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   Abstract—The  stability  analysis  for  nonlinear  differential-
algebraic  systems  is  addressed  using  tools  from  classical  control
theory.  Sufficient  stability  conditions  relying  on  matrix
inequalities  are  established  via  Lyapunov  Direct  Method.  In
addition, a novel interpretation of differential-algebraic systems as
feedback  interconnection  of  a  purely  differential  system  and  an
algebraic system allows reducing the stability analysis to a small-
gain-like  condition.  The  study  of  stability  properties  for
constrained  mechanical  systems,  for  a  class  of  Lipschitz
differential-algebraic  systems  and  for  an  academic  example  is
used to illustrate the theory.
    Index Terms—Differential-algebraic  systems,  Lyapunov  method,
small-gain theorem, stability analysis.
 

1.  Introduction

D IFFERENTIAL-algebraic  systems  (also  known  as  DAE
systems, descriptor systems or singular systems) provide

a generalization of the classical state-space framework which
allows a simpler characterization of many physical phenomena,
such  as  conservation  of  mass  and  flow,  topological  and
environmental  constraints  and/or  thermodynamical  relations.
The range of engineering applications which can be naturally
described  by  DAE systems  includes  mechanical  systems  [1],
robot  manipulators  with  constrained  end-effector  [2],
chemical  processes  [3],  electrical  networks  with  nonlinear
elements [4], as well as models arising in social and economic
sciences  [5].  Recently,  modern  simulation  tools  based  on
object-oriented  languages  [6]  have  considerably  spread  the
use of DAE systems for the modelling of physical systems to
such  an  extent  that  the  interest  in  studying  the  problems  of
numerical integration and control of dynamical systems in the
DAE formulation has grown rapidly (see e.g., [7]–[10]).

Classical  approaches  to  the  stability  analysis  of  DAE
systems  are  based  on  index1 or  coordinates  reduction
techniques  which,  by  means  of  multiple  time  differentiations
and algebraic manipulations, reveal the underlying differential

representation of the system to which classical  results  can be
applied.  One of  the  first  systematic  contributions  in  this  area
has  been  provided  by  [12],  in  which  state-space  equivalent
forms  for  linear  time-invariant  DAE  systems  have  been
presented.  In  [13]  a  state  space  realization  for  index-3
nonlinear  DAE  systems  has  been  derived  and  the  feedback
stabilization  problem  has  been  solved  by  means  of
linearization techniques. A similar approach has been adopted
in  [14],  i.e.,  a  state  space  realization  and  an  output  feedback
stabilization methodology have been developed for  nonlinear
index-2  DAE  systems.  However,  the  multiple  differentiation
of  the  algebraic  equation  and  the  need  for  further  algebraic
manipulations required by these methods poorly suit the scale
of many engineering problems. This is the case,  for instance,
in  power  system  models  and  switching  networks  [15].  In
addition,  nonlinearities  in  the  model  equations  and  model
uncertainties  may  prevent  the  applicability  of  coordinates
reduction  methods  [16].  Therefore,  an  approach  to  the
problems of stability analysis and control directly in the DAE
formulation is needed.

Another  approach to  the  stability  analysis  of  DAE systems
consists in extending tools from classical and modern control
theory to this class of systems. Lyapunov stability theory has
been extended to nonlinear DAE systems in [17], in which the
robust  control  problem  for  DAE  systems  with  uncertainties
has  also  been  discussed.  Other  examples  of  application  of
Lyapunov stability theory can be found in [18], in which DAE
systems  with  delays  are  considered,  in  [19],  in  which
estimations  of  the  domain  of  attraction  of  equilibria  of  DAE
systems are provided, and in [10], in which the task of finding
a Lyapunov function for a DAE system is transformed into an
optimization  problem  subject  to  algebraic  constraints,  thus
yielding sufficient stability conditions.

H∞

H∞

H∞

H∞

A  further  line  of  research  focuses  on  the  study  of  the 
control  problem  for  DAE  systems.  In  [20],  sufficient
conditions  for  the  existence  of  solutions  to  the  control
problem  have  been  derived  for  linear  DAE  systems,  while
[21] presents similar results using linear matrix inequalities. In
[22],  the  authors  have  derived  necessary  and  sufficient
conditions  for  the  existence  of  a  controller  solving  the 
control problem for a general class of nonlinear DAE systems,
considering  both  state  and  output  feedback  controllers,  in
terms  of  Hamilton-Jacobi  inequalities.  Finally,  control
and  robust  adaptive  control  for  a  class  of  nonlinear  DAE
systems  with  external  disturbances  and  parametric
uncertainties have been studied in [23].

We  study  stability  properties  for  DAE systems  using  tools
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such  as  Lyapunov  Direct  Method  and  small-gain-like
arguments.  We  consider  primarily  DAE  systems  with  index
one  and in  semi-explicit2 form described  by  equations  of  the
form
 

ẋ = f (x,w)
0 = h(x,w) (1)

x(t) ∈ Rn w(t) ∈ Rm

t
f : Rn×Rm→ Rn h : Rn×Rm→ Rm

ν

where  and  denote  the  differential  and  the
algebraic  variables  of  the  system  at  time ,  respectively,  and

 and3  are  smooth
mappings4.  Note  that  the  formulation  in  (1)  is  general  and
includes,  for  instance,  constrained  mechanical  systems  (see
Section  II-A),  electrical  networks  [25]  and  pneumatic
actuators [26]. The solution5 of a DAE system can exhibit all
the  behaviour  of  ordinary  differential  equations  plus
additional  behaviour  such  as  bifurcation  of  solutions.  In  the
remaining of the paper, we assume that the solution exists and
is uniquely defined on the interval of interest. In addition, we
also  assume  that  the  origin  is  an  equilibrium  point.  Before
undertaking the stability analysis a clarification on the nature
of  such  a  problem  is  required.  As  outlined  in  [28],  any
solution  of  a  DAE  system  with  index  must  stay  on  the
solution manifold
 

M =
{

(x,w) :
dkh(x,w)

dtk = 0, k = 0, ..., ν−1
}

(2)

M
Bδ ⊆ Rn×Rm

δ

hence, it must satisfy the algebraic equation in (1) for all time.
Note that, in general, the solution manifold is invariant but not
attractive. Hence, any perturbation of the state may cause the
solution  to  move  away  from  the  manifold.  In  conclusion,  in
the definition of stability used in this paper only perturbations
of  the  solutions  corresponding to  consistent  initial  conditions
are  considered,  i.e.,  only  perturbations  such  that  the  initial
condition  remains  on  the  manifold .  In  particular,  let

 be the set of all the consistent initial conditions
contained in a ball of radius  around the origin, namely,
 

Bδ := {(x,w) ∈M : ∥(x,w)− (0,0)∥ < δ}.
We make use of stability concepts specified by the definitions
below.

ε > 0 t0 ∈ R≥0
δ = δ(ε, t0) > 0 (x(t0),w(t0)) ∈ Bδ
∥(x(t),w(t))− (0,0)∥ < ε t ≥ t0

Definition 1: The origin of the DAE system (1) is said to be
stable  if  for  every  and  any  there  exists  a

 such  that  if ,  then
 for all .

δ0(t0) > 0
(x(t0),w(t0)) ∈ Bδ0 lim

t→∞
∥(x(t),w(t))− (0,0)∥ = 0

Definition 2: The origin of the DAE system (1) is said to be
locally  asymptotically  stable  if  it  is  stable  and,  in  addition,
there  exists  a  with  the  property  that  if

, then .
The  approach  proposed  is  based  on  the  simple  observation

that  any  linear  combination  (even  by  means  of  nonlinear

(2)weights)  of  the  algebraic  equations  in  must  be  equal  to
zero, that is for any mapping
 

Γ(x,w) = [Γ0(x,w) . . . Γν−1(x,w)]
Γi : Rn×Rm→ Rp×m i = 0, . . . , ν−1 p > 0in  which ,  for  and ,

the equation
 

ν−1∑
k=0

Γk(x,w)
dkh(x,w)

dtk = 0 (3)

(x,w) ∈M
(3)

Γ

dkh(x,w)
dtk = 0 k = 0, ..., ν−1

holds  for  all .  A  direct  consequence  of  this
observation  is  the  fact  that  the  left  hand  side  of  can  be
added  to  the  first  of  equations  (1)  without  affecting  the
solutions.  On  the  other  hand,  a  suitable  selection  of  the
mapping  may yield a formulation which better fits the study
of  the  stability  properties  of  an  equilibrium point.  Exploiting
this  simple  idea  families  of  methods  to  establish  the  stability
of DAE systems have been derived as follows. We call these
families stabilization methods via additive identity because the

elements ,  for ,  are  additive

identities of (1).
Differently from existing approaches,  the proposed method

allows  establishing  stability  properties  for  a  class  of  DAE
systems  without  the  explicit  calculation  of  the  reduced
unconstrained system. On the one hand,  this  approach avoids
further  time  differentiation  and  algebraic  manipulations
required  by  classical  approaches  to  reduce  the  index  to  zero.
On the other hand, there is a broad class of processes in which
a  reduction  to  ordinary  differential  equations  may  be
prevented by model uncertainties or by nonlinearities, see for
instance  [16].  Therefore,  an  approach  to  the  problem  of
stability  analysis  directly  in  the  differential-algebraic
formulation is needed. 

A.  Contributions
The  first  contribution  of  the  paper  is  the  application  of

Lyapunov  Direct  Method  to  establish  stability  properties  of
DAE systems.  In  particular,  sufficient  conditions  in  the  form
of  state-dependant  matrix  inequalities  are  given  (Section  II).
The second contribution of the paper consists in reducing the
problem  of  stability  analysis  for  DAE  systems  to  a  stability
analysis problem for a purely differential system (Section III).
In particular, by interpreting the DAE system as the feedback
interconnection  of  a  differential  system  and  an  algebraic
system,  sufficient  conditions  for  stability  are  derived  by
means  of  a  small-gain-like  condition.  The  application  of  the
method  to  linear  DAE  systems  is  also  discussed.  The  third
contribution  of  the  paper  is  the  application  of  the
aforementioned  results  to  two  widely  studied  classes  of
systems  (Section  IV):  constrained  mechanical  systems,  for
which  it  is  shown  that  the  property  of  local  asymptotic
stability  of  the  zero  equilibrium  can  be  inferred  by  a
detectability condition; and a class of Lipschitz DAE systems,
for  which  stability  conditions  reduce  to  the  feasibility  of  a
linear  matrix  inequality.  Finally  in  Section  V  we  report  our
conclusions.

Preliminary  results  have  been  published  in  [25],  [29],  and

  
2See [24] for detail on the transformation of fully-implicit DAE systems to the
semi-explicit form and vice versa.  

h w
h(x,w)

3The dependence of  on the algebraic variable  is  explicit  only when the
index is one. However, with some abuse of notation, we use  for any
index.  
4Throughout the paper all mappings are assumed to be smooth.  
5We consider the notion of “classical” solution as formulated in [27].
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[30].  The additional  contributions of  the  present  paper  are  as
follows:  the  results  are  presented  in  a  more  organized  way
with  formal  proofs;  the  result  in  [25]  obtained  via  Lyapunov
Direct  Method  has  been  generalized  and  a  new  numerical
example has been provided; the application of the small-gain
theorem for DAE systems, which has been initially presented
in [25], has been reformulated in the more general framework
in  which  the  output  mappings  of  the  nonlinear  and  algebraic
subsystems are design parameters; in addition, the concept of

-gain  is  in  the  spirit  of  the  notion  introduced  in  [31];  the
results  on  the  class  of  constrained  mechanical  systems
(presented  in  [29]  for  the  linear  case)  have  been  extended  to
the nonlinear case; the application of the method to a class of
Lipschitz DAE systems, which has been presented in [30] for
the  stabilization  problem,  has  been  revisited  in  the  setting  of
stability analysis; moreover, the feedback decomposition (i.e.,
Proposition  1  in  [30])  has  been  revisited  to  weaken  some
restrictions on the choice of the parameter . 

B.  Notations
A AT

A−T A A−1

A ∈ Rn×n det(A)
A R>0

R≥0

f : Rn→ Rn ∂ f
∂x

fx

f x ∈ Rn

M f |M f
M A σ(A) σ(A)

A σ(A) A
∥A∥2 2 A
∥A∥2 = σ(A) H

2n dom(Ric) := {H ∈ H : Re(λi) , 0,
∀λi ∈ σ(H)} s
C<0 = {s ∈ C : Re(s) < 0}

We use standard notation. Given a matrix , the symbols 
and  represent  the  transpose  of  and  (provided  the
inverse  exists),  respectively.  Let ,  the  symbol 
indicates  the  determinant  of  the  matrix .  The  symbols 
and  indicate,  respectively,  the set  of strictly positive real
numbers  and  the  set  of  non-negative  real  numbers.  Given  a

mapping , we use the symbols  or  to denote
the  Jacobian  of  with  respect  to  the  vector .  Given  a
manifold ,  the symbol  indicates the restriction of  to

.  Given  a  matrix  the  symbols  and  represent
the smallest and the largest singular value, respectively, of the
matrix ,  while  denotes the spectrum of .  The symbol

 represents  the  induced -norm  of  the  matrix ,  that  is,
.  Given  the  set  of  Hamiltonian  matrices  of

order ,  we  define  the  set 
,  see [32].  Given a complex number ,  we define

. 

II.  Stability by Lyapunov Direct Method

(1)

In  this  section  we  provide  a  family  of  stability  conditions
for  nonlinear  DAE  systems  using  Lyapunov  Direct  Method.
To  begin  with  note  that,  under  the  stated  smoothness
assumptions, system  can always be rewritten as6
 

ẋ = A11(x,w)x+A12(x,w)w
0 = A21(x,w)x+A22(x,w)w (4)

where7
 

A11 : Rn×Rm→ Rn×n, A12 : Rn×Rm→ Rn×m

A21 : Rn×Rm→ Rm×n, A22 : Rn×Rm→ Rm×m.

A11 A12 A21 A22

For  simplicity  of  notation  the  explicit  dependence  of  the
mappings , , ,  and  from  the  state  variables  is
often omitted.

The  following  result  provides  a  family  of  stability
conditions  which  is  then  exploited  in  the  remainder  of  the

section.
(4) O ⊆ Rn×Rm

A22 (x,w) ∈ O
P ∈ Rn×n P = PT > 0

M1 : Rn×Rm→ Rn×m M2 : Rn×Rm→ Rm×m

Theorem 1: Consider the DAE system . Let 
be an open set which contains the origin and assume that the
mapping  is  invertible  for  all .  Suppose  there
exist  a  constant  matrix ,  such  that ,  and
mappings  and 
such that
 

S =
[

S 11 S 12
S T

12 S 22

]
< 0 (5)

(x,w) ∈ Ofor all , where
 

S 11 = AT
11P+PA11+M1A21+AT

21MT
1

S 12 = PA12+M1A22+AT
21MT

2
S 22 = M2A22+AT

22MT
2 .

(4)Then  the  origin  of  the  DAE  system  is  a  locally
asymptotically stable equilibrium point.

Proof: Consider the Lyapunov function candidate
 

V(x) = xT Px. (6)
Differentiating  (6)  with  respect  to  time  along  the  trajectories
of the system yields
 

V̇ = xT (AT
11P+PA11)x+ xT PA12w+wT AT

12Px. (7)

(3) ν = 1 Γ = xT M1+wT M2 (7)
The basic idea behind the next calculation is based on the use
of , with  and , to rewrite  as
 

V̇ = xT (AT
11P+PA11)x+ xT PA12w+wT AT

12Px

+ (xT M1+wT M2)(A21x+A22w)
+ (A21x+A22w)T (xT M1+wT M2)T . (8)

Rearranging all the terms in (8) yields
 

V̇ = [xT wT ]S
[

x
w

]
.

A22Note, in addition, that since  is invertible,
 

∥A−1
22 (x,w)∥ ≤ M < +∞.

V > 0 V̇ < 0 (x,w) ∈ O\ (0,0) xThus,  and  for all , implies that 
is bounded and such that
 

lim
t→∞
∥x(t)∥ = 0.

As a consequence
 

lim
t→∞
∥w(t)∥ ≤ lim

t→∞
M∥A21(x(t),w(t))∥∥x(t)∥ = 0.

■
(5)

V̇ < 0 (x,w) ∈ O\ (0,0)
M

Remark  1: The  condition  expressed  by ,  implying  that
 for all  is, as a matter of fact, only valid

on  the  solution  manifold ,  since  it  relies  on  the  property
expressed by (3).

M1 M2Note  that  different  selections  of  and  yield  different
sufficient conditions, as shown in the next propositions.

(4)
O ⊆ Rn×Rm

A22 (x,w) ∈ O
P ∈ Rn×n P = PT > 0

R : Rn×Rm→ Rm×m R = RT > 0

Proposition  1: Consider  the  DAE  system .  Let
 be an open set which contains the origin. Assume

that  the  mapping  is  invertible  for  all  and  that
there  exist  a  constant  matrix ,  such  that ,
and a mapping , such that  and
 

X < 0 (9)

  
6See Hadamard’s Lemma [33].  

Ai j i = 1,2 j = 1,27The matrices , for  and , are not uniquely defined.
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where
 

X =
(
AT

11−AT
21A−T

22 AT
12

)
P+P

(
A11−A12A−1

22 A21
)

+AT
21A−T

22 RA−1
22 A21

(x,w) ∈ O (4)for  all .  Then  the  origin  of  system  is  a  locally
asymptotically stable equilibrium point.

Proof: The selection
 

M1 = (−PA12−AT
21MT

2 )A−1
22

M2 = −
1
2

RA−1
22 (10)

S 11 = X S 22 = −R S 12 = 0 (9) S < 0
(x,w) ∈ O

yields , ,  and  in  (5).  By , 
for all , hence the claim follows by Theorem 1. ■

A22

Consider  now  the  case  in  which  one  wishes  to  avoid
computing the inverse of the mapping .

(4)
O ⊆ Rn×Rm

P ∈ Rn×n

P = PT > 0 R : Rn×Rm→ Rm×m

R = RT > 0 γ > 0

Proposition  2: Consider  the  DAE  system .  Let
 be an open set which contains the origin. Assume

that  there  exist  a  constant  matrix ,  such  that
,  a  mapping ,  such  that
, and a constant  such that

 

Y < 0 (11)
where
 

Y = AT
11P+PA11+AT

21RA21+
1
γ2 PA12AT

12P

and
 

γ2I−AT
22RA22 < 0 (12)

(x,w) ∈ O (4)for  all .  Then  the  origin  of  system  is  a  locally
asymptotically stable equilibrium point.

Proof: Similarly to the proof of Proposition 1, selecting
 

M1 =
1
2

AT
21R

M2 = −
1
2

AT
22R (13)

yields
 

S =
[

AT
11P+PA11+AT

21RA21 PA12
AT

12P −AT
22RA22

]
.

Applying Young’s inequality to the quadratic form
 

[xT wT ]S
[

x
w

]
yields
 

[xT wT ]
[

AT
11P+PA11+AT

21RA21 PA12
AT

12P −AT
22RA22

] [
x
w

]
≤ [xT wT ]

[
Y 0
0 γ2I−AT

22RA22

] [
x
w

]
.

A22 A22
(11) (12) S < 0 (x,w) ∈ O

Note  also  that  (12)  implies  that  has  full  rank,  i.e.,  is
invertible. By  and ,  for all , hence the
claim follows by Theorem 1. ■

M1 M2
A22

Remark 2: For the selection of  and  given in (10), the
condition (5) requires the inversion of the mapping , which
may be high-demanding in terms of  number of  computations
for large-scale systems. On the other hand, such an inversion

M1 M2

can  be  avoided  by  means  of  a  suitable  selection  of  the
parameters  and  in (13). However, this may come at the
cost  of  a  reduced  basin  of  attraction  of  the  zero  equilibrium,
see  the  next  example  for  a  direct  comparison  of  the  two
methods. 

A.  Application: Nonlinear Damp-Spring-Disc System
To illustrate  the  results  developed  in  this  section  we  study

the stability properties of the nonlinear mechanism depicted in
Fig. 1. The equations of motion of the system are given by
 

ż1 = z2

ż2 = −
k1

M
z1−

k2

M
z3

1−
b
M

z2+
λ

M

ż3 = −
r
J
λ+

1
J

u

0 = z2− rz3 (14)
z1
z2 z3

λ

r = 2 m M = 1 kg
J = 4 kg×m2

b = 2
N

m/s
k1 = 1

N
m

k2 = 1
N
m3

u
u = −2brx2

(14)

where  is  the  distance  from  the  rest  position  to  the  disc
center,  is  the  corresponding  velocity,  and  is  the  disc
angular  velocity.  The  contact  force  between  the  disc  and  the
surface  is .  The  values  of  the  parameters  have  been  taken
from  [10]:  the  disc  has  radius ,  mass  and
inertia .  It  is assumed that the disc rolls without
slipping, in absence of gravity, and it is connected to a wall by

a  linear  damper  with  coefficient ,  a  linear  spring

with  coefficient ,  and  a  nonlinear  spring  with

coefficient . The dynamics of the system are subject
to  an  external  input  torque  and  a  kinematic  constraint.
According  to  [34],  the  control  law  renders  the
origin  a  locally  asymptotically  stable  equilibrium.  Replacing
the  stabilizing  control  law  and  applying  the  index  reduction
technique  described  in  [35],  can  be  rewritten  as  the
index-1 DAE system
 

ẋ1 = x2

ẋ2 = −
k1

M
x1−

k2

M
x3

1 −
b
M

x2+
w2

M
0 = x2− rw1

0 = − k2

M
x3

1 +

(
2r2

J
− 1

M

)
bx2−

k1

M
x1+

(
r2

J
+

1
M

)
w2 (15)

(x1, x2) = (z1,z2) (w1,w2) = (z3,λ)in which  and .

(15) (4) x = (x1, x2) w = (w1,w2)

To  estimate  the  basin  of  attraction  of  the  zero  equilibrium
we apply the methods developed in this section. To begin with
note that  is in the form  with , 
and

 

b

k1

k2 z3

z1, z2

λ

r

 
Fig. 1.     A nonlinear damp-spring-disc system.
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A11(x) =

 0 1

− k1

M
− k2

M
x2

1 − b
M


A12 =

 0 0

0
1
M


A21(x) =


0 1

− k1

M
− k2

M
x2

1

(
2r2

J
− 1

M

)
b


A22 =

 −r 0

0
r2

J
+

1
M

 .
x2

1 (9)
The mappings above contain only one non-constant term, i.e.,

. Consider first the  with
 

P =
[

66.7341 10.9974
10.9974 14.6770

]
(16)

R = 2×10−6I
X

x1

X

which  is  positive  definite,  and  the  parameter .
Fig. 2(a) shows  the  real  part  of  the  largest  eigenvalue  of 
(black-solid  line)  for  different  values  of .  Observe  that  the
eigenvalues  of  are  negative  in  the  compact  set

C = {x : |x1| < 4.551} 1

(11)

 and thus, by Proposition , the origin is a
locally  asymptotically  stable  equilibrium.  Alternatively,
consider the  with
 

P =
[

1.6993 0.2822
0.2822 0.7352

]
(17)

R = 0.3I
γ = 1.0786 Y

x1
(12)

which  is  positive  definite,  and  the  parameters  and
.  The  real  part  of  the  largest  eigenvalue  of  is

shown in Fig. 2(a) (red-dashed line) for different values of ,
while the eigenvalues of the left-hand side of  are
 [

λ̄1
λ̄2

]
=

[
−0.0366
−0.0366

]
.

Y
D = {x : |x1| ≤ 0.429} 2

In this case, the eigenvalues of  are negative in the compact
set  and thus, by Proposition , the origin
is a locally asymptotically stable equilibrium point.

(6) C P
(16)

(6) D P
(17)

A22

Simulations, for different consistent initial conditions, have
been carried out using the solver for DAE systems ode15s of
MATLAB  with  default  absolute  and  relative  tolerances.
Fig. 2(b) displays the phase portrait  of  the DAE system (15).
In  the  same  figure  the  estimated  basins  of  attraction  are
indicated.  One basin  (solid-black line)  has  been computed as
the largest level line of  which belongs to , with  given
in . The other basin (red-dashed line) has been computed
as  the  largest  level  line  of  which  belongs  to ,  with 
given  in .  Observe  that,  although  the  method  in
Proposition  2  avoids  the  calculation  of  the  inverse  of  the
matrix ,  the  estimated  basin  of  attraction  of  the  zero
equilibrium  is  smaller  than  the  one  estimated  by  means  of
Proposition 1. 

III.  A Small-Gain-Like Condition for the Stability of
DAE Systems

(1)In  this  section it  is  shown that  the  DAE system  can be
decomposed  as  the  feedback  interconnection  of  a  differential
system  and  an  algebraic  system.  In  this  framework,  the
algebraic variable assumes the role of an external disturbance
and  the  stability  analysis  of  the  DAE  system  reduces  to  a
small-gain-like condition with internal stability.

Consider the differential system (see Fig. 3)
 

ΣD :
{

ẋ = f (x,α(v))+Γ(x,α(v))h(x,α(v))

z = β−1(x)
(18)

x(t) ∈ Rn v(t) ∈ Rm

z(t) ∈ Rn β : Rn→ Rn α : Rm→ Rm

Γ : Rn×Rm→ Rn×m

in which  is  the state variable,  is  the input,
 is  the  output,  and  are

diffeomorphisms,  and  is  a  smooth
mapping. Consider now the algebraic system
 

ΣA :
{

0 = h(β(u),w)

τ = α−1(w)
(19)

w(t) ∈ Rm u(t) ∈ Rn

τ(t) ∈ Rm
in  which  is  the  algebraic  variable,  is  the
input,  is the output.

(1)
ΣD ΣA

u = z v = τ

Lemma  1: The  DAE  system  and  the  system  obtained
from the  feedback interconnection  of  and  through the
interconnection equations  and  (see Fig. 3) have the
same solutions for all consistent initial conditions.

u = z
v = τ (18) (19)

Proof: Replacing  the  interconnection  equations  and
 in systems -  yields the DAE system
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R
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Fig. 2.     Nonlinear  damp-spring-disc  system:  (a)  largest  eigenvalue  of 
(black-solid  line)  and  of  (red-dashed  line)  for  different  values  of ;  (b)
phase-portrait and estimated basins of attraction of the zero equilibrium: level
lines of –  (black-solid line) and –  (red-dashed line).
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ẋ = f (x,w)+Γ(x,w)h(x,w)
0 = h(x,w). (20)

(3) ν = 1
(20) (1)

Γ : Rn×Rm→ Rn×m

Since  with  holds,  then  the  equations  describing
system  are  equal  to  the  equations  describing  system 
for any mapping . ■

(1)

(1)

On  the  basis  of  the  feedback  decomposition  in Fig. 3,  the
stability  analysis  of  the  DAE  system  is  now  addressed.
Observe  that,  under  the  stated  smoothness  assumptions,  the
DAE system  can always be rewritten as8
 

ẋ = f (x,w)
0 = h0(x)+h1(x,w)w (21)

h0(x) = h(x,0) h1 : Rn×Rm→ Rm×min  which  and .  Assume
that
 

rank
(
∂h(x,w)
∂w

)
= m (22)

(x,w) ∈ O ⊆ Rn×Rmfor all .

w h
(x,w) ∈ O

Remark 3: Assumption (22) implies that all the components
of  the  vector  appear  explicitly  in  the  mapping ,  i.e.,  the
DAE system (1) has index equal to one for all .

Under  assumption  (22),  the  following  preliminary  result
holds.

(21)
(22) O1×O2 ⊆ O

M > 0

Lemma 2: Consider  the  DAE system  and  assume that
 holds.  Then  there  exist  an  open  set  which

contains the origin and a scalar  such that
 

∥h1(x,w)−1∥ ≤ M < +∞ (23)
(x,w) ∈ O1×O2for all .

(23)Proof: Inequality  is equivalent to
 

det (h1(x,w)) , 0 (24)
(x,w) ∈ O1×O2for all . To prove the claim, note that

 

det
 ∂h(x,w)
∂w

∣∣∣∣∣ x=0
w=0

 = det (h1(0,0)) , 0.

O1×O2 (24)
Hence, by the standing smoothness assumptions, there exists a
neighborhood  of  the  origin,  say ,  such  that 
holds. ■

L2
ΣA

In the next result we show that the -gain of the algebraic
system  is  bounded  by  a  known  function  of  the  input,  for
some selection of the output mapping.

(19)
O1×O2

M > 0

Lemma 3: Consider the algebraic system  and the open
set  introduced in Lemma 2. Assume that there exists a
scalar  such that
 

∥α−1(w)∥ ≤ M∥w∥ (25)

w ∈ O2for all . Then,
 

∥τ∥
∥u∥ ≤ MM

∥h0(β(u))∥
∥u∥ (26)

M > 0 (23)with  satisfying , holds.
Proof: Manipulating  the  first  equation  of  system  (19)

written with the notation introduced in (21), one obtains
 

w = −h1(β(u),w)−1h0(β(u))

which yields
 

∥τ∥
∥u∥ =

∥α−1(w)∥
∥u∥ =

∥α−1(−h1(β(u),w)−1h0(β(u)))∥
∥u∥ .

Since (25) holds
 

∥τ∥
∥u∥ ≤ M

∥h1(β(u),w)−1h0(β(u))∥
∥u∥

≤ M
∥h1(β(u),w)−1∥∥h0(β(u))∥

∥u∥

≤ MM
∥h0(β(u))∥
∥u∥ .

■
β (18)Remark  4: The  choice  of  the  mapping  in  equations 

plays an important role on the bound derived in Lemma 3. For
instance, let
 

β(u) = h−1
0 (u) (27)

provided it exists. Then, replacing (27) in (26) yields
 

∥τ∥
∥u∥ ≤ MM

∥u∥
∥u∥ = MM

ΣA

h0

therefore,  the  system  is  finite-gain  stable.  Similar
conclusions  can  be  obtained  in  the  special  case  in  which  the
mapping  is Lipschitz. In fact, assume that
 

∥h0(β(u))∥ ≤ N∥β(u)∥
N > 0for some , and that

 

∥β(u)∥ ≤ N∥u∥
N > 0for some . This yields

 

∥τ∥
∥u∥ ≤ MMN

∥β(u)∥
∥u∥ ≤ MMNN

proving the claim.
V : Rn→ R>0

O1 V(0) = 0 Vx(0) = 0
H(x,VT

x ,v,µ)
ΣD

For  a  smooth  positive  definite  function ,
locally  bounded  on  and  such  that  and ,
let  be the Hamiltonian function associated with
the system  and defined as
 

H(x,VT
x ,v,µ) = Vx ( f (x,α(v))+Γ(x,α(v))h(x,α(v)))

+ ∥β−1(x)∥2−µ(x)2∥v∥2

µ : Rn→ R>0

(1)

where9 .  We  are  now  ready  to  provide  a  small-
gain-like theorem for the stability analysis of the DAE system

.
(1)

(18) (19)
(22) O

Theorem  2: Consider  the  DAE  system ,  the  differential
system  and  the  algebraic  system .  Assume  that
condition  holds  in  an  open  set  which  contains  the

 

ΣD

ΣA

v z

τ u

 
Fig. 3.     Feedback decomposition of the DAE system (1).
 

  
8Again, see Hadamard’s Lemma [33].

  
L29See [31] for the concept of generalized -gain.

 934 IEEE/CAA JOURNAL OF AUTOMATICA SINICA, VOL. 7, NO. 4, JULY 2020



O1×O2 ⊆ O
α−1 β−1

Γ

V

origin  and  consider  the  open  set  introduced  in
Lemma  2.  Suppose  that  there  exist , , ,  and  a
Lyapunov function candidate  such that:

(A1)(25) M > 0 w ∈ O2 holds for some  and for all ;
(A2) ΣD (18) O1 the system , described by , is detectable in ;
(A3)

 

H(x,VT
x ,v,µ) ≤ 0 (28)

µholds for some  such that
 

µ(x) <
1

MM

∥β−1(x)∥
∥h0(x)∥ (29)

x ∈ O1for all .
(1)Then  the  origin  of  the  DAE  system  is  a  locally

asymptotically stable equilibrium point.

(1) (A1)
(26) u = z

(26)

Proof: We  exploit  the  feedback  decomposition  of  system
 illustrated in Fig. 3.  Observe that  and condition (23)

imply .  Replacing  the  interconnection  equation  in
 yields

 

∥τ∥
∥u∥ ≤ MM

∥h0(x)∥
∥β−1(x)∥

= η(x)

from which it follows that:
 

η(x)2∥u∥2−∥τ∥2 ≥ 0. (30)

(A3)
The next  steps are  inspired by the results  in  Proposition 3 of
[36] and in Corollary 10.8.2 of [37]. Since  holds, then
 

V̇ ≤ µ(x)2∥v∥2−∥z∥2. (31)
a : Rn→ R>0 (31)Let10 , note that  can be rewritten as

 

V̇ ≤ µ(x)2∥v∥2−∥z∥2+a(x)
(
η(x)2∥u∥2−∥τ∥2

)
−a(x)

(
η(x)2∥u∥2−∥τ∥2

)
. (32)

v = τ u = z
(32)

Replacing the interconnection equation  and  in the
first and third term, respectively, of  yields
 

V̇ ≤ −a(x)
(
η(x)2∥u∥2−∥τ∥2

)
+

(
µ(x)2−a(x)

)
∥τ∥2

+
(
a(x)η2(x)−1

)
∥z∥2. (33)

µ(x)η(x) < 1 a(x) > 0Since ,  then there exists a mapping  such
that
 

µ2(x) < a(x) <
1
η2(x)

which satisfies
 

µ2(x)−a(x) < 0, a(x)η2(x)−1 < 0 (34)
x ∈ O1 (33) V̇ ≤ 0.

x ΣD
ΣD (A2)

(A1) w(t)

for all . Using (30) and (34) in  yields  Hence,
the  state  of  system  is  bounded  and  the  origin  is  stable.
Asymptotic stability of the origin of  follows from  and
from La Salle’s invariance principle [38]. Finally, note that by

  is such that
 

∥w∥ ≤ η(x)∥u∥ = MM∥h0(x)∥
x ∈ O1 h0(0) = 0

lim
t→+∞

w(t) = 0
for  all  and  thus,  since ,  we  obtain

, proving the last part of the claim. ■
(1)Note that, while the solutions of the DAE system  do not

Γ

ΣD (18)
Γ

L2

ΣD

change  by  adding  the  algebraic  equation  multiplied  by  a
mapping  to  the  differential  equation,  the  solutions  of  the
differential  system  defined  in  are  affected  by  the
addition  of  such  a  term.  The  choice  of  plays,  indeed,  an
important role in the calculation of the -gain of the system

 as shown in the following result.
(1) (22)

O
O1×O2 ⊆ O

Corollary  1: Consider  system .  Assume  condition 
holds in an open set  which contains the origin and consider
the open set  introduced in Lemma 2. Suppose the
following conditions hold.

(C1) Γ There exists  such that
 

∂

∂w
[
( f (x,w)+Γ(x,w)h(x,w)

]
= 0 (35)

(x,w) ∈ O1×O2for all .
(C2) x = 0

ẋ = f (x,0)+Γ(x,0)h0(x).
  is  a  locally  asymptotically  stable  equilibrium of

the system 
1Then  the  origin  of  the  DAE  system  ( )  is  a  locally

asymptotically stable equilibrium point.
(1)

(C1) ΣD

v

(C2) ΣD L2 (C2)
(A1) (A2) 2

α−1(w) = w β−1(x) = x

Proof: Consider  the  feedback  decomposition  of  as
illustrated in Fig. 3. Condition  implies that the system 
is  not  affected  by  the  input .  Provided  that  the  origin  is  a
locally asymptotically stable equilibrium, which is the case by

,  then  has -gain  equal  to  zero.  In  addition, 
implies  that  the  conditions  and  of  Theorem  are
satisfied  for  the  trivial  choices  and ,
therefore the claim follows by Theorem 2. ■

The use of the corollary is illustrated in the next section. 

A.  The Linear Case
The  application  of  the  proposed  method  to  linear  DAE

systems yields classical results [12] which can be reinterpreted
in this framework. Consider the linear DAE system
 

ẋ = A11x+A12w
0 = A21x+A22w (36)

A11 ∈ Rn×n A12 ∈ Rn×m A21 ∈ Rm×n A22 ∈ Rm×mwhere , , ,  and 
are constant matrices. The following result holds.

(36)
det(A22) , 0 (36)

Corollary  2: Consider  the  DAE  system .  Suppose  that
.  The  system  is  asymptotically  stable  if  and

only if
 

σ(A11−A12A−1
22 A21) ⊂C<0. (37)

(C1) Γ = −A12A−1
22

(37) (C2)

(36) w = −A−1
22 A21x.

(36)

Proof: The sufficiency can be proved by means of Corollary 1.
Note that condition  of Corollary 1 holds for .
In  addition,  condition  is  equivalent  to  condition  of
Corollary 1, proving the claim. To prove the necessity we use
standard coordinates  reduction techniques  [12].  Manipulating
the  algebraic  equation  in  yields  By
replacing  the  previous  expression  in  the  differential  equation
of  yields
 

ẋ = (A11−A12A−1
22 A21)x

(37)which is asymptotically stable only if  holds. ■

Γ L2

d z

Remark 5: In the special  case of  linear DAE systems there
exists a particular choice of the matrix  such that the -gain
of  system  (18)  from  the  input  to  the  output  is  equal  to

  
a10In [37]  is constant.
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Γ = −A12A−1
22zero,  namely .  Based  on  this  observation,  it  is

clear  that,  for  the  nonlinear  case,  the  choice  of  the  constant
matrix
 

Γ = − ∂ f (x,w)
∂w

∣∣∣∣∣ x=0
w=0

(
∂h1(x,w)
∂w

)−1
∣∣∣∣∣∣∣ x=0
w=0

L2renders the -gain arbitrarily small in a neighborhood of the
origin,  provided  this  is  a  locally  asymptotically  stable
equilibrium for the resulting system and (22) holds. However,
for global results this choice might not be the best.
 

IV.  Further Results and Applications

In  this  section  we  illustrate  how  the  methods  presented  in
Sections III can be exploited. In particular, we show that:

1) for a class of constrained mechanical systems asymptotic
stability  of  the  zero  equilibrium  can  be  inferred  by  a
detectability condition;

2) for a class of Lipschitz DAE systems asymptotic stability
of  the  origin  can  be  deduced  from  the  feasibility  of  a  linear
matrix inequality.
 

A.  Constrained Mechanical Systems
The  equations  of  motion  of  mechanical  systems  subject  to

holonomic and scleronomic constraints  can  be  described  by
DAE  equations  of  index  three,  see  [7].  High-index  DAE
systems may be reduced to index-1 DAE systems by means of
index reduction techniques, see [24], [39], [41].

Consider a constrained mechanical system described by the
equations
 

M(q)q̈+C(q, q̇)q̇+ f (q) =GT (q)w, g(q) = 0 (38)
q(t) ∈ Rn

M : Rn→ Rn×n M(q) = M(q)T > 0
C : Rn×Rn→ Rn×n f : Rn→ Rn g : Rn→ Rm

G(q) =
∂g(q)
∂q
∈ Rm×m

g(q) = 0
w ∈ Rm m

f (0) = 0

where  represents  the  displacement  vector,
,  is  the  mass  or  inertia

matrix, , , ,  and

 is  the  constraint  matrix.  The  equation
 represents  a  set  of  geometric  constraints,  while

 characterizes  Lagrange  multipliers  (constraint
forces). We assume that  and
 

rank G(q) = m (39)
q(t) ∈ Rnfor all .  Systems (38) can be rewritten in state space

form as
 

ẋ =
[

x2
−M−1(x1) (C(x1, x2)x2+ f (x1))

]
+

[
0

M−1(x1)GT (x1)

]
w

0 = g(x1) (40)

x = [xT
1 xT

2 ]T = [qT q̇T ]T

1
(40)

where .  With  similar  arguments  as
those introduced in Corollary  for index-1 DAE systems, the
stability  analysis  of  the  DAE  system  reduces  to  the
stability  analysis  of  a  differential  system.  To  show  this,
consider the differential system
 

ẋ =
[

0
k(x1)

]
+

[
I

D(x1, x2)

]
x2

+

[
Γ01(x)g(x1)+Γ11(x)G(x1)x2
Γ02(x)g(x1)+Γ12(x)G(x1)x2

]
(41)

Γi j : Rn×Rn→ Rn×m i = 0,1 j = 1,2where , for , ,
 

D(x1,x2)

= −M−1(x1)
(
C(x1,x2)−GT(x1)

(
G(x1)M−1(x1)GT(x1)

)−1

×
(
z(x1, x2)−G(x1)M−1(x1)C(x1, x2)

) )
z(x1, x2) =

∂(G(x1)x2)
∂x1

with  and
 

k(x1) =
(
M−1(x1)GT(x1)

(
G(x1)M−1(x1)GT(x1)

)−1
G(x1)

− I
)

M−1(x1) f (x1).

The following preliminary result holds.
(40)

(41) Γ01

Γ02 Γ11 Γ12

(41)
(40)

Lemma  4: Consider  the  DAE  system  and  the
differential  system .  Assume  there  exist  mappings ,

, , and  such that the zero equilibrium of the system
 is  locally  asymptotically  stable.  Then  the  origin  of  the

DAE  system  is  a  locally  asymptotically  stable
equilibrium point.

Proof: Differentiating  the  constraint  equation  in  (40)  twice
with  respect  to  time we obtain  two more  algebraic  equations
that the solutions of (40) must satisfy, namely
 

0 =G(x1)x2
0 =G(x1)ẋ2+ z(x1, x2)x2

= −G(x1)M−1(x1) (C(x1, x2)x2+ f (x1))+z(x1, x2)x2

+G(x1)M−1(x1)GT (x1)w. (42)

Note  that  the  solutions  of  the  DAE system (40)–(42)  are  not
modified  if  we  add  the  algebraic  equations  premultiplied  by
some functions of the state to the differential equations, that is
if we consider the system
 

ẋ =
[

x2
−M−1(x1) (C(x1, x2)x2+ f (x1))

]
+

[
0

M−1(x1)GT (x1)

]
w

+

[
Γ01(x)
Γ02(x)

]
g(x1)+

[
Γ11(x)
Γ12(x)

]
G(x1)x2

+

[
Γ21(x)
Γ22(x)

] (
−G(x1)M−1(x1) (C(x1, x2)x2+ f (x1))

+z(x1, x2)x2+G(x1)M−1(x1)GT (x1)w
)

0 = g(x1)
0 =G(x1)x2

0 = −G(x1)M−1(x1) (C(x1, x2)x2+ f (x1))+ z(x1, x2)x2

+G(x1)M−1(x1)GT (x1)w

Γ2 j : Rn×Rn→ Rn×m j = 1,2where ,  for .  After  some
manipulations one obtains 
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ẋ =
([

I
−M−1(x1)C(x1, x2)

]
+

[
Γ11(x)G(x1)
Γ12(x)G(x1)

]
+

 Γ21(x)
(
z(x1, x2)−G(x1)M−1(x1)C(x1, x2)

)
Γ22(x)

(
z(x1, x2)−G(x1)M−1(x1)C(x1, x2)

) )x2

+

[
0

−M−1(x1) f (x1)

]
+

[
−Γ21(x)G(x1)M−1(x1) f (x1)
−Γ22(x)G(x1)M−1(x1) f (x1)

]
+

[
Γ01(x)g(x1)
Γ02(x)g(x1)

]
+

([
0

M−1(x1)GT (x1)

]
+

[
Γ21(x)G(x1)M−1(x1)GT (x1)
Γ22(x)G(x1)M−1(x1)GT (x1)

])
w

0 = g(x1)
0 =G(x1)x2

0 = −G(x1)M−1(x1) (C(x1, x2)x2+ f (x1))+ z(x1, x2)x2

+G(x1)M−1(x1)GT (x1)w.
(43)

(43)

M(x1) > 0
1 Γ21

Γ22 w

(40)

Γ21 = 0 Γ22(x) = −M−1(x1)GT(x1)×(
G(x1)M−1(x1)GT (x1)

)−1
(41)

Observe now that  the differential  subsystem in ,  together
with  the  last  algebraic  constraint,  forms  an  index-1  DAE
system. In fact, since (39) holds and , the condition
(22)  is  satisfied.  According  to  Corollary ,  if  there  exist 
and  such that the algebraic variable  is removed from the
differential  equation  of  (43),  then  asymptotic  stability  of  the
zero  equilibrium of  the  DAE system  can  be  inferred  by
asymptotic  stability  of  the  zero  equilibrium  of  a  differential
system.  Selecting  and 

 we obtain the system . ■

(40)

We  now  study  the  stability  properties  of  the  zero
equilibrium  by  means  of  the  linearized  equations.  We
demonstrate that, if a certain detectability condition holds, the
zero  equilibrium  of  the  DAE  system  is  locally
asymptotically stable. To this end, let
 

A =
[

0 I
A21 A22

]
(44)

with
 

A21 =
∂ (k(x1)+D(x1, x2)x2)

∂x1

∣∣∣∣∣x1=0
x2=0

=
∂ (k(x1))
∂x1

∣∣∣∣∣
x1=0

A22 =
∂ (D(x1, x2)x2)

∂x2

∣∣∣∣∣x1=0
x2=0

= D(0,0)

and
 

C =
[

G(0) 0
]
. (45)

The following result holds.
(40)

(A,C) A C (44)
(45) (40)

Proposition 3: Consider the DAE system . Assume that
the pair  is detectable, with  and  as given in  and

, respectively. Then the origin of the DAE system  is
a locally asymptotically stable equilibrium point.

(41) Γ01

Γ02 Γ11 Γ12

Proof: Consider the differential system  and select ,
, ,  and  as  constant  matrices  of  appropriate

dimensions.  Performing  the  linearization  around  the  zero
equilibrium yields the linear system
 

ẋ =


[

0 I
A21 A22

]
︸           ︷︷           ︸

A

+

[
Γ01 Γ11
Γ02 Γ12

]
︸          ︷︷          ︸

L

[
G(0) 0

0 G(0)

]
︸              ︷︷              ︸

Ĉ

 x (46)

(A,Ĉ)
which  is  asymptotically  stabilizable  if  and  only  if  the  pair

 is detectable, or equivalently, if and only if
 

rank
([
λiI−A

Ĉ

])
= 2n

λi ∈ σ(A) Re(λi) ≥ 0for  all ,  such  that .  Simple  operations  of
Gaussian elimination yields
 

rank
([
λiI−A

Ĉ

])
= rank

([
λiI−A

C

])
(46)

(A,C)
proving that the linear system  is stabilizable if and only if
the  pair  is  detectable.  Thus,  the  claim  follows  by
Lemma 4. ■ 

B.  Lipschitz DAE Systems
Lipschitz  DAE  systems  represent  a  subclass  of  DAE

systems  in  which  the  nonlinearities  are  slope-restricted.
Although  they  describe  a  special  class  of  systems,  these  are
widely  studied,  see  [9],  [41]–[44]  and  references  therein.  A
further  extension  of  the  method  developed  in  Section  III,
according  to  which  the  DAE  system  is  interpreted  as  the
feedback  interconnection  of  a  differential  system  and  an
algebraic  system,  is  to  consider  the  nonlinear  terms  as
additional  algebraic  variables.  In  this  setting,  the  stability
analysis  of  a  class  of  DAE  systems  with  Lipschitz
nonlinearities  reduces  to  the  stability  analysis  of  a  linear
system.

Consider a DAE system in semi-explicit form described by
equations of the form
 

ẋ = Ax+Bw+ f̃ (x)+ g̃(w)

0 =Cx+Dw+ h̃(x)+ r̃(w) (47)
x(t) ∈ Rn w(t) ∈ Rm

A ∈ Rn×n B ∈ Rn×m C ∈ Rm×n D ∈ Rm×m

f̃ : Rn→ Rn g̃ : Rm→ Rn h̃ : Rn→ Rm r̃ : Rm→ Rm

(22)

where  is  the  differential  variable,  is  the
algebraic  variable, , , , ,

, ,  and .  We
also assume that  holds, i.e.
 

rank
(
D+
∂̃r(w)
∂w

)
= m (48)

w ∈ Rm f̃ g̃ h̃ r̃for  all .  In  addition,  the  mappings , , ,  and  are
such that the Lipschitz conditions
 

∥ f̃ (x2)− f̃ (x1)∥ ≤ k f ∥(x2− x1)∥
∥̃h(x2)− h̃(x1)∥ ≤ kh∥(x2− x1)∥
∥̃g(w2)− g̃(w1)∥ ≤ kg∥(w2−w1)∥
∥̃r(w2)− r̃(w1)∥ ≤ kr∥(w2−w1)∥ (49)

xi ∈ Rn wi ∈ Rm i = 1,2 k f > 0
kh > 0 kg > 0 kr > 0

(49)

(49)

are satisfied for all , , , and some ,
, ,  and .  Note  that,  by  the  standing

smoothness  assumptions,  the  conditions  are  always
satisfied  in  any  neighborhood  of  the  origin.  However,  to
achieve global results we assume that the conditions  hold
globally.
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(47)
In what follows we reformulate the equations describing the

DAE  system  by  interpreting  the  nonlinear  terms  as
additional  algebraic  variables.  This  allows  exploiting  the
results derived in Section III in a simple way. To this end, let
 

d1 =
1
ϵ1

(
f̃ (x)+ g̃(w)+ ϵ2Γ̂d2

)
d2 =

1
ϵ2

(̃
h(x)+ r̃(w)

)
ϵ1 ∈ R>0 ϵ2 ∈ R>0 Γ̂ ∈ Rn×m

(47)
where , ,  and .  Using  these
definitions, the DAE system  can be rewritten as
 

ẋ = Ax+Bw+ ϵ1d1− ϵ2Γ̂d2
0 =Cx+Dw+ ϵ2d2

0 =
1
ϵ1

(
f̃ (x)+ g̃(w)+ ϵ2Γ̂d2

)
−d1

0 =
1
ϵ2

(̃
h(x)+ r̃(w)

)
−d2. (50)

f̃ g̃ h̃ r̃Note now that the mappings , , ,  and  can be rewritten
as
 

f̃ (x) = f̃ (x)
xT

∥x∥2
x, h̃(x) = h̃(x)

xT

∥x∥2
x

g̃(w) = g̃(w)
wT

∥w∥2
w, r̃(w) = r̃(w)

wT

∥w∥2
w.

Note also that, although the mappings
 

f̃ (x)
xT

∥x∥2
, h̃(x)

xT

∥x∥2
, g̃(w)

wT

∥w∥2
, r̃(w)

wT

∥w∥2
may not  be smooth,  these are  however  bounded.  To see this,
observe that
 ∥∥∥∥∥∥ f̃ (x)

xT

∥x∥2

∥∥∥∥∥∥
2
≤ ∥ f̃ (x)∥ ∥x

T ∥
∥x∥2

≤ k f
∥x∥2
∥x∥2

= k f (51)

(49)in which the second inequality holds by . Similarly,
 ∥∥∥∥∥∥̃h(x)

xT

∥x∥2

∥∥∥∥∥∥
2
≤kh,

∥∥∥∥∥∥̃g(w)
wT

∥w∥2

∥∥∥∥∥∥
2
≤kg,

∥∥∥∥∥∥̃r(w)
wT

∥w∥2

∥∥∥∥∥∥
2
≤kr. (52)

ŵ =
[
wT dT

1 dT
2

]T
(50)Let  now ,  then the  DAE system  can be

rewritten in compact form as
 

ẋ = Ax+
[
B ϵ1I − ϵ2Γ̂

]
ŵ

0 = C̃(x)x+ D̃(ŵ)ŵ (53)
where
 

C̃(x) =



C
1
ϵ1

f̃ (x)
xT

∥x∥2
1
ϵ2

h̃(x)
xT

∥x∥2



D̃(ŵ) =



D 0 ϵ2I

1
ϵ1

g̃(w)
wT

∥w∥2
−I ϵ2

ϵ1
Γ̂

1
ϵ2

r̃(w)
wT

∥w∥2
0 −I


.

(53)

(53)
(1)

Observe  that,  as  a  consequence  of  the  reformulation  in ,
the  feedback  decomposition  described  in  Section  III  leads  to
the  interconnection  of  a  linear  differential  system  and  an
algebraic  system.  To see  this,  note  that  the  equations  in 
reduce to the equations in  with
 

f (x, ŵ) = Ax+
[
B ϵ1I − ϵ2Γ̂

]
ŵ

h(x, ŵ) = C̃(x)x+ D̃(ŵ)ŵ. (54)
Selecting the mappings

 

α−1(ŵ) = ŵ, β−1(x) = x, Γ =
[
Γ̂ 0 0

]
(55)

(54) (55) (18) (19)and replacing  and  in  and  yields
 

ΣD :
{
ẋ = Ãx+ B̃v
z = x

(56)

and
 

ΣA :
{

0 = C̃(u)u+ D̃(ŵ)ŵ
τ = ŵ

in which
 

Ã = A+ Γ̂C
B̃ =

[
B+ Γ̂D ϵ1I 0

]
. (57)

2 (47)The application of Theorem  to the DAE system  yields
the following stability result.

(47)
(48) (49)

Proposition 4: Consider the DAE system . Assume that
the conditions  and  hold. Let
 

δ = (D)
ρ = σ̄(C)

γ =
min(δ,1)√√

ρ2+
k2

f

ϵ21
+

k2
h

ϵ22

max(1, δ)
δ− kr

√
k2

g

ϵ21
+

k2
r

ϵ22
+1


H =

 Ã
1
γ2 B̃B̃T

−I −ÃT

 (58)

Ã B̃ (57)
Γ̂ ϵ1 > 0 ϵ2 > 0

in which  and  are given in . Assume that there exist a
matrix  and constants ,  such that

(a1) δ > kr ;
(a2) σ(Ã) ⊂ C<0 ;
(a3) H ∈ dom(Ric) .

(47)Then the zero equilibrium of the DAE system  is globally
asymptotically stable.

α−1(w) (55) (25)
M = 1 ΣD (56)

M (23)
h1(x, ŵ) = D̃(ŵ)

(A3)

Proof: To  prove  the  claim  we  use  Theorem  2.  Note  first
that, for the selection of  given in ,  holds with

.  Moreover,  the  linear  system  described  by  is
detectable. The rest of the proof is performed in two steps: in
the  first  step  we  compute  the  constant  defined  in ,
where ;  in  the  second  step  we  show  that  the
condition  of Theorem 2 holds.

D̃
D̃(ŵ) = D̂+U(ŵ)V V =

[
I 0 0

]Step  1: Note  that  the  mapping  can  be  rewritten  as
, where ,
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U(ŵ) =



0
1
ϵ1

g̃(w)
wT

∥w∥2

1
ϵ2

r̃(w)
wT

∥w∥2


D̂ =


D 0 ϵ2I
0 −I ϵ2

ϵ1
Γ̂

0 0 −I


D̂ (a1)the matrix  is nonsingular by  and

 

∥V∥2 = 1

∥U(ŵ)∥2 ≤

√
σ

(
1
ϵ1

g(w)
wT

∥w∥2

)2
+σ

(
1
ϵ2

r(w)
wT

∥w∥2

)2

≤

√√
k2

g

ϵ21
+

k2
r

ϵ22
(59)

(52)in which the last inequality holds by . Note now that
 

D̃−1(ŵ) = (D̂+U(ŵ)V)−1

= D̂−1− D̂−1U(ŵ)(I+VD̂−1U(ŵ))−1VD̂−1 (60)
(I+VD̂−1U(ŵ))provided  that  the  matrix  is  nonsingular,  see

[45]. To show that this is the case, note that
 

D̂−1 =


D−1 0 ϵ2D−1

0 −I − ϵ2
ϵ1
Γ̂

0 0 −I


and
 

∥D̂−1∥2 ≤max
(
1,

1
δ

)
. (61)

Moreover,
 

σ(I+VD̂−1U(ŵ)) = σ
(
I+D−1̃r(w)

wT

∥w∥2

)
≥ σ(I)−σ

(
D−1̃r(w)

wT

∥w∥2

)
≥ σ(I)−σ

(
D−1

)
σ

(̃
r(w)

wT

∥w∥2

)

= 1−
σ

(̃
r(w) wT

∥w∥2

)
σ (D)

≥ 1− kr

δ
> 0 (62)

(a1) (62)where the last inequality holds by assumption . From 
it follows that:
 

∥(I+VD̂−1U(ŵ))−1∥2 =
1

σ(I+VD̂−1U(ŵ))
≤ δ

δ− kr
. (63)

Using  properties  of  the  norm  and  replacing  equations  (59),
(61), and (63) in (60) yields
 

∥D̃−1(w)∥2 ≤ ∥D̂−1∥2+ ∥D̂−1∥2∥U(ŵ)∥2
×∥(I+VD̂−1U(ŵ))−1∥2∥V∥2∥D̂−1∥2

≤max
(

1
δ
,1

)max(1, δ)
δ− kr

√√
k2

g

ϵ21
+

k2
r

ϵ22
+1


= M

concluding the first part of the proof.
(A3)Step  2: We  prove  that  the  condition  of  Theorem  2  is

satisfied. Observe first that
 

∥C̃(x)∥2 ≤

√
ρ2+σ

(
1
ϵ1

f̃ (x)
xT

∥x∥2

)2
+σ

(
1
ϵ2

h̃(x)
xT

∥x∥2

)2

≤

√√
ρ2+

k2
f

ϵ21
+

k2
h

ϵ22
.

(55) h0(x) = h(x,0) = C̃(x)x
(29)

Moreover,  replacing  and  in  the
right hand side of  yields
 

1

M

∥x∥
∥C̃(x)x∥

≥ 1

M∥C̃(x)∥2
≥ γ.

(56)Consider now the linear system . Let
 

G(s) = (sI− Ã)−1B̃

s ∈ C (56) Ã
(a2) (a3)

∥G∥∞ < γ,
L2 µ (56) µ = ∥G∥∞ < γ,

in  which ,  be  the  transfer  matrix  of .  Since  is
Hurwitz  by  assumption ,  then  assumption  is
equivalent to  see [32]. By Theorem 5.4 in [46], the

-gain  of the linear system  is such that 
thus (28) and (29) are satisfied. ■ 

V.  Conclusions

In  this  paper,  exploiting  the  properties  of  the  solution
manifold,  we  have  given  sufficient  stability  conditions  for
classes  of  DAE systems.  Using Lyapunov Direct  Method we
have  shown  that  local  asymptotic  stability  of  the  zero
equilibrium  can  be  inferred  by  the  feasibility  of  a  state-
dependant  matrix  inequality  (Theorem  1),  which  assumes
different  forms  depending  on  the  selection  of  the  design
parameters.  On  the  one  hand,  the  proposed  method  allows
recovering  classical  results  based  on  the  inversion  of  the
algebraic equation (Proposition 1). On the other hand, such an
inversion can be avoided by a suitable selection of the design
parameters  (Proposition  2).  A  numerical  example  motivated
by  the  analysis  of  a  nonlinear  mechanical  system  has  been
used  to  validate  the  technique  (Section  II-A).  We  have  also
proposed  a  novel  interpretation  of  DAE systems  as  feedback
interconnection  of  a  differential  system  and  an  algebraic
system (Section III). In this framework, the algebraic variable
assumes  the  role  of  an  external  disturbance  and  the  stability
analysis  reduces  to  a  small-gain-like  condition  (Theorem  2).
The  application  of  this  method  to  the  linear  case  yields
classical results which can be reinterpreted in this framework
as  a  particular  case  (Corollary  2).  For  a  class  of  constrained
mechanical  systems  we  have  shown  that  the  problem  of
stability analysis can be formulated as a stabilization problem
of a differential system (Lemma 4). By means of linearization
techniques,  we  have  also  shown  that  such  a  problem  can  be
solved when a detectability condition is satisfied (Proposition 3).
Finally,  using  the  feedback  interpretation  introduced  in
Section III, we have shown that the stability analysis of a class
of Lipschitz DAE systems reduces to finding the feasibility of
a linear matrix inequality (Proposition 4).

Motivated  by  the  results  of  this  paper  [26]  has  shown  that
the stabilization problem for  a  general  class  of  DAE systems
can  be  addressed  by  means  of  the  feedback  decomposition
introduced in Section III of the present study. In addition, the
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stabilization  problem  for  a  class  of  Lipschitz  DAE  systems
has  been  studied  in  [30].  Numerical  examples  which  exploit
the results derived in Sections III and IV can be found in [25,
Section 3.4], in [29, Section III.A], in [26, Section IV] and in
[30,  Section  V].  Following  the  same  line  of  research,  future
works will focus on the application to the observer design and
to  the  output  feedback  stabilization  problems  for  classes  of
DAE systems.
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