

Path Planning for Intelligent Robots Based on
Deep Q-learning With Experience Replay

and Heuristic Knowledge
Lan Jiang, Hongyun Huang, and Zuohua Ding, Member, IEEE

 Abstract—Path planning and obstacle avoidance are two
challenging problems in the study of intelligent robots. In this
paper, we develop a new method to alleviate these problems based
on deep Q-learning with experience replay and heuristic
knowledge. In this method, a neural network has been used to
resolve the “curse of dimensionality” issue of the Q-table in
reinforcement learning. When a robot is walking in an unknown
environment, it collects experience data which is used for training
a neural network; such a process is called experience replay.
Heuristic knowledge helps the robot avoid blind exploration and
provides more effective data for training the neural network. The
simulation results show that in comparison with the existing
methods, our method can converge to an optimal action strategy
with less time and can explore a path in an unknown
environment with fewer steps and larger average reward.
 Index Terms—Deep Q-learning (DQL), experience replay (ER),
heuristic knowledge (HK), path planning.

I. Introduction

W ITH the development of science and technology,
intelligent robots play an increasingly important role in

human life. Avoiding obstacles in unknown environments and
exploring a route are the most basic tasks of intelligent robots.
Examples include sweeping robots, mining robots, and rescue
robots. Due to the lack of detailed environment information
and the unpredictable nature of the environment, it is difficult
for intelligent robots to autonomously plan a path and avoid
obstacles.

In the traditional method, researchers often regard the
environment as a geometric world and construct a map [1],
[2], but it is time-consuming to build and update maps and it
is impossible to construct a map that includes all the
scenarios. Fuzzy logic method can cope with uncertain data,

and make the robot navigate whiling ensuring obstacle
avoidance [3]. Heuristic algorithms are widely used in path
planning. In [4], [5], particle swarm optimization algorithm is
used to avoid obstacle collision. The ant colony algorithm is
also used to do path planning in [6]. All of them adopt
heuristic functions to coordinate the robot to explore in a good
direction. The artificial potential field method regards the
robot environment as a potential field, in which the target
point produces gravitational force to attract to the robot, and
obstacles generate repulsive force to repel the robot. The
studies [7], [8] propose two modified artificial potential
methods for path planning. Map construction and neural
network are combined to sense the environment and avoid
collisions in [9], the system constructs a grid-based map by
using known information and calculates the optimal trajectory
by using a neural network.

In recent years, reinforcement learning has been widely
used in intelligent robot path planning and obstacle avoidance
[10], [11]. But there are several shortcomings in reinforcement
learning. First, the “curse of dimensionality” occurs when the
robot is put into a complex environment. In addition, slow
convergence is still a problem in reinforcement learning. It
takes a long time to train the robot [12]. The last issue is the
poor portability and generalization of reinforcement learning,
where a trained robot cannot move in a new unknown
environment.

In this paper, we apply deep Q-learning (DQL) with
experience replay (ER) [13], [14] and heuristic knowledge
(HK) for robot path planning and obstacle avoidance. In this
method, a neural network is used to replace the Q-table in
reinforcement learning. We take the original sonar signal as
the input of the neural network, which solves the problem of
“curse of dimensionality”. The experience replay mechanism
maximizes the use of experience data that is collected by
robots during moving and disrupts the correlation of the
neural network’s training data. Heuristic knowledge provides
guidance for the actions selection of robots and helps the
network converge faster. Simulation results shows that our
method ensures the intelligent robot can path plan without
collision in an unknown environment. They also show the
effectiveness and general applicability of our method.

The structure of this paper is organized as follows. Section
II introduces the framework of our approach; Section III
presents a method to train the neural network with experience
replay and heuristic knowledge; Section IV shows the

Manuscript received November 1, 2018; revised December 28, 2018;

accepted January 24, 2019. This work was supported by the National Natural
Science Foundation of China (61751210, 61572441). Recommended by
Associate Editor Yebin Wang. (Corresponding author: Lan Jiang and
Hongyun Huang.)

Citation: L. Jiang, H. Y. Huang, and Z. H. Ding, “Path planning for
intelligent robots based on deep Q-learning with experience replay and
heuristic knowledge,” IEEE/CAA J. Autom. Sinica, vol. 7, no. 4, pp.
1179–1189, Jul. 2020.

L. Jiang and Z. H. Ding are with the Laboratory of Intelligent Computing
and Software Engineering, Zhejiang Sci-Tech University, Hangzhou 310018,
China (e-mail: jianglander@163.com; zouhuading@hotmail.com).

H. Y. Huang is with the Center of Multi-Media Big Data of Library,
Zhejiang Sci-Tech University, Hangzhou 310018, China (e-mail: huanghongyun
07@hotmail.com).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/JAS.2019.1911732

IEEE/CAA JOURNAL OF AUTOMATICA SINICA, VOL. 7, NO. 4, JULY 2020 1179

http://ieeexplore.ieee.org
https://doi.org/10.1109/JAS.2019.1911732

simulation experiment and experimental result; Section V
discusses some related works; and finally, Section VI gives
some conclusions about this paper and introduces future
works.

II. Our Approach

Our approach is based on modified reinforcement learning.
First, we briefly describe commonly used reinforcement
learning. Then, our approach is introduced.

A. Existing Reinforcement Learning
Reinforcement learning system is a system in which the

agent learns action strategy from the mapping of the
environment to behaviors to maximize the value of the
reward. Rewards provided by the environment in
reinforcement learning systems are evaluations of the quality
of actions. Reinforcement learning systems gain knowledge in
an action-evaluation environment and improves its action
strategy to adapt to the environment.

a
s r

Q(s,a)

Reinforcement learning is a learning technique that
approximates dynamic programming. It determines the
optimal strategy in a step-by-step manner and tries to find
maximum cumulative reward value in every state as its
optimization strategy [15]. Instead of requiring positive or
negative labels, reinforcement learning enables a robot to
autonomously discover an optimal behavior through trial-and-
error interactions with the environment [16]. Fig. 1 is the
framework of reinforcement learning, where the agent selects
an action according to the Q-table and executes it, then the
environment returns a state and a reward to the agent. The
most commonly used reinforcement learning algorithm is Q-
learning. In Q-learning, the Q-table is an optimal strategy
action value function , it updates according to

Q(s,a)← Q(s,a)+α[r+γmax
a′

Q(s′,a′)−Q(s,a)] (1)

α γ r s′

a
s a′ s′

maxaQ(s,a)
s′

where is learning rate, is discount factor, and are the
instant reward and the next state after executing action in
state , is a selected action in state under the current
strategy, is the maximum cumulative reward
value corresponding to state .

MDPs MDPs
Reinforcement learning tasks are usually described using

Markov decision processes (). The essence of is

that the probability and the rewards obtained of the transition
from the current state to the next state only depend on the
current state and action, and has nothing to do with the past
states and actions [17].

Today, reinforcement learning is widely used in all aspects.
Lei et al. [18] introduced reinforcement learning to design an
adaptive strategy for the iterated prisoner’s dilemma and
simulation results illustrate the effectiveness of this method.
Lei et al. [19] studied how to apply reinforcement learning to
complex system control. They propose parallel reinforcement
learning to solve difficulties encountered in complex control
system, such as data inefficiency, data dependency and
distribution. In [20], an unsupervised weightless neural
network learning algorithm and Q-learning are combined into
a self-learning algorithm, which is implemented in a mobile
robot navigation and obstacle avoidance.

B. Our Approach: A Modified Reinforcement Learning Algorithm
The intelligence robot system in Fig. 2 is a modified

reinforcement learning system. In our approach, we use a
neural network to replace the Q-table and add heuristic
knowledge. In this study, the input of the network is the state
of the robot, and its output is the expected cumulative reward
corresponding to each action. Instead of choosing actions by
querying the Q-table, the robot selects actions directly
according to the output value of the neural network or
heuristic knowledge.

(s,a,r, s′)
D

D

Training a neural network requires a lot of data, but when
the robot explores in a unknown environment, it is impossible
to prepare enough training sample sets for it in advance. So,
the robot collects experience data that are generated during its
moving in a form as and stores them in replay
memory . In this way, the quantity of training samples is
guaranteed. Then, the robot samples random mini-batch
experience data from to train the neural network.

In some studies, neural networks have been used to replace
the Q-table. In [21], Li et al. set up a neural network to learn a

Environment

Choose an action
from Q-tableUpdate Q-table

The agent

Reward r

State s

Action a

Fig. 1. The framework of reinforcement learning system.

Environment

Reward r

Input s

State s' Action a

Intelligent robot

Choose an action by
heuristic knowledge

Extract data
for training

Replay memory
(s, a, r, s')

Output Q(s, a)

s = s' Greedy
algorithm

Choose an
action
where

maxQ(s, a)

Fig. 2. The framework of intelligence robot system.

 1180 IEEE/CAA JOURNAL OF AUTOMATICA SINICA, VOL. 7, NO. 4, JULY 2020

ε-
Q-function corresponding to traffic state and traffic system
performance. The study [22] uses the greedy algorithm
based on Q-learning and neural networks to make the robot
arrive at the end line of the driving arena without any
collisions. The neural Q-learning algorithm has been proven
to be efficient in path planning on square grids in [23].
Determining how to make neural network learn more quickly
with improved results is still a problem.

In order to provide effective training data to neural
networks, we must add heuristic knowledge in this system. On
the one hand, it can guide the behavior of the robot; on the
other hand, it also increases the effectiveness of training the
neural networks. With the help of heuristic knowledge, neural
networks will converge to an optimal action strategy faster.

In this intelligence robot system, the robot implements path
planning and obstacle avoidance tasks without a lack of prior
training data and “curse of dimensionality”. And, after training,
we will obtain an adaptive obstacles avoidance model.

III. Training Deep Q-learning With Experience Replay
and Heuristic Knowledge

A. Deep Q-learning With Experience Replay

(s,a,r, s′)
D D

N N

D

Reinforcement learning and a neural network are combined
to improve the generalization ability of the model and solve
the “curse of dimensionality” in [23]. But the data samples for
training neural networks are hard to obtain, and in above
literature, data in Q-table are used to train neural networks.
The data samples are always required to be independent in
deep learning; however, the data samples in the Q-table are a
sequence of highly correlated states produced in sequence.
The actions selected by the robot have an impact on the
environment in reinforcement learning. To alleviate those
problems, DeepMind proposed a deep Q-learning with
experience replay algorithm [14], which is proposed to play
Atari. In this algorithm, experience data is stored in
the replay memory . The size of the replay memory is
fixed at , and the replay memory always stores the last
collected experience data. During the process of training, we
sample mini-batch experience data from randomly and use
it to train the network according (1).

B. Heuristic Knowledge
The characteristics and quantity of training data are the most

important factors determining the performance of a neural
network model. Neural network is more likely to learn better
representations by feeding it with sufficient data [24]. In order
to learn an expected policy, it is very important to have
sufficient and effective experience data in the replay memory
for a robot.

ε
ε

ε ε ∈ [0,1]
1−ε

There is a lot of randomness in traditional deep Q-learning.
For example, the robot may hit obstacles when exploring
randomly; the robot selects an action randomly with the -
greedy algorithm. -greedy algorithm makes trade-off
between exploration and exploitation base on a probability.
Every time the robot selects an action, it randomly selects an
action to explore with a probability of , or it exploits
with a probability of , i.e., it selects the action with the

highest reward value. For the neural network, the collision
experience data and random action-selected experience data
cannot contribute to neural networks training.

Heuristic knowledge is used in guiding the behavior of the
robot, and it can reduce the randomness in an intelligent robot
system. With the help of heuristic knowledge, the robot
selects a suitable action, which provides characteristic training
data for the neural network and accelerates the training
process.

1) Obstacle Avoidance Knowledge: Because of the
randomness of action choice in the early stage of
reinforcement learning, the probability of the robot hitting
obstacles is very high. If there is a large amount of collision
experience data in replay memory, it will inevitably have a
negative effect on the learning of the neural network, but if
there is no collision experience as negative samples, the neural
network can only learn one-sided knowledge. So, we equip
the robot with obstacle avoidance knowledge, which helps the
robot avoid obstacles as much as possible. In addition, the
robot does not stop exploring when it hits obstacles and this
collision experience data is also stored in replay memory.

S

U
F
W

In our work, we divide the state of the intelligent robot into
four categories: 1) safe state (), in which no matter what
action be selected, the robot will not hit obstacles; 2) unsafe
state (), means the robot may hit an obstacle at next step; 3)
failure state (), in which the robot hits an obstacle and 4)
winning state (), where the robot arrives at the terminal.

ε
If the robot is in a safe state, it selects an action randomly

using the -greedy strategy; if the robot is in an unsafe state,
the obstacle avoidance mode is enabled, and robot will select
the action which makes it move away from obstacles as far as
possible without thinking about the path planning. In this
paper, if the robot is in an unsafe state, it will move in the
direction of a sonar, which sonar value is greater than the
obstacle avoidance distance and it is farthest from the sonar
has the minimum sonar value.

Using obstacle avoidance knowledge can reduce the number
of times the robot hits obstacles and makes a contribution to
improve the quality of training data.

ε

1−ε
ε

ε

2) Goal-directed Knowledge: When the robot is at a safe
state, it usually uses the -greedy strategy to select actions.
The robot selects the action through the neural network with
the probability and selects an action randomly with
probability , which increases the randomness of the action
selection and also makes the data samples used for training
become noisy. In order to reduce the blind exploration of the
robot, goal-directed knowledge is used to guide the robot’s
action selection. With probability , the robot no longer
selects actions randomly, but selects the action that takes it
closer to the end point according to the goal-directed
knowledge.

In this paper, we use the angle between the robot’s direction
and the end point as the basis for the goal-directed knowledge.
The angle is defined as the rotating angle at which the robot
rotates counterclockwise until it point to the end point. The
range of the angle is from 0 to 360 degrees. From the size of
the angle, we can know the positional relationship between the
robot and the end point, e.g., if the angle is 180 degrees, it

JIANG et al.: PATH PLANNING FOR INTELLIGENT ROBOTS BASED ON DQL WITH ER AND HK 1181

means that the robot direction is opposite to the end point.
Those provide guidance for the robot’s action selection, so
that the robot can move toward the end point. For example,
when the angle is 30 (or 330) degrees, if the robot rotates 30
degrees to the left (or right), it will be in the direction of the
end point.

Goal-directed knowledge provides good assistance for the
selection of robot actions, and it is also helpful for speeding
up the training process of the neural networks.

C. Training the Neural Network
Different from traditional Markov evaluation, we use a neural

network to replace the Q-table in deep Q-learning with
experience replay and heuristic knowledge. Without prior
experience data training sets, the neural network should be
trained during movement of the robot. At each step of the
training, the value of the neural network is changing. In the
neural network training process of this paper, there is a lack of
target values. If we train a neural network with a series of
continuously changing values as the target value, the neural
network have difficulty converging. The network may not work
because it falls into a feedback loop between the target value
and the estimated value. Therefore, we adopt two neural
networks to complete error back propagation and update
the weights. We use a slower-updating network to provide
target values and gradually optimize the weights of the neural
network.

evaluate_net
q_evaluate

target_net
q_target

evaluate_net
target_net

evaluate_net evaluate_net

evaluate_net

Those two neural networks work as shown in Fig. 3. One of
them is called , which is used to generate an
estimates value, denoted by . Another is called

, which generates a target Q value, denoted by
. The two neural networks have exactly the same

structure. The always has the latest weight, it is
constantly updated. The is a historical version of

, it records the old weights of the
and updates periodically. We initialize the two neural
networks with the same random weights at the beginning of
training. During the training, we regard the difference between
the two neural networks’ output values as an error and
propagate it back to the . By modifying the
weight of each neuron, the error is minimized.

D. Using Deep Q-learning With Experience Replay and
Heuristic Knowledge on Robots

We use deep Q-learning with experience replay and
heuristic knowledge on robots in performing path planning
and obstacles avoidance; the algorithm is presented in
Algorithm 1.

Algorithm 1 Routing algorithm

D N　 Initialize replay memory to capacity
K

L

　 Initialize learning frequency , target_net weight updates
frequency

target_net evaluate_net　 Initialize and with the same random
weight

M　for episode = 1, do
　　Initialize environment and set the robot to the start　　　　

　　　point
T　　for t = 1, do

st　　　Determine the state of the robot
st　　　if is at an unsafe state then

at　　　　Select an action through obstacle avoidance 　　　　

　　　　　knowledge
　　　end if

st　　　if is at a safe sate then
ε at　　　　With probability select an action through　 　　　

　　　　　goal-directed knowledge
at

evaluate_net

　　　　Otherwise select an action according to the 　　　　

　　　　　output of
　　　end if

at rt

st+1

　　　Execute action and observe immediately reward 　　

　　　　and new state
(st ,at ,rt , st+1) D　　　Store the experience data in

K　　　while t % == 0 do

(S j,A j,R j,S j+1)

　　　　Sample random mini-batch of experience data 　　　　

　　　　　 from D

q_tar j q_eva j

　　　　Set the random samples into the two networks, 　　　　

　　　　　obtain ,
y j = R j +γmaxA j (q_tar j)　　　

loss = (y j −q_eva j)2　　　　

evaluate_net

loss

　　　　Update the weights of through a　　　　　

　　　　　gradient descent procedure on
　　　end while

L　　　if t % == 0 then
evaluate_net

target_net

　　　　Assign the weights of the to 　　　　　　

　　　　　 at interval
　　　end if

st+1　　　Determine the state of the robot
st+1　　　if is at a winning state then

　　　　Finish this episode
st+1　　　else if is at a failure state then

　　　　Step back and continue to learn
　　　else
　　　　Continue this episode
　　　end if
　　end for
　end for

In the early exploration-exploitation process, the robot just
collects and stores experience data in the replay memory until

Train

Loss

State

evaluate_net

q_evaluate q_target

target_net

update

periodically assign
weights to target_net

Fig. 3. Two neural network diagrams.

 1182 IEEE/CAA JOURNAL OF AUTOMATICA SINICA, VOL. 7, NO. 4, JULY 2020

K

there is enough data for the robot to learn. Instead of the
weight being adjusted when the robot accomplishes an action,
in our algorithm, every steps the robot moves, it samples
mini-batch experience data randomly from replay memory to
train the neural network.

i h
j m

The neural network used in this algorithm is a three-layer
backpropagation neural network. It has input nodes, hidden
nodes and output nodes. The size of mini-batch is . The
complexity of Algorithm 1 consists of two parts: select actions
and train the neural network.

O(1)

O(m×h× (i+ j))

O(m×h× (i+ j))

1) Select Actions: The time complexity of using heuristic
knowledge to select actions is . Using neural networks to
select actions is a feedforward propagating process, the time
complexity is . Because the neural network is
used to select action in most of time, the complexity of
selection action is .

O(1)

O(m×h× (i+ j))
K T/K

O ((T/K)(1+m×h× (i+ j))) O((T/K)(m×h× (i+ j)))

2) Train the Neural Network: Before training the neural
network, training data needs to be extracted from the experience
repay memory. Because the input matrix dimensions of samples
are fixed in dimension, the time complexity is . In a three-
layer backpropagation neural network, the total time complexity
for one training is . Under the limitation of the
learning frequency , the training times of each epochs is .
So, the complexity of training the neural network per epochs is

, that is .
M

O(M× (T/K)×m×h× (j+ i))

The number of training epochs is , and according to the
above analysis, we can determine that the time complexity of
Algorithm 1 is .

This algorithm can also be used to solve other problems,
such as, playing flappy bird, walking through a maze etc. It
can create a very good model for certain tasks, but its final
model can not apply to other tasks. This is because this model
only learns one specific goal at a time and works for a specific
task. When the learning task is completely different, it is
necessary to retrain the model. But if the learning task is very
similar, the obtained model has a certain degree of
generalization.

IV. Path Planning for Robots

A. Simulation Environment
It is difficult to apply reinforcement learning to robots

directly. Intelligence robots need thousands of repeated
trainings to get a good behavior strategy. In this paper we use
the simulation environment to train the robot.

(s1, s2, s3, s4, s5)

In our experiment, the task of the robot is to move from the
start point to the end point without collision in an unknown
environment; the start point and the end point have been told.
The distribution of the robot’s sensors is shown in Fig. 4.
There are 5 sonar sensors located in the robot, the angle
difference between different sonar is 30 degrees. Those
sonars’ measured distances are denoted by
respectively. The motion directions of robots are also divided
into five kinds:

Action 1: turns left 60 degrees and moves forward 30 cm;
Action 2: turns left 30 degrees and moves forward 30 cm;
Action 3: moves forward 30 cm;
Action 4: turns right 30 degrees and moves forward 30 cm;

Action 5: turns right 60 degrees and moves forward 30 cm.

β
The angle between the robot current coordinate and the end

point coordinate is denoted as . According to the five actions
of the robot, we design the goal-directed knowledge as
follows:

0 ≤ β < 15 345 < β ≤ 3601) If or , Action 3 will be selected;
15 ≤ β < 452) If , Action 2 will be selected;
45 ≤ β < 1803) If , Action 1 will be selected;
180 ≤ β < 3154) If , Action 5 will be selected;
315 ≤ β ≤ 3455) If , Action 4 will be selected.

β
s s = (s1, s2, s3, s4, s5,β)

We combine 5 sensors distances and the angle as the
robot state , where .

s
s

Fig. 5 shows the structure of the neural network we used in
this paper. It is a three-layer neural network. Its input is a
robot state , and its output are cumulative reward values
corresponding to different actions under state . There are 6
neurons in the input layer, 10 neurons in the hidden layer and
5 neurons in the output layers. The activation function for
hidden layer is rectified linear unit (ReLU). The activation
function of output layer is a linear function. We use stochastic
gradient descent to train the neural network in our study.

Reward function is used for judging the merits of the action.
According to the reward function, the robot interacts with the
environment and adjusts its action strategy by reward value.
Reward function helps to strengthen expected behaviors and
punish unsuitable behaviors. As the only feedback to motivate
the network convergence, the negative reward for the collision
between the robot and obstacles must be very large [25]. The

s1

s2

s3
s4

s5

30°

Fig. 4. The distribution of the robot’s sonar.

...
...

Input Hidden layer Output

Q(S, a1)

Q(S, a2)

Q(S, a3)

Q(S, a4)

Q(S, a5)ReLU

S1

S2

S3

S4

S5

β

Fig. 5. Structure of the neural network.

JIANG et al.: PATH PLANNING FOR INTELLIGENT ROBOTS BASED ON DQL WITH ER AND HK 1183

→reward function adopted in this paper is shown in (2), “ ”
represents the transfer of states, AG (AO) means the robot
stays away from the end point (obstacles), CG (CO) means the
robot is close to the end point (obstacles).

reward =



−50, F
−2, S → U;U → U,CO
−1, U → U, AO
0, S → S , AG
1, S → S , CG
2, U → S
100, W.

(2)

B. Simulation and Analysis
We conduct comparative tests in the same experimental

environment, by using the method in [23], DQL with ER and
DQL with ER and HR. The comparison is divided into two
parts, the first part is training phase and the second part
compares generalization of the obtained model.

1) Training Phase: In [23], initial training phase is training
a Q-table, we quantify the sonar values and the angle into 4
and 8 degrees respectively. Our approach will train a neural
network and obtain a trained model.

Table I shows the detail parameters used in DQL training.

There are three different map environments with two, three
and four obstacles, which are recorded as M1–M3
respectively. The above mentioned three methods were used
in those map environments. The training finishes when the
average reward of smart cars tends to be stable. Fig. 6 shows 9
trajectories that the robot obtained by using three methods in
three different maps, the map of each row is the same and the
method of each column is the same. In each map, the blue dot
in the lower right corner is the start point, the red “×” in the
upper left corner is the end point, and the black areas are four
walls and obstacles.

As we can see, those three methods can guide the robot at
the end point without collision. The trajectories of the three
methods are almost the same. In general, trajectories obtained
using DQL are straighter than trajectories obtained by Q-
learning. Once the robot has learned heuristic knowledge, it
can travel in a more straight path than other robots. However,
the robot will always try to choose the action that allows it to
be further away from obstacles to avoid collisions, which
makes trajectories not as smooth.

The moving step count and the average training epochs of
the robot when it reaches the end point under different maps
are listed in Table II. The difference between the moving step

count is small; in addition, the two DQL methods result in the
robot reaching the end point with the same moving step count.
This shows that heuristic knowledge gives little effect on the
moving step count. But in terms of training epochs, DQL
performs much better than Q-learning does. Comparing to
DQL + ER, our method’s training epochs have been reduced
by 33.33%, 15.84%, and 23.38% on each map. Notice that,
after applying heuristic knowledge, the training rounds are
greatly reduced again.

We choose the average reward the robot collects in an epoch
as our evaluation metric. Fig. 7 shows the average reward
when those three algorithms work on M3. As we can see, in
the early stage of training, the average reward is very noisy.
One reason is that the robot explores in the map, which makes
it take a lot of steps to reach the end point and decreases the
average reward. Without heuristic knowledge, Q-learning and
DQL + ER may hit obstacles in the first few training rounds,
which is also a reason why the average reward is low. In
general, DQL + ER + HK converges earliest in 118 epoch and
has the highest average reward, around 2.27. Although, the
final average reward value of the three algorithms differs
slightly, DQL + ER + HK has the highest average reward and
obtains a better action strategy, allowing the robot to arrive at
the end point more directly.

In summary, DQL with ER and HK makes the robot
converge to the best trajectory faster than traditional Q-
learning, and takes fewer steps to reach the target. With the
help of heuristic knowledge, the robot can accelerate learning
and obtain a better strategy.

2) Generalization and Flexibility: According to the training
process in [23], we use the 323 data in the Q-table obtained
from M3 to train a neural network (NN), and combines this Q-
table with the network as an adaptive model (Q + NN). DQL
with ER, and DQL with ER and HK obtain adaptive models
from M3 too. Two tests are performed to test the
generalization and flexibility of these three models. We record
trajectories of the robot in the new environment for the first
time, and compare the trajectories obtained by the three
models.

Test 1: The Robot Is Initialized From Arbitrary Points on
M3

Fig. 8 shows trajectories when the robot starts from three
arbitrary starting points. The horizontal axis is three models,
and the vertical axis is three arbitrary start point maps. In the
top row of this figure, the start point is on the left side of the
original start point. In this case, the differences among three

TABLE I
Training Parameters and Their Valuate

Parameter Value

learning rate 0.01

discount factor 0.9

replay memory 2000

mini-batch size 32

εgreedy factor 0.1

TABLE II
Moving Step Count and Average Training Rounds

Model M1 M2 M3

Moving step count

Q-learning 66 51 60

DQL + ER 60 50 57

DQL + ER + HK 60 50 57

Training epochs

Q-learning 102 185 258
DQL + ER 84 101 154

DQL + ER + HK 56 85 118

 1184 IEEE/CAA JOURNAL OF AUTOMATICA SINICA, VOL. 7, NO. 4, JULY 2020

trajectories obtained by the three models are not huge. In the
middle row, the start point is above the obstacle in the lower
right corner. In this situation, the robot that uses our method
almost goes straight to the end point. But the robot that uses
Q-learning with a neural network goes to a detour and the
trajectory obtained by DQL with ER is also more tortuous
than that obtained by our method. In the bottom row, the start
point is on the right side of the original start point. We can
see, the left trajectory is the most tortuous. The middle
trajectory almost has the same outline with the right one, but
the right one is more straight.

Detailed data about the moving step count of arriving to the
end point are showed in Table III. Bold numbers are the
minimum moving step count used in different situations. It
shows that the robot that uses our method can reach the end
point with fewer steps.

Table IV shows the average reward that those three models
obtained when they start from three arbitrary start point. When
the robots have similar trajectories, their average reward

values are similar. But the fewer detours the robot takes, the
greater the average reward obtained. The robot that uses our
method always has the largest average reward.

Test 1 shows that all the models can make robots reach the
end point without collision when the robots are initialized
from arbitrary start points. By comparing the experiment
results, we find our approach provides a better action strategy,
which helps the robot go on a shorter path and obtain a larger
average reward.

Test 2: Changing the Position of Obstacles in M3
In Test 2, the position of obstacles in M3 are changed, and

the changed maps and obtained trajectories are shown in Fig. 9.
The horizontal axis is the three models, the vertical axis is the
three obstacle-changed maps. The number of obstacles are
changed from 4 to 3 in the changed Map 1, and the middle

TABLE III
Moving Step Count From Arbitrary Start Point

Model Start point1 Start point2 Start point3

Q + NN 53 47 77

DQL + ER 52 42 67

DQL + ER + HK 49 39 61

TABLE IV
Average Reward From Arbitrary Start Point

Model Start point1 Start point2 Start point3

Q + NN 2.7358 3.1064 2.0260

DQL + ER 2.75 3.2143 2.2597

DQL + ER + HK 2.9787 3.5385 2.3607

Q-learning DQL + ER DQL + ER + HK

M1

M2

M3

Fig. 6. Nine trajectories that the robot obtained by using three methods in three different maps.

2.5

2.0

1.5

1.0

0.5

0
0 50 100 150 200 250 300 350 400

Training epochs

Q-learning
QDL + ER
QDL + ER + HK

Av
er

ag
e

re
w

ar
d

Fig. 7. The plot shows average reward per episode on M3 when uses Q-
learning, DQL + ER, and DQL + ER + HK.

JIANG et al.: PATH PLANNING FOR INTELLIGENT ROBOTS BASED ON DQL WITH ER AND HK 1185

obstacle is located on the line connecting the start point and
the end point. The left figure in the top row shows the robot
has a tendency to stay away from the end point in the process
of moving. However, the right two robots bypass the obstacle
directly and reach the end point. Their trajectories are similar.
The middle row is changed Map 2, where the start point is
surrounded by a inverted U-shaped obstacle. It can be
determined from trajectory that all of the robots explore to the
bottom of the inverted U-shaped obstacle at first, and then
finally find the exit and reach the end point. During the
exploration, the left trajectory shows that the robot collides
with obstacles 4 times, with collision points represented by
red dots. However, the right two trajectories show that robots
walk to the bottom of the inverted U-shaped obstacle, turn
around straightly, and reach the end point successfully. The
bottom row is changed Map 3, where the position of the
obstacles has been changed tremendously and there are 10
block obstacles. The left trajectory shows that during the
movement, the robot exhibits the phenomenon of turning
circles. In contrast, the right two trajectories show that the
robots which used DQL explore a shorter moving route.
Although the right two models get very similar trajectories,
intuitively, DQL with ER and HK can obtain a more straight
route.

Table V shows the moving step count the robot takes to
reach the end point in three changed maps. Comparing to Q-
learning with neural networks, the robot that used that our
model takes fewer steps to reach the end point. The more
complex the map is, the more obvious the advantages of our
model is. But comparing to DQL with ER, our model has a
slight advantages in the moving step count. In the changed
Map 2, those two models have the same moving step count.

TABLE VI shows the average reward those three models

obtained when they are in three changed maps. From the table,
it can be known that Q-learning with NN can not adapt well to
the changed map, and it always has the lowest average reward.
Also, it causes the robot to hit obstacles 4 times in the
changed Map 2, so the average reward is close to 0. The
average reward of DQL + ER + HK is always higher than
DQL + ER.

In Test 2, robots that used DQL can reach the end point
without hitting obstacles, even though obstacles have been
changed drastically and the environment is more complex.
Furthermore, we find that our model can adapt to new maps
better than Q-learning with the neural network and DQL with
ER. The reasons why the generalization ability of the model
combining the Q-table with the neural network are not optimal
are as follow:

TABLE V
Moving Step Count in Three Changed Maps

Model Changed Map
1

Changed Map
2

Changed Map
3

Q + NN 66 165 96

DQL + ER 57 119 57

DQL + ER + HK 53 119 55

TABLE VI
Average Reward in Changed Maps

Model Changed Map 1 Changed Map 2 Changed Map 3

Q + NN 2.1035 0.0353 1.8438

DQL + ER 2.4848 0.8739 2.2632

DQL + ER + HK 2.6792 1.0924 2.4727

Q-learning + NN DQL + ER DQL + ER + HK

Arbitrary
start

point 1

Arbitrary
start

point 2

Arbitrary
start

point 3

Fig. 8. Nine trajectories that the robot obtained by using three models when starting from three arbitrary start points.

 1186 IEEE/CAA JOURNAL OF AUTOMATICA SINICA, VOL. 7, NO. 4, JULY 2020

1) Fuzzy states have an impact on the learning space of the
robot. In the Q-learning training process, states of the robot
had been fuzzed. An excessive degree of fuzzification leads to
inaccurate execution of robot actions; a small degree of
fuzzification will greatly increase the learning space of the
robot and the learning time.

2) Limited amounts of data were used for training neural
network. It is critical to train a neural network with sufficient
training data. There are some limitations in training the neural
network when using the data in the Q-table as training data.

DQL with ER also has good generalization ability. After
combining heuristic knowledge, it can move more optimally
towards the end point. This, DQL with ER and HK can reach
the end point with fewer steps and get a larger average reward.

In DQL with the ER and HK algorithm, the state of the
robot is represented by raw data directly, which is used as the
input of the neural network. Training of the neural network
runs through the moving process of the robot, the data of each
step the robot moves is applied to the training of the neural
network. Heuristic knowledge guides the behavior of the
robot, and it makes the actions selected by the robot more
purposeful. However, the trajectories obtained by our
approach in the new map is not the shortest one. This is
because that when avoiding obstacles, the robots will try to
keep away from obstacles, which leads to detours. The
accuracy of neural network is also a reason, which will bring
uncertainty.

The above two tests verify the generalization and flexibility
of our approach, and our approach shows stronger robustness
and adaptability than Q-table with neural network and DQL
with ER. It can provide a relatively superior action strategy.

V. Discussion of Related Work

Q-learning is widely used in path planning and obstacle
avoidance of an intelligent robot. Jaradat et al. proposed a new
definition for states space in [26] to reduce the size of the Q-
table; in [27], [28], a method based on reinforcement learning
and fuzzy logic is proposed. However, those just limit the
number of states and cannot solve “curse of dimensionality”
completely. Also, the degree of fuzzification limits the
learning states of the robot. In our work, a neural network is
used to deal with this problem, where the input of the neural
network is the state of the robot and consists of raw sonar
data.

To solve the problem of slow convergence and low
efficiency in path planning, reinforcement learning based on
virtual potential field has been proposed in [29]. It regards the
unknown environment as a potential field, and Y Zheng et al.
propose a new algorithm based on hierarchical reinforcement
learning and an artificial potential field [30]. But as we
known, the potential field method easily falls into a local
optimum.

Neural networks have been used to enhance reinforcement
learning’s generalization ability, but a large amount of
training samples are needed to train a neural network. In [23],
[31], researchers use traditional reinforcement learning to
generate training samples for neural networks and then, train
the neural network with those training samples. There are two
training processes in those algorithms, and they are time-
consuming. In [32], [33], the neural network is trained while
the robot is moving, but because the neural network trains
once each step the robot moves, the training efficiency is
lowered. Furthermore, the correlation of training samples will
affect the representation of the neural network. However, the

Q-learning + NN DQL + ER DQL + ER + HK

Changed
Map 1

Changed
Map 2

Changed
Map 3

Fig. 9. Nine trajectories that the robot obtained by using three models in the three obstacles-changed maps.

JIANG et al.: PATH PLANNING FOR INTELLIGENT ROBOTS BASED ON DQL WITH ER AND HK 1187

experience replay mechanism solves the above problems
perfectly, where training samples are stored in replay memory
and each step of experience data can be used for updating
many weights and the relevance of training data is disrupted.
It reduces the burden of collecting prior experience data to
train the neural network and improves the efficiency of
experience data utilization.

The work of [24] is similar to our work, and the system in
this literature is based on deep Q-network which combines a
CNN (convolutional neural network) with deep Q-learning. In
contrast to our work, this method uses CNN to process image
data and takes the obtained result as the input of deep Q-
learning. We also add heuristic knowledge based on the
original DQL. Heuristic knowledge provides suitable and
effective data for training the neural network, and it helps to
train a satisfactory neural network.

VI. Conclusion

In this paper, we combined deep Q-learning with experience
replay and heuristic knowledge for path planning and obstacle
avoidance of intelligent robots. This method has been tested in
three different environments, and the robot converges to an
optimal strategy faster and reaches the end point with fewer
steps than Q-learning with the neural network and normal
DQL with ER. The experiments have also shown that our
model has better adaptiveness in an unknown environment.

In the future, we will work on the following aspects:
1) Optimizing the planned path for robots. We should

design a better strategy to collaborate path planning and
obstacle avoidance.

2) Explore more complicated neural network architectures.
In this paper, we complete the simulation experiment with the
simplest neural network architecture. We hope that more
complex neural network architectures can further improve the
experimental results.

3) Dynamic obstacle avoidance. In this paper the obstacles
are static. We consider dynamic obstacles which will increase
the difficulty of robot path planning.

4) Applying our method to real robots. In this paper, we
only perform the simulation for our method in an ideal
environment, which is hard to satisfy in real life. We will
implement our method on a robot in a real environment. Due
to the uncertainties in the environment, we may need to adjust
our method.

References

 M. Liu, F. Colas, F. Pomerleau, and R. Siegwart, “A Markov
semisupervised clustering approach and its application in topological
map extraction,” in Proc. IEEE Int. Conf. Intelligent Robots and
Systems, Vilamoura, Algarve, 2012, pp. 4743–4748.

[1]

 M. Xu, L. Jaesung, and K. Bo-Yeong, “Scalable coverage path planning
for cleaning robots using rectangular map decomposition on large
environments,” IEEE Access, 2018, pp. 1–1.

[2]

 B. Sandeep and P. Supriya, “Analysis of fuzzy rules for robot path
planning,” in Proc. Int. Conf. Advances in Computing, Communications
and Informatics, Jaipur, India, 2016, pp. 309–314.

[3]

 N. Y. Zeng, H. Zhang, Y. P. Chen, B. Q. Chen, and Y. R. Liu, “Path
planning for intelligent robot based on switching local evolutionary
PSO algorithm,” Assembly Autom., vol. 36, no. 2, pp. 120–126, Apr.

[4]

2016.
 E. Masehian and D. Sedighizadeh, “A multi-objective PSO-based
algorithm for robot path planning,” in Proc. IEEE Int. Conf. Industrial
Technology, Vina del Mar, Chile, Apr. 2010, pp. 465–470.

[5]

 H. Shuyun, S. Tang, B. Song, M. Tong, and M. Ji, “Robot path planning
based on improved ant colony optimization,” Computer Engineering,
vol. 34, no. 15, pp. 1–3, 2008.

[6]

 B. Farid, G. Denis, P. Herve, and G. Dominique, “Modified artificial
potential field method for online path planning applications,” in Proc.
IEEE Intelligent Vehicles Symposium (IV), Redondo Beach, California,
USA, 2017, pp. 180–185.

[7]

 L. F. Liu, R. X. Shi, S. D. Li, and W. Jiang, “Path planning for UAVS
based on improved artificial potential field method through changing
the repulsive potential function,” in Proc. IEEE Chinese Guidance,
Navigation and Control Conf. (CGNCC), Nanjing, China, 2016, pp.
2011–2015.

[8]

 Y. W. Chen and W. Y. Chiu, “Optimal robot path planning system by
using a neural network-based approach,” in Proc. Autom. Control Conf.,
Taichung, China, 2016, pp. 85–90.

[9]

 J. L. Zhang, J. Y. Zhang, Z. Ma, and Z. Z. He, “Using partial-policy q-
learning to plan path for robot navigation in unknown enviroment,” in
Proc. 10th Int. Symposium on Computational Intelligence and Design
(ISCID), vol. 1, pp. 85–90, Dec., 2017.

[10]

 V. Babu, U. Krishna, and S. Shahensha, “An autonomous path finding
robot using q-learning,” in Proc. Int. Conf. Intelligent Systems and
Control, Coimbatore, India: IEEE, Jan. 2016, pp. 1–6.

[11]

 Z. F. Wu, “Application of optimized q learning algorithm in
reinforcement learning,” Bulletin of Science & Technology, vol. 36,
no. 2, pp. 74–76, Feb. 2018.

[12]

 L. J. Lin, “Reinforcement learning for robots using neural networks,”
Ph.D. dissertation, Carnegie Mellon University, Pittsburgh, PA, USA,
1993.

[13]

 V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D.
Wierstra, and M. Riedmiller, “Playing Atari with deep reinforcement
learning,” Computer Science, Dec. 2013.

[14]

 L. Tong, “A speedup convergent method for multi-agent reinforcement
learning,” in Proc. Int. Conf. Information Engineering and Computer
Science, Dec. 2009, pp. 1–4.

[15]

 J. Kober, J. Bagnell, and J. Peters, “Reinforcement learning in robotics:
A survey,” Int. J. Robotics Research, vol. 32, no. 11, pp. 1238–1274,
Sep. 2013.

[16]

 Y. Gao, S. F. Chen, and X. Lu, “Research on reinforcement learning
technology: A review,” Acta Autom. Sinica, vol. 30, no. 1, pp. 86–100,
Jan. 2004.

[17]

 L. Xue, C. Y. Sun, D. Wunsch, Y. J. Zhou, and Y. Fang, “An adaptive
strategy via reinforcement learning for the prisoner’s dilemma game,”
IEEE/CAA J. Autom. Sinica, vol. 5, no. 1, pp. 301–310, 2018.

[18]

 T. Liu, B. Tian, Y. F. Ai, L. Li, D. P. Cao, and F.-Y. Wang, “Parallel
reinforcement learning: A framework and case study,” IEEE/CAA J.
Autom. Sinica, vol. 5, no. 4, pp. 827–835, 2018.

[19]

 Y. Yusof, H. M. A. H. Mansor, and H. M. D. Baba, “Simulation of
mobile robot navigation utilizing reinforcement and unsupervised
weightless neural network learning algorithm,” in Proc. Research and
Development, 2016, pp. 123–128.

[20]

 L. Li, Y. S. Lv, and F.-Y. Wang, “Traffic signal timing via deep
reinforcement learning,” IEEE/CAA J. Autom. Sinica, vol. 3, no. 3,
pp. 247–254, 2016.

[21]

 A. Sharma, K. Gupta, A. Kumar, A. Sharma, and R. Kumar, “Model
based path planning using Q-learning,” in Proc. IEEE Int. Conf.
Industrial Technology, Chengdu, China, 2017, pp. 837–842.

[22]

 S. Parasuraman and S. C. Yun, “Mobile robot navigation: Neural
qlearning,” Int. J. Computer Applications in Technology, vol. 44, no. 4,
pp. 303–311, Oct. 2013.

[23]

 1188 IEEE/CAA JOURNAL OF AUTOMATICA SINICA, VOL. 7, NO. 4, JULY 2020

http://dx.doi.org/10.1108/AA-10-2015-079
http://dx.doi.org/10.1177/0278364913495721
http://dx.doi.org/10.1109/JAS.2018.7511144
http://dx.doi.org/10.1109/JAS.2018.7511144
http://dx.doi.org/10.1109/JAS.2016.7508798
http://dx.doi.org/10.1108/AA-10-2015-079
http://dx.doi.org/10.1177/0278364913495721
http://dx.doi.org/10.1109/JAS.2018.7511144
http://dx.doi.org/10.1109/JAS.2018.7511144
http://dx.doi.org/10.1109/JAS.2016.7508798

 A. Krizhevsky, I. Sutskever, and G. Hinton, “Imagenet classification
with deep convolutional neural networks,” in Proc. Int. Conf. Neural
Information Processing Systems, Doha, Qatar, 2012, pp. 1097–1105.

[24]

 L. Tai and M. Liu, “A robot exploration strategy based on q-learning
network,” in Proc. IEEE Int. Conf. Real-Time Computing and Robotics,
Angkor Wat, Cambodia, 2016, pp. 57–62.

[25]

 M. Jaradat, M. Al-Rousan, and L. Quadan, “Reinforcement based
mobile robot navigation in dynamic environment,” Robotics &
Computer Integrated Manufacturing, vol. 27, no. 1, pp. 135–149, Feb.
2011.

[26]

 L. Cherroun and M. Boumehraz, “Intelligent systems based on
reinforcement learning and fuzzy logic approaches, ‘application to
mobile robotic’,” in Proc. Int. Conf. Information Technology and E-
Services, 2012, pp. 1–6.

[27]

 H. Boubertakh, M. Tadjine, and P. Y. Glorennec, “A new mobile robot
navigation method using fuzzy logic and a modified q-learning
algorithm,” J. Intelligent & Fuzzy Systems, vol. 21, no. 1–2, pp. 113–
119, 2010.

[28]

 J. Liu, W. Qi, and X. Lu, “Multi-step reinforcement learning algorithm
of mobile robot path planning based on virtual potential field,”
Springer, vol. 728, pp. 528–538, Sep. 2017.

[29]

 Y. B. Zheng, B. Li, D. Y. An, and N. Li, “A multi-agent path planning
algorithm based on hierarchical reinforcement learning and artificial
potential field,” in Proc. Int. Conf. Natural Computation, 2016, pp.
363–369.

[30]

 D. Luviano Cruz and W. Yu, “Multi-agent path planning in unknown
environment with reinforcement learning and neural network,” in Proc.
IEEE Int. Conf. Systems, Man, and Cybernetics, San Diego, USA, 2014,
pp. 3458–3463.

[31]

 Y. J. Zhao, Z. Zheng, X. Y. Zhang, and Y. Liu, “Q learning algorithm
based UAV path learning and obstacle avoidence approach,” in Proc.
Chinese Control Conf. (Int.) (CCC), Dalian, China, 2017, pp.
3397–3402.

[32]

 B. Q. Huang, G. Y. Cao, and M. Guo, “Reinforcement learning neural
network to the problem of autonomous mobile robot obstacle

[33]

avoidance,” in Proc. Int. Conf. Machine Learning and Cybernetics,
Guangzhou, China, 2005, pp. 85–89.

Lan Jiang is a master student with the School of
Information Science, Zhejiang Sci-Tech University.
Her research interests include machine learning and
data analysis.

Hongyun Huang received the M.S. degree in
software engineering from Zhejiang Sci-Tech
University in 2015, and the bachelor degree in
business administration from Shanghai Jiao Tong
University in 2009. She is currently a Data Analyzer
at the Center of Multi-Media Big Data of Library,
Zhejiang Sci-Tech university. Her research interests
include data analysis, system modeling, AI
computing. She has authored and coauthored over 6
papers on the above areas.

Zuohua Ding (M’11) received the M.S. degree in
computer science and the Ph.D. degree in
mathematics, both from the University of South
Florida, Tampa, FL, USA, in 1996 and 1998,
respectively. From 1998 to 2001, he was a Senior
Software Engineer with Advanced Fiber
Communication, Petaluma, CA, USA. He has been a
Research Professor with the National Institute for
Systems Test and Productivity, Vail, CO, USA, since
2001. He is currently a Professor and the Director

with the Laboratory of Intelligent Computing and Software Engineering,
Zhejiang Sci-Tech University, Hangzhou, China. His research interests
include system modeling, program analysis, service computing, software
reliability prediction, and Petri nets. He has authored and coauthored over 70
papers.

JIANG et al.: PATH PLANNING FOR INTELLIGENT ROBOTS BASED ON DQL WITH ER AND HK 1189

