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    Abstract—Many effective  optimization algorithms require par-
tial  derivatives  of  objective  functions,  while  some  optimization
problems’ objective  functions  have  no  derivatives.  According  to
former research studies,  some search directions are obtained us-
ing the quadratic hypothesis of objective functions.  Based on de-
rivatives, quadratic  function  assumptions,  and  directional  deriv-
atives, the  computational  formulas  of  numerical  first-order  par-
tial  derivatives,  second-order  partial  derivatives,  and  numerical
second-order  mixed  partial  derivatives  were  constructed.  Based
on  the  coordinate  transformation  relation,  a  set  of  orthogonal
vectors  in  the  fixed coordinate  system was  established according
to the  optimization  direction.  A  numerical  algorithm  was  pro-
posed, taking the second order approximation direction as an ex-
ample. A large stepsize numerical algorithm based on coordinate
transformation was proposed.  Several  algorithms were validated
by an unconstrained optimization of the two-dimensional Rosen-
brock objective function. The numerical second order approxim-
ation  direction  with  the  numerical  mixed  partial  derivatives
showed good results.  Its  calculated amount is  0.2843% of  that of
without  second-order  mixed  partial  derivative.  In  the  process  of
rotating  the  local  coordinate  system  360°,  because  the  objective
function is  more complex than the quadratic  function,  if  the nu-
merical direction derivative is used instead of the analytic partial
derivative,  the  optimization  direction  varies  with  a  range  of
103.05°.  Because  theoretical  error  is  in  the  numerical  negative
gradient direction, the calculation with the coordinate transform-
ation is 94.71% less than the calculation without coordinate trans-
formation. If there is no theoretical error in the numerical negat-
ive gradient direction or in the large-stepsize numerical optimiza-
tion algorithm based on the  coordinate  transformation,  the  saw-
tooth  phenomenon  occurs.  When  each  numerical  mixed  partial
derivative  takes  more  than  one  point,  the  optimization  results

cannot be improved. The numerical direction based on the quad-
ratic hypothesis  only  requires  the  objective  function  to  be  ob-
tained,  but  does  not  require  derivability  and  does  not  take  into
account truncation error and rounding error.  Thus,  the applica-
tion scopes of many optimization methods are extended.
    Index Terms—Directional derivative,  numerical differential,  optim-
ization method, quadratic function hypothesis.

I.  Introduction

O PTIMIZATION methods  are  widely  used  in  various  re-
search fields and play an important role in scientific and

technological problems [1]–[7]. At present, the research of op-
timization  methods  is  mainly  divided  into  multi-objective
[8]–[10],  intelligence,  genetic  algorithm [10],  [11],  clustering
[12] methods, and so on. Classical multidimensional optimiza-
tion methods are also studied [13].

Many  efficient  optimization  methods  need  derivative  and
partial  derivative  information  of  the  objective  function,  such
as  the  linear  fitting  derivative  method,  high-order  second
approximate  fixed-point  method,  tangent  intersection  point
method,  negative  gradient  direction  method,  zigzag  line
negative  gradient  direction  method  (blind-  walking  method),
second  approximate  direction  method  [14],  linear  fitting
gradient  method  [15],  various  conjugate  direction  methods
[16]–[18],  the  optimal  available  direction  method  (feasible
direction  method),  half  step  method  [19],  and  so  on.  These
methods  are  not  useful  in  optimization  problems  where  the
objective  function  is  not  differentiable.  Numerical
differentiation  algorithms  [20]  may  allow  these  methods  to
work.

Comparing the above algorithms, the second approximation
direction is the best, and the direction of the negative gradient
is most commonly used. The negative gradient direction is the
fastest  local  descent  direction,  and  usually  deviates  from  the
extreme value point in the whole design space. The conjugate
directions  constructed  on  the  basis  of  the  negative  gradient
direction have better optimization efficiency [21], [22].

The numerical differential algorithm can not only determine
the numerical partial derivative, but also obtain the numerical
directional derivative in the general direction.

Looking at the teaching contents of the course “mechanical
optimum design” or “optimization methods” and the research
literature  of  optimization  methods,  and  at  classical
optimization  methods,  it  can  be  determined  that  they  are  all
proposed  under  the  quadratic  objective  function  hypothesis
and  then  applied  to  the  general  objective  function.  Although
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there  is  an  optimization  direction  based  on  finite  differences
[23],  the  truncation  error  and  rounding  error  are  emphasized
while  the  quadratic  hypothesis  is  neglected  due  to  the  fitting
effect  of  the  objective  function.  By  representing  each
derivative  in  the  system of  differential  equations  by  its  finite
difference  approximation  [24],  the  quadratic  hypothesis  is
ignored.  The  research  based  on  the  quadratic  hypothesis  and
fitting method is more general.

Classical  optimization  methods  are  not  proposed  to  deal
with  large-scale  matrices.  However,  some  large-scale  sparse
matrix problems borrow optimization ideas, such as the graph
coloring problem [25] and nonlinear equations solving method
[26].  Although  document  [25]  deals  with  the  optimization
direction based on finite differences, it is far from the research
in this paper.

According to the characteristics of the optimization method,
the numerical  partial  derivative and the numerical  directional
derivative  of  the  objective  function  are  constructed  by  using
the  numerical  differentiation  algorithm  under  the  quadratic
function assumption. On this basis,  the optimization effect of
the  numerical  second  approximate  direction  and  the  local
coordinate negative gradient direction is studied.

II.  Construction Method of Numerical First and Two
Order Partial Derivatives Based on the

Quadratic Hypothesis

x(k) x(k−1) x(k+1)

∆s
f (k−1) f (k) f (k+1)

∆s

x(k−1) x(k) x(k+1)

The  optimization  methods  with  a  clear  direction  of
optimization are put forward under the unimodal assumption.
The  optimization  method  based  on  the  quadratic  function  is
universal.  There  is  no  universal  significance  in  the  study  of
higher  order  objective  functions.  In  the  design  space,  the
objective function is assumed to be quadratic in any direction,
so there are three undetermined coefficients. Take the current
point  as the center and taking point  and point 
by  a  microstep  at  two  sides.  Assume  that  the  objective
function  values  of  the  three  points  are ,  and ,
respectively.  shall  be  reasonably  determined  according  to
the  computer’s  expressive  ability  and  termination  condition
value.  Three  equations  can  be  obtained from the  above  three
points.  Thus  the  above  three  parameters  are  obtained  so  that
the quadratic function of the hypothesis is known. The partial
derivatives  at  points ,  and  are  shown  as
follows:

∂ f
∂xi

∣∣∣∣∣
x(k−1)

=
− f (k+1)−3 f (k−1)+4 f (k)

2∆s
(1)

∂ f
∂xi

∣∣∣∣∣
x(k)
=

f (k+1)− f (k−1)

2∆s
(2)

∂ f
∂xi

∣∣∣∣∣
x(k+1)

=
3 f (k+1)+ f (k−1)−4 f (k)

2∆s
. (3)

The  above  three  formulas  are  consistent  with  the  results
obtained by the Lagrange interpolation function method.  The
second partial derivatives at the three points are equal.

∂2 f
∂x2

i

∣∣∣∣∣∣∣ x(k−1)

x(k)

x(k+1)

=
f (k+1)+ f (k−1)−2 f (k)

(∆s)2 . (4)

x(k)

Equation (4) is consistent with the Newton center difference
formula.  The  numerical  gradient  and  the  numerical  second
partial  derivative  at  the  point  can  be  obtained  from  the
above  4  formulas,  but  the  second  mixed  partial  derivative
cannot be obtained.

III.  Construction Method of Numerical Directional
Derivative

x(k)

x(k+1)

The directional derivative is the rate of change of a function
along  a  certain  direction,  which  is  a  generalization  of  the
concept of a partial derivative. Let s be the direction from 
to , where s can be expressed as follows:

s = x(k+1)− x(k). (5)
x(k)The gradient function of the objective function at point 

is as follows:

∇ f
(
x(k)

)
=

[
∂ f
∂x1

∂ f
∂x2

]∣∣∣∣∣∣Tx(k)
. (6)

∇ f (x)

The  directional  derivative  can  be  regarded  as  the  point
product  of  the  gradient  vector  and  the  unit  directional  vector
[27], equal to the length of the vector  projected on s.

∂ f
∂s

∣∣∣∣∣x(k)
=

[
∇ f

(
x(k)

)]T · s

=
∥∥∥∥∇ f

(
x(k)

)∥∥∥∥ · ∥s∥ · cos
(
∇ f

(
x(k)

)
, s

)
=
∇ f

(
x(k)

)T [
x(k+1)− x(k)

]∥∥∥x(k+1)− x(k)
∥∥∥ (7)

cos(∇ f (x) , s)
∇ f

(
x(k)

)where  is  the  cosine  of  the  angle  between
 and s. k is  the  optimal  serial  number.  The  minute

step  along s is  decomposed into  the  minute  step  along N co-
ordinate axes.  Then, according to the definition of the partial
derivative (7) can be obtained.

x(m)

x(k+1) x(k)

According to the definition of directional derivative change
rate, the numerical directional derivative at , the midpoint
of  and  is as follows:

∂ f
∂s

∣∣∣∣∣x(m)
=

f (k+1)− f (k)∥∥∥x(k+1)− x(k)
∥∥∥ . (8)

x(k+1) x(k)

x(k)

f (m) x(m)

x(k)

If  is  sufficiently  close  to ,  the  numerical
directional  derivative  at  point  can  be  expressed
approximately  by  (8).  Calculate  the  objective  function  value

 of point ; then the numerical directional derivatives at
point  are as follows:

∂ f
∂s

∣∣∣∣∣x(k)
=
− f (k+1)−3 f (k)+4 f (m)∥∥∥x(k+1)− x(k)

∥∥∥ . (9)

x(0)

A linear  equation of  gradient  vectors  can be obtained from
(7)  and  (8).  By  searching  for N points  near  the  current  point

 and establishing the above equations, a set of N-ary linear
equations  can  be  obtained,  and  the  numerical  gradient  of  the
objective function can be solved.
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A∇ f
(
x(0)

)
= B

A =


x(1)

1 − x(0)
1 ... x(1)

N − x(0)
N

... ... ...

x(N)
1 − x(0)

1 ... x(N)
N − x(0)

N


B =


f (1)− f (0)

...

f (N)− f (0)

 .
(10)

The  numerical  negative  gradient  direction  obtained  from
(10)  has  some  theoretical  errors  due  to  the  approximate
directional  derivative  of  (8).  According  to  the  quadratic
function hypothesis, the linear equations can be obtained from
(7) and (9). 

A∇ f
(
x(0)

)
= B

A =


x(1)

1 − x(0)
1 ... x(1)

N − x(0)
N

... ... ...

x(N)
1 − x(0)

1 ... x(N)
N − x(0)

N


B =


− f (1)−3 f (0)+4 f (m1)

...

− f (N)−3 f (0)+4 f (mN)

 .
(11)

x(0)

x(0)

According  to  the  method  of  taking  points  above,  the
coefficient  matrix  (10)  and  (11)  is  a  real  diagonal  matrix,  is
non-singular, and its rank is N. It is almost impossible to find
the same objective function at each point as that at point ,
so (10) and (11) have a unique nonzero solution. In the same
way,  if  the first  partial  derivative of  the objective function is
known, N points can be found near the current point , and
the above N-ary linear  equations can be obtained,  so that  the
second partial  derivative matrix of the objective function can
be solved by the least square method.

IV.  Construction Method of the Numerical
Directional Derivative

xi x j
x(0)

∂2 f
∂xi∂x j

Suppose  that  the  points  along  the  axis  of  and  at  the
current  point  are  taken  as  shown  in Fig. 1, o, a, b, c, d.
Referring to (10), eight equations for the second mixed partial

derivative  can  be  listed,  but  there  are  only  four  valid
equations and five unknowns. For this reason, assume that the
difference  between  the  objective  function  values  of  point c
and point o is the smallest, and that the difference between the

objective function values of point a and point o is greater than
that of point b. Then, the following assumptions are made

∂ f
∂xi

∣∣∣∣∣
c
=
∂ f
∂xi

∣∣∣∣∣
o
.

Then  the  second  mixed  partial  derivative  is  obtained  from
the following equation.

−δ∂
2 f
∂x2

i

+ δ
∂2 f
∂xi∂x j

=
∂ f
∂xi

∣∣∣∣∣∣
c
− ∂ f
∂xi

∣∣∣∣∣
a
. (12)

xi

According  to  the  quadratic  function  hypothesis,  the
relationship  between  the  two  coordinates  has  six
undetermined coefficients, and the five points in Fig. 1 can not
determine  these  coefficients,  so  a  numerical  point  must  be
added.  If  we  take  point f on  the  bisector  of  two  coordinate
axes, then according to (2) at the midpoint g of cf, the partial
derivative of  is as follows:

∂ f
∂xi

∣∣∣∣∣
g
=

f ( f )− f (c)
δ

.

∂ f
∂xi

The directional derivative of  is obtained in the direction
of ag. For the middle point of a and g, the following equation
can be obtained.

∂2 f
∂xi∂x j

=
1
2
∂2 f
∂x2

i

+

(
∂ f
∂xi

∣∣∣∣∣
g
− ∂ f
∂xi

∣∣∣∣∣
a

)
/δ. (13)

∂ f
∂xi

The directional derivative of  is obtained in the direction
of og. For the middle point of o and g, the following equation
can be obtained.

∂2 f
∂xi∂x j

= −1
2
∂2 f
∂x2

i

+

(
∂ f
∂xi

∣∣∣∣∣
g
− ∂ f
∂xi

∣∣∣∣∣
o

)
/δ. (14)

The  numerical  second  mixed  partial  derivative  is  derived
from  the  assumption  that  the  objective  function  is  quadratic,
so the results of (13) and (14) should be the same.

∂2 f
∂xi∂x j

In fact, the objective function is not necessarily a quadratic

function. Both (13) and (14) have some errors with the 
of point o. Therefore, it is advisable to calculate the parameter
more precisely by taking another symmetry point.

The parameters (3), (4), (13) and (14) are not set according
to  the  specific  objective  function,  but  determined,  accurate
and  unchanged.  Without  the  value  of  theoretical  analysis,
there is no need to discuss truncation error and rounding error.

V.  The Construction Method of a Local Orthogonal
Coordinate System for Optimization

If  a  local  coordinate  system  is  established  in  the  design
space,  the  partial  derivative  of  the  objective  function  can
hardly be obtained, but the numerical partial derivative can be
obtained  using  the  numerical  differential  algorithm  as  in  the
global  coordinate  system.  After  optimizing  in  a  certain
direction, it is better to search in the direction of orthogonality
again.  An  orthogonal  direction  vector  group  is  set  up  whose
last  direction  is  the  optimization  direction.  The  orthogonal
vector group can be regarded as the coordinate vector group of
the  local  coordinate  system.  The  coordinate  vector  group  is

 

a
xi

δ

xj

b

d

c

δ
δ

δ
o

e fg

 
Fig. 1.     The point drawing for obtaining mixed partial derivative by numer-
ical differentiation.
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x(0) x′

then the coordinate  transformation matrix A between the two
coordinate  systems.  If  the  origin  of  the  local  coordinate
system is  in the fixed coordinate system, then a point  in
the local coordinate system is shown in the global coordinate
system as follows:

x = Ax′+ x(0). (15)
s′The vector  in the local coordinate system is shown in the

global coordinate system as shown below:

s = As′. (16)

αN

Set  the  previous  optimization  direction S as  the  last  vector
. Let the largest element of S (the element with the largest

absolute  value)  be  the  element i.  Then  in  the N × N unit
matrix,  it  corresponds  to  the  column  vector i.  In  order,  the
column vector of the unit matrix acts as other vectors; thus we
can obtain the following linear independent vectors

α1,α2, ...,αN .

The  modified  Schmitt  orthogonalization  method  is  used  to
perform  orthogonalization  [28],  [29].  We  use  the  following
definitions  and change vector  to  unitization  vectors  with  two
norm

βN =
αN

∥αN∥
(17)

βN−1 = αN−1+ kβN . (18)
kAmong  them,  is  an  undetermined  coefficient.  According

to  the  orthogonality  between  vectors,  the  following  formula
can  be  obtained.  We  then  change  the  vectors  to  unitization
vectors with two norm

βN−1 = αN−1−
αT

N−1βN

βT
NβN

βN (19)

βN−1 =
βN−1

∥βN−1∥

β1 = α1−
N∑

i=2

αT
1 βi

βT
i βi
βi (20)

β1 =
β1

∥β1∥
.

β1,β2, ...,βN

The  square  matrix  composed  of  unitized  vectors
 is  the  coordinate  transformation  matrix  of  (15)

and (16).
The  orthogonal  vector  group  can  also  make S the  last

coordinate axis of the local coordinate system after coordinate
transformation, so as to obtain the last  column elements of A
according  to  (16).  Then,  according  to  the  type  of  coordinate
transformation, other elements of A can be obtained.

For  a  non-quadratic  objective  function,  the  optimization
direction obtained from the numerical gradient and the second
partial  derivative  matrix  constructed  by  1,  2,  3  in  different
local coordinate systems is different.

VI.  Large Stepsize Numerical Optimization Algorithm
Based on Coordinate Transformation

The  second  approximate  direction  directly  points  to  the

extreme  point  of  the  quadratic  objective  function.  Such  a
numerical  direction  is  good.  Another  new  algorithm  is  as
follows:

x
x x(i)

x(i)

x x(i)

In order to make full use of the optimization effect obtained
by  the  detection  point,  after  each  detection  of  the  best  point,
the best point is taken as the current point , and the original

 is  taken  as  the  reserve  point  (i is  the  coordinate  axis
serial  number).  If  neither  probe  point  is  good  enough,  halve
the  step  size  and  continue  to  probe  until  the  step  size  is  less
than  the  termination  condition  value.  The  next  best  point  is
taken  as  the  reserved  point ,  and  then,  from  the  current
point  (the  best  point)  detect  along  the  next  coordinate  axis.
After  sequential  detection  along N coordinate  axes,  the
numerical  negative  gradient  or  numerical  second
approximation direction is constructed. A step optimization is
achieved after  one dimensional  optimization until  the  current
point  is close enough to the reserve point .

Due to  the  large  distance  between the  detection points,  the
numerical  first  partial  derivatives  and  second  partial
derivatives have large errors. Instead of calculating the mixed
partial  derivative  and  one-dimensional  optimization  in  the
new  direction,  the  backward  half-step  searching  algorithm
[30] based on the blind path-finding idea is used to find better
points  according  to  the  current  step  size.  The  optimization
scheme is shown in Fig. 2.

Because  of  the  continuity  of  the  feasible  region,  the  initial
point can be chosen arbitrarily. If the step size is too large, the
optimization  direction  may  deviate  too  much  from  the
negative gradient  direction and the optimization effect  would
not be good; if the step size is too small, it causes a sawtooth
phenomenon  because  it  is  too  close  to  the  negative  gradient
direction. Therefore, the initial step size should be determined
according  to  the  specific  optimization  problem,  and  a  better
value can be determined by trial calculation.

VII.  Example Verification

A.  The Two-Dimensional Example
The  two-dimensional  Rosenbrock  function  is  the  four

square function, and it is one of the most difficult examples to
test  the  optimization  algorithm  with.  The  unconstrained
optimization problem whose objective function is as follows:

min f (x) = 100
(
x2− x2

1

)2
+ (1− x1)2. (21)

The gradient of the objective function is as follows:

∇ f (x) =

 400x3
1 −400x2x1+2x1−2

200x2−200x2
1

 . (22)

The  second  partial  derivative  matrix  of  the  objective
function is as follows:

H f (x) =

 1200x2
1 −400x2+2 −400x1

−400x1 200

 . (23)

The objective function consists of two components, each of
which  has  a  minimum  value  of  zero.  A  system  of  two
variables  and  quadratic  equations  can  be  obtained,  and  the
extreme points and extremes can be obtained as follows:
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x∗ =
[

1 1
]T

f
(
x∗

)
= 0.

Take the initial point and the micro step length as follows:x(0) =
[
−0.4 0.6

]T

h = 1.0×10−5.

The objective function value, numerical gradient and second
partial derivative matrix at this point are as follows:

f
(
x(0)

)
= 21.32

∇ f
(
x(0)

)
=

 67.6

88


H f (x(0)) =

 −46 160

160 200

 .

10−5

The relative errors between the numerical solutions obtained
from (2), (4), (13), and (14) and the analytical solutions are all
less than .

In  this  paper,  the  numerical  second  approximate  direction
algorithm  and  the  large  step  numerical  algorithm  based  on
coordinate transformation are realized by the C language. The
blind  searching  method  [31]  is  used  in  one  dimensional
optimization.

B.  The Test of Numerical Second Approximate Direction Method
The  optimal  direction  is  obtained  by  constructing  the

numerical  diagonal second partial  derivative matrix from (4).
After one-dimensional optimization is  performed 3955 times,
the  objective  function  is  calculated  156 517  times.  The
optimal point and optimal solution are obtained as follows:x =

[
0.99971 0.99942

]T

f (x) = 8.2970×10−8.

The optimization process is shown in Fig. 3, solid line 1.

The  optimal  direction  is  obtained  by  constructing  the
numerical  symmetric  second  partial  derivative  matrix  from
(4),  (13),  (14).  After  one-dimensional  optimization  is
performed  11  times,  the  objective  function  is  calculated  445
times,  and  the  optimal  point  and  solution  are  obtained  as
follows: x =

[
1.00000 0.99999

]T

f (x) = 2.49348×10−13.

With  the  numerical  second  mixed  partial  derivative,  the
optimization calculation amount is 0.2843% of without it. The
optimization  process  is  shown  in  the  gem-shaped  point  and
dashed  line  2  in Fig. 3.  The  result  is  similar  to  that  of  the
analytical second approximate direction method.

A local coordinate system is established for each optimization.
After one-dimensional optimization is performed 244 times, the
objective function is called 9884 times, and the optimal point
and solutions are obtained as follows:x =

[
1.00000 1.00000

]T

f (x) = 4.6722×10−10.

Its  optimization  process  is  shown  in Fig. 3,  dotted  line  3.
Coordinate transformation is not suitable.

C.  The Test of the Constructing Search Direction in Local Co-
ordinate System

In order to test the influence of coordinate transformation on
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Fig. 2.     The program diagram of large step numerical algorithm based on
coordinate transformation.
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Fig. 3.     The seeking process of the numerical second-order approximate dir-
ection method.
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x(0)
the  numerical  optimization  direction,  a  local  coordinate
system  is  established  with  as  the  origin,  and  the  local
coordinate system is rotated counterclockwise 360°.

The  numerical  direction  derivative  of  the  fixed  coordinate
system is used as the numerical partial derivative of the local
coordinate  system  to  construct  the  optimization  direction.  In
the  above  rotation  process,  the  trajectory  of  the  numerical
optimization direction in the local coordinate system is shown
in the  plus  point  and dashed line  1  in Fig. 4.  It  is  not  evenly
distributed,  indicating  that  it  is  not  a  fixed  direction.  In  the
fixed coordinate system, the trajectory is not a fixed direction,
but varies within the range 103.05°, as shown by the asterisk
point and dotted line 2 in Fig. 4. It is clear that the calculated
results are consistent with those of the 5 analyses.

D.  Test of the Large Step Numerical Optimization Algorithm
The initial step size, the minimum initial step length, and the

termination condition value are as follows:
h0 = 0.1
hmin = 10−2

ε = 10−8.

In  the  first  optimization  round,  the  following  points  are
detected along the N axis:

x =
[
−0.5 0.5

]T
.

According  to  (27),  the  analytic  gradient  of  the  objective
function at this point is as follows:

∇ f (x) =
[

47 50
]T
.

The numerical gradient obtained by (9) is as follows:

∇ f (x) =
[

68.2 60.0
]T
.

The difference between them is quite large. Then we obtain
the N (2)  midpoint,  and  the  numerical  gradient  obtained  by
(11) is as follows:

∇ f (x) =
[

48.925 50.000
]T
.

Using  (9),  after  1437  detection  rounds,  the  objective

function  is  called  89 155  times,  and  the  optimal  point  and
solutions are obtained as follows:x =

[
0.99999 0.99999

]T

f (x) = 2.7059×10−11.

The  optimization  process  is  shown in Fig. 5,  dotted  line  1.
Adopting  (11),  the  objective  function  must  be  called  87 065
times in 1726 detection rounds.

[
−0.5 0.5

]T
At the current point , the numerical gradient

obtained by (1)–(3) is as follows:

∇ f (x) =
[

70.4 50.0
]T
.

Then the numerical optimization direction of (4) and (21) is
as follows:

s =
[
−14080 2200

]T
.

After 1430 detection rounds, we call  the objective function
70 621 times to get the optimal point and solution.x =

[
1.00000 1.00000

]T

f (x) = 6.4038×10−12.

The optimization process is shown in Fig. 5, solid line 2.
The  numerical  gradient  is  obtained  by  means  of  5

coordinate transformation and (9). After 144 detection rounds,
we  call  the  objective  function  4717  times  to  get  the  optimal
point and solutionx =

[
1.00000 1.00000

]T

f (x) = 2.1238×10−10.

The  optimization  process  is  shown  in  the  dashed  line  3  of
Fig. 5.  Compared with the black dotted line,  the computation
amount is reduced by 94.71%.  Due to the large step size, the
numerical  negative  gradient  direction  obtained  by  (9)  has  a
large error.  If  the numerical  direction is  rotated 90,  after  243
rounds  of  detection,  the  objective  function  is  called  7872
times,  and  the  optimal  point  and  solution  are  obtained  as
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Fig. 4.     Numerical  direction trajectories in the rotation process of local
coordinate system.
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Fig. 5.     The search process of the large step numerical algorithm based on
coordinate transformation.
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follows: x =
[

1.0000 1.0000
]T

f (x) = 2.7255×10−13.

2.4764×10−15

The calculation amount is not large, which is consistent with
the  analysis  of  7.3.  In  the  process  of  approaching,  the
extremum  point  is  skipped  over  for  several  times,  but  not
arrived at  step by step.  After  the numerical  negative gradient
direction is constructed by (11) and compared with the dotted
line  1,  the  optimal  solution  is  after  14  975
detection  rounds  and 944 941 calls  to  the  objective  function.
There  is  a  very  serious  zigzag  phenomenon because  it  is  too
close to the analytic negative gradient direction.

E.  The Three-Dimensional Example
The  three-dimensional  Rosenbrock  function  is  one  of  the

most  difficult  multi-dimensional  examples  to  test  the
optimization  algorithm  with.  The  unconstrained  optimization
problem whose objective function is as follows:

min f (x) = 100
(
x2− x2

1

)2
+ (1− x1)2+100

(
x3− x2

2

)2
+ (1− x2)2.

(24)
The gradient of the objective function is as follows:

∇ f (x) =


−400x1

(
x2− x2

1

)
−2(1− x1)

200
(
x2− x2

1

)
−400x2

(
x3− x2

2

)
−2(1− x2)

200
(
x3− x2

2

)
 . (25)

The  second  partial  derivative  matrix  of  the  objective
function is as follows:

H f (x)=

1200x2
1−400x2+2 −400x1 0
−400x1 200+1200x2

2−400x3+2 −400x2
0 −400x2 200

 .
(26)

The  objective  function  consists  of  4  components,  each  of
which has a minimum value of 0.  A system of three variable
quadratic  equations  can  be  obtained,  and  the  extreme  points
and extremes can be obtained as follows:
we take the initial point as follows:x(0) =

[
−0.5 0.5 0.5

]T

f
(
x(0)

)
= 15.

(27)

Adopting the analytic 2 order approximation direction, after
16  rounds  of  one-dimensional  optimization,  the  objective
function  is  calculated  614  times,  and  the  optimal  point  and
solution are obtained as follows:x(∗) =

[
1.0001 1.0002 1.0003

]T

f
(
x(∗)) = 2.3394×10−7.

(28)

Adopting the numerical two order approximation direction,
if we do not calculate the numerical mixed partial derivative,
after  446  rounds  of  one-dimensional  optimization,  the
objective function is calculated 20 038 times, and the optimal
point and solution are obtained as follows:


x(∗) =

[
0.96740 0.93554 0.87553

]T

f
(
x(∗)) = 5.2367×10−3.

(29)

Using (13) or  (14) to calculate the numerical  mixed partial
derivative,  after  16  rounds  of  one-dimensional  optimization,
the objective function is calculated 614 times, and the optimal
point and solution are obtained as follows:

x(∗) =
[

1.0002 1.0002 1.0004
]T

f
(
x(∗)) = 1.5794×10−6.

(30)

Taking  more  than  one  point  for  each  mixed  partial
derivative, it is then computed by using (13) or (14). After 16
rounds  of  one-dimensional  optimization,  the  objective
function  is  calculated  660  times,  and  the  optimal  point  and
solution are obtained as follows:

x(∗) =
[

1.0001 1.0002 1.0003
]T
,

f
(
x(∗)) = 2.9050×10−7.

(31)

VIII.  Discussion

The  mathematical  deduction  in  this  paper  is  concise  and
easy  to  understand.  A  lot  of  tedious  deduction  processes  are
omitted. The key derivation steps and principles are explained
in  the  text  and  it  is  similar  to  many  classical  numerical
differentiation formulas (difference formula).

The purpose of this paper is to broaden the scope of existing
optimization  methods.  It  should  test  the  approximation
between  numerical  and  analytical  solutions.  If  the  two
approaches  are  close  enough,  the  optimization  effect  of  the
original  optimization  method  will  not  be  affected.  The
Rosenbrock function is four square, with a curved canyon. At
the  bottom  of  the  canyon,  the  objective  function  contour  is
close  to  the  parallel,  and  there  are  no  characteristics  of  the
quadratic  function  at  all.  The  optimization  methods  with  the
optimal  direction  are  all  based  on  the  quadratic  objective
function  hypothesis.  Some  optimization  algorithms  cannot
obtain  the  effective  direction  at  the  bottom  of  the  valley.
Therefore, this example is one of the most difficult examples
to  test  the  optimization  algorithm  with.  The  successful
verification of the numerical example is sufficient to prove the
optimization effect of numerical optimization direction.

Conjugate  directions  need N to  expand  enough  in
optimization  space,  and  more  than  three-dimensional
examples  are  needed  to  verify  the  optimization  effect.  The
research  in  this  paper  does  not  involve  the  verification  of
conjugate directions. Two-dimensional examples can not only
illustrate  the  problem,  but  also  visually  represent  the
optimization  process.  Even  if  the  numerical  algorithm of  the
conjugate  direction  is  studied,  a  three-dimensional  numerical
example is not necessary, because if the analytical direction is
not good, the numerical direction will not be good.

For  multimodal  objective  functions,  different  initial  points
may  have  different  optimization  results.  For  a  single  peak
objective  function,  the  optimization  algorithm  with  a  certain
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direction will not yield different optimal points because of the
different initial points. The initial point of the example in this
paper is taken on a flat slope on the side of the canyon, which
is  far  from  the  extreme  value  point.  It  not  only  checks  the
speed of searching to the canyon bottom, but also checks the
effect  of  approaching  the  extreme  value  point  at  the  canyon
bottom.

In  this  paper,  we  compare  different  algorithms  using
computation  and  optimization  results,  and  we  show that  it  is
not  necessary  to  use  an  elegant  intelligent  algorithm.  This
algorithm is not comparable with an evolutionary algorithm or
swarm  intelligence  optimization  algorithm.  The  latter  is  an
optimization  method  based  on  other  theories,  and  does  not
require  gradient  information  such  as  in  the  Powell  method
[32]. However, there is no concept of optimizing direction; it
is an algorithm that seeks order in disorder; it is an algorithm
that  explores  necessity  in  occasionality.  The  algorithm  has
obvious  advantages  for  multi-modal  feasible  regions,  but  for
single-modal  feasible  regions,  it  is  not  as  effective  as  an
algorithm  with  a  definite  direction.  The  numerical  direction
constructed  by  the  numerical  method  is  not  more  accurate
than  that  obtained  by  the  analytical  method,  and  both  are
suitable for a single-peak feasible region.

IX.  Conclusion

Through  the  verification  of  several  numerical  algorithms
with  two-dimensional  Rosenbrock  objective  function
optimization, the following conclusions can be drawn:

1)  The  numerical  formulas  for  calculating  the  first,  second
and  second  mixed  partial  derivatives  have  higher  accuracy.
The  numerical  first  partial  derivatives  are  in  agreement  with
the  results  obtained  by  the  method  of  constructing  Lagrange
interpolation  functions.  Thus,  these  numerical  formulas  are
correct.  Because  it  is  difficult  to  obtain  second  partial
derivatives,  research  in  optimization  methods  that  only  need
the  gradient  of  objective  function  have  been  explored.  This
paper continues the research in this area. At present, there are
some research  directions  involving  using  numerical  direction
to  improve  the  accuracy  of  optimization.  The  research  based
on the quadratic hypothesis also ends this direction.

2) The numerical second approximate direction method with
numerical second mixed partial derivatives is the best.

3) The optimization direction obtained in a local coordinate
system  has  strong  randomness,  and  the  large  step  numerical
algorithm requires it.

4) Based on the quadratic hypothesis and fitting method, the
numerical  algorithm  proposed  in  this  paper  allows  the
derivatives,  gradients,  second  partial  derivatives  and  second
mixed  partial  derivatives  of  the  objective  function  to  remain
unresolved,  which  makes  optimization  methods  that  require
this  information  more  applicable.  There  is  no  derivable
objective  function  for  optimization  problems  in  many
engineering  fields.  This  study  provides  more  optimization
methods for solving these optimization problems.

5)  Because  constrained  optimization  problems  are  often
encountered  in  control  processes,  future  research  on
constrained  optimization  methods  may  become  the  focus  of
our research.
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