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   Abstract—In  this  paper,  a  data-based  fault  tolerant  control
(FTC) scheme is investigated for unknown continuous-time (CT)
affine  nonlinear  systems  with  actuator  faults.  First,  a  neural
network  (NN)  identifier  based  on  particle  swarm  optimization
(PSO) is constructed to model the unknown system dynamics. By
utilizing the estimated system states, the particle swarm optimized
critic  neural  network  (PSOCNN)  is  employed  to  solve  the
Hamilton-Jacobi-Bellman  equation  (HJBE)  more  efficiently.
Then,  a  data-based  FTC  scheme,  which  consists  of  the  NN
identifier  and  the  fault  compensator,  is  proposed  to  achieve
actuator  fault  tolerance.  The  stability  of  the  closed-loop  system
under  actuator  faults  is  guaranteed  by  the  Lyapunov  stability
theorem.  Finally,  simulations  are  provided  to  demonstrate  the
effectiveness of the developed method.
    Index Terms—Adaptive  dynamic  programming  (ADP),  critic
neural  network,  data-based,  fault  tolerant  control  (FTC),  particle
swarm optimization (PSO).
 

Nomenclature

λmax(·) 　　Maximum eigenvalue of a matrix
λmin(·) 　 　Minimum eigenvalue of a matrix
R 　　　　Set of all real numbers
Rm m 　　 　 Space of all real -vectors
Rn×m n×m 　 　 Space of all  real matrices
∇J(x) J(x) x 　 　Partial derivative of  w.r.t. 
≜ 　　　　Equal by definition
∥s∥ s ∈ Rn 　  　　2-norm of the vector 

∥w∥ w ∈ Rn×m 　　　  Frobenius-norm of the matrix 
In n×n 　　　　Identity matrix of dimension  

I.  Introduction

MODERN  complex  control  systems  always  require
optimal  control  but  ensuring  closed-loop  stability  is  a

difficult  task,  as  accurate  dynamics  are  hardly  modelled.
Traditional  optimal  control  theory  built  upon  dynamic
programming  and  Pontryagin’s  maximum  principle  finds  the
optimal  objective  by  optimizing  self-defined  cost  functions.
However,  those  methodologies  operate  off-line  and  require
availability of equations describing the system in advance [1].
Adaptive  dynamic  programming  (ADP)  [2]–[5]  is  an
approximate optimal control approach emerging in the field of
intelligent  control.  Similar  to  reinforcement  learning  (RL)
[6]–[9], ADP uses two main algorithms named policy iteration
(PI) [10], [11] and value iteration (VI) [12] to achieve policy
evaluation  and  policy  improvement  iteratively.  ADP  aims  at
adaptively  learning  the  optimal  control  strategy  by
constructing  a  critic  neural  network  (NN)  approximating  the
solution  of  the  Hamilton-Jacobi-Bellman  equation  (HJBE)
[13].  Based  on  the  NN  approximator,  the  optimal  control  is
obtained  forward-in-time  and  the  `curse  of  dimensionality'  is
conquered [14]. ADP is a well-known advanced and effective
method for optimal control in both the theoretical research and
real-world applications [15]–[18]. Extensive efforts have been
dedicated  to  developing  ADP  approaches  for  nonlinear
systems.

In  real  systems,  it  is  unavoidable  to  experience  faults  in
actuators,  sensors,  or  other  system  parts  [19],  [20].  In
particular,  actuator  faults  would  cause  severe  damages  as
faults  cannot  be  accommodated by a  pre-designed controller.
In  order  to  solve  this  problem  and  integrate  fault  tolerance
ability  at  actuator  level,  robust  control  strategies  should  be
considered at the control design phase [21].

There are some ADP-based control algorithms that consider
both  optimization  and  fault  tolerant  abilities.  In  [22],  a  fault
tolerant  control  (FTC)  algorithm  based  on  PI  was  developed
for nonlinear systems. The solution of the HJBE was achieved
by using the NN approximation. In order to solve the actuator
fault problem, a fault compensator, which did not require fault
detection and isolation abilities, was designed, and the closed-
loop system with actuator  faults  was guaranteed to be stable.
Zhao et  al. [23]  developed  an  ADP-based  actuator  FTC
scheme  by  designing  a  fault  observer  for  nonlinear  systems.
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The  key  idea  is  that  the  FTC  problem  was  regarded  as  an
optimization problem by considering the fault  estimate in the
design  of  the  loss  function.  Wu et  al. [24]  considered  the
actuator failure in the tracking control  task and developed an
optimal  adaptive  compensation  control  based  on  the
estimation  of  actuator  failure  coefficients.  These  studies
require the availability of system equations. The topic on FTC
for  discrete-time  systems  with  unknown  dynamics  has
attracted  considerable  attention  [25]–[27].  The  RL-based
adaptive  tracking  FTC  was  studied  for  MIMO  (multi-input
and  multi-output) discrete-time  systems  in  [25]  and  [26].
Based  on  the  actor-critic  NN  structure,  systems  affected  by
abrupt faults at actuator level could be maintained stable. The
proposed  strategy  [25]  required  a  lower  computational  load
and  fewer  learning  parameters  as  it  estimated  the  Euclidean
norm of unknown weights of NNs instead of updating the NN
weights directly. A model-free FTC strategy was proposed in
[27]  for  single-input  single-output  systems.  The  original
system  is  transformed  into  a  model-free  data  form.  By
designing  an  NN  approximator  to  learn  the  sensor  fault,  the
FTC  strategy  is  reconstructed  based  on  the  optimality
criterion.  For  ADP-based  FTC  of  unknown  continuous-time
(CT)  systems,  Zhang et  al. [28]  proposed  a  fuzzy  FTC
strategy  based  on  RL  for  systems  whose  dynamics  was
partially  unknown.  They  designed  a  new  performance  index
function  which  reflects  four  types  of  actuator  failures.  Then,
based  on  the  constructed  fuzzy-augmented  dynamics,  the
control policy which achieved the tracking goal and stabilized
the  closed-loop  system  under  actuator  failures  was  obtained.
However,  this  methodology  is  applicable  only  to  partially
unknown  fuzzy  systems.  We  finally  comment  that  there  are
few  ADP-based  FTC  schemes  for  completely  unknown  CT
nonlinear systems.

As  we  know,  the  gradient-based  critic  NN  (GDCNN)
methods  are  widely  used  to  solve  HJBEs in  order  to  achieve
approximate optima. To train the critic NN with the gradient-
based (GD) learning algorithm, one starts with random initial
weights  and  updates  them  by  moving  along  the  direction  of
gradient  descent.  It  means  that  the  GD  algorithm  provides  a
tractable  way  for  local  hill  climbing  on  the  landscape  of  the
critic NN weight parameter space. However,  when initialized
at a low hill in the parameter space, the GD algorithm may be
trapped  by  unsatisfactory  local  optimization,  resulting  in
inefficient  HJBE  solutions.  One  may  avoid  this  problem  by
training  the  critic  NN  more  than  one  session  or  applying
specific prior knowledge to choose a good initial parameter. In
this  paper,  we  propose  a  particle  swarm  optimization  (PSO)
method to solve this problem.

PSO  is  a  stochastic  optimization  algorithm  where  each
particle  has  a  virtual  position  that  represents  a  possible
solution to the optimization problem [29]–[31]. In the training
phase, a set of particles are initialized and evolve to search the
optimal solution associated with the particle characterized by
the  best  fitness  value.  PSO  has  multiple  initial  positions  and
relies on the global heuristic search principle, which increases
the probability to avoid and even jump out of local optimums.
Recently,  a  better  performance  for  NN  based  methods  has
been achieved by integrating PSO into NNs. Martin et al. [32]

developed  the  PSO-trained  NN  to  solve  the  electrical
impedance tomography problem. It  was shown that the PSO-
trained  NN converged  faster  compared  to  the  GD algorithm.
Das et  al. [33]  considered  PSO-trained  NNs  in  channel
equalization  problems.  The  proposed  equalizer  performs
better  than  other  NN-based  equalizers  in  noisy  conditions.
Chan et  al. [34]  presented  a  short-term  traffic  flow  forecast
algorithm  based  on  PSO  and  artificial  NNs,  which  required
simple NNs and contained memory.

Motivated  by  the  above  analysis,  this  paper  develops  an
ADP  approach  based  on  PSO  and  NNs  to  achieve  actuator
fault  tolerance of unknown CT affine nonlinear systems. The
main contributions are:

1)  The  proposed  data-based  FTC  algorithm  deals  with
completely  unknown  CT  nonlinear  systems,  rather  than
known  or  partially  unknown  systems  (as  in  [23]  and  [28]).
Moreover,  the  dynamics  of  the  unknown  systems  are
approximated  by  the  PSO-trained  nonlinear  NN  identifier
based  on  available  measurements,  and  hence  making  the
method effective in real applications.

2)  The  HJBE  is  solved  through  the  particle  swarm
optimized  critic  NN  (PSOCNN)  instead  of  the  general
GDCNN;  in  this  way  the  HJBE  is  solved  with  a  high
successful rate.

3)  The  presented  data-based  FTC  strategy  provides  an
online fault tolerant control which is shown to be optimal.

The rest of this paper is organized as follows. In Section II,
the  problem  statement  for  faulty  nonlinear  CT  systems  is
presented.  In  Section  III,  an  NN  identifier  is  constructed  to
estimate  the  system  dynamics.  Then,  the  data-based  FTC
through the PSONNs is developed based on the adaptive fault
estimation.  In  Section  IV,  two  simulation  examples  are
provided  to  demonstrate  the  effectiveness  of  the  proposed
method. Finally, Section V concludes the present paper. 

II.  Problem Statement

Consider  the  unknown  CT  affine  nonlinear  system  with
actuator faults described by
 

ẋ(t) = f (x(t))+g(x(t))
(
u(x(t))+u f (t)

)
(1)

x(t) ∈ Rn u(x(t)) ∈ Rm

f (·)
g(·)
f (0) = 0 u f (t)

x(0) = x0

where  and  represent the state vector and
the control  vector,  respectively.  The unknown terms  and

 are  Lipschitz  and  differentiable  in  their  arguments  with
,  and  represents  the  unknown  additive  actuator

fault vector. Let the initial state be . ∥∥∥u f (t)
∥∥∥ ≤ ϱ1 ≤∞∥∥∥u̇ f (t)

∥∥∥ ≤ ϱ2 ≤∞ ϱ1 ϱ2

Assumption  1: The  actuator  fault  vector  and  its  time-
derivative are unknown and norm-bounded as ,

, where  and  are two positive constants.

u f u̇ f

Remark  1: The  possible  actuator  faults  are  stochastic  and
may occur simultaneously. Assume that actuator faults do not
deteriorate rapidly over a period of time as they happen with
exponential behaviours, which destroy the system and prevent
any  system  recovery.  In  practice,  it  is  reasonable  to  assume
the  actuator  fault  vector  and  its  time-derivative  to  be
norm-bounded by constants [23], [35], [36]. For instance, the
fault  is  associated  with  hardware  aging.  Therefore,  it  is
possible to change the control law in (1) to achieve the desired
system performance under the situation of actuator faults.
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The  system  (1)  in  fault  free  case  can  be  described  by  the
corresponding nominal system
 

ẋ(t) = f (x(t))+g(x(t))u(x(t)). (2)
f g f +gu

Ω ⊂ Rn
Since  and  are  Lipschitz  and  differentiable,  is

Lipschitz  continuous  on  a  set  of ,  and  the  nominal
system (2) is controllable.

Define the cost function for system (2) as
 

J(x0) =
w ∞

0
U

(
x(τ),u(τ)

)
dτ (3)

U(x,u) = xT Qx+uT Ru
U(x,u) ≥ 0 x u U(0,0) = 0 Q ∈ Rn×n

R ∈ Rm×m

where  represents  the  utility  function,
 for  all  and  with ,  and

.
u ∈ Ψ(Ω) Ψ(Ω)If  is an admissible control [37], [38], where 

denotes  the  set  of  admissible  control  actions,  and  (3)  is
differentiable,  then  the  infinitesimal  version  of  (3)  is  the  so-
called nonlinear Lyapunov equation
 

0 = U(x,u)+
(∇J(x)

)T (
f (x)+g(x)u

)
(4)

∇J(x) J(x) x

∇J(x) =
∂J(x)
∂x

where  denotes the partial derivative of  w.r.t. , i.e.,

.
Define the Hamiltonian and the optimal cost function as

 

H
(
x,u,∇J(x)

)
= U(x,u)+

(∇J(x)
)T (

f (x)+g(x)u
)

(5)
and
 

J∗(x0) = min
u∈Ψ(Ω)

w ∞
0

U
(
x(τ),u(τ)

)
dτ (6)

respectively. Then
 

0 = min
u∈Ψ(Ω)

H
(
x,u,∇J∗(x)

)
(7)

∇J∗(x) =
∂J∗(x)
∂x

J∗(x)where .  If  exists  and  is  differentiable,
the optimal control law can be expressed as
 

u∗(x) = −1
2

R−1gT (x)∇J∗(x). (8)

Generally, for the known fault-free system (2), the HJBE (7)
can  be  solved  by  using  the  ADP  framework.  However,  the
main  purpose  of  this  paper  is  to  obtain  the  ADP-based  FTC
policy  which  guarantees  the  stability  of  the  unknown system
under actuator faults, and improves the success rate of solving
the HJBEs by employing the PSOCNN method. 

III.  Data-based Fault Tolerant Control Methodology
Based on PSONNs

 

A.  Particle Swarm Optimization
j

X j = (X j1,X j2, . . . ,X jd) j = 1,2, . . . ,k
V j = (V j1,V j1, . . . ,V jd)

P j = (P j1,P j1, . . . ,P jd)
k Pg

P j Pg

In PSO, the th individual solution is a particle represented
as  vector ,  where .
Particles  have  fitness  values;  velocity 
directs  particles  over  iteration  time.  Each  particle  moves
through  the  problem  space  with  two  optimal  positions
determined by the fitness values. One position is the previous
best  position ,  and the other  is  the  best
of  all  the  best  positions  among  particles .  Based  on  the
former velocity and position  and , each particle updates
iteratively as

 

V j = ωV j+ c1r1(P j−X j)+ c2r2(Pg−X j) (9)
 

X j = X j+V j (10)
r1 r2 c1 c2 ω

r1 r2 (0,1)
c1,c2 > 1 ω

where , , ,  and  are candidate parameters [29], [30].
Generally,  and  are chosen randomly in the interval ,

, and  updates as
 

ω = ωmin+
γ

γmax
(ωmax−ωmin) (11)

γ ≤ γmax
γmax ωmin ωmax

ω

where  denotes  the  step  of  the  iteration  process  and
 is  the  maximum  step.  and  are  the  minimum

and maximum values of , respectively.
ω c1 c2According  to  [39],  if  the  parameters , ,  and  satisfy

proper  conditions,  the  particle  will  converge  to  the  best
position.

ω,c1,c2 ≥ 0 {DXt}
f (1) < c2

2(1+ω)/6
{Pi(t)} Pg 1

Lemma  1: Given ,  if  iterative  process  is
guaranteed  to  converge  and ,  then  iterative
process  will converge to  with probability  [39]. 

B.  Optimal Control via PSONNs
In this subsection, an NN identifier is constructed by using

the  measured  input-output  data  to  learn  the  dynamics  of  the
unknown  nonlinear  CT  systems.  Then,  the  PSOCNN  is
employed to solve the HJBE, and the optimal control strategy
is presented.

1)  Neural  Network  Identification: According  to  [40]–[42],
system (2) can be represented accurately by the NN identifier
as
 

ẋ = Ax+wT
2σi(wT

1 z)+ ξi (12)
z = [xT ,uT ]T ∈ Rn+m

lh A
w1 ∈ R(n+m)×lh w2 ∈ Rlh×n

σi(·) = tanh(·) ∈ Rlh

ξi ∈ Rn

where  denotes the input vector of a three-
layer  NN  with  neurons  in  the  hidden  layer.  is  a  known
Hurwitz matrix.  and  are ideal weight
matrices  for  the  input-to-hidden  layer,  and  the  hidden-to-
output layer, respectively.  is the activation
function,  is the functional approximation error.

w1
w2

For simplicity,  is always set to be a constant matrix, and
hence only  is required to be learned. Therefore, the output
of the NN identifier can be described as
 

˙̂x = Ax̂+ ŵT
2σi(wT

1 ẑ) (13)
x̂ ẑ = [x̂T ,uT ]T

ŵ2 w2 s = wT
1 z ŝ = wT

1 ẑ
where  is the current estimate for system states, ,
and  is  the  estimate  of .  Define  and ;
from (12)  and  (13),  the  differential  equation  of  identification
error becomes
 

˙̃x(t) = Ax̃(t)+ w̃T
2σi(ŝ)+wT

2
(
σi(s)−σi(ŝ)

)
+ ξi. (14)

k
ŵ2

ŵ2
w2 1 Prob(limt→∞ ŵ2 =

w2) = 1.

Remark 2: Initialize  particles for the desired NN identifier
weight  matrix  which  is  updated  iteratively  by  the  PSO
algorithm. The iterative process  will converge to the ideal
weight matrix  according to Lemma , i.e., 

x̃
Before presenting the uniform ultimate boundedness (UUB)

of  state  identification  errors ,  we  give  the  following
reasonable assumptions, which have been used in [43]–[46].

∥w1∥ ≤ δ1 ∥w2∥ ≤ δ2 δ1
δ2

Assumption  2: The  ideal  weight  matrices  of  the  identifier
NN are  norm-bounded  as ,  and ,  where 
and  are positive constants.

ξiAssumption  3: The  functional  approximation  error  is
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ξT iξi ≤ λξi x̃T x̃
σi(ŝ) ∥σi(ŝ)∥ ≤ λσi λξi

λσi

upper-bounded  by ,  and  the  NN  activation
function  is  upper-bounded  by ,  where 
and  are two positive constants.

1 x̃

Theorem  1: Consider  the  unknown  CT  affine  nonlinear
system  in  fault  free  case  (2),  Assumptions  2  and  3,  and
Lemma , the identification error  is UUB if the NN weights
of the identifier are updated by the developed PSO equations
(9) and (10).

Proof: Choose the Lyapunov function candidate as
 

L1(t) =
1
2

x̃T x̃.

L1(t)By taking the time derivative of , we obtain
 

L̇1(t) = x̃T ˙̃x. (15)
Based on (14) and (15), we have that

 

L̇1(t) = x̃T Ax̃+ x̃T wT
2
(
σi(s)−σi(ŝ)

)
+ x̃T w̃T

2σi(ŝ)+ x̃T ξi.

y1 ≥ y2 y1,y2 ∈ R
λ0 > 0

Similar  to  [41],  [47],  for  any  and ,  there
exists a constant  such that
 

σi(y1)−σi(y2) ≤ λ0(y1− y2). (16)
According to (16) and Assumption 2, we can obtain

 

x̃T wT
2
(
σi(s)−σi(ŝ)

) ≤ 1
2

x̃T wT
2 w2 x̃+

1
2
(
σi(s)−σi(ŝ)

)T

× (
σi(s)−σi(ŝ)

)
≤ 1

2
x̃T wT

2 w2 x̃+
1
2
λ2

0∥s− ŝ∥2

≤ 1
2
δ22 x̃T x̃+

1
2
λ2

0δ
2
1 x̃T x̃. (17)

w̃2
δ3 ∥w̃2∥ ≤ δ3

According  to  [48],  let  be  norm-bounded  by  a  positive
constant ,  such that .  Based on Assumption 3,  we
have
 

x̃T w̃T
2σi(ŝ) ≤ 1

2
x̃T x̃+

1
2

w̃T
2
(
σi(ŝ)

)Tσi(ŝ)w̃2

≤ 1
2

x̃T x̃+
1
2
λ2
σi
δ23. (18)

Based on (17), (18) and Assumption 3, we have
 

L̇1(t) ≤ x̃T Ax̃+
1
2
δ22 x̃T x̃+

1
2
λ2

0δ
2
1 x̃T x̃+

1
2

x̃T x̃

+
1
2
λ2
σi
δ23+

1
2
λξi x̃

T x̃+
1
2

x̃T x̃

= x̃T (
A+

1
2

(2+λ2
0δ

2
1+λξi +δ

2
2)In

)
x̃+

1
2
λ2
σi
δ23

= −x̃TΘx̃+Ξ
Inwhere  represents the n-dimensional identity matrix and

 

Θ = −
(
A+

1
2

(2+λ2
0δ

2
1+λξi +δ

2
2+λσiδ

2
2)In

)
 

Ξ =
1
2
λ2
σi
δ23.

Then, we have
 

L̇1(t) ≤ −λmin(Θ)∥x̃∥2+Ξ (19)
λmin(·)where  denotes  the  minimum  eigenvalue  of  a  matrix.

L̇2(t) ≤ 0 x̃(t)Thus, we can observe that  whenever  lies outside
the compact set
 

Ωx̃ =

x̃ : x̃ ≤

√
Ξ

λmin(Θ)

 . (20)

According  to  Lyapunov  theory,  we  obtain  that  the  system
state estimation error is UUB. ■

It follows that the NN identifier is described as
 

˙̂x = f (x̂)+g(x̂)u = Ax̂+ ŵT
2σi(ŝ). (21)

uBy taking the partial derivative of (21) with respect to , we
can obtain the estimated input gain matrix as
 

ĝ(x̂) =
∂
(
Ax̂+ ŵT

2σi(ŝ)
)

∂u

= ŵT
2∇σi(ŝ)wT

1

[on×m
Im

]
. (22)

˙̂x ĝ(x̂)
Therefore,  with  a  well  trained  NN identifier,  the  estimated

system state equation  in (21) and control matrix  in (22)
can be derived. It follows that it is feasible to develop a data-
based  optimal  control  strategy  built  upon  the  ADP  method,
that  can  be  applied  to  the  FTC  of  unknown  nonlinear  CT
systems.

J∗(x)

2)  Implementation  Process: As  we  know,  the  key  point  to
obtain  the  optimal  control  strategy  is  to  solve  the  HJBE  (7).
Under  the  ADP  framework,  a  critic  NN  is  constructed  to
approximate  the  solution  of  (7).  In  order  to  obtain  the  well-
trained  critic  NN  which  can  approximate  the  solution  of  the
HJBE,  in  this  subsection,  we  develop  the  PSOCNN  to  solve
the HJBE instead of the GDCNN. Based on the NN identifier
(21),  can be reconstructed by a  critic  NN with a  single
layer as
 

J∗(x̂) = wT
c σc(x̂)+ ξc(x̂) (23)

wc ∈ Rl σc(x̂) ∈ Rl

l
ξc(x̂)

where  is  the  ideal  weight  matrix,  is  the
activation function,  represents the number of neurons in the
hidden layer, and  is the approximation error. Taking the
partial gradient of both sides of (23), one has
 

∇J∗(x̂) =
(∇σc(x̂)

)T wc+∇ξc(x̂). (24)
Based on (21) and (24), (4) becomes

 

0 = U(x̂,u)+
(
wT

c ∇σc(x̂)+
(∇ξc(x̂)

)T
)

× (
Ax̂+ ŵT

2σi(wT
1 ŝ)

)
.

wc σc(x̂) ξc(x̂)
∇ξc(x̂) Ω

wc

Similar  to  [49], , ,  and  its  partial  derivative
 are assumed to be norm-bounded on a compact set .

By estimating the  ideal  NN weight  matrix  with ,  the  critic
NN is approximated as
 

Ĵ(x̂) = ŵT
c σc(x̂). (25)

Then, its partial derivative is
 

∇Ĵ(x̂) =
(∇σc(x̂)

)T ŵc. (26)
Substituting (22) and (24) into (8), we have

 

u∗(x̂) = −1
2

R−1ĝT (x̂)
((∇σc(x̂)

)T wc+∇ξc(x̂)
)
. (27)

∇J∗(x̂)Since  is  approximated  by  (26),  the  optimal  control

LIN et al.: DATA-BASED FTC FOR AFFINE NONLINEAR SYSTEMS THROUGH PSO NNS 957 



can be approximated as
 

û(x̂) = −1
2

R−1ĝT (x̂)
(
(∇σc(x̂)

)T ŵc. (28)

Consider  (27)  and  the  NN  identifier  (21)  and  (22),  the
Hamiltonian (5) becomes
 

H(x̂,wc) = x̂T Qx̂+
1
4

wT
c ∇σc(x̂)ĝ(x̂)(R−1)T RR−1ĝT (x̂)

× (∇σc(x̂)
)T wc+wT

c ∇σc(x̂)
(
Ax̂+ ŵT

2σi(ŝ∗)
)

− (∇ξc(x̂)
)T (

Ax̂+ ŵT
2σi(ŝ∗)

)
− 1

4
(∇ξc(x̂)

)T ĝ(x̂)R−1ĝT (x̂)∇ξc(x̂)

= x̂T Qx̂+wT
c ∇σc(x̂)

(
Ax̂+ ŵT

2σi(ŝ∗)
)

+
1
4

wT
c ∇σc(x̂)ĝ(x̂)R−1ĝT (x̂)

(∇σc(x̂)
)T wc− ecH

= 0 (29)
where
 

ecH = −
(∇ξc(x̂)

)T (
Ax̂+ ŵT

2σi(ŝ∗)
)

− 1
4
(∇ξc(x̂)

)T ĝ(x̂)R−1ĝT (x̂)∇ξc(x̂)

ŝ∗ = wT
1 [x̂T ,u∗T ]

λecH ∥ecH∥ ≤ λecH

denotes  the  residual  error  with .  Assume that
there  exists  a  positive  constant  such  that .
Combining  (26)  and  (28)  with  (29),  the  approximate
Hamiltonian is derived as
 

H(x̂, ŵc) = x̂T Qx̂+
1
4
ΥTΦΥ+Υ

(
Ax̂+ ŵT

2σi(s∗)
)
≜ ec (30)

Φ = ĝ(x̂)R−1ĝT (x̂) Υ = ŵT
c ∇σc(x̂) s∗ = wT

1 [x̂T , ûT ]Twhere , , and .
From (29) and (30), we can derive

 

ec = ecH − w̃T
c ∇σc(x̂)

(
Ax̂+ ŵT

2σi(s∗)
)

− 1
4

w̃T
c ∇σc(x̂)Φ

(∇σc(x̂)
)T w̃c.

Ec =
1
2

eT
c ecThen,  the  cost  function  should  be  minimized

[50]. In order to improve the success rate of solving the HJBE,
in this paper, we use the PSO algorithm to train the critic NN.

By  using  the  PSO  algorithm,  the  critic  NN  weights  are
regarded  as  a  particle.  The  fitness  function  of  the  particle  is
defined as [51]
 

f itnessc = exp
(
−1

2
Ec

)
. (31)

ŵc wc

In this sense, with a set of particles update according to (9)
and (10) iteratively, the objective is to find the current fitness
value  which is  close  to  1.  Moreover,  according to  Lemma 1,

 will  converge  to  with  probability  1  after  sufficient
iterations.

Remark  3: In  the  proposed  PSOCNN,  the  critic  NN  is
trained  by  the  PSO  algorithm.  PSO  has  the  probabilistic
mechanism. It searches for the ideal weights of the critic NN
towards  global  optimum by  means  of  mutual  guidance.  PSO
has  shown  to  be  effective  in  solving  complex  optimization
tasks.  Based on PSO,  the  critic  NN has  a  high probability  to
converge  to  the  approximate  optimum  which  can  accurately
approximate  the  HJBE solution.  It  is  worth  pointing  out  that

since  a  large  population  of  initial  weight  vector  is  chosen  in
PSO  algorithm,  this  paper  focuses  on  improving  the  success
rate  of  solving  HJBEs  in  contrast  to  using  gradient-based
learning algorithm. That is  to say,  the PSO increases the rate
to  universal  optimization,  but  is  still  a  local  optimization.
Furthermore,  in  the  learning  phase,  GDCNN has  to  compute
the partial gradient of the cost function when updating the NN
weight vector in each iteration. By contrast, the weight vector
of PSOCNN is updated by (9) and (10) which requires simple
computation, thereby reducing the computation cost and time.

V ω

V

ω

ω

Remark 4: The particle velocity  and the inertia weight 
of  PSOCNN  have  the  main  impact  on  the  results  as  they
determine  the  search  area  and  speed  of  particles.  If  is  too
large,  i.e.,  particles  fly  too fast,  they may pass  good solution
of  Hamiltonian.  In  contrast,  the  search  area  of  particles  is
limited and it is difficult for particles to jump out of low hills.
The  inertia  weight  provides  a  tradeoff  between  the  global
and  local  search.  It  achieves  better  performance  when
choosing a decreasing . 

C.   Data-based  Fault  Tolerant  Control  Based  on  PSONNs  and
Stability Analysis

Based  on  the  analysis  in  Subsection  III-B,  the  unknown
system  with  actuator  faults  is  further  considered  in  this
subsection.  The  data-based  FTC  is  established  to  overcome
the impact of faults on the system performance. The stability
analysis  of  the  faulty  closed-loop  system under  the  proposed
strategy is provided as well.

û

un = û

1) Data-based FTC for Actuator Faults: According to [22],
the  time  derivative  of  the  cost  function  is  biased  due  to
unknown  actuator  faults.  It  implies  that  the  obtained
approximate  optimal  control  (28)  derived  under  the  fault-
free  system  cannot  guarantee  the  stability  of  the  closed-loop
system.  Let ,  according  to  (1),  (21)  and  (22),  the
unknown system with actuator faults should be rewritten as
 

˙̂x = f (x̂)+ ĝ(x̂)(un+u f ). (32)

u

Theorem  2: Consider  the  unknown  CT  affine  nonlinear
system with actuator faults (1), the NN identifier (13) and the
cost  function (3),  the closed-loop of  the unknown system (1)
can be guaranteed to be UUB with the data-based FTC law 
as
 

u = un− û f (33)
where
 

˙̂u f = Γ
(
2uT

n R− x̂T ĝ(x̂)
)T (34)

Γrepresents  the  estimated  actuator  fault,  and  is  a  positive
learning rate.

Proof: Choose Lyapunov function candidate as
 

L2(t) =
1
2

x̂T x̂+ J(x̂)+
1

2Γ
ũT

f ũ f (35)

ũ f = u f − û fwhere  is the fault estimation error.
Combining (7), (8), (21) with (22), one can obtain

 (∇J(x̂)
)T ĝ(x̂) = −2

(
un(x̂)

)T R (36)
and

 958 IEEE/CAA JOURNAL OF AUTOMATICA SINICA, VOL. 7, NO. 4, JULY 2020



 (∇J(x̂)
)T (

f (x̂)+ ĝ(x̂)un
)
= −x̂T Qx̂−uT

n Run. (37)
Substituting  (32),  (36)  and  (37)  into  the  time  derivative  of

(35), we have
 

L̇2 =
1
Γ

(u̇ f − ˙̂u f )T ũ f + x̂T ˙̂x+
(∇J(x̂)

)T ˙̂x

=
1
Γ

(u̇ f − ˙̂u f )T ũ f + x̂T (
f (x̂)+ ĝ(x̂)(un+u f − û f )

)
+

(∇J(x̂)
)T (

f (x̂)+ ĝ(x̂)(un+u f − û f )
)

= x̂T f (x̂)+ x̂T ĝ(x̂)un+
(
x̂+

(∇J(x̂)
)T

)
ĝ(x̂)(û f −u f )

− x̂T Qx̂−uT
n Run+

1
Γ

u̇T
f ũ f −

1
Γ

˙̂uT
f ũ f . (38)

f (x̂) ρ

∥ f (x̂)∥ ≤ ρ∥x̂∥

ϕ ∥∇σi(ŝ)∥ ≤ ϕ
∥ĝ(x̂)∥ ≤ |ϕδ1δ2|

ũ f
ε ∥ũ f ∥ ≤ ε

As  is  Lipchitz,  there  exists  a  positive  constant  such
that .  Suppose  that  the  partial  derivative  of  the
active  function  in  the  identifier  is  upper-bounded  by  a
constant , i.e., . Thus, based on the Assumption
2,  we  can  derive  that .  Then,  without  loss  of
generality,  the  fault  estimation  error  is  supposed  to  be
upper-bounded  by  a  small  positive  constant ,  i.e., 
[35], [36].

Based on the above analysis and assumptions, we can derive
 

L̇2 ≤ ρ∥x̂∥2+
1
2
∥x̂∥2+ 1

2
ϕ2δ21δ

2
2∥un∥2

−λmin(Q)∥x̂∥2−λmin(R)∥un∥2

+
1

2Γ
ϱ2

2+
1

2Γ
ε2− (

x̂T ĝ(x̂)−2uT
n R+

1
Γ

˙̂uT
f
)
ũ f . (39)

Substituting (34) into (39) and by simple transformation,  it
becomes
 

L̇2 ≤ −
(
λmin(Q)−ρ− 1

2
)∥x̂∥2

− (
λmin(R)− 1

2
ϕ2δ21δ

2
2
)∥un∥2+

1
2Γ

(ϱ2
2+ε

2). (40)

Λ1 = λmin(Q)−ρ− 1
2
Λ2 = λmin(R)− 1

2
ϕ2δ21δ

2
2

Λ3 =
1

2Γ
(ϱ2

2+ε
2)

Let  ,  and

 then (40) can be rewritten as
 

L̇2 ≤ −Λ1∥x̂∥2−Λ2∥un∥2+Λ3.

L̇2 < 0 x , 0Thus, we can derive that  for any  if
 

λmin(Q) ≥ ρ+ 1
2

λmin(R) ≥ 1
2
ϕ2δ21δ

2
2

x̂holds whenever  lies outside the compact set
 

Ωx̂ =

x̂ : ∥x̂∥ ≤
√
Λ3

Λ1

 .
It  implies  the  state  trajectories  of  the  closed-loop  system

with  additive  actuator  faults  can  be  guaranteed  to  be  UUB
through the developed data-based FTC law (33). ■

2) Data-based FTC Algorithm Based on PSONNs: Based on
the NN identifier,  PSOCNN and the FTC law (33),  the  data-
based FTC strategy for unknown CT affine nonlinear systems
with actuator faults is summarized in Algorithm 1.

The  structural  diagram  of  the  data-based  FTC  based  on

PSONNs is depicted in Fig. 1.

Algorithm 1 Data-based FTC Algorithm Based on PSONNs

Step 1: Initialization
kInitialize  particles and parameters of PSO.

i = 0Let the initial iteration index be .
ϵGive a small positive real number .

N J0
1 , J

0
2 , . . . , J

0
N ,

u0
1,u

0
2, . . . ,u

0
N

Start  with  initial  iterative  value  functions  and
control laws .

Step 2: Neural network identification
˙̂x ĝ(x̂)Compute the  estimates  for  system states  and control  matrix 

according  to  (21)  and  (22).  Keep  the  converged  weight  matrices  of
the identifier.

Step 3: Particle update
Update  the  particles  following  the  standard  PSO  procedure,

equations (9)–(11).
Step 4: Policy evaluation

Ji+1(x̂)

By using  the  estimated  system states,  compute  the  iterative  value
functions , which satisfies the nonlinear Lyapunov equation
 

0 = U(x̂,u j)+
(∇Ji+1

j (x̂)
)T ˙̂x

∇Ji+1
j (x̂) = 0 j = 1,2, . . . ,Nwith , .

Step 5: Policy implement
ĝ(x̂)Based on the estimated , update the control laws as

 

ui+1
j (x̂) = − 1

2
R−1ĝT (x̂)∇Ji+1

j (x̂).

Step 6: Fault estimation
Estimate the actuator fault vector by

 

˙̂u f = Γ
(
2uT

n R− x̂T ĝ(x̂)
)T .

Step 7: Fault compensation
Compensate the faulty actuator by the data-based FTC law as

 

u = un − û f .

Step 8: PSOCNN stopping criterion
∥Ji+1

j (x̂)− Ji
j(x̂)∥ ≤ ϵ

ui+1
j (x̂) i = i+1

If ,  the  HJBE  is  solved  successfully  and  the
optimal control law  is obtained; else,  and go to Step 3.
 

IV.  Simulation Studies

In this section, simulations of two examples are provided to
show  the  effectiveness  of  the  proposed  data-based  FTC
strategy based on PSONNs.

CTExample  1: Consider  the  following  affine  nonlinear
system
 

ẋ =
[

−0.5x1+ x2(1+0.5x2
2)

−0.8(x1+ x2)+0.5x2(1−0.3x2
2)

]
+

[
0
−0.5

]
(u+u f ) (41)

x = [x1, x2]T ∈ R2 u ∈ R
u f ∈ R

u f

where  and  are  the  state  and  control
input  variables,  respectively.  represents  the  unknown
additive actuator fault. In the simulation, let  be
 

u f =

0, 0 ≤ t ≤ 5

8cos
( t
2π

)
, 5 < t ≤ 20.

(42)

Since the nonlinear system is unknown, an NN identifier of
3–8–2  structure  is  built  to  estimate  the  unknown  system
dynamics. In order to simplify the training process of the NN
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w1
[−0.5,0.5] w2

f itnessi = exp
(
−x̃T x̃

)
identifier,  the  NN weight  matrix  between the input  layer  and
the  hidden  layer  keeps  constant  randomly  chosen  within
the interval . The NN weight matrix  is initialized
as particles with population of 20, the fitness function of each
particle  is  defined as .  Other  parameters
of  the  PSO  algorithm  are  chosen  the  same  as  in  [29].  The
identification  errors  are  shown  in Fig. 2.  It  implies  the  NN
identifier  learns  unknown  nonlinear  system  dynamics
successfully.

σc(x) = [x2
1, x1x2, x2

2,

x4
1, x

3
2x2, x2

1x2
2, x1x3

2, x
4
2] Q = 2I1 R = I2 Γ = 40

x0 = [0.5,−0.5]T

t = 5 s

Furthermore, the critic NN is trained by the PSO algorithm.
The  critic  NN  weights  are  initialized  as  particles,  whose
fitness  functions  are  defined  as  in  (31).  The  PSO parameters
and  initial  conditions  are  listed  in Table I.  The  activation
function  of  the  critic  NN  is  chosen  as 

.  Let , ,  and  the
initial  state  of  system  (42)  be . Fig. 3 shows
the system states  under  the nominal  optimal  control  law (28)
based  on  PSOCNN.  It  illustrates  that  the  nominal  optimal
control  law  (28)  can  drive  the  system  states  converge  to  a
small  region  of  zero  within  the  first  5 s.  However,  when  the
actuator fault occurs at time , the system states are away

from equilibriums, which implies that the actuator fault causes
the  systems  unstable. Fig. 4 displays  the  trajectory  of  the
actuator  fault  estimated  by  (34).  It  can  be  seen  that  the
estimated fault trajectory can follow the actual one accurately.
Fig. 5 illustrates that  the converged system trajectories of the
faulty  system  under  the  data-based  FTC  law  (33).  It  implies
that the data-based FTC law can guarantee the stability of the
closed-loop system with the actuator fault (42) since the fault
is  estimated  and  compensated  successfully. Fig. 6 shows  the
control  input  curve.  We  can  observe  that  the  control  input
presents  a  change  against  the  actuator  fault  after  the  fault
occurs, and an acceptable control performance is achieved.

Example  2: Consider  the  inverted  pendulum system whose
dynamics is expressed as
 

ẋ =
[

x2
g
ℓ sin(x1)− κℓx2

]
+

 0
1

mℓ2

 (u+u f ) (43)

x = [x1, x2]T ∈ R2 u ∈ R
κ = 0.2 g = 9.8 m/s2

m = 1/2 ℓ = 1/3
u f

where  and  are  the  state  and  control
input  variables,  respectively.  Let  and  be
the  frictional  factor  and  the  gravitation  acceleration,
respectively.  and  are the mass and the length
of  the pendulum bar,  respectively.  is  the additive actuator
fault chosen as

 

TABLE I  
Comparison of the Success Rate of Solving the HJBE

Between the PSOCNN and GDCNN

Critic NN
training

algorithm
Parameters

Success rate of 100 trails

Example 1 Example 2

PSOCNN PSO equations
(9) and (10)

c1 = 2 c2 = 2, 

89% 90%

r1,r2 ∈ [0,1]
k = 20

,

ωmax = 0.9

ωmin = 0.4

γmax = 1000

GDCNN
BP αc1 = 0.01

31% 57%˙̂wc1 = −αc∇σc(x̂) ˙̂x
(41) αc2 = 0.2

 

 

Control policy NN
identifier

PSO

Actuator

Critic network

Eq. (34)

Fault

R

J(x)^

g(x)^ ^

x̂
·

uf̂

·

x̂

uf̂

uun u + uf 1/s

1/s

 
Fig. 1.     The structural diagram of data-based FTC based on PSONNs.
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Fig. 2.     Identification errors of Example 1.
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u f =


0, 0 ≤ t ≤ 20

2+5sin
( t
2π

)
, 20 < t ≤ 60.

(44)

The  PSO  trained  identifier  NN  is  built  with  structure  of
5–8–4.  The  activation  function  of  the  critic  NN is  chosen  as

σc(x) = [x2
1, x1x2, x2

2]
[1,−1]

t = 20 s

. Let the initial state vector of the system
(44) be . The fitness functions and PSO parameters are
chosen  the  same  as  Example  1. Fig. 7 depicts  the  converged
identification  errors.  It  is  obvious  that  the  nonlinear  system
(44)  is  well  approximated by the NN identifier. Fig. 8 shows
that  the  system  states  of  the  system  (44)  converge  to  the
equilibrium zero but deviate when the actuator fault occurs at

.  It  implies  that  the  nominal  optimal  control  law (28)
can  only  guarantee  the  fault-free  system stable. Fig. 9 shows
that  the  actuator  fault  is  well  estimated  by  (34).  The  system
trajectories under the data-based FTC law are given in Fig. 10.
It implies that the data-based FTC algorithm can guarantee the
stability of the closed-loop system with actuator faults. Fig. 11
shows  that  the  control  input  changes  adaptively  against  the
actuator  fault  after  the  fault  occurs.  These  simulation  results
verify the validity and applicability of the proposed method.

In  order  to  demonstrate  the  efficiency  of  the  proposed
PSOCNN, we have 100 trails and calculate the success rate of
solving the HJBEs with both PSOCNN and GDCNN for two
examples.  For  comparison,  both  PSOCNN  and  GDCNN
employ  same  critic  NNs  with  same  initial  values  and
parameters.  With  the  GDCNN,  the  critic  NN  weights  are
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Fig. 3.     System states without fault compensation of Example 1.
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Fig. 4.     Online fault estimation of Example 1.
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Fig. 5.     The  state  trajectories  under  the  fault  compensation  strategy  of
Example 1.
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Fig. 6.     The control input curve of Example 1.
 

 

0 10 20 30 40 50 60 70 80 90 100
Time (s)

−1.5

−1.0

−0.5

0

0.5

1.0

Th
e 

id
en

tif
ic

at
io

n 
er

ro
rs

~x1~x2

 
Fig. 7.     Identification errors of Example 2.
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tuned  according  to  the  formula  (41)  [44].  Through
simulations, the learning rates of two examples are chosen as
0.01 and 0.2, respectively. The comparison results are listed in
Table I. The statistical success rate shows that the HJBEs can

be  solved  with  a  higher  probability  with  the  PSOCNN
compared  to  the  general  GDCNN,  which  implies  that  the
PSOCNN is better in producing a good solution for the HJBE
than that of GDCNN. 

V.  Conclusions

A  data-based  FTC  algorithm  exploiting  PSONNs  is
developed  for  unknown  CT  affine  nonlinear  systems
characterized  by  actuator  faults.  By  constructing  a  PSO-
trained  NN  identifier,  the  unknown  system  dynamics  are
obtained. Then, the PSOCNN is proposed to approximate the
solution  of  the  HJBE  for  the  optimal  control.  In  order  to
tolerate  actuator  faults  in  unknown  nonlinear  systems,  the
data-based  FTC  law  is  derived  by  an  adaptive  compensator.
Simulation  results  show  that  the  proposed  data-based  FTC
algorithm  can  guarantee  the  stability  of  the  closed-loop
systems  with  actuator  faults.  Furthermore,  the  PSOCNN  is
better in producing a good solution for the HJBE than that of
GDCNN. To the best of our knowledge, the unknown system
should be modeled first  to  estimate the system states  and the
control  matrix  before  constructing  the  FTC  scheme,  which
means  that  the  NN  identifier  is  trained  off-line  and  the
proposed  control  scheme  cannot  be  used  for  non-affine
systems.  In  future  work,  we  will  focus  on  developing  an
online  PSOCNN-based  FTC scheme for  unknown non-affine
nonlinear systems.
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