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   Abstract—The  multitrip  pickup  and  delivery  problem  with
time  windows  and  manpower  planning  (MTPDPTW-MP)
determines  a  set  of  ambulance routes  and finds  staff  assignment
for  a  hospital.  It  involves  different  stakeholders  with  diverse
interests  and  objectives.  This  study  firstly  introduces  a
multiobjective MTPDPTW-MP (MO-MTPDPTWMP) with three
objectives  to  better  describe  the  real-world  scenario.  A
multiobjective  iterated  local  search  algorithm  with  adaptive
neighborhood  selection  (MOILS-ANS)  is  proposed  to  solve  the
problem.  MOILS-ANS  can  generate  a  diverse  set  of  alternative
solutions  for  decision  makers  to  meet  their  requirements.  To
better  explore  the  search  space,  problem-specific  neighborhood
structures  and  an  adaptive  neighborhood  selection  strategy  are
carefully  designed  in  MOILS-ANS.  Experimental  results  show
that  the  proposed  MOILS-ANS  significantly  outperforms  the
other  two  multiobjective  algorithms.  Besides,  the  nature  of
objective  functions  and  the  properties  of  the  problem  are
analyzed.  Finally,  the  proposed  MOILS-ANS  is  compared  with
the  previous  single-objective  algorithm  and  the  benefits  of
multiobjective optimization are discussed.
    Index Terms—Adaptive  neighborhood  selection,  manpower
planning,  multiobjective optimization,  multitrip,  pickup and delivery
problem with time windows.
 

I.  Introduction

THE  vehicle  routing  problem  (VRP)  can  be  described  as
the  problem  of  designing  an  optimal  set  of  routes  such

that  all  the  customers’ requirements  and  the  operational
constraints  are  satisfied.  The  VRP  has  direct  applications  to
everyday business routines of distribution or service-providing

companies.  A broad range of possible extensions to the VRP
formulation are covered in [1]–[5]. Most research focuses on a
widely  used  variant,  called  VRP  with  time  windows
(VRPTW).  Thereafter,  further  extensions  of  the  VRPTW,
such  as  the  pickup  and  delivery  problem with  time  windows
(PDPTW),  the  dial-a-ride  problem (DARP)  and  the  multitrip
VRP  with  time  windows  (MTVRPTW),  were  proposed
[6]–[8].  Besides,  some  research  considers  integrating  the
manpower  planning  into  VRP  since  the  driving  of  vehicles
and  the  provision  of  services  require  the  participation  of
manpower  [9].  Recently,  a  more  practical  variant,  called
multitrip pickup and delivery problem with time windows and
manpower planning (MTPDPTW-MP) was introduced in [9].
Relationship between this problem and other VRP extensions
mentioned above is shown in Fig. 1.

MTPDPTW-MP is a real-life healthcare problem originated
from  the  application  of  Hong  Kong  public  hospitals,  China.
Transportation  services  are  provided  to  disabled  or  elderly
patients  between their  residences  and clinics.  The  ambulance
routes satisfying a series of constraints should be designed and
the  staff  assignment  is  also  required  [10],  [11].  MTPDPTW-
MP  is  an  NP-hard  problem  of  high  complexity,  as  it  is  a
combination  of  two  well-known  NP-hard  problems  (i.e.,
PDPTW  and  the  staff  scheduling  problem).  Usually,
metaheuristic  search  techniques  [12]  are  used  to  solve  this
kind  of  problems.  In  [9],  an  iterated  local  search  (ILS)
metaheuristic  using  a  variable  neighborhood  descent  (VND)
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Fig. 1.     Relationship  between  MO-MTPDPTWMP  and  various  VRP
extensions. The problem highlighted in bold is studied in this paper.
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procedure  in  the  local  search  phase,  called  ILS-VND,  was
proposed  to  deal  with  MTPDPTW-MP.  [9]  considered
MTPDPTW-MP  as  a  single-objective  problem.  It  optimized
the  weighted  sum  of  unserved  requests,  total  traveling  cost,
and the workload deviation.  A fixed weight vector was used,
where  the  number  of  unserved  requests  was  set  as  the  most
important  objective.  Only  one  final  solution  is  returned  to
decision makers as ILS-VND optimizes multiple objectives in
a single-objective manner.

In  practice,  MTPDPTW-MP  must  consider  the  conflicting
interests of different stakeholders (i.e., the customers, hospital,
and  staff).  According  to  [5],  if  we  consider  only  one  or  two
stakeholders in VRP variants, we may arrive at a local optimal
solution because only one or  two objectives are optimized in
this  situation.  The  interests  of  all  stakeholders  should  be
addressed  in  tandem  [13].  Due  to  the  problem  structures  of
MTPDPTW-MP, the improvement of one objective may lead
to  the  deterioration  of  other  objectives.  Therefore,
MTPDPTW-MP  is  essentially  a  multiobjective  optimization
problem  (MOP).  Solving  it  in  a  single-objective  manner
requires  extensive  domain  knowledge  to  determine  the
relative  importance  of  different  objectives.  The  simple
combination  of  three  objectives  into  a  single  one,  as  in  [9],
fails  to  provide  decision  makers  with  a  comprehensive
understanding  of  the  relationship  between  objectives.  It  is
necessary  to  present  decision  makers  with  a  set  of
representative  Pareto  optimal  solutions,  instead  of  a  unique
optimum  for  MTPDPTW-MP.  The  advantage  is  that  it  can
provide  considerable  flexibility  in  terms  of  a posteriori
selection  of  a  single  preferred  solution  that  best  suits  the
current requirements of decision makers [13], [14].

This  study  defines  a  multiobjective  MTPDPTW-MP  (MO-
MTPDPTWMP)  with  three  objectives  considering  all
stakeholders (e.g., the customers, hospital, and staff) to better
reflect  the  real-world  situation.  The  three  objectives  to  be
minimized include the number of unserved requests, the total
traveling  cost,  and  the  workload  deviation.  The  first  one  is
customer-oriented:  customers’ requests  should  be  served  as
many as possible. The second one is hospital-oriented, which
can help to save money for the hospital. The third one is staff-
oriented:  the  daily  workloads  for  different  staff  members
should  not  have  large  variances.  Then,  an  algorithm  called
multiobjective  iterated  local  search  algorithm  with  adaptive
neighborhood  selection  (MOILS-ANS)  is  developed  to  solve
the  problem.  In  the  proposed  MOILS-ANS,  seven  problem-
specific neighborhood structures are adaptively selected in the
local search process based on their performances.

The  contributions  of  this  study  are  as  follows:  1)  A
multiobjective  MTPDPTW-MP  with  three  objectives
considering  the  interests  of  all  stakeholders  is  introduced.  A
multiobjective  iterated  local  search  algorithm  with  adaptive
neighborhood selection (MOILS-ANS) is proposed to solve it.
The  proposed  MOILS-ANS  significantly  outperforms  the
other  two  multiobjective  algorithms.  2)  The  nature  of
objective  functions  of  MO-MTPDPTWMP  is  analyzed  and
important  properties  of  MO-MTPDPTWMP  are  revealed.  3)
The  proposed  MOILS-ANS  is  compared  with  the  previous
single-objective  algorithm  and  the  benefits  of  multiobjective

optimization are summarized.
The  remainder  of  this  paper  is  organized  as  follows.  In

Section  II,  problem  formulation  and  related  work  are
introduced.  Thereafter,  Section  III  provides  a  detailed
description  of  the  proposed  MOILS-ANS.  Experimental
results are shown and analyzed in Section IV. Conclusions are
drawn in Section V. 

A.  Problem Formulation and Related Work
 

A.  MO-MTPDPTWMP
MTPDPTW-MP is  formulated  as  a  multiobjective  problem

(MO-MTPDPTWMP),  which  enables  us  to  achieve  a  set  of
diverse  and  competitive  solutions  by  addressing  different
objectives in a multiobjective manner. MO-MTPDPTWMP is
a routing problem derived from the application of Hong Kong
public  hospitals,  China.  In  this  problem,  the  hospital  can  be
regarded  as  the  depot  and  ambulances  can  be  regarded  as
vehicles.  Each  vehicle  starts  from  the  depot  to  accomplish
some  requests  and  returns  to  the  depot  within  the  maximum
traveling  duration.  The  goal  of  the  problem  is  to  design  and
schedule a set of optimal routes satisfying various constraints.
Besides,  the  assignment  of  staff  to  vehicles  should  also  be
determined. A simple example with 8 requests and 2 vehicles
is provided in Fig. 2 (a), in which there are 4 trips in total. The
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Fig. 2.     Solution  and  its  representation.  (a)  A  possible  solution;  (b)
Representation. A simple example with 8 requests and 2 vehicles is provided
here.  The  depot  node  is .  The  pickup  nodes  are 

 and their corresponding delivery nodes are 
. Request 8 is rejected owing to constraints. Solid lines represent trips for

vehicle 1 while dashed lines represent trips for vehicle 2.  The trip start  time
and staff ID are shown for vehicle 1, trip 1.
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solution representation for this example is shown in Fig. 2 (b).
The inputs of the problem are as follows:

G = (V,E) V1)  A complete  undirected  graph ,  where  is  the
node set and E is the edge set.

N2) The number of requests is .
V = {0,1, . . . ,2N}

2N
3) The node set , where 0 denotes the depot

and  the  remaining  nodes  represent  pickup  or  delivery
nodes.

E = {(i, j)|i, j ∈ V, i , j}4) The edge set .
v ∈ V

tv sv
qv [ev, lv]

5)  Each  node  is  associated  with  a  non-negative
service time ,  a  staff  number requirement ,  a  seat  number
requirement , and a time window .

(i, j) ∈ E
ci j

ci j

6)  Each  edge  is  associated  with  a  non-negative
traveling  cost .  The  traveling  time  is  assumed  to  be  the
same as  in the time-based dimension.

Qk(k ∈ K)
7) K denotes  the  set  of  available  vehicles  with

heterogeneous capacity .

m ∈ M [ES m,LS m]
[em, lm]

8) M denotes  the  set  of  available  staff.  Each  staff  member
 is  associated  with  a  working  period ,  a

lunch  break  and  a  working  type  (i.e.,  driver  or
assistant).  The  driver  can  serve  as  an  assistant  when
necessary, but not vice versa.

The output is a set of Pareto non-dominated solutions.

C1−C9

A  feasible  solution  must  satisfy  the  following  constraints
( ),  including  pickup  before  delivery,  capacity,  time
window,  maximum  duration,  and  staff  demand  constraints,
which are defined as follows:

(C1)1) Pickup Before Delivery Constraint : The pickup node
of a specific request must appear before its delivery node and
they should be in the same trip.

(C2)2)  Vehicle  Capacity  Constraint : The  total  number  of
staff and cumulated customers at each node cannot exceed the
seat  capacity  of  the  assigned  vehicle.  Note  that  the  driver  of
the vehicle does not occupy the seat.

(C3)
[ev, lv] v

v ev
ev

3) Time Window Constraint : The service can only start
within  the  given  time  window  of  each  node .  If  the
vehicle  arrives  at  a  certain  node  earlier  than ,  it  should
wait until  to start the service.

(C4)
Tmax

4)  Maximum  Duration  Constraint : The  duration  of
each trip must not exceed .

(C5)5)  No  Time  Conflicting  Constraint : Any  two  trips  of
the same vehicle or the same staff member must have no time
conflicting.

(C6)6) Disinfection Time Constraint : The vehicles have to
be disinfected after each trip. The disinfection time is half an
hour.

(C7)7)  Staff  Demand  Constraint : Each  trip  must  be
allocated a driver and a sufficient number of assistants.

(C8)8)  Staff  Break  Time  Constraint : After  each  trip,  the
staff must take a 30-minute break, which means that the staff
can only start the next trip half an hour later.

(C9)
[ES m,LS m]

[em, lm]

9)  Staff  Working  Time  Constraint : The  staff  are
available during their working period .  Moreover,
the  staff  should  not  work  during  their  lunch  break  time

.

{r1,r2, ...,ru} u
A solution  of  MO-MTPDPTWMP can  be  represented  as  a

set  of  vehicle  trips ,  where  is  the  number  of
trips.  Each  trip  is  a  sequence  of  pickup  and  delivery  nodes

⟨
v0,v1, ...,vp,vp+1

⟩
v0 vp+1

p
, where  and  represent the depot and

 is the number of nodes in this trip. Thereafter, the traveling
cost of this trip is defined by
 

C =
p∑

i=0

cvivi+1 . (1)

Each  trip  has  an  assigned  vehicle  and  it  is  a  route  that
satisfies  the  following  requirements:  1)  Each  trip  starts  and
terminates  at  the  depot  and  consists  of  a  sequence  of  pickup
and delivery nodes. 2) The start time is given for each trip. 3)
Adequate  staff  are  assigned  to  the  trip.  4)  There  is  no  time
conflict between any two trips of the same vehicle or assigned
to the same staff member.

The  following objectives  reflect  the  conflicting  interests  of
all stakeholders: the customers, hospital, and staff.

( f1)
f1

1) The Number of Unserved Requests : This objective is
to be minimized to serve as many requests as possible.  is a
customer-oriented objective.
 

f1 = U (2)
Uwhere  is the number of unserved requests.

( f2)
f2

f2

2) Total Traveling Cost : The operational cost indicated
by the traveling cost of vehicles should be minimized.  is a
hospital-oriented  objective.  According  to  (1),  can  be
defined as
 

f2 =
|K|∑
k=1

uk∑
j=1

Ck j (3)

uk k
Ck j j k
where  is the number of trips assigned to the vehicle  and

 denotes the traveling cost of trip  of vehicle .
( f3)

f3 f3

3) The Workload Deviation : It minimizes the deviation
of  daily  working  time  from  the  average  time  for  each  staff
member.  is a staff-oriented objective.  can be defined as
 

f3 =
|M|∑
j=1

|ω j− ω̄| (4)

ω j j

w̄ =

∑|M|
j=1ω j

|M|

where  is  the  total  daily  working  time  of  staff  member 

and  denotes the average working time.

More details about problem description and formulation can
be found in [9]. 

B.  Existing Algorithm for MTPDPTW-MP
ILS-VND  was  proposed  in  [9]  to  deal  with  MTPDPTW-

MP, which is a single-objective optimization problem. A fixed
weight  vector  for  three  objectives  is  used  in  the  framework,
where  the  number  of  unserved  requests  is  set  as  the  most
important  objective.  As  ILS-VND  optimizes  three  objectives
in  a  single-objective  manner,  only  one  final  solution  is
returned to decision makers.

To  the  best  of  our  knowledge,  there  is  no  publication
dealing  with  the  proposed  MO-MTPDPTWMP.  Solving  it
enables  us  to  achieve  a  set  of  diverse  and  competitive
solutions  for  decision  makers  by  addressing  different
objectives in a multiobjective manner. 
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C.  Multiobjective Optimization

m
MOPs  are  problems  with  two  or  more  objectives  to  be

optimized simultaneously. An MOP with  objectives can be
defined as follows:
 

Minimize F(x) = ( f1(x), f2(x), . . . , fm(x)) , x ∈Ω (5)
Ω F :Ω→ Rm

x,y ∈Ω x y
fi(x) ≤ fi(y) i ∈ {1,2, ...,m} f j(x) < f j(y)

j ∈ {1, ...,m} x∗

x ∈Ω x x∗

PS

PF

where  is the decision space. Objective function 
maps  the  decision  space  to  the  objective  space.  Given  two
solutions ,  is  said  to dominate  if  and  only  if:

 for  all  and  for  at  least
one . A solution  is Pareto optimal if there is no
solution  such  that  dominates . Pareto  optimal
solutions  are  also  called  nondominated  solutions  in  the
solution space. Pareto optimal set ( ) consists of all Pareto
optimal solutions.  The  image  of  solutions  in PS in  the
objective space constitutes Pareto front ( ). It is defined by
 

PF = {F(x)|x ∈ PS }. (6)
The goal of MOPs is to find a set of nondominated solutions

with  good  performance  in  terms  of  both  convergence  and
diversity.  Convergence  means  that  the  solutions  are  close  to
the PF,  while  diversity  means  that  the  solutions  are  well
distributed along the PF.

Metaheuristics are widely used algorithms for solving large
and  complex  MOPs  [15],  [16].  Multiobjective  metaheuristics
algorithms  can  be  roughly  divided  into  two  categories:
multiobjective  evolutionary  algorithms  (MOEAs)  [15],
including  MOEA/D  [17]  and  NSGA-II  [18],  and
multiobjective  local-search-based  algorithms  [16].  MOEAs
simultaneously  evolve  a  population  of  solutions.  They  show
powerful  exploration  ability  and  can  achieve  high  quality
solutions  for  multiobjective  continuous benchmark problems.
Multiobjective  local-search-based  algorithms  can  promote
search  intensification  and  speed  up  convergence  for
multiobjective combinatorial optimization problems. 

III.  The Proposed Algorithm for MO-MTPDPTWMP
 

A.  Overview of MOILS-ANS
MOILS-ANS is a multiobjective local search algorithm. At

every  iteration  of  MOILS-ANS,  a  single  solution  is  chosen
and the local search is used to explore its neighbors. A novel
adaptive  neighborhood  selection  (ANS)  strategy  is  designed
and  used  in  the  local  search  process  of  MOILS-ANS.  The
ANS  strategy  adaptively  selects  neighborhood  structures
according to their past performances.

C

C
C

|C|

C C Nλ

Algorithm  1  shows  the  main  framework  of  MOILS-ANS.
Two explicit  sets  of  solutions (i.e.,  the current  solution set 
and the  archive A)  are  adopted in  MOILS-ANS as  suggested
in [16]. These two sets enable the use of two different kinds of
comparisons  in  the  exploration  procedure.  Scalar-based
comparisons  are  used  in  while  Pareto  dominance-based
comparisons  are  used  in A.  Besides,  can  help  to  easily
perform  explorations  outside A (e.g.,  to  explore  dominated
neighboring  solutions).  In  MOILS-ANS,  firstly,  initial
solutions (Line 3) are constructed to form the current solution
set . The archive A is updated with solutions in . Then 
uniformly  distributed  weight  vectors  are  generated.  At  each

λ j

f ws(x|λ j) C count
0 maxCount

x x
x′

x′

x′′

x′′ x′′ count

maxCount
C

x f ws(x|λ j)

x C

iteration, a weight vector  is randomly selected. Thereafter,
the solution with the best value of the weighted sum function

 is selected from . The variable  is initialized
to .  The  algorithm  executes  iterations  to  explore
the selected solution . In each iteration,  is perturbed first to
get .  The perturbation method will be described in detail in
Section  III-D.  And then  ANS (Algorithm 2)  is  applied  to ,
and a new solution  is returned. The archive is updated with
solution .  If  is  inserted  into  the  archive A,  is
restarted  (Line  14).  If  one  solution  is  explored  without
generating  a  new  inserted  solution  in  the  archive 
times, the iteration ends. The current solution set  is updated
with solution  (Line 20). If the weighted sum value 
is better than the original solution selected in Line 7, solution
 will  replace  it  in  the  current  solution  set .  When  the

termination condition is met, the archive A is returned.
The main components of MOILS-ANS, including the initial

solution  construction,  ANS  strategy,  perturbation,  feasibility
checking,  and  archive  updating  are  described  in  detail  as
follows.

Algorithm 1 MOILS-ANS

|C|
Nλ maxCount

Input: the current solution set’s size , archive A,  the number of
weight vectors , 

Output: archive A
1 begin

A = ∅2　 ;
C |C|3　initialize the current solution set  with  solutions and update

the archive A;
Nλ {λ1, . . . ,λNλ }

λi = (λi
1, . . . ,λ

i
m)

4　 generate  uniformly  distributed  weight  vectors ,
where ;

5　while termination condition is not met do
λ j {λ1, ...,λNλ }6　　randomly select a weight vector  from ;

x

f ws(x|λ j) C
7　 　 the  solution  with  the  best  value  of  the  weighted  sum

function  is selected from ;
count = 08　　 ;

count < maxCount9　　while  do
x x′10　　　perturb solution  to get ;

x′′ = ANSλ j (x′)11　　　 ;
inserted = updateArchive( , x′′)12　　　 A ;

13　　　if inserted then
count = 014　　　　 ;
x = x′′15　　　　 ;

16　　　else
count = count+117　　　　 ;

18　　　end if
19　　end while

C x20　　update the current solution set  with solution ;
21　end while
22　return archive A;
23 end

 

B.  Initial Solution Construction
The  basic  idea  of  generating  an  initial  solution  is  to  insert

one  request  into  the  solution  each  time.  RI  heuristic  [19]  is
used when selecting a request to insert.  The method is useful
for  highly  constrained  problems  and  can  construct  high-
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quality  initial  solutions  for  further  improvement.  Relevant
notations and formulas are as follows.

∆Ch,r
h r

1)  denotes  the  lowest  incremental  cost  of  inserting
request  into a trip .

r ∆Ch,r2) If the request cannot be inserted into trip ,  set  as
an infinitely large quantity.

h xi
h i

3) For each request ,  is a variable indicating the trip for
which request  has the th lowest insertion cost.

h4) The regret value of request  can be defined as
 

RV =
k∑

i=1

(∆Ch,xi −∆Ch,x1 ) (7)

k reg k
k

where the parameter  indicates -  insertion method. When
selecting  a  request  to  insert,  is  randomly  selected  from the
interval  1 to R,  where R is  the number of  trips in the current
solution.

RV
RV

The  request  with  the  maximum  is  chosen  to  insert  at
each  iteration  as  the  maximum  means  that  it  may  cost
much if we insert it later. The initialization process ends when
no  request  can  be  inserted  anymore.  All  the  requests  that
cannot be served are placed in the request pool. 

C.  The Adaptive Neighborhood Selection Strategy
Local  search  is  one  of  general  approaches  with  empirical

success to combinatorial optimization problems. Its basic idea
is  that  high-quality  solutions  can  be  found  by  iteratively
improving  a  solution  using  modifications,  called  moves.  A
move  type  is  specified  by  a  neighborhood  structure,  which
generates a neighborhood solution of the current solution [20].
The neighborhood solution of the current solution is evaluated
after  being  generated.  During  the  local  search  procedure,  the
weighted  sum  approach  is  often  used  to  transform  a
multiobjective  problem  into  a  single-objective  problem  for
evaluation as follows [2]:
 

f ws(x|λ) =
m∑

i=1

λi fi(x) (8)

λwhere  is the weight vector.

N1−N7

1)  Mutiple  Neighborhood  Structures: It  is  important  to
design  multiple  neighborhood  structures  in  the  local  search
when  solving  complex  variants  of  the  VRP  [2],  [6]  or  other
combinatorial  optimization  problems  [21],  [22].  Using  only
one  neighborhood  structure  may  easily  encounter  the  local
optimum issue. Multiple neighborhood structures can broaden
the  exploration  of  the  search  space  and  help  to  escape  the
local  optimum.  In  this  paper,  multiple  neighborhood
structures, ,  are  designed for  the  local  search of  MO-
MTPDPTWMP as follows.

N1

reg k

a)  [9]: This  neighborhood structure  deletes  one  request
from  the  trip  and  places  it  into  the  request  pool.  Thereafter,
the -  insertion  method  is  used  to  try  to  insert  all  the
requests  in  the  pool  to  obtain  a  new  solution.  We  try  all
deletion  possibilities  in  the  trips  to  generate  neighboring
solutions until the first improving solution is encountered.

N2b)  [9]: This  neighborhood  structure  deletes  two
successive requests  in the same trip and places them into the
request  pool.  Successive  requests  refer  to  those  requests

reg kwhose  nodes  (pickup  or  delivery)  are  adjacent.  The -
insertion  method  is  used  to  deal  with  all  the  requests  in  the
request  pool.  All  the  deletion  possibilities  are  tried  until  the
first improving solution is encountered.

N3 hi
h j rk rl

hi h j
rl rk

reg k

N3 O(N2)

c)  [9]: It is a type of exchange structure. Two requests 
and  are  deleted  from  two  trips  and  in  the  current
solution.  Next,  if  possible,  request  and  request  are
inserted  into  the  best  positions  of  trip  and  trip ,
respectively. The request is placed into the pool if it cannot be
inserted. The -  insertion method is finally invoked for the
requests in the pool. The number of neighboring solutions for
the  structure  is .  In  general,  the  computational
complexity of a neighborhood structure depends on the size of
its  neighborhood  [20].  Considering  the  trade-off  between
computational  complexity  and  the  probability  of
improvement,  we  explore  10% of  the  neighboring  solutions
for  each  current  solution  until  the  first  improving  solution  is
found.

N4

reg k
N4

d)  [23]: It is a type of reverse structure. Two nodes are
randomly  selected  in  a  trip.  All  the  nodes  in-between  are
reversed.  If  a  delivery  node  appears  before  its  pickup  node
after  reversing,  exchange  them.  Then  the -  method  is
used.  The  structure  is  used  for  all  trips  until  the  first
improving solution is encountered.

N5 N3

rk rl
reg k

e) : This structure generalizes the  structure. Two trips
are  selected.  A  sequence  of  successive  nodes  and  their
corresponding pickup or  delivery nodes are  deleted from trip

 and inserted into trip  and vice versa. For the requests in
the  pool,  the -  method  is  used.  We  explore  all  possible
combinations  of  two  trips  until  an  improving  solution  is
found.

N6

reg k

f) : This  neighborhood  structure  generalizes  request-
exchange  to  trip-exchange.  It  exchanges  two  trips  under  two
vehicles.  This  kind  of  exchange  may  obtain  solutions  with
better  multitrips  scheduling  as  it  changes  the  trips  under
vehicles. After the exchange, the -  method is invoked. All
the exchange possibilities are tried until an improving solution
is encountered.

N7
reg k

N7

g) : This neighborhood structure deletes the trip with the
fewest requests and puts them into the request pool. The -
insertion  method  is  used  for  the  remaining  requests  in  the
pool.  The  rationale  of  the  proposed  structure  is  that
reducing the number of trips can reduce total disinfection time
to a certain extent, since there are disinfection times between
trips. Moreover, good solutions usually have as few routes as
possible,  since  each  additional  route  requires  an  additional
edge and therefore, the total traveling cost is likely to increase
[20].

reg k
f2

reg k

f2

f1
f3

In  the  neighborhood  structures,  all  deletion/exchange
operations are tried in a random order. Additionally, the -
is  biased  to  the  objective  (travel  cost)  for  calculating  the
regret value. In fact, a -  variant must select a request with
the  largest  regret  value  to  insert  each  time.  At  the  time  for
insertion  of  request  to  a  partial  solution,  only  objective 
(travel  cost)  can  be  calculated.  The  other  two  objectives,  the
number of  unserved requests  (objective )  and the workload
deviation  (objective ),  cannot  be  obtained  until  the  whole
solution  has  been  constructed.  However,  new  solutions
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produced by the neighborhood structures are all  evaluated by
the  weighted  sum  function  (8),  in  which  all  objectives  are
considered simultaneously.

N1−N4
N6 N7

N1 N2 N4
N3 N5

N6 N7

 are simple neighborhood structures commonly used
in the literatures.  and  are designed in this paper. These
neighborhood structures  can be divided into  three  categories:

, ,  and  are  intra-route  structures  corresponding  to
small  modifications  of  solutions;  and  are  inter-route
structures,  corresponding  to  moderate  modifications  of
solutions;  and  are  inter-vehicle  structures,
corresponding  of  large  modifications  to  solutions.  The
combination of these three types of neighborhood structures in
a synergistic manner is expected to provide a better balance of
exploitation and exploration.

2)  Adaptive  Neighborhood  Selection: How  to  flexibly
coordinate  multiple  neighborhood  structures  to  adapt  to
different  instances  of  a  problem  or  different  stages  of  the
search is a key challenge. In order to better combine multiple
neighborhood structures, the concept of hyper-heuristics [24],
[25]  or  adaptive  operator  selection  [26]  are  adopted.  Hence,
this study proposes an adaptive neighborhood selection (ANS)
strategy  to  tackle  MO-MTPDPTWMP.  Different  from
previous  research  [24]–[26],  the  proposed  ANS  is  carefully
designed  for  a  multiobjective  real-world  combinatorial
optimization  problem  rather  than  continuous  benchmark
problems or single-objective problems.

z

In  each  iteration  of  the  local  search,  one  neighborhood
structure  is  selected  to  optimize  the  solution.  The  proposed
ANS  strategy  adaptively  selects  neighborhood  structures
according to  their  previous  performances,  which is  measured
by  the  weighted-objective  improvement .  The  detailed
calculation process is shown as follows:
 

z =
f ws(x|λ)− f ws(x′|λ)

f ws(x|λ) (9)

x x′where  is the current solution and  is the returned solution
in local search.

L = 7

By  considering  the  weighted-objective  improvement,
neighborhood  structures  can  be  selected  more  appropriately
during  the  local  search  process  in  ANS.  There  are 
neighborhood  structures  for  the  local  search,  relevant
notations about the ANS strategy are given as follows.

{N1,N2, ...,NL}a) Neighborhood structures: .

{z1,z2, ...,zL}

b) The  performance  of  neighborhood  structures  on
improving  the  weighted-objective  value  of  solutions:

.

{p1, p2, ..., pL}
c)  Selection  probabilities  of  neighborhood  structures:

.
zi

pi Ni

Given  the  above  notations,  the  performance  and  the
selection  probability  of  neighborhood  structure  in  the
ANS strategy are computed as follows:

Ni
z zi

a) Suppose that  improves the weighted-objective value of
a  solution, ,  at  a  certain  iteration,  then  can  be  updated  as
follows:
 

zi = (1−α)× zi+α× z (10)
α ∈ [0,1]where the adaptation rate  controls the importance of

the  recently  performance  compared  to  the  cumulative

performance in the past.
Ni

Ni

b)  The  better  the  performance  of  on  improving  the
solution  quality  in  the  past,  the  more  probability  it  will  be
selected  next.  The  selection  probability  of  a  neighborhood
structure  is computed as follows:
 

pi = pmin+ (1−L× pmin)× zi
L∑

j=1
z j

(11)

pmin

(1−L× pmin)

pmin

where  the  minimum  selection  probability  is  defined  to
foster  the  exploration  of  poorly  performing  neighborhood
structures  as  in  [26].  The  factor  makes  the
selection  probability  of  all  neighborhood  structures  summing
up  to  1.  Moreover,  (11)  also  ensures  that  the  minimum
selection probability of neighborhood structures is  [26].

x λ

Ni {N1,N2, ...,NL}

Ni
x Ni(x) x′

x′ x

The  ANS  strategy  is  shown  in  Algorithm  2.  The  input  of
ANS is a solution  and a weight vector . The parameter I is
the  search  depth  of  ANS.  At  each  iteration  of  ANS,  a
neighborhood  structure  is  selected  from 
according to their selection probabilities with Roulette Wheel
Rule.  Then,  the  neighborhood  structure  is  applied  to  the
current solution .  The returned solution of  is .  Next,
the  weighted  sum  function  (8)  is  used  to  compare  and .
The performance and selection probabilities  of  neighborhood
structures are updated as shown in Lines 7 and 9 of Algorithm
2, respectively. A total of I iterations are performed.

ANSλ(x)Algorithm 2 

x λInput: a solution , a weight vector 
xOutput: 

1 begin
depth = 1, . . . , I2　for  do

Ni {N1,N2, . . . ,NL}
{p1, p2, . . . , pL}

3　 　 select  a  neighborhood  operator  from 
according to their selection probabilities ;

x′ = Ni(x)4　　 ;
f ws(x′ |λ) < f ws(x|λ)5　　if  then

z6　 　 　 calculate  the  weighted-objective  improvement  { }
according to (9);

zi7　　　update the performance { } according to (10);
i = 1 : L8　　　for  do

pi9　　　　update the selection probability  according to (11);
10　　　end for

x = x′11　　　 ;
12　　end if
13　end for

x14　return ;
15 end

 

D.  Perturbation

x
Perturbation  is  generally  used  to  escape  local  optimum  in

metaheuristics.  Its  idea  is  to  change  the  solution ,  but  this
change  does  not  necessarily  have  to  result  in  an  improving
solution  [20].  Perturbation  may  drive  the  solution  to  a  new
region  that  basic  local  search  cannot  achieve.  In  general,  a
very  large  perturbation  may  behave  like  a  random  restart,
while  a  small  perturbation  will  limit  the  search  space  to  a
small  region  and  cannot  escape  from  local  minimum.
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N3Therefore,  the  neighborhood  structure  corresponding  to
moderate modifications to solutions is used as the perturbation
mechanism in this study. We explore 10% of the neighboring
solutions  for  the  current  solution  until  the  first  feasible
solution is found, no matter it is improved or not. 

E.  Feasibility Checking

C1−C4

The  feasibility  of  a  temporal  solution  should  be  checked
when a request is inserted. The feasibility checking procedure
consists  of  three  steps:  single  trip  checking,  multitrip
scheduling,  and  staff  assignment.  We  should  first  check
whether the inserted request  will  cause a single trip violating
the first four constraints ( ). If all the trips are legal, we
should consider multitrips scheduling and staff assignment. If
any  constraints  are  violated  during  the  three-step  checking
procedure, the temporal solution is considered illegal.

1)  Single  Trip  Checking: The  method  is  adopted  from  the
segments concatenation developed by [7]–[9]. A segment is a
sequence  of  consecutive  nodes.  For  each  trip,  relevant
information for all segments should be computed and saved in
a preprocessing phase. When inserting or removing a request,
different  segments  can  be  directly  concatenated.  The
feasibility of a trip can be evaluated in constant time by using
the relevant information of each segment.

σ =
(
σi, ...,σ j

)
σ′ =

(
σ′i , ...,σ

′
j

)
σi, ...,σ j σ′i , ...,σ

′
j

V
σ⊕σ′ ⊕

For  two  segments  and ,
where  and  are non-overlapping nodes in the
node  set ,  the  following  information  from the  concatenated
segment  is  computed  (  represents  the  concatenation
operator):
 

D
(
σ⊕σ′) = D (σ)+D

(
σ′
)
+ cσ jσ

′
i
+∆WT (12)

 

C
(
σ⊕σ′) =C (σ)+C

(
σ′
)
+dσ jσ

′
i

(13)
 

E
(
σ⊕σ′) =max{E (σ′)−∆,E (σ)}−∆WT (14)

 

L
(
σ⊕σ′) =min{L (σ′)−∆,L (σ)} (15)

 

Q
(
σ⊕σ′) = Q (σ)+Q

(
σ′
)

(16)
 

PQ
(
σ⊕σ′) =max{PQ (σ) ,Q (σ)+PQ

(
σ′
)} (17)

 

S F
(
σ⊕σ′) =max{S F (σ) ,S F

(
σ′
)} (18)

∆ = D (σ)+ cσ jσ
′
i

∆WT =max{E (σ′)−∆−L (σ) ,0} D (σ) C (σ)

E (σ) L (σ)

Q (σ)
PQ (σ) S F (σ)

where  and  the  minimal  waiting  time
.  and  denote  the

corresponding  minimum  duration  and  cumulated  cost,
respectively.  and  denote the earliest start time and
the  latest  start  time,  respectively,  which  form  the  start-time
window of the trip. If the vehicle starts the service at any time
in  this  time  window,  the  trip  will  involve  the  least  waiting
time. More details about the start-time window can be referred
to [9].  represents the load after serving the last node of
the  segment.  and  denote  the  maximum  load
and the maximum number of required staff at certain nodes of
the segment, respectively.

σ⊕σ′
σ σ′

E (σ⊕σ′) ≤ L (σ⊕σ′)
D (σ⊕σ′) ≤ Tmax PQ (σ⊕σ′)+S F (σ⊕

The  new  segment  is  feasible  if  and  only  if  the
following four conditions are satisfied. i)  Segments  and 
are  feasible;  ii)  The  time  windows  are  not  violated  (i.e.,

); iii) The maximum duration constraint
is satisfied (i.e., );  iv) 

σ′)−1 ≤ Qmax Qmax

σ0 = (v)
v D (σ0) = tv C (σ0) = 0 E (σ0) =

ev L (σ0) = lv Q (σ0) = qv PQ (σ0) = qv S F (σ0) = sv

,  where  is  the  maximum  capacity  of  the
vehicles.  It  implies  that  there  is  at  least  one  vehicle  with
adequate capacity to perform the trip. For a segment 
containing  a  single  node , , , 

, , , ,  and .
More details about the above notations can be referred to [9].

2) Multitrip Scheduling: After the first step, all the trips are
legal.  Each  vehicle  may  contain  several  trips.  Multitrip
scheduling  should  be  performed  to  obtain  a  legal  scheduling
order for each vehicle.

After  inserting  or  removing  requests,  a  new  trip  is
generated. First, we should check whether its original vehicle
can still perform multitrip scheduling. If not, dispatch the trip
to other vehicles until a legal scheduling order is found.

k

⟨r1,r2, ...,ru⟩

For  a  specific  vehicle ,  when  a  new  trip  is  assigned,  the
capacity  constraint  should  be  checked  first.  If  the  capacity
constraint  is  satisfied,  multitrip  scheduling  is  performed  to
determine  an  order  for  the  assigned  trips.  The  assigned  trips
are  sorted  by  their  earliest  start  times  to  generate  a  greedy
order.  The  greedy  order  is  usually  feasible.  Otherwise,  all
permutations  of  the  trips  are  enumerated  to  obtain  a  legal
order.  The  feasibility  of  a  scheduling  order  can
be examined by a forward sweep as follows:
 

E (ri) =max{E (ri−1)+D (ri−1)+δ,E (ri)},
i = 2, ...,u (19)

δ

E (ri) ≤ L (ri)
where  is  the  disinfection  time.  The  multitrip  scheduling  is
feasible if  is satisfied for all trips. If the schedule
is  feasible,  the  start-time  window  for  each  trip  is  further
narrowed with the following backward sweep:
 

L (ri) =min{L (ri+1)−D (ri)−δ,L (ri)},
i = u−1, ...,1. (20)

3)  Staff  Assignment: After  the  second  step,  the  staff
assignment  procedure  should  be  invoked for  all  the  vehicles.
A greedy heuristic is used to perform staff assignment.

[ES m,LS m] [em, lm]
m

Each time we select  an unsettled trip  with  the  earliest  start
time and try to assign a driver and sufficient assistants to the
trip. ,  and the working type are checked to
see  if  staff  can  be  assigned  to  the  current  trip.  When
sufficient staff have been assigned, set the trip start time to the
larger  value  between  the  maximum  available  time  of  the
assigned  staff  and  the  earliest  start  time  of  the  trip.  The
available  time  of  all  assigned  staff  should  be  updated.
Moreover,  the  forward  sweep  method  should  be  used  to
update  the  earliest  start  time  of  the  corresponding  trips.  The
process is iterated until all trips have sufficient staff or there is
no feasible assignment for a trip.

The  feasibility  checking  for  MO-MTPDPTWMP  is
sophisticated.  More details  about  the feasibility  checking can
be referred to [7]–[9]. 

F.  Archive Updating

S
x′′

x′′

To obtain a set of Pareto nondominated solutions with good
performance  in  terms  of  convergence  and  diversity,  an
external  archive A with  maximum  size  is  adopted.  If  no
solutions in A dominate the newly generated solution  (Line
12)  of  Algorithm  1,  will  be  stored  into A.  All  solutions
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x′′

|A| > S |A|
|A| > S

|A| > S

dominated  by  will  be  removed  from A.  The  archive A
stores all nondominated solutions until , where  is the
current size of A. If , the parallel cell coordinate system
(PCCS)  proposed  in  [27]  is  used  to  decide  which  solution  is
discarded.  PCCS  is  an  advanced  density  evaluation
mechanism. Details about PCCS density evaluation procedure
can be found in [27]. The solution with the maximum density
will  be  discarded  when .  Experimental  results  about
density  estimation  in  [27]  illustrates  that  the  performance  of
PCCS  is  superior  to  that  of  adaptive  grid  and  crowding
distance  in  NSGA-II  [18]  in  terms  of  convergence  and
diversity. 

G.  Complexity Analysis

N3
O(N2)

O(I ·N2)

O(maxCount · I ·N2)

The  complexity  of  the  proposed  MOILS-ANS  mainly
depends  on  the  local  search  in  ANS  strategy  as  shown  in
Algorithm  2,  which  has  the  highest  complexity.  The  local
search  consists  of  different  neighborhood  structures.  Among
them, the most complex one is the  neighborhood structure,
with  a  complexity  of .  The  complexity  of  the  local
search  is  since  the  search  depth  of  ANS  is I.
Therefore, considering the iterated local search (the outer loop
of Algorithm 1) process, the total complexity of MOILS-ANS
is . 

IV.  Experimental Studies

MOILS-ANS was coded in C++. All  the experiments were
conducted  on  a  machine  with  Intel(R)  Xeon(R)  Gold  5118
2.30GHz  CPU,  64  GB  RAM,  and  the  Ubuntu  16.04.5
operating system. 

A.  Parameter Settings
C

S Nλ

Cm−1
H+m−1

m = 3 7
Nλ =C2

9 = 36 maxCount = 15

In MOILS-ANS, the size of the current solution set  is set
to 50 and the archive size  is  set  to  100 [27].  uniformly
distributed  weighted  vectors  are  generated.  The  number  of
weight  vectors  is  calculated  as  using  a  parameter H
[28].  In  this  problem,  and H is  set  to ,  and  thus

. In addition, .
I = 20 α = 0.8 pmin = 0.1

α
I = 20 α = 0.8

pmin = 0.1

In  ANS,  the  search  depth , ,  and .
These parameters are selected empirically. In our preliminary
experiment,  alternative  parameter  settings  are  studied.  For
example, I is  set  to  10,  20,  50,  and  is  set  to  0.2,  0.5,  0.8,
respectively.  Finally,  and  can  lead  to  the  best
result.  is often used in the references (e.g., [26]), so
it is directly adopted. 

B.  Benchmark Instances and Termination Criterion
Benchmark  instances  collected  from  public  hospitals  in

Hong  Kong,  China  are  provided  by  [9].  An  instance  is
constructed using the requests in a day. A total of 59 instances
from  January  (31  instances)  to  February  (28  instances)  of
2009  are  used  to  evaluate  MOILS-ANS  for  MO-
MTPDPTWMP.  The  format  of  an  instance  is  2009MMDD,
where  MM and  DD denote  the  month  and  day,  respectively.
For  example,  20090101  indicates  daily  requests  on  January
1st.  There  are  38  non-holiday  instances  and  21  holiday
instances. In general, non-holiday instances have narrow time
windows and extensive requests, while holiday instances have

wide  time  windows  and  a  few  requests.  The  number  of
requests in all instances varies from 28 to 205. Each instance
input consists of the following information:

1)  Requests  Data: available  seats,  staff  demand,  time
windows, and service time.

2) Vehicle Data: vehicle number and vehicle capacity.
3) Staff Data: work period and lunch break for each staff.
4) Cost Matrix: traveling cost between any two locations.

N ≤ 50 50 < N ≤ 100
N > 100

The termination criterion is set to the maximum runtime [9].
Larger instances with more requests require more computation
time,  and thus  the  maximum runtime for  each instance  is  set
according to the number of requests as follows: 1800 seconds
for ; 3600 seconds for ; 7200 seconds for

. 

C.  Performance Indicators and Statistics
1)  Performance  Indicators: The  performance  of  a

multiobjective algorithm is evaluated in terms of convergence
and  diversity  of  the  nondominated  solutions  obtained.
Hypervolume (HV) and inverted  generational  distance  (IGD)
are  two  widely  used  indicators  for  performance  evaluation.
Therefore, we also adopt them in this study.

a) HV: The volume of the space enclosed by the solution set
and  a  reference  point  is  calculated  as  the  HV  value.  For  a
minimization  task,  the  larger  the  HV  value  is,  the  closer  the
solution set is to the Pareto front. In this work, the HV value is
calculated  based  on  the  objective  values  normalized  into  [0,
1]. The reference point is set to (1.2, 1.2, 1.2).

b)  IGD: The  distance  of  the  elements  in  the  approximate
Pareto front towards those in the true Pareto front is estimated
as  the  IGD  value.  A  smaller  IGD  indicates  a  better
approximate Pareto set.

The true Pareto front of each instance is unknown. For each
instance,  all  nondominated  solutions  produced  by  all
algorithms  over  20  runs  are  collected  to  form  an
approximation of its true Pareto front.

s

Additionally,  two  indicators  proposed  by  [13]  are  used  to
compare  nondominated  solutions  obtained  by  multiobjective
algorithms  with  the  best  solution  reported  by  the  previous
single-objective  algorithm  for  MTPDPTW-MP  [9].  Suppose
that A is the set of all nondominated solutions in the objective
space  generated  by  a  multiobjective  algorithm  and  is  the
best  solution  in  the  objective  space  generated  by  a  previous
single-objective  algorithm on the  same problem instance,  the
two indicators can be defined as follows:

s
a)  Generated  dominating  solutions  (GDS): GDS  is  the

number of solutions in A that can dominate .
 

GDS(A, s) = |{a ∈ A|a dominates s}|. (21)

s

s a a
s

b)  Generated  alternative  solutions  (GAS): GAS  is  the
number of solutions in A that can be used as alternatives to .
If  the  sum  of  results,  obtained  by  subtracting  normalized
objective  values  of  from ,  is  negative,  then  can  be
considered as an alternative to .
 

GAS(A, s) = |{a ∈ A|
m∑

i=1

ai− si− z∗i
znad

i − z∗i
< 0}| (22)

m z∗where  is the number of objectives. Ideal point ( ) and Nadir
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znadpoint ( ) are constructed using the best and worst objective
values of the PF respectively.

According  to  the  above  definitions,  larger  GDS  and  GAS
indicate better nondominated solution sets.

w/t/l

w t l

2)  Statistics  by  Wilcoxon  and  Friedman  Tests: To  test  the
significant  differences  between  the  results  obtained  by
MOILS-ANS and other competitors on a single instance over
20 runs,  single-problem Wilcoxon rank-sum test  [29]–[31] at
5% significance  level  was  carried  out  for  each  instance.
Statistical  results  on  sets  of  instances  are  summarized  as

,  which means that  MOILS-ANS significantly  performs
better  than,  similar  to  and  worse  than  the  corresponding
competitor on , , and  instances, respectively. Moreover, to
show the differences between the results obtained by MOILS-
ANS  and  the  competitor  on  sets  of  instances,  multiproblem
Wilcoxon  signed-rank  test  is  conducted.  Finally,  to  get  the
ranking  of  all  algorithms  on  sets  of  instances,  the  Friedman
test is applied. 

D.  Multiobjective Competitors
MO-MTPDPTWMP  is  a  newly  introduced  problem  in  the

literature  and  there  is  no  existing  algorithm applied  to  it  yet.
No existing results can be directly used for comparisons. Two
competitor  algorithms  (MOILS-R  and  MOEA/D-ANS)  are
adopted  for  MO-MTPDPTWMP.  Their  characteristics  are  as
follows.

1)  MOILS-R: Unlike  MOILS-ANS,  MOILS-R  randomly
selects a neighborhood structure. The selection probabilities of
different  neighborhood  structures  are  set  to  the  same  value.
That is, seven neighborhood structures are selected uniformly.
It  is  natural  to  adopt  uniform  selection  probabilities  for
different  neighborhood  structures  without  prior  knowledge
about the performance of them. Comparing MOILS-ANS with
MOILS-R, we can analyze the effect of the ANS strategy.

2) MOEA/D-ANS: MOEA/D [17] is adapted to form a state-
of-the-art  competitor  for  MO-MTPDPTWMP.  MOEA/D  is  a
representative  MOEA  [15].  A  multiobjective  optimization
problem is  decomposed into  a  number  of  scalar  optimization
subproblems  in  MOEA/D.  These  subproblems  are  optimized
simultaneously.  The  algorithm  optimizes  each  subproblem
only  using  information  from  its  several  neighboring
subproblems.  According  to  [15],  [17],  [32],  MOEA/D seems
to  be  more  suitable  for  tackling  multiobjective  combinatorial
optimization  problems than  NSGA-II  [18],  because  problem-
specific  (local  search)  techniques  can  be  directly  used  to
intensify the exploration of  promising regions in  the solution
space.  It  provides  a  natural  framework  for  using  single-
objective  local  search  techniques  [4].  ANS is  embedded  into
MOEA/D to form a competitor called MOEA/D-ANS (shown
in Algorithm 3).

Nλ = 36 S = 100

For  fair  comparisons,  the  same  algorithm  components
(initial  solution  construction,  the  ANS  strategy,  feasibility
checking,  and  archive)  described  in  Section  III  are  also  used
in  MOEA/D-ANS.  The  termination  criterion  of  MOEA/D-
ANS is  also  set  to  the  maximum runtime  as  that  in  MOILS-
ANS (Section IV-B).  The number  of  weight  vectors  is  set  to

 and  the  archive  size  is  set  to .  Such  settings
are the same as those in MOILS-ANS. The neighborhood size

Nλ = 100

Nλ = 36
T = 6

T = 2

T is  set  to  6.  Given  the  limited  computation  resource,
MOEA/D-ANS  with  a  larger  population  size,  for  example,

, does not lead to better results. MO-MTPDPTWMP
only has three objectives (does not count as many objectives),
and  thus  can  generate  satisfactory  results  by  our
experiment.  can  lead  to  better  balance  between
convergence and diversity.  If T is  too small  (e.g., ),  the
performance  of  convergence  is  deteriorated  by  our
preliminary experiment.

Algorithm 3 MOEA/D-ANS

NλInput: the number of weight vectors , neighborhood size
T, archive A

Output: archive A
1 begin

∅2　A = ;
P Nλ x1, . . . , xNλ3　initialize population  with  solutions  and

update the archive A;
Nλ

{λ1, . . . ,λNλ } λi = (λi
1, . . . ,λ

i
m)

4　 generate  uniformly  distributed  weight  vectors
, where ;

{i1, . . . , iT }
λi λi1 , . . . ,λiT

λi

5　compute the neighborhood set B(i) =  for each
weight  vector ,  where  are  the T closest  weight
vectors to  based on the Euclidean distance;

6　while termination condition is not met do
Nλ7　　for i = 1:  do

8　　　randomly select an index I from B(i);
ANSλi(xI)9　　　x′ = ;

j ∈ B(i)10　　　for each  do
f ws(x′|λ j) ≤ f ws(x j|λ j)11　　　　if  then

12　　　　　xj = x′
13　　　　end if
14　　　end for
15　　　updateArchive (A; x′);
16　　end for
17　end while
18　return archive A;
19 end

 

E.  Comparison Results Among Multiobjective Algorithms
Numerical values of performance indicators (HV and IGD)

over 20 independent runs are shown in Table S1 in Appendix
due  to  the  limited  space.  Statistics  summarizing  those
numerical  values  are  shown  in Tables I–IV. Table S1 in
Appendix shows the HV and IGD values (mean and standard
deviation (STD)) on all 59 instances. In terms of HV and IGD,
the  proposed  MOILS-ANS  obtains  best  mean  values  on  49
and  54  instances,  respectively.  In  comparison,  MOILS-R
obtains best mean values on 4 and 3 instances. MOEA/D-ANS
obtains  best  mean  values  on  6  and  2  instances,  respectively.
The  results  suggest  that  MOILS-ANS  significantly
outperforms MOILS-R and MOEA/D-ANS.

w/t/l

1) Comparisons Between MOILS-ANS and MOILS-R: Table I
provides the statistics of performance comparisons of MOILS-
ANS and MOILS-R on 59 instances. Results in column 
show  that  MOILS-ANS  outperforms  MOILS-R  on  47,  55
instances in terms of HV and IGD, respectively.
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pMoreover,  the  obtained  values  are  less  than  0.05  and
MOILS-ANS  obtains  much  higher R+ values  than R− values
on the multiproblem Wilcoxon signed-rank test. It means that
MOILS-ANS is significantly better than MOILS-R.

f1 f2 f1 f3

To  visually  demonstrate  the  performance  of  MOILS-ANS
and  its  two  competitor  algorithms,  the  projections  of
nondominated  solutions  of  MOILS-ANS,  MOILS-R,  and
MOEA/D-ANS  (in  red,  blue,  and  purple,  respectively)  on  a
selected instance 20090125 at –  and –  over 20 runs are
compared  with  the  Pareto  front  (in  green  dots),  as  shown  in
Fig. 3.  In  the  selected  2D  plane  (subspace),  regions  that  are
not  fully  covered  by  some  algorithms  are  highlighted  and
marked with orange circles.

Comparing  MOILS-ANS  with  MOILS-R  from Fig. 3,  we
can  easily  find  that  some  regions  of  the  Pareto  front  are  not
fully  covered  or  approximated  by  MOILS-R.  As  shown  in

Fig. 3(a),  the  final  solution  set  obtained  by  MOILS-ANS
spreads along the whole Pareto front, and is wider than those
obtained  by  MOILS-R,  as  shown  in Fig. 3(c).  Comparing
Figs. 3(b) and 3(d),  we can find that  MOILS-ANS covers  all
the  regions  of  the  Pareto  front  well,  while  MOILS-R  misses
some regions. Therefore, MOILS-ANS obtains better HV and
IGD values than MOILS-R.

To  sum  up,  MOILS-ANS  outperforms  MOILS-R.  The
effectiveness  of  the  ANS  strategy  is  revealed  from
comparisons between MOILS-ANS and MOILS-R.

2)  Comparisons  Between  MOILS-ANS  and  MOEA/D-ANS:
As  summarized  in Table II,  MOILS-ANS  significantly
outperforms MOEA/D-ANS on 48 and 46 instances  in  terms
of  HV  and  IGD,  respectively.  Results  of  the  multiproblem
Wilcoxon  signed-rank  test  show  that  MOILS-ANS  is
significantly  better  than  MOEA/D-ANS  in  terms  of  HV  and
IGD.

Comparing MOILS-ANS with MOEA/D-ANS from Fig. 3,
we can easily find that some regions of the Pareto front are not
fully  covered or  approximated by MOEA/D-ANS.  As shown
in Fig. 3(e),  although  the  final  solution  set  obtained  by
MOEA/D-ANS  spreads  along  the  whole  Pareto  front,  the
solution set is not denser and closer to the true Pareto front as
that  of  MOILS-ANS,  as  shown  in Fig. 3(a).  Moreover,
comparisons between Figs. 3(b) and 3(f) show that MOEA/D-
ANS misses some regions of the Pareto front, marked with the
orange circle in Fig. 3(f).

Both MOILS-ANS and MOEA/D-ANS maintain and update
a  solution  set,  and  they  all  can  be  seen  as  global  search

 

TABLE I  
Statistics of Performance Comparisons Between MOILS-ANS and MOILS-R

HV w/t/l R+ R− p-value α = 0.05 α = 0.10

MOILS-ANS vs MOILS-R 47/11/1 1745.0 25.0 3.1364E–015 YES YES

IGD w/t/l R+ R− p-value α = 0.05 α = 0.10

MOILS-ANS vs MOILS-R 55/1/3 1744.0 26.0 3.7100E–015 YES YES
 

 

TABLE II  
Statistics of Performance Comparisons Between MOILS-ANS and MOEA/D-ANS

HV w/t/l R+ R− p-value α = 0.05 α = 0.10

MOILS-ANS vs MOEA/D-ANS 48/8/3 1659.0 111.0 4.5952E–011 YES YES

IGD w/t/l R+ R− p-value α = 0.05 α = 0.10

MOILS-ANS vs MOEA/D-ANS 46/11/2 1689.0 81.0 3.1537E–012 YES YES
 

 

TABLE III  
Average Ranking of MOILS-ANS, MOILS-R, and MOEA/D-

ANS by Friedman Test According to HV and IGD

HV Average ranking value Final rank

MOILS-ANS 1.1864 1

MOEA/D-ANS 2.3390 2

MOILS-R 2.4746 3

IGD Average ranking value Final rank

MOILS-ANS 1.1017 1

MOEA/D-ANS 2.3051 2

MOILS-R 2.5932 3
 

 

TABLE IV  
z p pThe -values, Unadjusted -values, and Adjusted -values for the Friedman Test Along With Holm’s Post-Hoc

Procedure According to HV and IGD at 5% Significance Level

HV z -values pUnadjusted -values pAdjusted -values

MOILS-R vs MOILS-ANS 6.996367 0.000000 0.016667

MOILS-ANS vs MOEA/D-ANS 6.259907 0.000000 0.025000

MOILS-R vs MOEA/D-ANS 0.736460 0.461451 0.050000

IGD z -values pUnadjusted -values pAdjusted -values

MOILS-R vs MOILS-ANS 8.101057 0.000000 0.016667

MOILS-ANS vs MOEA/D-ANS 6.536080 0.000000 0.025000

MOILS-R vs MOEA/D-ANS 1.564977 0.117588 0.050000
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algorithms  [16].  In  MOILS-ANS,  a  solution  in  the  current
solution set is randomly selected for exploration and updating
in  each  iteration,  while,  in  MOEA/D-ANS,  the  whole
population  is  explored  and  updated  from  generation  to
generation.  The main characteristic  of  MOILS-ANS is  that  it
extends  the  single-objective  ILS  framework  [9]  with
perturbation  scheme  for  escaping  local  minima  [16].
Experimental  results  above show that  MOILS-ANS performs
better  than  MOEA/D-ANS.  This  might  be  due  to  the
following reasons.  In MOEA/D-ANS, it  is  likely that  a high-
quality  solution  will  gradually  fill  the  large  portion  of  the
population  with  its  variants/copies  because  the  neighborhood
is defined based on uniformly distributed weight vectors. This
may lead to a loss of diversity of the population in MOEA/D-
ANS.  In  contrast,  the  perturbation  mechanism  of  MOILS-
ANS  can  help  MOILS-ANS  to  escape  local  minima,  which
leads to better convergence of the obtained solution set.

p

3)  Summary: Table III shows  the  average  ranking  of  all
algorithms by Friedman test on all instances. Table IV shows
the  test  statistics  and adjusted -values  for  the  Friedman test
along  with  Holm’s  post-hoc  procedure.  In  terms  of  both  HV
and  IGD,  MOILS-ANS  gets  the  first  rank,  followed  by
MOEA/D-ANS  and  MOILS-R.  In  conclusion,  the  proposed
MOILS-ANS  significantly  outperforms  the  two  competitor
algorithms, MOILS-R and MOEA/D-ANS.
 

F.  Nature of Objectives and Problems
Understanding  the  nature  of  the  relationships  between

objectives  can  help  develop  efficient  and  tailored  problem-
solving  techniques  in  a  multiobjective  optimization  problem.
Usually,  important  properties  of  objectives  and  relationships
between  them  can  be  revealed  from  the PF.  Therefore,  this
study  uses  the  method  proposed  recently  in  [33]  to  visualize
and analyze the nature of objectives through the PF. For each
instance,  the  approximate PF mentioned  in  Section  IV-C  is
used  as PF since  the  true PF is  unknown.  Four  randomly
selected  instances  (i.e.,  20090118,  20090122,  20090211,  and
20090218)  from  all  instances  of  January  and  February  are
chosen  as  representatives  for  analysis.  We  follow  the  four
analysis steps used in [33]. The corresponding analysis results
are  shown in Figs. S1–S5 in  the  Appendix.  Observations  can
be concluded as follows.

f1− f2

1) The pairwise correlation values in Fig. S1 and the scatter
plots  in Fig. S5 show  that  conflicting  relationship  exists
between  for the four selected instances. Fig. S2 shows
that  all  objectives  have  large  ranges.  These  large  ranges  also
indicate  that  the  selected  four  instances  have  conflicting
objectives. Although there are solutions with good values for a
given objective, at least one other objective has a poor value.
To  summarize,  all  the  instances  provide  interesting
multiobjective challenges.  The improvement of one objective
may lead to the deterioration of the other objective. Therefore,
it is not wise to combine them into a single one using a fixed
weight vector.

2) Fig. S4(a) shows  that  almost  all  regions  have  solutions,
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Fig. 3.     Nondominated  solutions  obtained  by  all  algorithms  on  instance
20090125 over 20 runs. (a) MOILS-ANS at − ; (b) MOILS-ANS at − ;
(c) MOILS-R at − ; (d) MOILS-R at − ; (e) MOEA/D-ANS at − ; (f)
MOEA/D-ANS at − .
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Fig. 4.     Parallel  coordinates  visualizing  the  alternative  solutions  generated
by  MOILS-ANS  and  the  best  solutions  reported  by  the  previous  single-
objective  algorithm.  In  each  figure,  our  three  objective  functions  are
represented as three parallel axes. Each solution (a 3-D vector) is drawn as a
polyline with vertices on the parallel axes; the position of the vertex on the th
axis  corresponds to  the th  objective value of  the  solution.  The black line  is
the best  solution reported by the previous single-objective algorithm and the
gray  lines  are  its  alternatives  generated  by  MOILS-ANS.  (a)  Instance
20090118;  (b)  Instance  20090122;  (c)  Instance  20090211;  (d)  Instance
20090218.
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representing  a  wide  variety  of  options  for  decision  makers.
Besides, Fig. S4(b) shows  that  the  frequency  of  instances  is
high  in  most  regions,  meaning  that  the  fitness  landscapes  of
instances  are  alike.  That  is,  recurring  features  exist  in  the
fitness  landscapes  of  different  instances.  Using  this
characteristic, it may be wise to solve one instance of a given
problem  scenario  using  computationally  expensive
multiobjective algorithms to obtain a good approximation set
and  then  using  goal  programming  with  efficient  single-
objective  algorithms  to  solve  other  instances  of  the  same
problem scenario [34]. 

G.  Comparisons With Previous Single-Objective Algorithm
1) Comparison Results: A single-objective algorithm called

ILS-VND  was  proposed  in  [9]  to  deal  with  single-objective
MTPDPTW-MP.  The  best  solutions  generated  by  ILS-VND
are  collected  for  comparisons  since  the  same  instances  are
solved  by  both  multiobjective  algorithms  and  ILS-VND.  For
each  instance,  all  nondominated  solutions  generated  by  a
multiobjective  algorithm  over  20  runs  are  combined  to  form
its nondominated solution set, which is used to compare with
the best solution generated by ILS-VND.

Table S2 in Appendix summarizes GDS and GAS values of
MOILS-ANS, MOILS-R, and MOEA/D-ANS with respect to
best  solutions  of  ILS-VND  for  each  instance. Table S3 in
Appendix summarizes the number of nondominated solutions
generated  by  MOILS-ANS,  MOILS-R,  and  MOEA/D-ANS
for each instance. Key observations can be found as follows.

a) All GDS values are zero. The single-objective algorithm
invests  all  computing  resources  to  optimize  three  objectives
with  a  fixed  weight  vector,  and  returns  just  one  solution
finally.  In  contrast,  the  proposed  multiobjective  algorithm
must make a balance among three objectives and return a set
of tradeoff solutions finally. Therefore, it is quite difficult for
the proposed algorithm to dominate the solution generated by
the single-objective algorithm for MO-MTPDPTWMP. In this
regard,  all  GDS  values  are  0.  It  suggests  that  the  proposed
algorithm  may  still  have  room  for  further  improvement  in
future.

b) For each instance, GAS values show that each algorithm
can  generate  numerous  alternative  solutions  with  respect  to
the  best  solution.  These  alternative  solutions  can  provide
decision  makers  with  a  wide  variety  of  options  to  best  suit
their specific requirements [13], [14].

c) The proposed MOILS-ANS obtains the best GAS values
on  most  instances  (32  instances,  about  54.24% of  all  59
instances). Besides, the average GAS value of MOILS-ANS is
the best among all multiobjective algorithms.

To  sum  up,  MOILS-ANS  performs  best,  which  is  in  line
with our previous analysis based on HV and IGD.

2) Benefits of Multiobjective Optimization: To illustrate the
benefits  of  multiobjective  MTPDPTW-MP,  alternative
solutions  generated  by  MOILS-ANS  on  four  selected
instances  (i.e.,  20090118,  20090122,  20090211,  and
20090218) are visualized using parallel  coordinates in Fig. 4.
Our three objective functions are represented as three vertical
axes  in  parallel  coordinates.  Each  solution  (a  3-D  vector)  is
drawn as a polyline with vertices on the parallel axes, and the

i iposition  of  the  vertex  on  the th  axis  corresponds  to  the th
objective  value  of  the  solution.  The  black  line  is  the  best
solution  reported  by  the  previous  single-objective  algorithm
ILS-VND and the gray lines are  its  alternatives generated by
MOILS-ANS. Observations can be found as follows.

a)  For  each  instance,  MOILS-ANS  generates  numerous
alternatives  with  respect  to  the  best  solution.  These
alternatives can help decision makers to better understand the
situation  of  the  problem  and  provide  them  with  more
flexibility  to  select  a  solution  that  best  matches  their
requirements.  If  all  objectives  are  simply  combined  into  a
single  one  like  ILS-VND,  many  alternatives  will  be  lost
during the search process.

f1
f1

b)  Best  solutions  reported  by  ILS-VND  always  have  good
performances  on .  They  are  obviously  customer-oriented
solutions.  The  observation  is  reasonable  because  is  set  as
the most important objective in the single-objective algorithm
ILS-VND.

f1
f2 f3

f1 f2 f3

c)  Because  of  the  inter-dependency  among  different
objectives,  a  solution  with  the  best  performance  on  one
objective  has  to  compromise  some  other  objectives.
Therefore, “extreme” solutions  with  the  best  value  for  one
objective  may  not  be  acceptable  to  decision  makers.  For
example,  customer-oriented  solutions  (black  lines  in Fig. 4)
provided by ILS-VND are the best in terms of  but poor in
terms of ,  and . The interests of the hospital and the staff
are  ignored  in  these  customer-oriented  solutions.  In  such  a
situation, “middle  ground” solutions  that  optimize  all  the
objectives in the best possible way may be better choices [13].
Formulating MTPDPTW-MP as a multiobjective problem can
satisfy  this  purpose.  It  is  evident  from Fig. 4 that  we  can
choose a solution among its alternatives that performs a little
worse on , but performs much better on both , and  than
the best solutions. 

V.  Conclusions

This  study  formulates  MTPDPTW-MP  as  a  multiobjective
optimization  problem  to  better  meet  the  requirements  of
different  stakeholders  in  real-world  scenarios.  To  solve  MO-
MTPDPTWMP,  a  multiobjective  algorithm  MOILS-ANS  is
proposed.  Problem-specific  neighborhood  structures  and  an
adaptive  neighborhood  selection  strategy  are  designed  to
better  explore  the  search  space.  Experimental  results  show
that  MOILS-ANS  is  significantly  better  than  the  other  two
multiobjective  algorithms.  The  nondominated  solutions
obtained  by  all  multiobjective  algorithms  for  MO-
MTPDPTWMP are  mined.  The  nature  of  objective  functions
and  important  properties  of  the  problem  are  revealed.
Moreover, by comparing solutions generated by MOILS-ANS
with  the  best  solutions  generated  by  the  previous  single-
objective  algorithm,  the  benefits  of  multiobjective
optimization are summarized. The mining and analysis make a
step toward explainable multiobjective optimization.

In  the  future,  this  study  can  be  extended  from  several
aspects.  Firstly,  the  proposed  algorithm  requires  a  great  deal
of time when dealing with large scale instances. Therefore, the
proposed  algorithm  can  be  speeded  up  through  modern
computing  architectures,  such  as  computer  cluster  and  GPU,
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as  in  [35].  It  also  can  be  extended  to  solve  other
multiobjective routing and scheduling problems [1]. Secondly,
the  crossover  operator  is  not  adopted  in  the  proposed
algorithm  and  MOEA/D-ANS  is  in  consistent  with  the
existing  multiobjective  algorithms  [2],  [36]–[41].  Previous
experience  [38]  showed  that  the  crossover  of  solutions  in  a
highly  constrained  problem  always  produces  infeasible
solutions.  Feasibility  checking  is  too  sophisticated  for  MO-
MTPDPTWMP. This means that a good crossover operator or
repairing  heuristics  need  to  be  designed,  and  thus  the
application  of  crossover-based  algorithms  to  MO-
MTPDPTWMP  is  a  possible  research  direction.  Finally,  the
properties of MO-MTPDPTWMP can be further studied from
nondominated  solutions  generated  by  the  proposed
algorithms.  Making  full  use  of  problem-specific  knowledge
can  improve  the  search  ability  of  multiobjective  algorithms.
Selection  of  proper  hyperparameters  of  the  algorithms  using
the method in [42], [43] is also our future work. 

Appendix

 

TABLE SI  
Comparative Results (Mean and STD) Of HV and IGD on 59 Instances

Instances
HV IGD

MOILS-ANS MOILS-R MOEA/D-ANS MOILS-ANS MOILS-R MOEA/D-ANS

20090101 0.7890 (0.0047) 0.7850 (0.0042)– 0.7669 (0.0192)– 0.0552 (0.0042) 0.0613 (0.0035)– 0.0781 (0.0170)–

20090102 0.6810 (0.0185) 0.6417 (0.0224)– 0.6178 (0.0346)– 0.1068 (0.0102) 0.1512 (0.0131)– 0.1538 (0.0220)–

20090103 0.7937 (0.0101) 0.7842 (0.0133)– 0.7739 (0.0237)– 0.0689 (0.0072) 0.0768 (0.0084)– 0.0898 (0.0125)–

20090104 0.7398 (0.0042) 0.7366 (0.0076)= 0.7145 (0.0118)– 0.0535 (0.0025) 0.0585 (0.0057)– 0.0705 (0.0097)–

20090105 0.6747 (0.0176) 0.6025 (0.0643)– 0.6232 (0.0254)– 0.1123 (0.0194) 0.1930 (0.0515)– 0.1465 (0.0156)–

20090106 0.6488 (0.0322) 0.5754 (0.0684)– 0.6021 (0.0254)– 0.1483 (0.0233) 0.2087 (0.0459)– 0.1590 (0.0220)=

20090107 0.6171 (0.0388) 0.5794 (0.0559)– 0.5937 (0.0337)– 0.1451 (0.0251) 0.2018 (0.0394)– 0.1604 (0.0215)–

20090108 0.5478 (0.0231) 0.5015 (0.0530)– 0.5734 (0.0259)+ 0.1369 (0.0155) 0.2032 (0.0430)– 0.1419 (0.0074)=

20090109 0.6278 (0.0248) 0.5848 (0.0641)– 0.6026 (0.0349)– 0.1311 (0.0200) 0.1774 (0.0399)– 0.1521 (0.0144)–

20090110 0.6354 (0.0115) 0.6139 (0.0114)– 0.6159 (0.0186)– 0.0726 (0.0048) 0.0890 (0.0079)– 0.0948 (0.0108)–

20090111 0.6989 (0.0063) 0.6919 (0.0057)– 0.6769 (0.0146)– 0.0554 (0.0025) 0.0602 (0.0038)– 0.0742 (0.0094)–

20090112 0.6622 (0.0214) 0.6260 (0.0381)– 0.6385 (0.0275)– 0.1136 (0.0133) 0.1630 (0.0335)– 0.1300 (0.0174)–

20090113 0.4561 (0.0895) 0.3998 (0.0890)– 0.4962 (0.0362)= 0.2175 (0.0720) 0.2706 (0.0594)– 0.1583 (0.0173)+

20090114 0.6223 (0.0337) 0.6023 (0.0638)= 0.6413 (0.0344)= 0.1329 (0.0199) 0.1617 (0.0404)– 0.1383 (0.0164)=

20090115 0.6257 (0.0200) 0.5948 (0.0532)– 0.6074 (0.0307)– 0.1333 (0.0215) 0.1752 (0.0360)– 0.1503 (0.0144)–

20090116 0.6248 (0.0227) 0.5664 (0.0685)– 0.5844 (0.0187)– 0.1358 (0.0155) 0.1956 (0.0465)– 0.1470 (0.0118)–

20090117 0.6126 (0.0109) 0.6044 (0.0109)= 0.5990 (0.0187)– 0.0650 (0.0030) 0.0767 (0.0089)– 0.0825 (0.0084)–

20090118 0.6787 (0.0091) 0.6816 (0.0051)= 0.6552 (0.0129)– 0.0639 (0.0102) 0.0581 (0.0053)+ 0.0810 (0.0100)–

20090119 0.6093 (0.0182) 0.5637 (0.0519)– 0.6291 (0.0400)+ 0.1178 (0.0148) 0.1715 (0.0317)– 0.1230 (0.0141)=

20090120 0.6157 (0.0245) 0.5779 (0.0684)= 0.6024 (0.0243)= 0.1428 (0.0209) 0.1822 (0.0459)– 0.1511 (0.0126)=

20090121 0.6223 (0.0261) 0.5561 (0.0805)– 0.5748 (0.0258)– 0.1428 (0.0211) 0.1986 (0.0530)– 0.1681 (0.0185)–

20090122 0.5844 (0.0228) 0.5349 (0.0486)– 0.5618 (0.0353)– 0.1405 (0.0176) 0.1961 (0.0304)– 0.1512 (0.0139)–

20090123 0.6055 (0.0339) 0.5494 (0.0471)– 0.5685 (0.0259)– 0.1578 (0.0270) 0.2184 (0.0323)– 0.1694 (0.0201)=

20090124 0.5626 (0.0299) 0.5502 (0.0223)= 0.5361 (0.0271)– 0.0682 (0.0076) 0.0821 (0.0089)– 0.0888 (0.0069)–

20090125 0.7298 (0.0076) 0.6998 (0.0100)– 0.7158 (0.0173)– 0.0605 (0.0025) 0.0732 (0.0053)– 0.0704 (0.0047)–

20090126 0.7474 (0.0038) 0.7335 (0.0033)– 0.7353 (0.0160)– 0.0480 (0.0023) 0.0505 (0.0021)– 0.0543 (0.0091)–

20090127 0.7211 (0.0036) 0.7216 (0.0030)= 0.7137 (0.0080)– 0.0559 (0.0022) 0.0545 (0.0018)+ 0.0627 (0.0039)–

20090128 0.7298 (0.0088) 0.7443 (0.0078)+ 0.7461 (0.0041)+ 0.0661 (0.0084) 0.0493 (0.0058)+ 0.0519 (0.0036)+

20090129 0.6394 (0.0179) 0.6195 (0.0283)– 0.6046 (0.0251)– 0.1052 (0.0125) 0.1336 (0.0188)– 0.1324 (0.0132)–
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Fig. S1.     Pairwise correlation values (y-axis)  for each pair  of objectives (x-
axis)  for  four  selected  instances.  The  results  for  each  instance  are  shown  in
different colors and linestyles. It shows the global pairwise relationships using
the Kendall correlation method. Conflicting relationship (value < –0.5) exists
between f1 − f2, which indicates that the problem instances provide interesting
multiobjective challenges.
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TABLE SI (continued)
Comparative Results (Mean and STD) Of HV and IGD on 59 Instances

Instances
HV IGD

MOILS-ANS MOILS-R MOEA/D-ANS MOILS-ANS MOILS-R MOEA/D-ANS

20090130 0.6351 (0.0189) 0.6034 (0.0439)– 0.5744 (0.0305)– 0.1048 (0.0149) 0.1466 (0.0268)– 0.1394 (0.0183)–

20090131 0.7152 (0.0109) 0.6880 (0.0212)– 0.6868 (0.0138)– 0.0834 (0.0098) 0.1169 (0.0159)– 0.1148 (0.0111)–

20090201 0.7145 (0.0046) 0.6959 (0.0125)– 0.6734 (0.0223)– 0.0595 (0.0029) 0.0751 (0.0080)– 0.0928 (0.0188)–

20090202 0.6760 (0.0239) 0.6118 (0.0647)– 0.6262 (0.0242)– 0.1197 (0.0182) 0.1727 (0.0412)– 0.1454 (0.0162)–

20090203 0.6128 (0.0295) 0.5195 (0.0787)– 0.5618 (0.0265)– 0.1664 (0.0327) 0.2422 (0.0428)– 0.1789 (0.0197)=

20090204 0.6260 (0.0453) 0.5848 (0.0820)– 0.5947 (0.0305)– 0.1622 (0.0323) 0.2139 (0.0504)– 0.1757 (0.0196)–

20090205 0.5787 (0.0269) 0.5248 (0.0787)– 0.5598 (0.0381)= 0.1554 (0.0259) 0.2181 (0.0491)– 0.1531 (0.0190)=

20090206 0.6349 (0.0164) 0.6120 (0.0508)= 0.6041 (0.0260)– 0.1065 (0.0134) 0.1373 (0.0333)– 0.1312 (0.0127)–

20090207 0.7130 (0.0067) 0.6903 (0.0129)– 0.6654 (0.0215)– 0.0622 (0.0046) 0.0789 (0.0075)– 0.1003 (0.0090)–

20090208 0.6639 (0.0098) 0.6462 (0.0114)– 0.6354 (0.0166)– 0.0548 (0.0066) 0.0752 (0.0099)– 0.0752 (0.0135)–

20090209 0.6300 (0.0316) 0.5790 (0.0688)– 0.6394 (0.0397)= 0.1434 (0.0240) 0.1974 (0.0446)– 0.1500 (0.0163)=

20090210 0.6264 (0.0219) 0.5724 (0.0624)– 0.5907 (0.0261)– 0.1472 (0.0189) 0.2035 (0.0386)– 0.1660 (0.0172)–

20090211 0.6671 (0.0171) 0.6109 (0.0539)– 0.6329 (0.0389)– 0.1180 (0.0142) 0.1790 (0.0303)– 0.1496 (0.0164)–

20090212 0.6113 (0.0246) 0.5721 (0.0530)– 0.5746 (0.0526)– 0.1353 (0.0213) 0.1834 (0.0332)– 0.1667 (0.0206)–

20090213 0.6699 (0.0303) 0.6176 (0.0686)– 0.5868 (0.0295)– 0.1274 (0.0207) 0.1820 (0.0408)– 0.1827 (0.0199)–

20090214 0.7489 (0.0058) 0.7394 (0.0090)– 0.7062 (0.0161)– 0.0633 (0.0045) 0.0703 (0.0080)– 0.0944 (0.0078)–

20090215 0.6966 (0.0066) 0.6794 (0.0055)– 0.6768 (0.0150)– 0.0550 (0.0053) 0.0599 (0.0054)– 0.0647 (0.0066)–

20090216 0.6511 (0.0135) 0.6089 (0.0293)– 0.6192 (0.0306)– 0.1066 (0.0150) 0.1490 (0.0195)– 0.1255 (0.0147)–

20090217 0.5600 (0.0328) 0.5358 (0.0770)= 0.5278 (0.0517)– 0.1452 (0.0301) 0.1891 (0.0475)– 0.1642 (0.0290)–

20090218 0.6281 (0.0192) 0.6000 (0.0252)– 0.5856 (0.0275)– 0.1215 (0.0200) 0.1649 (0.0227)– 0.1367 (0.0148)–

20090219 0.6444 (0.0394) 0.5960 (0.0772)– 0.6232 (0.0287)– 0.1490 (0.0297) 0.1974 (0.0457)– 0.1556 (0.0136)=

20090220 0.5946 (0.0345) 0.5569 (0.0423)– 0.5759 (0.0374)= 0.1569 (0.0235) 0.2103 (0.0408)– 0.1628 (0.0145)=

20090221 0.7512 (0.0056) 0.7519 (0.0111)= 0.7220 (0.0131)– 0.0729 (0.0064) 0.0807 (0.0141)= 0.1065 (0.0152)–

20090222 0.6143 (0.0063) 0.6016 (0.0100)– 0.5783 (0.0323)– 0.0571 (0.0044) 0.0682 (0.0060)– 0.0855 (0.0227)–

20090223 0.7076 (0.0133) 0.7097 (0.0189)= 0.6735 (0.0246)– 0.0879 (0.0060) 0.1080 (0.0133)– 0.1197 (0.0091)–

20090224 0.5466 (0.0307) 0.5090 (0.0528)– 0.5443 (0.0378)= 0.1344 (0.0204) 0.1926 (0.0455)– 0.1467 (0.0118)–

20090225 0.6963 (0.0254) 0.6638 (0.0565)– 0.6459 (0.0188)– 0.0948 (0.0093) 0.1414 (0.0394)– 0.1342 (0.0136)–

20090226 0.5967 (0.0267) 0.5152 (0.0685)– 0.5397 (0.0245)– 0.1592 (0.0184) 0.2348 (0.0554)– 0.1934 (0.0176)–

20090227 0.6213 (0.0303) 0.5736 (0.0695)– 0.6092 (0.0278)= 0.1396 (0.0336) 0.1809 (0.0422)– 0.1509 (0.0148)–

20090228 0.7646 (0.0050) 0.7523 (0.0105)– 0.7296 (0.0127)– 0.0654 (0.0041) 0.0806 (0.0094)– 0.0961 (0.0124)–

w/t/l 47/11/1 48/8/3 55/1/3 46/11/2
“+”, “=” and “–” indicate that the result obtained by the corresponding competitor is significantly better than, similar to, and worse than the result obtained by
MOILS-ANS, respectively. The best mean values of each instance are highlighted in bold.
 

 

TABLE SII  
Comparison of Multiobjective Algorithms With Previous Single-Objective Algorithm

Instances
MOILS-ANS MOILS-R MOEA/D-ANS

GDS GAS GDS GAS GDS GAS

20090101 0 196 0 228 0 200

20090102 0 307 0 301 0 248

20090103 0 267 0 290 0 242

20090104 0 192 0 162 0 193

20090105 0 370 0 278 0 278

20090106 0 324 0 206 0 189

20090107 0 356 0 251 0 306

20090108 0 363 0 305 0 219
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TABLE SII (continued)
Comparison of Multiobjective Algorithms With Previous Single-Objective Algorithm

Instances
MOILS-ANS MOILS-R MOEA/D-ANS

GDS GAS GDS GAS GDS GAS

20090109 0 347 0 298 0 250

20090110 0 209 0 233 0 215

20090111 0 233 0 255 0 233

20090112 0 313 0 334 0 278

20090113 0 359 0 282 0 373

20090114 0 248 0 276 0 229

20090115 0 385 0 396 0 284

20090116 0 357 0 293 0 346

20090117 0 277 0 270 0 242

20090118 0 213 0 213 0 202

20090119 0 323 0 324 0 307

20090120 0 216 0 215 0 202

20090121 0 321 0 290 0 235

20090122 0 276 0 231 0 176

20090123 0 408 0 332 0 276

20090124 0 266 0 264 0 257

20090125 0 164 0 193 0 116

20090126 0 173 0 205 0 155

20090127 0 199 0 261 0 184

20090128 0 121 0 170 0 104

20090129 0 295 0 350 0 251

20090130 0 334 0 319 0 271

20090131 0 252 0 330 0 169

20090201 0 199 0 170 0 201

20090202 0 220 0 198 0 120

20090203 0 308 0 176 0 222

20090204 0 363 0 279 0 274

20090205 0 379 0 260 0 267

20090206 0 327 0 323 0 257

20090207 0 307 0 333 0 206

20090208 0 227 0 217 0 219

20090209 0 311 0 246 0 247

20090210 0 323 0 351 0 267

20090211 0 372 0 336 0 289

20090212 0 374 0 364 0 272

20090213 0 314 0 312 0 224

20090214 0 159 0 185 0 142

20090215 0 125 0 214 0 135

20090216 0 385 0 435 0 305

20090217 0 428 0 369 0 326

20090218 0 358 0 312 0 266

20090219 0 374 0 307 0 282

20090220 0 436 0 312 0 288

20090221 0 247 0 255 0 214

20090222 0 147 0 154 0 169
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TABLE SII (continued)
Comparison of Multiobjective Algorithms With Previous Single-Objective Algorithm

Instances
MOILS-ANS MOILS-R MOEA/D-ANS

GDS GAS GDS GAS GDS GAS

20090223 0 295 0 325 0 272

20090224 0 452 0 378 0 356

20090225 0 334 0 365 0 249

20090226 0 409 0 352 0 272

20090227 0 365 0 281 0 295

20090228 0 266 0 271 0 235

Average 0 296.0678 0 278.5593 0 239.0000

The best GAS values of each instance are highlighted in bold.
 

 

TABLE SIII  
Number of Nondominated Solutions Generated by MOILS-ANS, MOILS-R, and MOEA/D-ANS for Each Instance

Instances
No. of generated nondominated solutions

MOILS-ANS MOILS-R MOEA/D-ANS

20090101 226 243 218

20090102 341 306 267

20090103 316 305 262

20090104 254 250 250

20090105 373 313 299

20090106 366 234 299

20090107 381 261 379

20090108 426 325 301

20090109 384 363 298

20090110 221 238 217

20090111 256 288 286

20090112 349 346 285

20090113 359 282 373

20090114 370 346 310

20090115 387 396 285

20090116 392 324 359

20090117 295 287 268

20090118 262 245 233

20090119 323 324 307

20090120 404 312 285

20090121 333 321 260

20090122 362 312 332

20090123 418 332 277

20090124 316 273 286

20090125 276 235 220

20090126 239 247 230

20090127 296 313 249

20090128 186 240 223

20090129 330 350 256

20090130 363 328 277
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TABLE SIII (continued)
Number of Nondominated Solutions Generated by MOILS-ANS, MOILS-R, and MOEA/D-ANS for Each Instance

Instances
No. of generated nondominated solutions

MOILS-ANS MOILS-R MOEA/D-ANS

20090131 363 381 241

20090201 274 260 238

20090202 372 347 308

20090203 346 217 294

20090204 372 303 290

20090205 381 277 273

20090206 396 371 300

20090207 331 356 228

20090208 252 225 239

20090209 404 355 310

20090210 364 369 277

20090211 387 341 295

20090212 377 371 277

20090213 378 355 270

20090214 330 324 254

20090215 304 274 267

20090216 385 435 306

20090217 428 369 328

20090218 358 313 267

20090219 395 319 299

20090220 436 312 290

20090221 306 297 270

20090222 147 154 170

20090223 295 328 272

20090224 453 378 356

20090225 345 386 265

20090226 409 366 283

20090227 380 332 337

20090228 314 318 300

Average 340.4407 311.3898 279.5763

The largest number of nondominated solutions of each instance are highlighted in bold.
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Fig. S2.     Results  for  the  objective  ranges  analysis  for  four  selected  instances.  (a)  Instance  20090118;  (b)  Instance  20090122;  (c)  Instance  20090211;  (d)
Instance 20090218. The y-axis presents the minimum, maximum, and average value of each objective as a percentage of the overall maximum value found for
the  respective  objective.  Longer  lines  indicate  larger  ranges.  All  objectives  have  large  ranges  (over  80%).  It  indicates  that  the  selected  four  instances  have
conflicting objectives. Although there are solutions with good values for a given objective, at least one other objective has a poor value. More details can be
found in [33].
 

 1150 IEEE/CAA JOURNAL OF AUTOMATICA SINICA, VOL. 7, NO. 4, JULY 2020



 

0 0.2 0.4 0.6 0.8 1.0
Threshold

0

10

20

30

40

50

60

# 
O

f i
ns

ta
nc

es

 
Fig. S3.     Threshold analysis for all 59 instances, which shows the number of instances with solutions in r0 when the threshold increases (normalized values).
Region r0 represents solutions with good values in all objectives. There are no solutions with good values for all objectives. More details can be found in [33].
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Fig. S4.     Region maps for all 59 instances. (a) Overall distribution of solutions; (b) Frequency of instances. The solid lines between labels divide the map into
different regions.  represents good value in fi while  represents bad value in fi. The cells of the map follow the Gray code (replacing 0’s and 1’s by √ and
×). Each cell in the map represents a region rk using a binary encoding such that the least significant digit represents objective f1 and the most significant digit is
objective fm. For example, the solution with good values in all objectives, i.e., ( , , ), falls into region r0 in the upper left corner of the map because 010 =

0002. More details can be found in [33]. The percentage of solutions in each region was computed for each instance. The distribution map shows the average
percentage  of  the  solutions  in  each  region.  The  frequency  map  shows  the  percentage  of  instances  that  contain  at  least  one  solution  in  a  region.  The  range
threshold  was  set  to  the  minimum value  (i.e.,  0.25)  such  that  there  are  no  solutions  in r0.  There  are  no  solutions  with  good  values  in  all  objectives.  In  the
distribution map, almost all regions have solutions, representing a wide variety of options for decision makers. Besides, the frequency of instances is high in
most regions, meaning that the fitness landscapes of instances are alike.
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Fig. S5.     Scatter plots for four selected instances. (a) Instance 20090118; (b) Instance 20090122; (c) Instance 20090211; (d) Instance 20090218. These scatter
plots show the relationship between objective f1 and each of the other two objectives. The horizontal axis is supposed to be the x-axis and the vertical axis is
supposed to be the y-axis. The x-axis shows the value of objective f1 and the y-axis shows the values of each of the other objectives in different colors. It shows
that f1 − f2 has high conflicting relationships.
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