(u) i ∈W≤I

j ∈ N≤I u ∈ U δpb(s,u)
{s ∈ C|Emin ≤ |s| ≤ Emax}

Theorem 1: Consider the characteristic equation of a general
fractional  order  control  system, ,  as  described  in
Definition 1. For simplicity, to the end of the theorem assume
that  and  denote  and  for  any  and

.  Then,  for  any  all  roots  of  lie  in  the
area  where

Emin =max {E1min,E2min}
Emax =min {E1max,E2max}

E1min =min

1,


min
u∈U
|α0|

I∑
i=1

max
u∈U
|αi|


1

min
{

min
u∈U
βi

∣∣∣∣∣∣i∈N≤I
} 

E1max =max


1,


I−1∑
i=0

max
u∈U
|αi|

min
u∈U
|αI |


1

min
u∈U
βI−γ1


E2min =


min
u∈U
|α0|

min
u∈U
|α0|+max

{
max
u∈U
|αi|

∣∣∣∣∣ i ∈ N≤I
}


P2min

E2max =

1+
max

{
max
u∈U
|αi|

∣∣∣∣∣ i ∈W≤I−1
}

min
u∈U
|αI |


P2max

γ1 =


0, I = 1

max
{

max
u∈U
βi

∣∣∣∣∣ i ∈ N≤I−1
}
, I ≥ 2

P2min =max

 i
min
u∈U
βi

∣∣∣∣∣∣∣∣ i ∈ N≤I


P2max =max

 I− i
min
u∈U
βI −max

u∈U
βi

∣∣∣∣∣∣∣∣ i ∈W≤I−1

 .
   Proof: The proof is presented in the Appendix. ■

{s ∈ C|arg(s) = Λ,Λ ∈ (−π,π]}

ϕ

The  following  theorem  provides  areas  for  the  roots  of  the
characteristic  equation  of  a  general  fractional  order  control
system  on  the  half-line .  These
areas reduce the computational burden of checking the robust

-stability  compared  with  those  were  introduced  in  existing
works.

δ(s,u)
Theorem 2: Consider the characteristic equation of a general

fractional  order  control  system, ,  as  described  in
Definition 1. For simplicity, to the end of the theorem assume

 

Region Φ Region Σ

Im

ReO
σ1

σ2

ϕ1

ϕ2

Im

ReO

 
Φ ΣFig. 1.     Regions  and  defined in Definition 5.
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αi β j αi(u) β j(u) i ∈W≤I

j ∈ N≤I u ∈ U δpb(s,u)
{s ∈ C|arg(s) = Λ,Λ ∈ (−π,π]}
{s ∈ C|arg(s) = Λ,Rmin ≤ |s| ≤ Rmax}

that  and  denote  and  for  any  and
.  Then,  for  any  if  has  any roots  on the

half-line ,  all  these  roots  lie  in
the area  where

Rmin =

{
0, ∃u ∈ U : α0 = 0
max {R1min,R2min} , otherwise

Rmax =min{R1max,R2max,R3max, R4max,R5max,R6max}

R1min =min

1,


min
u∈U
|α0|

I∑
i=1

max
u∈U
|αi cos(βiΛ)|


1

min
{

min
u∈U
βi

∣∣∣∣∣∣i∈N≤I
} 

R2min =


min
u∈U
|α0|

min
u∈U
|α0|+ max

u∈U, i∈N≤I
|αi cos(βiΛ)|


max

 i
min
u∈U
βi

∣∣∣∣∣∣∣i∈N≤I



R1max =


∞, fc = 0

max

1,


I−1∑
i=0

max
u∈U
|αi cos(βiΛ)|

min
u∈U
|αI cos(βIΛ)|


H1

 , fc = 1

R2max =


∞, fs = 0

max

1,


I−1∑
i=1

max
u∈U
|αi sin(βiΛ)|

min
u∈U
|αI sin(βIΛ)|


H2

, fs = 1

R3max =max

1,


I−1∑
i=0

max
u∈U

[|αi| (|cos(βiΛ)|+ |sin(βiΛ)|)]
min
u∈U

[|αI | (|cos(βIΛ)|+ |sin(βIΛ)|)]


H3
R4max =


∞, fc = 01+ max

u∈U, i∈W≤I−1
|αi cos(βiΛ)|

min
u∈U
|αI cos(βIΛ)|

H4

, fc = 1

R5max =


∞, fs = 0
0, fs = 1, I = 11+ max

u∈U, i∈N≤I−1
|αi sin(βiΛ)|

min
u∈U
|αI sin(βIΛ)|

H5

, fs = 1, I ≥ 2

R6max =

1+
max

u∈U, i∈W≤I−1

[|αi| (|cos(βiΛ)|+ |sin(βiΛ)|)]
min
u∈U

[|αI | (|cos(βIΛ)|+ |sin(βIΛ)|)]


H6

H1 = H2 = H3 =
1

min
u∈U
βI −γ2

H5 =max

 I− i
min
u∈U
βI −max

u∈U
βi

∣∣∣∣∣∣∣∣ i ∈ N≤I−1



H4 = H6 =max

 I− i
min
u∈U
βI −γ3 (i)

∣∣∣∣∣∣∣∣ i ∈W≤I−1


γ2 =


0, I = 1

max
{

max
u∈U
βi

∣∣∣∣∣ i ∈ N≤I−1
}
, I ≥ 2

γ3 (i) =

 0, i = 0
max
u∈U
βi, i ≥ 1

fc =
{

1, ∀u ∈ U : cos(βIΛ) , 0
0, otherwise

fs =

{
1, ∀u ∈ U : sin (βIΛ) , 0
0, otherwise.

   Proof: The proof is presented in the Appendix. ■
B.  Zero Exclusion Condition

The  zero  exclusion  condition  is  extended  for  checking  the
robust D-stability  of  general  fractional  order  control  systems
as a necessary and sufficient condition as follows.

δ(s,u)
U

D ⊂ C
δ(s,u) D+ = {s ∈ D|Im(s) ≥ 0}

D− = {s ∈ D|Im(s) ≤ 0} s ∈ {s ∈ ∂D−|Im(s) =
|s|e− jπ −|s| δ(s,u)

u0 ∈ U δ(s,u0)
0 < δvs(z,U) z ∈ S D = {s ∈ ∂D+∪∂D−|

Emin ≤ |s| ≤ Emax} Emin Emax

Theorem 3: Consider the characteristic equation of a general
fractional  order  control  system, ,  as  described  in
Definition  1.  Suppose  that  is  pathwise  connected.  Let

 be  an  open  set,  given  for  checking  the  robust D-
stability  of .  Define  and

. Also, define every 
0, Re(s) < 0} as , rather than . Then,  is robust
D-stable if and only if there exists a  such that 
is D-stable,  and  for  all 

,  where  and  are  calculated
through Theorem 1.
  Proof: The proof is presented in the Appendix. ■

Remark  3:  From  Theorems  1  and  3,  the  following  special
cases can be concluded:

{s ∈ C|Emin ≤ |s| ≤ Emax} ⊂ D δ(s,u)1)  If ,  then  is  robust D-
stable.

D∩{s ∈ C|Emin ≤ |s| ≤ Emax} = ∅ δ(s,u)
u ∈ U

2)  If  then  is  not D-
stable for any .

Φ

S D
S D = {s ∈ ∂D+∪∂D−|Rmin ≤ |s| ≤ Rmax}

∂D+∪∂D− = ∂Φ = {0}∪ {s ∈ C|arg(s) = π/2 + ϕ1, −π/2−ϕ2}

Λ Λ = π/2+ϕ1 Λ = −π/2−ϕ2 Rmin
Rmax Emin
Emax Rmax−Rmin ≤ Emax−Emin
S D

Φ

Remark 4: Assume that D, mentioned in Theorem 3, can be
considered  as  a  region  defined  in  Definition  5.  From
Theorem 2, it follows that  mentioned in Theorem 3 can be
replaced  by  where

.
(If  one  wants  to  avoid  Theorem  2  calculations,  he/she  can
ignore this remark). It may be noted that Theorem 2 employs

 (  or )  for  calculating  and
 while Theorem 1 does not do so for calculating  and
.  Therefore,  and  accordingly

 introduced  here  is  smaller  than  the  one  introduced  in
Theorem  1  for  checking  the  robust -stability,  and  thereby
causes  a  reduction  in  the  computational  burden  of  checking
the robust D-stability.

ΦNote  that  a  region ,  as  described  in  Definition  5,
corresponds  with  points  of  the  complex  plane  whose
overshoots  are  less  than  a  specific  value.  Furthermore,
considering  Theorem  5  of  [31],  a  fractional  order  system  is
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ϕ1 = ϕ2 = 0
ϕ
ϕ

stable  if  and  only  if  its  characteristic  equation  does  not  have
any roots in the closed right half-plane. Hence, if ,
then the -stability is equivalent to the stability. Therefore, the
robust -stability  is  an  important  case  of  the  robust D-
stability.  It  is  noteworthy that  the works related to the robust
stability  analysis  of  fractional  order  systems  used  theorems
like  Theorem  1  to  check  the  robust  stability  [23]–[25],  [28].
However, here as stated in Remark 4, using Theorem 2 causes
a reduction of the computational burden (see Example 1).

In  the  case  where  the  coefficients  of  the  characteristic
equation of  a  general  fractional  order  control  system are  real
numbers,  the  following  remark  reduces  the  computational
burden of checking the robust D-stability.

αi(u)
δ(s,u)

i ∈W≤I

δ(s,u)

z ∈ C
δvs(z∗,U) = δ∗vs(z,U) ∗

S D
S D = {s ∈ ∂D+|Emin ≤ |s| ≤ Emax}

Remark  5: Suppose  that  the  functions  of  the
characteristic  equation  mentioned  in  Theorem  3  are
real-valued functions for  any .  Therefore,  the roots  of

 are mirror symmetric with respect to the real axis, and
consequently D can  be  chosen  symmetrically  with  respect  to
the  real  axis.  Given ,  it  can  be  shown  easily  that

 where “ ” denotes  the  complex
conjugate.  Hence,  mentioned  in  Theorem  3  can  be
replaced by  for reducing the
computational burthen of checking the robust D-stability.

Φ αi(u)
δ(s,u)

i ∈W≤I S D
S D

S D = {s ∈ ∂D+|Rmin ≤ |s| ≤ Rmax}

Remark 6: If D, mentioned in Theorem 3, can be considered
as a region  defined in Definition 5, and the functions 
of the characteristic equation  are real-valued functions
for any , then  from Theorem 3 can be replaced by
the intersection of two sets  introduced in Remarks 4 and 5,
i.e., .

δ(s,u0)For  testing  whether  or  not  from  Theorem  3  is D-
stable, the following remark is presented.

δ(s,u0)

Remark 7: Take into account Theorem 3. Assume that none
of  the  special  cases  stated  in  Remark  3  apply.  Checking
whether  or  not  (the  characteristic  equation  of  the
nominal  control  system)  is D-stable  can  be  performed  as
follows:

Ω+ = {s ∈ DC |Im(s) ≥ 0
Emin ≤ |s| ≤ Emax} Ω− = {s ∈ DC |Im(s) ≤ 0,Emin ≤ |s| ≤ Emax}
Γ+ = ∂Ω+ Γ− = ∂Ω− s ∈ {s ∈ Γ−|Im(s) =

Re(s) < 0} |s|e− jπ −|s| K+ K−

δpb(s,u0)
Γ+ Γ−

p+ p−

K+ K−

δpb(s,u0)
{s ∈ C||s| < Emin, |s| > Emax}

δ(s,u0) δpb(s,u0)
Γ+ Γ− K+

K− p+ = p− = 0
r
⟲
Γ+
δ̇pb(s,u0)/

δpb(s,u0)ds =
r
⟲
Γ− δ̇pb(s,u0)/δpb(s,u0)ds = 0

1)  In  the  general  case,  define ,
, ,

, and . Also, define every 
0,  as , rather than . Let  and  be the
curves obtained due to  when s traverses respectively
the  curves  and  once  over  in  the  clockwise  direction.
Assume  that  and  are  respectively  the  net  number  of
times that  and  wind about the origin in the clockwise
direction.  Regarding  Lemma  1,  has  no  roots  in

.  Therefore,  from  Lemma  2,  it
follows  that  is D-stable  if  and  only  if  is
analytical  inside  and ,  and continuous on them,  and

 do not pass the origin, and  (or 
).

αi(u)
i ∈W≤I K+ p+

δ(s,u0) δpb(s,u0)
Γ+ K+

p+ = 0
r
⟲
Γ+
δ̇pb(s,u0)/δpb(s,u0)ds = 0

2)  In  the  case  where  the  functions  are  real-valued
functions  for  any ,  define  and  similarly  to  the
previous  provision.  Considering  Remark  5  and  Lemma  2,

 is D-stable if and only if  is analytical inside
 and  continuous  on  it,  does  not  pass  the  origin,  and

 (or ).
Φ3) In the case where D can be considered as a region  and

δ(s,u0) δ(s,u0) is  of  commensurate  order,  the D-stability  of 
can be verified by employing Remark 2.

δ(s,u)
αi(u)

i ∈W≤I

In  Theorem 3,  if  does  not  have  any  uncertainties  in
its  orders,  and  the  coefficients  are  linear  functions  for
any ,  the  following  theorem  is  very  effective  for
decreasing the computational burden of the robust D-stability.

Theorem  4: Assume  that  the  characteristic  equation  of  a
fractional order control system is

δ̂(s,u) =
I∑

i=1

αi(u)sβi +α0(u) (2)

u ∈ U U ⊂ RM

M, I ∈ N
αi : U → C U

i ∈W≤I βi ∈ R+ i ∈ N≤I

∂δ̂vs(z,U) ⊆ δ̂vs(z,UE) z ∈ C UE
U

where ,  is a  closed,  non-null,  bounded,  path-
wise  connected,  and  convex  set,  and .  Suppose  that
the  functions  are  linear  and  continuous  on  for
any .  Let  for  any .  Then,

 for any  where  is a set includ-
ing  the  exposed  edges  of  (for  more  information  about  the
edges  and  the  exposed  edges  of  an  uncertain  set  see,  e.g.,
[22]).
  Proof: The proof is presented in the Appendix. ■

αi(u)
δ(s,u)

i ∈W≤I

δ(s,u)
0 < δvs(z,U)

0 < δvs(z,UE)

Remark  8: Suppose  that  the  functions  of  the
characteristic  equation  mentioned  in  Theorem  3  are
linear  functions  for  any .  Moreover,  assume  that  the
orders  of  do  not  have  any  uncertainties.  According  to
Theorem 4, the expression  can be replaced by the
expression  which  significantly  reduces  the
computational  burden  of  calculating  the  zero  exclusion
condition.

Note  that  Theorems 1–3 are  applicable  to:  systems of  both
commensurate  and  non-commensurate  orders;  systems  with
complex  coefficients;  and  systems  with  nonlinear
uncertainties  in  both  the  coefficients  and  the  orders.
Moreover,  Theorem  4  is  applicable  to:  systems  of  both
commensurate  and  non-commensurate  orders;  systems  with
complex  coefficients;  and  systems  with  linear  uncertainties
only in the coefficients.

0 < δvs(z,U) 0 < δvs(z,UE)
δvs(z,U) δvs(z,UE)

The condition  and  can be checked
respectively  by  plotting  and  graphically,
and  then  by  considering  their  boundary  with  respect  to  the
origin.

Overall,  the  steps  of  checking  the  robust D-stability  of  a
general fractional order control system with the characteristic
equation described in (1) can be outlined as follows:

Emin Emax1) Calculate  and  through Theorem 1.

δ(s,u)
2)  If  one  of  the  special  cases  stated  in  Remark  3  is

applicable, determine the robust D-stability of  through
Remark 3. Otherwise, go to the next step.

u0 ∈ U δ(s,u0)
δ(s,u0)

δ(s,u)

3)  For  a ,  investigate  whether  or  not  is D-
stable  using  Remark  7.  If  is D-stable,  go  to  the  next
step. Otherwise,  is not robust D-stable.

S D4)  Based  on  Theorem  3,  Remarks  4–6,  determine  for
which the zero exclusion condition should be checked.

U UE

5)  According  to  Remark  8,  determine  whether  the  zero
exclusion condition should be checked for  or .

δvs(z,U) δvs(z,UE)
z ∈ S D δvs(z,U)

u U

6)  Plot  or ,  depending  on  the  previous
step,  for  all .  In  the  case  of  plotting ,  choose
appropriate number of the vectors  from both  and its edges
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∂δvs(z,U)such that  is recognizable clearly.
δ(s,u)7) Regarding Theorem 3, determine whether  is robust

D-stable or not.

IV.  Illustrative Examples

σ

ϕ

In this section, three numerical examples are given to verify
the obtained results  in  this  paper.  Example 1  investigates  the
robust  stability  of  a  closed  loop  control  system  whose
characteristic  equation  is  a  fractional  order  function  of
commensurate  order  with  real  coefficients  and  linear
uncertainties  only  in  the  coefficients.  The  efficiency  of
Theorem  2  is  shown  in  this  example.  In  Example  2,  a
fractional  order  controller  of  incommensurate  order  is
suggested  to -stabilizing  a  space  tether  system  whose
characteristic  equation  coefficients  are  nonlinear  and  real-
valued  functions  of  uncertainties.  Finally,  Example  3  studies
the  robust -stability  of  motion  control  system  of  a  satellite
whose  characteristic  equation  has  complex  coefficients,  and
uncertainties exist in both the orders and the coefficients. The
criteria introduced in the literature are challenged in Examples
2 and 3, while the presented theorems in this paper overcome
the challenges well.

Example  1: In  [25],  the  robust  stability  of  the  fractional
order system

H (s) =
[0.5,2.5] s0.4+ [1,3]

[0.5,1.5] s0.8+ [3,5] s0.4+ [1,5]
C(s) = 5+0.5s−0.4

ϕ
ϕ = 0

with the fractional  order  PI  controller  in  a
closed loop control system has been studied. Let the aim be to
check the robust -stability of the closed loop control system
for , that it is equivalent to the robust stability, by using
the results presented in this paper. The characteristic equation
of the closed loop control system is obtained as

δ (s,u) = u3s1.2+ (u4+5u1)s0.8+ (u5+5u2+0.5u1)s0.4+0.5u2

u ∈ Uwhere  and

U =
{

u = [u1,u2, . . . ,u5]T
∣∣∣u1 ∈ [0.5,2.5] ,u2 ∈ [1,3] ,

u3 ∈ [0.5,1.5] ,u4 ∈ [3,5] ,u5 ∈ [1,5]

}
.

δ(s,u) β = 0.4

δ(s,u0) u0 = [1.5,2,1,4,3]T ϕ

δpb(s,u)
S 1 = {s ∈ C|1.7199×10−5 ≤ |s| ≤ 5.8142×104}

max |αi(u)| = |αi(maxu1, ...,maxu5)|
min |αi(u)| = |αi(minu1, ...,minu5)| u ∈ U

i ∈W≤3

S 2 = {s ∈ C|Emin ≤ |s| ≤ Emax} Emin = 8.0127×10−5

Emax = 1.2480×104 S 2
S 1 fc = fs = 1
δpb(s,u) {s ∈ C|arg(s) = π/2}

S 3 = {s ∈ C|arg(s) = π/2,5.4200×10−2 ≤ |s| ≤ 7.7760×
S 3

S 1 S 2

δvs(z,U) z ∈ S D = {s ∈ C|arg(s) = π/2,5.4200×10−2

≤ |s| ≤ 7.7760×103}

 is  of  commensurate order  and has the multi-
linear  uncertainties.  In  [25],  it  has  been  demonstrated  that

 is  stable  for ,  so  it  is -stable.
According to Theorem 3 of [25], all roots of  lie in the
area . For using
Theorems 1 and 2 consider 
and  over  for  any

.  By  using  Theorem  1,  the  roots  lie  in  the  area
 where  and

.  is  smaller  and  has  less  conservatism
than . However, by using Theorem 2, where , the
roots of  on the half-line  lie in the
area 
103}. It can be found that  has much less conservatism than

 and ,  and  accordingly  it  reduces  the  computational
burden  in  order  to  check  the  zero  exclusion  condition.
Regarding  Remarks  4–6  it  is  sufficient  to  plot  the  value  set

 for  all 
.  Moreover,  according  to  Remark  8,  one

δvs(z,UE) δvs(z,U) z ∈ S D
δvs(z,UE) 3000 u

UE z ∈ S D 0.01 |s| |s| ≤ 1
|s| > 1 δvs(z,UE)

0 < δvs(z,U) z ∈ S D
δ(s,u)

ϕ

can  plot  instead  of  for  any .  The
value set  is plotted for  vectors , chosen from

, per  with the step  and 1 over  for  and
,  respectively.  The  graph  of  is  demonstrated

in Fig. 2 after  zooming  in  on  the  origin.  According  to Fig. 2
and Remark 8, it follows that  for all . Thus,
regarding  Theorem  3, ,  and  consequently  the  closed
loop  control  system  is  robust -stable,  or  in  other  words  is
robust stable. This result is the same result obtained in [25].

λ

λ = 1
θ

10
x = [x1, x2, x3, x4]T =

[λ−1, λ̇, θ, θ̇]T

Example 2: Consider  the deployment  of  a  tethered satellite
from a  space  shuttle  studied  in  [43].  Let  is  the  normalized
length  of  the  tether  such  that  when  the  tether  deploys
completely.  Also,  allow  and T be  the  pitch  angle  and  the
tether  tension  as  the  input,  respectively.  The  differential
equations  of  this  system  have  been  introduced  in  [43].
Supposing  percent  uncertainties  in  the  system  parameters
and  defining  the  state  vector 

,  the  state-space  equations  of  the  system  are
formed as

ẋ =


0 1 0 0
u1 0 0 u2
0 0 0 1
0 u3 u4 0

 x−T (3)

u ∈ Uwhere  and

U =
{

u = [u1,u2,u3,u4]T
∣∣∣u1 ∈ [2.7,3.3] ,u2 ∈ [1.8,2.2],

u3 ∈ [−2.2,−1.8] ,u4 ∈ [−3.3,−2.7]

}
.

[λ, λ̇, θ, θ̇]T = [0,0,0,0]T [λ, λ̇, θ, θ̇]T =

[1,0,0,0]T

σ σ = −0.3

The  goal  is  to  deploy  the  tether  from  the  initial  state
 to  the  final  state 

 in a fast and low overshoot manner. Let us achieve
this goal by -stabilizing the system for . Consider a
fractional order control law as

T = d
√

2/10x2− ẋ2+4x1+1.75x2 (4)

d
√

2/10x2
√

2/10 x2where  is th  order  derivative  of . Substitut-
ing (4) in (3),  and then taking Laplace transform, the charac-
teristic equation of the closed loop control system can be ob-
tained as

 

5

5

4

4

3

3

2

2

1

1

0

0
−1
−1

Re

Im

 
δvs(z,UE) z ∈ S DFig. 2.     Drawing  for all  in Example 1.
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δ (s,u) = s3+
√

2/10+1.75s3+ (4−u1−u2u3) s2

−u4s1+
√

2/10−1.75u4s−4u4+u1u4. (5)
δ(s,u)

σ
max |αi(u)|

min |αi(u)|
δpb(s,u)

{s ∈ C|Emin ≤ |s| ≤ Emax} Emin = 0.1052
1.0878×106 u0 = [3,2,−2,−3]T

Ω+ Γ+ s
Γ+

δpb(s,u0) K+

K+

K+

p+ = 0 δ(s,u0)
Γ+

δ(s,u0) σ

{s∈C|Im(s) = 0,−0.3≤Re(s)≤−0.1052}∪ {s ∈ C|Re(s) = −0.3
0 ≤ Im(s) ≤ 1.0878×106}

δ(s,u)
δvs(z,U) 400 u

U S D
0.005 Re(s) Im(s)

σ

 is of non-commensurate order. In the following, it is
demonstrated that the closed loop control system is robust -
stable. For using Theorem 1, one can calculate  and

 similar  to  the  way  described  in  Example  1.
According  to  Theorem 1,  all  roots  of  lie  in  the  area

 where  and Emax =
. Let . According to Remark 7,

consider  and  as  displayed in Fig. 3.  When the  point 
traverses  once over in the direction indicated, the path due
to  denoted by  is obtained as drawn in Fig. 4. It is
visible  that  does  not  pass  the  origin,  and  also  the  net
number  of  times  that  winds  about  the  origin  in  the
clockwise direction is  zero,  i.e., .  Moreover,  is
analytical inside  and continuous on it. Therefore, regarding
Remark  7,  is -stable.  Regarding  Theorem  3  and
Remark  5,  the  value  set  should  be  plotted  for  the  set SD =

,
.  Note  that  Remark  8  can  not  be

applied  here  because  the  coefficients  of  have  a
nonlinear structure.  The value set  for  vectors ,
chosen from  and its edges, per element of  with the step

 over  or ,  depending on which is varying, is
plotted in Fig. 5. It is seen from Fig. 5 that the value set does
not  include  the  origin.  Hence,  according  to  Theorem  3,  the
closed loop control system is robust -stable.

Let us compare the results achieved in this paper with those
were  published  in  the  literature.  There  is  no  condition  by

σ √
2/10

0.14
δ(s,u)

β = 0.02

which  the  control  system  studied  in  this  example  can  be
analyzed  for  the  robust D-stability.  However,  someone  can
use  approximations  to  be  able  to  employ  the  theorems
introduced  in  [32]  to  test  the  robust -stability  of  the
characteristic equation in (5).  For this,  imagine that  is
approximated  as .  With  this  approximation,  the
characteristic equation  in (5) transforms to a fractional
order function of commensurate order . Consider

δint (s,u) = s3.14/β+1.75s3+ (4−u1−u2u3) s2

−u4s1.14/β−1.75u4s−4u4+u1u4.

σ δint(s,u)
δint(s,u)

σ√
2/10

√
2/10

σ

σ

σ

Regarding  part  1  of  Theorem  3.7  of  [32],  the  closed  loop
control  system is  robust -stable  if  is  robust  stable.
Because  is an integer order polynomial with the order
157, investigating its stability is too insufferable, but using the
condition presented here and a simple graphical approach it was
illustrated  that  the  control  system is  robust -stable,  without
approximating .  Now,  Assume  that  can  be
approximated as 0.1. Using the theorems presented in this paper,
it can be illustrated that the closed loop control system is not
robust -stable. In this case, using Theorem 3.7 of [32] does not
provide any result, because the control system is not robust -
stable, and Theorem 3.7 presents just sufficient, not necessary
and sufficient, conditions for the robust -stability. Note that
the results presented in [33], [34] are associated with systems
whose  coefficients  are  equal  to  the  uncertain  parameters  and
accordingly are not applicable here where the coefficients are
nonlinear functions of the uncertain parameters.

1.1804×10−3

u ∈ U

For  the  numerical  simulation  of  the  closed  loop  control
system,  consider  a  220  km orbit  altitude,  rad/s
orbital  rate,  and 100 km tether  length [44].  The tether  length
obtained from numerical  simulations is  plotted in Fig. 6 with
red  solid  line  for  10  vectors .  In  [44],  an  integer  order
control  law  was  suggested  by  which  the  results  of  the
simulations  are  also  plotted  in Fig. 6 with  blue  dashed  line.
From Fig. 6,  it  follows  that  the  responses  of  the  closed  loop
control  system  by  the  fractional  order  control  law  are  faster
and have lower overshoot than the integer order one.

Example  3: The  characteristic  equation  of  motion  of  a
satellite,  obtained  from  nonlinear  equations  by  linearizing  as
stated in [38], is

 

Im

Re

Γ +

Emax
σ Emin

Ω +

 
Γ+ σ δ(s,u0)Fig. 3.     Curve  for checking the -stability of  in Example 2.

 

 

−1.5 −1.0 −0.5 0 0.5 1.0 1.5
−1.5

−1.0

−0.5

0

0.5

1.0

1.5 ×10
19

×1019Re

Im

−10 −5 0 5
−5
0
5

K+

 
δpb(s,u0) s Γ+Fig. 4.     The path obtained by  when  traverses  in Fig. 3.

 

 

5

4

3

2

1

0

−1

0.2

0

−0.2−0.1 0 0.1
3210−1−2−3

Re

Im

 
δvs(z,U) z ∈ S DFig. 5.     Plotting  for all  in Example 2.
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δ (s) = s3+ (0.0359+ jq3) s2− (q2− j0.0134) s+ jq1

q1 = 0.1646 q2 = 0.1583 q3 = 2.3292
T0λ = −x−1

c dq4 xc/dtq4

T0λ xc dq4/dtq4

q4 ∈ [0.3,0.5]
T0λ

q1 q2 q3

where , ,  and .  Consider
the  state  feedback  control  input ,  where

, , and  respectively are a parameter correspond-
ing  to  the  thrust  force  of  motor,  displacement,  and  fractional
order derivative operator with the order . By ap-
plying , and embedding some uncertainties in the paramet-
ers , , and , the characteristic equation of the closed loop
control system is obtained as

δ (s,u) = s3+ (0.0359+ ju3) s2− (u2− j0.0134) s− su4 + ju1

u ∈ Uwhere  and

U =
{

[u1,u2,u3,u4]T
∣∣∣u1 ∈ [−0.2,0.2] ,

u2 ∈ [0.1,0.5] ,u3 ∈ [2,3] ,u4 ∈ [0.3,0.5]

}
.

u4 δ(s,u)

ϕ

ϕ1 = ϕ2 = 0.05π
δpb(s,u)

{s ∈ C|Emin ≤ |s| ≤ Emax} Emin = 0 Emax = 4.7004
u0 = [0.1,0.3,2.5,0.4]T

Ω+ Ω− Γ+ Γ− s
Γ+ Γ−

δpb(s,u0) K+ K−

K+

K−

K+ K−

p+ = p− = 0
δ(s,u0) ϕ

ϕ

Due  to  the  changes  of  the  order ,  is  a  fractional
order  function of  both  commensurate  and non-commensurate
orders.  Let  the  aim  be  to  check  the  robust -stability  of  the
closed  loop  control  system  for .  Using
Theorem  2,  all  roots  of  lie  in  the  area

 where  and .
Suppose .  Regarding  Remark  7,
consider , , ,  and  as  shown  in Fig. 7.  When 
traverses  and  once over in the directions indicated, the
paths due to  respectively denoted by  and  are
obtained  as  plotted  in Fig. 8.  As  it  is  specified  in Fig. 8,  a
window  zooming  in  around  the  origin  of Fig. 8 is  also
displayed  in Fig. 9.  From Figs. 8 and 9,  it  is  visible  that 
and  do not pass the origin, but the net number of times that

 and  wind about the origin in the clockwise direction is
0 and 2, respectively. Therefore,  does not hold. It
follows  that  is  not -stable,  and  accordingly,  the
closed loop control system is not robust -stable.

δ(s,u) ϕ

δ(s,u)

S D = {s ∈ C|arg(s) = 0.55π 0 < |s| ≤
4.7004}∪ {0}∪ {s ∈ C|arg(s) = −0.55π,0 < |s| ≤ 4.7004}

δvs(z,U)
800 u U S D

0.05 |s|

Although  it  was  determined  that  is  not  robust -
stable, let us plot the value set of . One can use Remark
4, but let us ignore that here. Regarding Theorem 3, the value
set  should be plotted for , 

.  Note
that Remark 8 can not be used here. The value set  for

 vectors , chosen from  and its edges, per element of 
with the step  over  is depicted in Fig. 10. It can be seen

δ(s,u0) ϕ

that the value set includes the origin. Therefore, in addition to
that  is not -stable, the zero exclusion condition is not
also held.

It is notable that the general fractional order control system
studied  in  this  example  is  of  both  commensurate  and
incommensurate  orders  with  complex  coefficients,  and
uncertainties  in  both the  coefficients  and the orders.  There  is
no condition to analyze the D-stability of such systems in the
literature  while  the  condition  presented  in  this  paper  is
applicable to these systems.
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Fig. 6.     The responses of system (3) by the fractional order control law (4)
and the integer order one suggested in [44].
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V.  Conclusion

This paper has investigated the robust D-stability test of LTI
general  fractional  order  control  systems.  The  characteristic
equation of these systems may be of both commensurate and
non-commensurate  orders,  may  have  complex  coefficients,
and  may  have  uncertainties  in  both  its  coefficients  and  its
orders.  Moreover,  the  uncertainties  can  have  a  nonlinear
structure.  For  the  roots  of  the  characteristic  equation,  some
new  specific  areas  have  been  found.  These  areas  reduce  the
computational burden of testing the robust D-stability in some
important cases, specially in the robust stability case. The zero
exclusion  condition  has  been  extended  for  the  robust D-
stability  of  these  systems,  and  a  necessary  and  sufficient
condition has  been derived.  Furthermore,  in  the  case  that  the
coefficients have a linear structure and the uncertainties do not
exist in the orders, the condition has been adjusted for further
computational  burden  reduction.  Three  numerical  examples
have been studied to verify the merits of the presented results.
For  future  works,  extending  the  results  achieved  here  to
systems  with  time  delays  and  also  deriving  conditions  for
designing  a  robustly D-stabilizing  fractional  order  controller
may be considered. It is notable that since the D-stability deals
with  the  location  of  roots  of  the  characteristic  equation,  it  is
not  extendable  to  linear  parameter-varying  systems  and
nonlinear systems.
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Appendix

U ⊂ RM

αi β j i ∈W≤I

j ∈ N≤I

min |αi| max |αi| minβ j maxβ j u ∈ U
i ∈W≤I j ∈ N≤I Ê1min Ê2min

β j

Proof  of  Theorem  1: Because  is  a  bounded  and
closed set, according to Theorem 17.T of [45], it is a compact
set. Moreover, since  and  are continuous for any 
and ,  regarding Theorem 17.T of  [45],  there  are  finite
values for , , , and  over  for
any  and .  Now,  for  and  stated  in
Lemma 1, regarding that the orders  are uncertain, one can
write

min
u∈U

min

1,

|α0|/
I∑

i=1

|αi|


1
min

i∈N≤I
βi




≥min

1,


min
u∈U
|α0|

I∑
i=1

max
u∈U
|αi|


1

min
u∈U, i∈N≤I

βi
 = E1min

min
u∈U


 |α0|
|α0|+max

{
|αi|

∣∣∣i ∈ N≤I
} max

{
i
βi

∣∣∣∣i∈N≤I
}

≥


min
u∈U
|α0|

min
u∈U
|α0|+ max

u∈U, i∈N≤I
|αi|


P2min

= E2min.

Êmin ≤ 1 Ê1min Ê2min
δ(s,u)

u ∈ U E1min
E2min Emin u ∈ U
δpb(s,u) {s ∈ C||s| < Emin}

u ∈ U
δpb(s,u) {s ∈ C||s| > Emax}

It  is  notable  that ,  so  minimizing  and 
involves maximizing their powers. Using Lemma 1 on 
for any  and regarding the relations provided for ,

,  and ,  it  follows  that  for  any  the  function
 does not have any roots in the area .

One  can  similarly  prove  that  for  any  the  function
 does not have any roots in the area .

∃u ∈ U : α0 = 0
δ(0,u) = 0 Rmin = 0

|s| > R1max,R2max,R3max,R4max,R5max,R6max
|s| < R1min,R2min α0 , 0 u ∈ U

|δ(s,u)| > 0
|s| > R1max |s| < R2min

α0 , 0 u ∈ U

Proof  of  Theorem  2: It  is  obvious  that  if ,
then ,  and  consequently .  For  proving  the
rest  of  the  theorem,  it  is  sufficient  to  prove  that  if

 holds and also if
 when  for  any  holds,  then  one

will have . For the sake of brevity in the proof, let
us  prove  only  two  cases  and  when

 for any . Similarly, the other cases can be proved.
From (1) we have

δpb
(
|s|e jΛ,u

)
=

I∑
i=0

αi cos(βiΛ) |s|βi + j
I∑

i=1

αi sin(βiΛ) |s|βi .

|δpb(s,u)| > 0
u ∈ U

Hence,  for  we  have ,  we  must  have  for  any

µ =

∣∣∣∣∣∣∣
I∑

i=0

αi cos(βiΛ) |s|βi

∣∣∣∣∣∣∣+
∣∣∣∣∣∣∣

I∑
i=1

αi sin(βiΛ) |s|βi

∣∣∣∣∣∣∣︸                   ︷︷                   ︸
Z1≥0

> 0. (6)

Furthermore,  according  to  the  triangle  inequality,  we  can
write

∀ξ,ρ,τ ∈ R : |ξ+ρ+τ| ≥ |ξ| − |ρ+τ| ≥ |ξ| − |ρ| − |τ| . (7)
|s| > R1max fc = 1 u ∈ UCase : If , for any  one can write

(6), (7)⇒ µ ≥ |αI cos(βIΛ)| |s|βI

−
I−1∑
i=0

|αi cos(βiΛ)| |s|βi +Z1 = µ1. (8)

fc = 0
R1max

R1max =∞ fc = 1
u ∈ U

It  is  notable  that  if ,  one  cannot  drive  (8),  and
accordingly  it  cannot  be  obtained  some  result  for .
Therefore, .  Supposing  the  proof  can  be
pursued for any  as follows:

|s| > R1max⇒ |s| > 1 (9)
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max
u∈U, i∈W≤I−1

βi = γ2 (10)

(9), (10)⇒∀i ∈W≤I−1 : |s|γ2 ≥ |s|βi (11)

|s| > R1max
(9)
⇒,H1 > 0|s|

1
H1 >

I−1∑
i=0
|αi cos(βiΛ)|

|αI cos(βIΛ)| (12)

(8), (11)⇒ µ1 ≥ |αI cos(βIΛ) ||s|min
u∈U
βI

−
I−1∑
i=0

|αi cos(βiΛ)||s|γ2 +Z1

= |αI cos(βIΛ)| |s|γ2

|s|
1

H1 −

I−1∑
i=0
|αi cos(βiΛ)|

|αI cos(βIΛ)|


+Z1

(12)
⇒ µ1 > 0

(8)
⇒µ > 0.

|s| < R2min α0 , 0 u ∈ U

u ∈ U

Case  when  for  any :  we  can  write
for any 

(6), (7)⇒ µ ≥ |α0| −
I∑

i=1

|αi cos(βiΛ)| |s|βi +Z1. (13)

By defining

G =
min
u∈U
|α0|

min
u∈U
|α0|+ max

u∈U, i∈N≤I
|αi cos(βiΛ)| ≤ 1 (14)

H =max

 i
min
u∈U
βi

∣∣∣∣∣∣∣∣ i ∈ N≤I

 (15)

one has

(15)⇒ H = 1/min


min
u∈U
βi

i

∣∣∣∣∣∣∣∣ i ∈ N≤I

 (16)

|s| < R2min⇒ |s| <GH (17)

(17)⇒ |s| < 1 (18)

(13)⇒ µ ≥ |α0|
1− I∑

i=1

|αi cos(βiΛ)|
|α0|

|s|min
u∈U
βi

+Z1 = µ2 (19)

(14), (19)⇒ µ2 ≥ |α0|
1− (

1
G
−1

) I∑
i=1

|s|i
min
u∈U
βi

i

+Z1 = µ3 (20)

(16), (18), (20)⇒ µ3

≥ |α0|
1− (

1
G
−1

) I∑
i=1

(
|s|1/H

)i
+Z1 = µ4 (21)

(17), (21) ⇒ µ4 > |α0|
1− (

1
G
−1

) ∞∑
i=1

Gi

+Z1

= |α0|
(
1−

(
1
G
−1

)
G

1−G

)
+Z1

= Z1⇒ µ4 > 0⇒ µ > 0.

S1,S2 ⊂ C
S̄ 1 = S1∪∂S1 S1\S2 = {x ∈ S1|x < S2}

Proof  of  Theorem  3: For  proving  this  theorem,  the
following  lemmas  are  needed.  Here,  for  define

 and .
Q

CN N ∈ N
h : Q̄× [0,1]→ CN

s ∈ Q h(s, t) , 0
s ∈ ∂Q t ∈ [0,1] h(s,0) h(s,1)

Q

Lemma 3 (Theorem 4 of [46]): Assume  is a bounded and
open  subset  of  where .  Suppose  that

 is a continuous mapping in its domain and
analytical for any . Further, suppose that  holds
for any  and . Then,  and  have the
same number of zeros in .

δ(s,u)
U

D ⊂ C 0 < δvs(z,U)
z ∈ S D = {s ∈ ∂D+∪∂D−|Emin ≤ |s| ≤ Emax} Emin
Emax D+ D−

δpb(s,u1) δpb(s,u2)
DC u1,u2 ∈ U

Lemma 4: Consider the characteristic equation of a general
fractional  order  control  system, ,  as  described  in
Definition  1.  Suppose  that  is  pathwise  connected.  Let

 be  an  open  set.  If  for  all
,  where  and

 are  define  as  in  Theorem  1,  and  and  as  in
Theorem  3,  then  and  have  the  same
number of roots in  for any .

U
u : [0,1]→ U u(0) = u1

u(1) = u2 u1,u2 ∈ U Us = {u(t)|t ∈ [0,1]} Us

δpb(s,u) E = {s ∈ DC ||s| > Emax}
u ∈ Us 0 < δvs(z,U)

z ∈ S D = {s ∈ ∂D+∪∂D−|Emin ≤ |s| ≤ Emax}
z ∈ ∂D Q = {s ∈ DC\∂D||s| <

Emax+ κ,κ ∈ R+} h : Q̄× [0,1]→ C h(s, t) = δpb(s,u(t))
δpb(s,u) u ∈ Us

h(s, t) t ∈ [0,1]
0 < δvs(z,U) z ∈ ∂D+∪∂D−

h(s, t) , 0 s ∈ ∂Q t ∈ [0,1]
h(s,0) h(s,1)

δpb(s,u1) δpb(s,u2)
Q δpb(s,u1) δpb(s,u2)

u1,u2 ∈ U
Q 0 < δvs(z,U)

z ∈ ∂D+∪∂D− δpb(s,u1) δpb(s,u2)
∂D

DC

Proof: Since  is a pathwise connected set, there exists the
continuous  function  such  that  and

 for any .  Let .  is  a
bounded  and  closed  set.  From  Theorem  1  it  is  deduced  that

 does not have any roots in  for
any ,  and  also  if  holds  for  all

 then  it  holds  for
all ,  too.  Consider 

 and  as .
Considering that  for  any  and accordingly  the
function  for any  does not have any roots in E,
and also regarding that  for all , it is
concluded that  for any  and . Hence,
based on Lemma 3, the functions  and , which are
equal  to  and ,  respectively,  have the  same
number  of  roots  in .  Therefore,  and  for
any  do not have any roots in E, and have the same
number  of  roots  in .  Further,  considering  that 
for all , the functions  and  do
not have any roots on . Therefore, these functions have the
same number of roots in .

δpb(s,u)
u ∈ U DC δ(s,u)

δ(s,u)
δpb(s,u) , 0

s ∈ {∂D+∪∂D−} ⊂ DC u ∈ U

Now, the proof of  Theorem 3 can be presented as  follows:
Necessary  condition:  regarding  Lemma  4,  for  any

 has no roots in . Therefore,  is robust D-stable.
Sufficient  condition:  according  to  Definition  4,  if  is
robust D-stable,  then  for  any

 and .
u = [u1,u2, . . . ,uM]T

αi(u) i ∈W≤I
Proof  of  Theorem  4: By  defining ,  the

functions  for any  can be rewritten as

αi (u) = αi0+αi1u1+αi2u2+ · · ·+αiMuM (22)
αim ∈ C i ∈W≤I m ∈W≤M s ∈ C

β̂ ∈ R
where  for any  and . For a  and

 we have
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sβ̂ = |s|β̂
[
cos

(
arg(s) β̂

)
+ jsin

(
arg(s) β̂

)]
. (23)

Substituting (22) in (2) and employing (23, one gets

δ̂ (z,u) =
M∑

m=1

um

 I∑
i=1

αim|z|βi cos
(
arg(z)βi

)
+α0m


+

I∑
i=1

αi0|z|βi cos
(
arg(z)βi

)
+α00

+ j

 M∑
m=1

um

 I∑
i=1

αim|z|βi sin
(
arg(z)βi

)
+α0m


+

I∑
i=1

αi0|z|βi sin
(
arg(z)βi

)
+α00

 . (24)

U C

U ∂δ̂vs(z,U)
UE ∂δ̂vs(z,U) ⊆ δ̂vs(z,UE)

z ∈ C

From  (24)  it  is  seen  that  the  real  part  is  related  with  the
imaginary  part  linearly,  and  viceversa.  It  follows  that  (24),
which  is  a  linear  mapping  from  to ,  is  a  polygon  whose
exposed  edges  and  vertices  are  the  mapping  of  the  exposed
edges  and  the  vertices  of .  Therefore,  can  be
obtained  from .  Hence,  for  any

.
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