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   Abstract—Path  planning  and  obstacle  avoidance  are  two
challenging  problems  in  the  study  of  intelligent  robots.  In  this
paper, we develop a new method to alleviate these problems based
on  deep  Q-learning  with  experience  replay  and  heuristic
knowledge.  In  this  method,  a  neural  network  has  been  used  to
resolve  the “curse  of  dimensionality” issue  of  the  Q-table  in
reinforcement learning. When a robot is walking in an unknown
environment, it collects experience data which is used for training
a  neural  network;  such  a  process  is  called  experience  replay.
Heuristic knowledge helps the robot avoid blind exploration and
provides more effective data for training the neural network. The
simulation  results  show  that  in  comparison  with  the  existing
methods, our method can converge to an optimal action strategy
with  less  time  and  can  explore  a  path  in  an  unknown
environment with fewer steps and larger average reward.
    Index Terms—Deep  Q-learning  (DQL),  experience  replay  (ER),
heuristic knowledge (HK), path planning.
 

I.  Introduction

W ITH  the  development  of  science  and  technology,
intelligent robots play an increasingly important role in

human life. Avoiding obstacles in unknown environments and
exploring a route are the most basic tasks of intelligent robots.
Examples include sweeping robots, mining robots, and rescue
robots.  Due  to  the  lack  of  detailed  environment  information
and the unpredictable nature of the environment, it is difficult
for  intelligent  robots  to  autonomously  plan  a  path  and  avoid
obstacles.

In  the  traditional  method,  researchers  often  regard  the
environment  as  a  geometric  world  and  construct  a  map  [1],
[2], but it  is time-consuming to build and update maps and it
is  impossible  to  construct  a  map  that  includes  all  the
scenarios.  Fuzzy  logic  method  can  cope  with  uncertain  data,

and  make  the  robot  navigate  whiling  ensuring  obstacle
avoidance  [3].  Heuristic  algorithms  are  widely  used  in  path
planning. In [4], [5], particle swarm optimization algorithm is
used  to  avoid  obstacle  collision.  The  ant  colony  algorithm is
also  used  to  do  path  planning  in  [6].  All  of  them  adopt
heuristic functions to coordinate the robot to explore in a good
direction.  The  artificial  potential  field  method  regards  the
robot  environment  as  a  potential  field,  in  which  the  target
point  produces  gravitational  force  to  attract  to  the  robot,  and
obstacles  generate  repulsive  force  to  repel  the  robot.  The
studies  [7],  [8]  propose  two  modified  artificial  potential
methods  for  path  planning.  Map  construction  and  neural
network  are  combined  to  sense  the  environment  and  avoid
collisions  in  [9],  the  system  constructs  a  grid-based  map  by
using known information and calculates the optimal trajectory
by using a neural network.

In  recent  years,  reinforcement  learning  has  been  widely
used in intelligent robot path planning and obstacle avoidance
[10], [11]. But there are several shortcomings in reinforcement
learning. First, the “curse of dimensionality” occurs when the
robot  is  put  into  a  complex  environment.  In  addition,  slow
convergence  is  still  a  problem  in  reinforcement  learning.  It
takes a long time to train the robot [12].  The last issue is the
poor portability and generalization of reinforcement learning,
where  a  trained  robot  cannot  move  in  a  new  unknown
environment.

In  this  paper,  we  apply  deep  Q-learning  (DQL)  with
experience  replay  (ER)  [13],  [14]  and  heuristic  knowledge
(HK) for  robot  path  planning and obstacle  avoidance.  In  this
method,  a  neural  network  is  used  to  replace  the  Q-table  in
reinforcement  learning.  We  take  the  original  sonar  signal  as
the input of the neural  network,  which solves the problem of
“curse  of  dimensionality”.  The  experience  replay  mechanism
maximizes  the  use  of  experience  data  that  is  collected  by
robots  during  moving  and  disrupts  the  correlation  of  the
neural  network’s  training data.  Heuristic  knowledge provides
guidance  for  the  actions  selection  of  robots  and  helps  the
network  converge  faster.  Simulation  results  shows  that  our
method  ensures  the  intelligent  robot  can  path  plan  without
collision  in  an  unknown  environment.  They  also  show  the
effectiveness and general applicability of our method.

The structure of this paper is organized as follows. Section
II  introduces  the  framework  of  our  approach;  Section  III
presents a method to train the neural network with experience
replay  and  heuristic  knowledge;  Section  IV  shows  the
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simulation  experiment  and  experimental  result;  Section  V
discusses  some  related  works;  and  finally,  Section  VI  gives
some  conclusions  about  this  paper  and  introduces  future
works. 

II.  Our Approach

Our approach is based on modified reinforcement learning.
First,  we  briefly  describe  commonly  used  reinforcement
learning. Then, our approach is introduced. 

A.  Existing Reinforcement Learning
Reinforcement  learning  system  is  a  system  in  which  the

agent  learns  action  strategy  from  the  mapping  of  the
environment  to  behaviors  to  maximize  the  value  of  the
reward.  Rewards  provided  by  the  environment  in
reinforcement  learning systems are  evaluations  of  the  quality
of actions. Reinforcement learning systems gain knowledge in
an  action-evaluation  environment  and  improves  its  action
strategy to adapt to the environment.

a
s r

Q(s,a)

Reinforcement  learning  is  a  learning  technique  that
approximates  dynamic  programming.  It  determines  the
optimal  strategy  in  a  step-by-step  manner  and  tries  to  find
maximum  cumulative  reward  value  in  every  state  as  its
optimization  strategy  [15].  Instead  of  requiring  positive  or
negative  labels,  reinforcement  learning  enables  a  robot  to
autonomously discover an optimal behavior through trial-and-
error  interactions  with  the  environment  [16]. Fig. 1 is  the
framework of reinforcement learning, where the agent selects
an action  according to the Q-table and executes it,  then the
environment returns a state  and a reward  to the agent. The
most  commonly  used  reinforcement  learning  algorithm is  Q-
learning.  In  Q-learning,  the  Q-table  is  an  optimal  strategy
action value function , it updates according to
 

Q(s,a)← Q(s,a)+α[r+γmax
a′

Q(s′,a′)−Q(s,a)] (1)

α γ r s′

a
s a′ s′

maxaQ(s,a)
s′

where  is learning rate,  is discount factor,  and  are the
instant  reward  and  the  next  state  after  executing  action  in
state ,  is  a  selected  action  in  state  under  the  current
strategy,  is  the  maximum  cumulative  reward
value corresponding to state .

MDPs MDPs
Reinforcement  learning  tasks  are  usually  described  using

Markov decision processes ( ). The essence of  is

that the probability and the rewards obtained of the transition
from  the  current  state  to  the  next  state  only  depend  on  the
current  state  and  action,  and  has  nothing  to  do  with  the  past
states and actions [17].

Today, reinforcement learning is widely used in all aspects.
Lei et al. [18] introduced reinforcement learning to design an
adaptive  strategy  for  the  iterated  prisoner’s  dilemma  and
simulation  results  illustrate  the  effectiveness  of  this  method.
Lei et al. [19] studied how to apply reinforcement learning to
complex system control. They propose parallel reinforcement
learning  to  solve  difficulties  encountered  in  complex  control
system,  such  as  data  inefficiency,  data  dependency  and
distribution.  In  [20],  an  unsupervised  weightless  neural
network learning algorithm and Q-learning are combined into
a  self-learning  algorithm,  which  is  implemented  in  a  mobile
robot navigation and obstacle avoidance. 

B.  Our Approach: A Modified Reinforcement Learning Algorithm
The  intelligence  robot  system  in Fig. 2 is  a  modified

reinforcement  learning  system.  In  our  approach,  we  use  a
neural  network  to  replace  the  Q-table  and  add  heuristic
knowledge. In this study, the input of the network is the state
of the robot, and its output is the expected cumulative reward
corresponding  to  each  action.  Instead  of  choosing  actions  by
querying  the  Q-table,  the  robot  selects  actions  directly
according  to  the  output  value  of  the  neural  network  or
heuristic knowledge.

(s,a,r, s′)
D

D

Training  a  neural  network  requires  a  lot  of  data,  but  when
the robot explores in a unknown environment, it is impossible
to  prepare  enough  training  sample  sets  for  it  in  advance.  So,
the robot collects experience data that are generated during its
moving  in  a  form  as  and  stores  them  in  replay
memory .  In  this  way,  the  quantity  of  training  samples  is
guaranteed.  Then,  the  robot  samples  random  mini-batch
experience data from  to train the neural network.

In some studies, neural networks have been used to replace
the Q-table. In [21], Li et al. set up a neural network to learn a
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Fig. 1.     The framework of reinforcement learning system.
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Fig. 2.     The framework of intelligence robot system.
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ε-
Q-function  corresponding  to  traffic  state  and  traffic  system
performance.  The  study  [22]  uses  the greedy  algorithm
based  on  Q-learning  and  neural  networks  to  make  the  robot
arrive  at  the  end  line  of  the  driving  arena  without  any
collisions.  The  neural  Q-learning  algorithm  has  been  proven
to  be  efficient  in  path  planning  on  square  grids  in  [23].
Determining how to make neural network learn more quickly
with improved results is still a problem.

In  order  to  provide  effective  training  data  to  neural
networks, we must add heuristic knowledge in this system. On
the  one  hand,  it  can  guide  the  behavior  of  the  robot;  on  the
other  hand,  it  also  increases  the  effectiveness  of  training  the
neural networks. With the help of heuristic knowledge, neural
networks will converge to an optimal action strategy faster.

In this intelligence robot system, the robot implements path
planning and obstacle avoidance tasks without a lack of prior
training data and “curse of dimensionality”. And, after training,
we will obtain an adaptive obstacles avoidance model. 

III.  Training Deep Q-learning With Experience Replay
and Heuristic Knowledge

 

A.  Deep Q-learning With Experience Replay

(s,a,r, s′)
D D

N N

D

Reinforcement learning and a neural network are combined
to  improve  the  generalization  ability  of  the  model  and  solve
the “curse of dimensionality” in [23]. But the data samples for
training  neural  networks  are  hard  to  obtain,  and  in  above
literature,  data  in  Q-table  are  used  to  train  neural  networks.
The  data  samples  are  always  required  to  be  independent  in
deep learning; however, the data samples in the Q-table are a
sequence  of  highly  correlated  states  produced  in  sequence.
The  actions  selected  by  the  robot  have  an  impact  on  the
environment  in  reinforcement  learning.  To  alleviate  those
problems,  DeepMind  proposed  a  deep  Q-learning  with
experience  replay  algorithm  [14],  which  is  proposed  to  play
Atari. In this algorithm, experience data  is stored in
the  replay  memory .  The  size  of  the  replay  memory  is
fixed  at ,  and  the  replay  memory  always  stores  the  last 
collected  experience  data.  During  the  process  of  training,  we
sample mini-batch experience data from  randomly and use
it to train the network according (1). 

B.  Heuristic Knowledge
The characteristics and quantity of training data are the most

important  factors  determining  the  performance  of  a  neural
network model.  Neural network is more likely to learn better
representations by feeding it with sufficient data [24]. In order
to  learn  an  expected  policy,  it  is  very  important  to  have
sufficient and effective experience data in the replay memory
for a robot.

ε
ε

ε ε ∈ [0,1]
1−ε

There is a lot of randomness in traditional deep Q-learning.
For  example,  the  robot  may  hit  obstacles  when  exploring
randomly;  the  robot  selects  an  action  randomly  with  the -
greedy  algorithm. -greedy  algorithm  makes  trade-off
between  exploration  and  exploitation  base  on  a  probability.
Every time the robot selects an action, it  randomly selects an
action to explore with a probability of ,  or it exploits
with  a  probability  of ,  i.e.,  it  selects  the  action  with  the

highest  reward  value.  For  the  neural  network,  the  collision
experience  data  and  random  action-selected  experience  data
cannot contribute to neural networks training.

Heuristic  knowledge is  used in guiding the behavior of  the
robot, and it can reduce the randomness in an intelligent robot
system.  With  the  help  of  heuristic  knowledge,  the  robot
selects a suitable action, which provides characteristic training
data  for  the  neural  network  and  accelerates  the  training
process.

1)  Obstacle  Avoidance  Knowledge: Because  of  the
randomness  of  action  choice  in  the  early  stage  of
reinforcement  learning,  the  probability  of  the  robot  hitting
obstacles  is  very  high.  If  there  is  a  large  amount  of  collision
experience  data  in  replay  memory,  it  will  inevitably  have  a
negative  effect  on  the  learning  of  the  neural  network,  but  if
there is no collision experience as negative samples, the neural
network  can  only  learn  one-sided  knowledge.  So,  we  equip
the robot with obstacle avoidance knowledge, which helps the
robot  avoid  obstacles  as  much  as  possible.  In  addition,  the
robot  does  not  stop  exploring  when  it  hits  obstacles  and  this
collision experience data is also stored in replay memory.

S

U
F
W

In our work, we divide the state of the intelligent robot into
four  categories:  1)  safe  state  ( ),  in  which  no  matter  what
action  be  selected,  the  robot  will  not  hit  obstacles;  2)  unsafe
state ( ), means the robot may hit an obstacle at next step; 3)
failure  state  ( ),  in  which  the  robot  hits  an  obstacle  and  4)
winning state ( ), where the robot arrives at the terminal.

ε
If  the  robot  is  in  a  safe  state,  it  selects  an  action randomly

using the -greedy strategy; if  the robot is in an unsafe state,
the obstacle avoidance mode is enabled, and robot will select
the action which makes it move away from obstacles as far as
possible  without  thinking  about  the  path  planning.  In  this
paper,  if  the  robot  is  in  an  unsafe  state,  it  will  move  in  the
direction  of  a  sonar,  which  sonar  value  is  greater  than  the
obstacle  avoidance  distance  and  it  is  farthest  from  the  sonar
has the minimum sonar value.

Using obstacle avoidance knowledge can reduce the number
of  times  the  robot  hits  obstacles  and makes  a  contribution  to
improve the quality of training data.

ε

1−ε
ε

ε

2)  Goal-directed  Knowledge: When  the  robot  is  at  a  safe
state,  it  usually  uses  the -greedy  strategy  to  select  actions.
The  robot  selects  the  action  through the  neural  network  with
the  probability  and  selects  an  action  randomly  with
probability ,  which  increases  the  randomness  of  the  action
selection  and  also  makes  the  data  samples  used  for  training
become noisy. In order to reduce the blind exploration of the
robot,  goal-directed  knowledge  is  used  to  guide  the  robot’s
action  selection.  With  probability ,  the  robot  no  longer
selects  actions  randomly,  but  selects  the  action  that  takes  it
closer  to  the  end  point  according  to  the  goal-directed
knowledge.

In this paper, we use the angle between the robot’s direction
and the end point as the basis for the goal-directed knowledge.
The angle  is  defined as  the  rotating  angle  at  which the  robot
rotates  counterclockwise  until  it  point  to  the  end  point.  The
range of the angle is from 0 to 360 degrees. From the size of
the angle, we can know the positional relationship between the
robot  and  the  end  point,  e.g.,  if  the  angle  is  180  degrees,  it
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means  that  the  robot  direction  is  opposite  to  the  end  point.
Those  provide  guidance  for  the  robot’s  action  selection,  so
that  the  robot  can  move  toward  the  end  point.  For  example,
when the angle is 30 (or 330) degrees, if the robot rotates 30
degrees to the left  (or right),  it  will  be in the direction of the
end point.

Goal-directed  knowledge  provides  good  assistance  for  the
selection  of  robot  actions,  and  it  is  also  helpful  for  speeding
up the training process of the neural networks. 

C.  Training the Neural Network
Different from traditional Markov evaluation, we use a neural

network  to  replace  the  Q-table  in  deep  Q-learning  with
experience  replay  and  heuristic  knowledge.  Without  prior
experience  data  training  sets,  the  neural  network  should  be
trained  during  movement  of  the  robot.  At  each  step  of  the
training,  the  value  of  the  neural  network  is  changing.  In  the
neural network training process of this paper, there is a lack of
target  values.  If  we  train  a  neural  network  with  a  series  of
continuously  changing  values  as  the  target  value,  the  neural
network have difficulty converging. The network may not work
because it falls into a feedback loop between the target value
and  the  estimated  value.  Therefore,  we  adopt  two  neural
networks  to  complete  error  back  propagation  and  update
the  weights.  We  use  a  slower-updating  network  to  provide
target values and gradually optimize the weights of the neural
network.

evaluate_net
q_evaluate

target_net
q_target

evaluate_net
target_net

evaluate_net evaluate_net

evaluate_net

Those two neural networks work as shown in Fig. 3. One of
them  is  called ,  which  is  used  to  generate  an
estimates  value,  denoted  by .  Another  is  called

,  which  generates  a  target  Q  value,  denoted  by
.  The  two  neural  networks  have  exactly  the  same

structure. The  always has the latest weight, it  is
constantly  updated.  The  is  a  historical  version  of

,  it  records  the  old  weights  of  the 
and  updates  periodically.  We  initialize  the  two  neural
networks  with  the  same  random  weights  at  the  beginning  of
training. During the training, we regard the difference between
the  two  neural  networks’ output  values  as  an  error  and
propagate  it  back  to  the .  By  modifying  the
weight of each neuron, the error is minimized. 

D.   Using  Deep  Q-learning  With  Experience  Replay  and
Heuristic Knowledge on Robots

We  use  deep  Q-learning  with  experience  replay  and
heuristic  knowledge  on  robots  in  performing  path  planning
and  obstacles  avoidance;  the  algorithm  is  presented  in
Algorithm 1.

Algorithm 1 Routing algorithm

D N　 Initialize replay memory  to capacity 
K

L

　 Initialize  learning  frequency ,  target_net  weight  updates
frequency 

target_net evaluate_net　 Initialize  and  with  the  same  random
weight

M　for episode = 1,  do
　　Initialize environment and set the robot to the start　　　　

　　　point
T　　for t = 1,  do

st　　　Determine the state of the robot 
st　　　if  is at an unsafe state then

at　　　　Select an action  through obstacle avoidance 　　　　

　　　　　knowledge
　　　end if

st　　　if  is at a safe sate then
ε at　　　　With probability  select an action  through　 　　　

　　　　　goal-directed knowledge
at

evaluate_net

　　　　Otherwise select an action  according to the 　　　　

　　　　　output of 
　　　end if

at rt

st+1

　　　Execute action  and observe immediately reward  　　

　　　　and new state 
(st ,at ,rt , st+1) D　　　Store the experience data  in 

K　　　while t %  == 0 do

(S j,A j,R j,S j+1)

　　　　Sample random mini-batch of experience data 　　　　

　　　　　  from D

q_tar j q_eva j

　　　　Set the random samples into the two networks, 　　　　

　　　　　obtain , 
y j = R j +γmaxA j (q_tar j)　　　   

loss = (y j −q_eva j)2　　　　

evaluate_net

loss

　　　　Update the weights of  through a　　　　　

　　　　　gradient descent procedure on 
　　　end while

L　　　if t %  == 0 then
evaluate_net

target_net

　　　　Assign the weights of the  to 　　　　　　

　　　　　  at interval
　　　end if

st+1　　　Determine the state of the robot 
st+1　　　if  is at a winning state then

　　　　Finish this episode
st+1　　　else if  is at a failure state then

　　　　Step back and continue to learn
　　　else
　　　　Continue this episode
　　　end if
　　end for
　end for

In  the  early  exploration-exploitation  process,  the  robot  just
collects and stores experience data in the replay memory until

 

Train
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State

evaluate_net

q_evaluate q_target

target_net
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weights to target_net

 
Fig. 3.     Two neural network diagrams.
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K

there  is  enough  data  for  the  robot  to  learn.  Instead  of  the
weight being adjusted when the robot accomplishes an action,
in  our  algorithm,  every  steps  the  robot  moves,  it  samples
mini-batch experience data randomly from replay memory to
train the neural network.

i h
j m

The  neural  network  used  in  this  algorithm  is  a  three-layer
backpropagation neural network. It has  input nodes,  hidden
nodes  and  output  nodes.  The  size  of  mini-batch  is .  The
complexity of Algorithm 1 consists of two parts: select actions
and train the neural network.

O(1)

O(m×h× (i+ j))

O(m×h× (i+ j))

1)  Select  Actions: The  time  complexity  of  using  heuristic
knowledge to select actions is . Using neural networks to
select  actions  is  a  feedforward  propagating  process,  the  time
complexity is . Because the neural network is
used  to  select  action  in  most  of  time,  the  complexity  of
selection action is .

O(1)

O(m×h× (i+ j))
K T/K

O ((T/K)(1+m×h× (i+ j))) O((T/K)(m×h× (i+ j)))

2)  Train  the  Neural  Network: Before  training  the  neural
network,  training  data  needs  to  be  extracted  from the  experience
repay  memory.  Because  the  input  matrix  dimensions  of  samples
are  fixed  in  dimension,  the  time  complexity  is .  In  a  three-
layer  backpropagation  neural  network,  the  total  time  complexity
for  one  training  is .  Under  the  limitation  of  the
learning frequency ,  the training times of  each epochs is .
So,  the  complexity  of  training  the  neural  network  per  epochs  is

, that is .
M

O(M× (T/K)×m×h× ( j+ i))

The  number  of  training  epochs  is ,  and  according  to  the
above analysis, we can determine that the time complexity of
Algorithm 1 is .

This  algorithm  can  also  be  used  to  solve  other  problems,
such  as,  playing  flappy  bird,  walking  through  a  maze  etc.  It
can  create  a  very  good  model  for  certain  tasks,  but  its  final
model can not apply to other tasks. This is because this model
only learns one specific goal at a time and works for a specific
task.  When  the  learning  task  is  completely  different,  it  is
necessary to retrain the model. But if the learning task is very
similar,  the  obtained  model  has  a  certain  degree  of
generalization. 

IV.  Path Planning for Robots
 

A.  Simulation Environment
It  is  difficult  to  apply  reinforcement  learning  to  robots

directly.  Intelligence  robots  need  thousands  of  repeated
trainings to get a good behavior strategy. In this paper we use
the simulation environment to train the robot.

(s1, s2, s3, s4, s5)

In our experiment, the task of the robot is to move from the
start  point  to  the  end  point  without  collision  in  an  unknown
environment; the start point and the end point have been told.
The  distribution  of  the  robot’s  sensors  is  shown  in Fig. 4.
There  are  5  sonar  sensors  located  in  the  robot,  the  angle
difference  between  different  sonar  is  30  degrees.  Those
sonars’ measured  distances  are  denoted  by 
respectively. The motion directions of robots are also divided
into five kinds:

Action 1: turns left 60 degrees and moves forward 30 cm;
Action 2: turns left 30 degrees and moves forward 30 cm;
Action 3: moves forward 30 cm;
Action 4: turns right 30 degrees and moves forward 30 cm;

Action 5: turns right 60 degrees and moves forward 30 cm.

β
The angle between the robot current coordinate and the end

point coordinate is denoted as . According to the five actions
of  the  robot,  we  design  the  goal-directed  knowledge  as
follows:

0 ≤ β < 15 345 < β ≤ 3601) If  or , Action 3 will be selected;
15 ≤ β < 452) If , Action 2 will be selected;
45 ≤ β < 1803) If , Action 1 will be selected;
180 ≤ β < 3154) If , Action 5 will be selected;
315 ≤ β ≤ 3455) If , Action 4 will be selected.

β
s s = (s1, s2, s3, s4, s5,β)

We  combine  5  sensors  distances  and  the  angle  as  the
robot state , where .

s
s

Fig. 5 shows the structure of the neural network we used in
this  paper.  It  is  a  three-layer  neural  network.  Its  input  is  a
robot  state ,  and  its  output  are  cumulative  reward  values
corresponding  to  different  actions  under  state .  There  are  6
neurons in the input layer, 10 neurons in the hidden layer and
5  neurons  in  the  output  layers.  The  activation  function  for
hidden  layer  is  rectified  linear  unit  (ReLU).  The  activation
function of output layer is a linear function. We use stochastic
gradient descent to train the neural network in our study.

Reward function is used for judging the merits of the action.
According to the reward function, the robot interacts with the
environment  and  adjusts  its  action  strategy  by  reward  value.
Reward  function  helps  to  strengthen  expected  behaviors  and
punish unsuitable behaviors. As the only feedback to motivate
the network convergence, the negative reward for the collision
between the robot and obstacles must be very large [25]. The
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Fig. 4.     The distribution of the robot’s sonar.
 

 

...
...

Input Hidden layer Output

Q(S, a1)

Q(S, a2)

Q(S, a3)

Q(S, a4)

Q(S, a5)ReLU

S1

S2

S3

S4

S5

β
 
Fig. 5.     Structure of the neural network.
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→reward  function  adopted  in  this  paper  is  shown  in  (2), “ ”
represents  the  transfer  of  states,  AG  (AO)  means  the  robot
stays away from the end point (obstacles), CG (CO) means the
robot is close to the end point (obstacles).
 

reward =



−50, F
−2, S → U;U → U,CO
−1, U → U, AO
0, S → S , AG
1, S → S , CG
2, U → S
100, W.

(2)

 

B.  Simulation and Analysis
We  conduct  comparative  tests  in  the  same  experimental

environment, by using the method in [23], DQL with ER and
DQL  with  ER  and  HR.  The  comparison  is  divided  into  two
parts,  the  first  part  is  training  phase  and  the  second  part
compares generalization of the obtained model.

1) Training Phase: In [23], initial training phase is training
a  Q-table,  we  quantify  the  sonar  values  and  the  angle  into  4
and  8  degrees  respectively.  Our  approach  will  train  a  neural
network and obtain a trained model.

Table I shows the detail parameters used in DQL training.

There are three different map environments with two, three
and  four  obstacles,  which  are  recorded  as M1–M3
respectively.  The  above  mentioned  three  methods  were  used
in  those  map  environments.  The  training  finishes  when  the
average reward of smart cars tends to be stable. Fig. 6 shows 9
trajectories that  the robot obtained by using three methods in
three different maps, the map of each row is the same and the
method of each column is the same. In each map, the blue dot
in the lower right  corner  is  the start  point,  the red “×” in  the
upper left corner is the end point, and the black areas are four
walls and obstacles.

As  we can see,  those  three  methods  can guide  the  robot  at
the  end  point  without  collision.  The  trajectories  of  the  three
methods are almost the same. In general, trajectories obtained
using  DQL  are  straighter  than  trajectories  obtained  by  Q-
learning.  Once  the  robot  has  learned  heuristic  knowledge,  it
can travel in a more straight path than other robots. However,
the robot will always try to choose the action that allows it to
be  further  away  from  obstacles  to  avoid  collisions,  which
makes trajectories not as smooth.

The  moving  step  count  and  the  average  training  epochs  of
the robot  when it  reaches  the  end point  under  different  maps
are listed in Table II. The difference between the moving step

count is small; in addition, the two DQL methods result in the
robot reaching the end point with the same moving step count.
This shows that  heuristic knowledge gives little effect  on the
moving  step  count.  But  in  terms  of  training  epochs,  DQL
performs  much  better  than  Q-learning  does.  Comparing  to
DQL + ER, our method’s training epochs have been reduced
by  33.33%,  15.84%,  and  23.38% on  each  map.  Notice  that,
after  applying  heuristic  knowledge,  the  training  rounds  are
greatly reduced again.

We choose the average reward the robot collects in an epoch
as  our  evaluation  metric. Fig. 7 shows  the  average  reward
when those  three  algorithms work  on M3.  As  we can  see,  in
the  early  stage  of  training,  the  average  reward  is  very  noisy.
One reason is that the robot explores in the map, which makes
it  take a lot  of steps to reach the end point and decreases the
average reward. Without heuristic knowledge, Q-learning and
DQL + ER may hit obstacles in the first few training rounds,
which  is  also  a  reason  why  the  average  reward  is  low.  In
general, DQL + ER + HK converges earliest in 118 epoch and
has  the  highest  average  reward,  around  2.27.  Although,  the
final  average  reward  value  of  the  three  algorithms  differs
slightly, DQL + ER + HK has the highest average reward and
obtains a better action strategy, allowing the robot to arrive at
the end point more directly.

In  summary,  DQL  with  ER  and  HK  makes  the  robot
converge  to  the  best  trajectory  faster  than  traditional  Q-
learning,  and  takes  fewer  steps  to  reach  the  target.  With  the
help of heuristic knowledge, the robot can accelerate learning
and obtain a better strategy.

2) Generalization and Flexibility: According to the training
process  in  [23],  we  use  the  323  data  in  the  Q-table  obtained
from M3 to train a neural network (NN), and combines this Q-
table with the network as an adaptive model (Q + NN). DQL
with  ER,  and  DQL with  ER and HK obtain  adaptive  models
from M3  too.  Two  tests  are  performed  to  test  the
generalization and flexibility of these three models. We record
trajectories  of  the  robot  in  the  new  environment  for  the  first
time,  and  compare  the  trajectories  obtained  by  the  three
models.

Test  1:  The  Robot  Is  Initialized  From  Arbitrary  Points  on
M3

Fig. 8 shows  trajectories  when  the  robot  starts  from  three
arbitrary  starting  points.  The  horizontal  axis  is  three  models,
and the vertical axis is three arbitrary start point maps. In the
top row of this figure, the start point is on the left side of the
original  start  point.  In  this  case,  the  differences  among  three

 

TABLE I  
Training Parameters and Their Valuate

Parameter Value

learning rate 0.01

discount factor 0.9

replay memory 2000

mini-batch size 32

εgreedy factor 0.1
 

 

TABLE II  
Moving Step Count and Average Training Rounds

Model M1 M2 M3

Moving step count

Q-learning 66 51 60

DQL + ER 60 50 57

DQL + ER + HK 60 50 57

Training epochs

Q-learning 102 185 258
DQL + ER 84 101 154

DQL + ER + HK 56 85 118
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trajectories obtained by the three models are not huge. In the
middle row, the start  point is above the obstacle in the lower
right  corner.  In  this  situation,  the  robot  that  uses  our  method
almost  goes  straight  to  the  end point.  But  the  robot  that  uses
Q-learning  with  a  neural  network  goes  to  a  detour  and  the
trajectory  obtained  by  DQL  with  ER  is  also  more  tortuous
than that obtained by our method. In the bottom row, the start
point  is  on  the  right  side  of  the  original  start  point.  We  can
see,  the  left  trajectory  is  the  most  tortuous.  The  middle
trajectory almost has the same outline with the right one, but
the right one is more straight.

Detailed data about the moving step count of arriving to the
end  point  are  showed  in Table III.  Bold  numbers  are  the
minimum  moving  step  count  used  in  different  situations.  It
shows  that  the  robot  that  uses  our  method  can  reach  the  end
point with fewer steps.

Table IV shows the average reward that those three models
obtained when they start from three arbitrary start point. When
the  robots  have  similar  trajectories,  their  average  reward

values  are  similar.  But  the  fewer  detours  the  robot  takes,  the
greater  the  average  reward  obtained.  The  robot  that  uses  our
method always has the largest average reward.

Test 1 shows that all the models can make robots reach the
end  point  without  collision  when  the  robots  are  initialized
from  arbitrary  start  points.  By  comparing  the  experiment
results, we find our approach provides a better action strategy,
which helps the robot go on a shorter path and obtain a larger
average reward.

Test 2: Changing the Position of Obstacles in M3
In Test 2, the position of obstacles in M3 are changed, and

the changed maps and obtained trajectories are shown in Fig. 9.
The horizontal axis is the three models, the vertical axis is the
three  obstacle-changed  maps.  The  number  of  obstacles  are
changed  from  4  to  3  in  the  changed  Map  1,  and  the  middle

 

TABLE III  
Moving Step Count From Arbitrary Start Point

Model Start point1 Start point2 Start point3

Q + NN 53 47 77

DQL + ER 52 42 67

DQL + ER + HK 49 39 61
 

 

TABLE IV  
Average Reward From Arbitrary Start Point

Model Start point1 Start point2 Start point3

Q + NN 2.7358 3.1064 2.0260

DQL + ER 2.75 3.2143 2.2597

DQL + ER + HK 2.9787 3.5385 2.3607
 

 

Q-learning DQL + ER DQL + ER + HK

M1

M2

M3

 
Fig. 6.     Nine trajectories that the robot obtained by using three methods in three different maps.
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Fig. 7.     The  plot  shows  average  reward  per  episode  on M3  when  uses  Q-
learning, DQL + ER, and DQL + ER + HK.
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obstacle  is  located  on  the  line  connecting  the  start  point  and
the end point.  The left  figure  in  the top row shows the robot
has a tendency to stay away from the end point in the process
of moving. However, the right two robots bypass the obstacle
directly and reach the end point. Their trajectories are similar.
The  middle  row  is  changed  Map  2,  where  the  start  point  is
surrounded  by  a  inverted  U-shaped  obstacle.  It  can  be
determined from trajectory that all of the robots explore to the
bottom  of  the  inverted  U-shaped  obstacle  at  first,  and  then
finally  find  the  exit  and  reach  the  end  point.  During  the
exploration,  the  left  trajectory  shows  that  the  robot  collides
with  obstacles  4  times,  with  collision  points  represented  by
red dots. However, the right two trajectories show that robots
walk  to  the  bottom  of  the  inverted  U-shaped  obstacle,  turn
around  straightly,  and  reach  the  end  point  successfully.  The
bottom  row  is  changed  Map  3,  where  the  position  of  the
obstacles  has  been  changed  tremendously  and  there  are  10
block  obstacles.  The  left  trajectory  shows  that  during  the
movement,  the  robot  exhibits  the  phenomenon  of  turning
circles.  In  contrast,  the  right  two  trajectories  show  that  the
robots  which  used  DQL  explore  a  shorter  moving  route.
Although  the  right  two  models  get  very  similar  trajectories,
intuitively, DQL with ER and HK can obtain a more straight
route.

Table V shows  the  moving  step  count  the  robot  takes  to
reach the end point  in three changed maps.  Comparing to Q-
learning  with  neural  networks,  the  robot  that  used  that  our
model  takes  fewer  steps  to  reach  the  end  point.  The  more
complex the  map is,  the  more  obvious  the  advantages  of  our
model  is.  But  comparing  to  DQL  with  ER,  our  model  has  a
slight  advantages  in  the  moving  step  count.  In  the  changed
Map 2, those two models have the same moving step count.

TABLE VI shows  the  average  reward  those  three  models

obtained when they are in three changed maps. From the table,
it can be known that Q-learning with NN can not adapt well to
the changed map, and it always has the lowest average reward.
Also,  it  causes  the  robot  to  hit  obstacles  4  times  in  the
changed  Map  2,  so  the  average  reward  is  close  to  0.  The
average  reward  of  DQL  +  ER  +  HK  is  always  higher  than
DQL + ER.

In  Test  2,  robots  that  used  DQL  can  reach  the  end  point
without  hitting  obstacles,  even  though  obstacles  have  been
changed  drastically  and  the  environment  is  more  complex.
Furthermore,  we  find  that  our  model  can  adapt  to  new maps
better than Q-learning with the neural network and DQL with
ER.  The  reasons  why  the  generalization  ability  of  the  model
combining the Q-table with the neural network are not optimal
are as follow:

 

TABLE V  
Moving Step Count in Three Changed Maps

Model Changed Map
1

Changed Map
2

Changed Map
3

Q + NN 66 165 96

DQL + ER 57 119 57

DQL + ER + HK 53 119 55
 

 

TABLE VI  
Average Reward in Changed Maps

Model Changed Map 1 Changed Map 2 Changed Map 3

Q + NN 2.1035 0.0353 1.8438

DQL + ER 2.4848 0.8739 2.2632

DQL + ER + HK 2.6792 1.0924 2.4727
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Fig. 8.     Nine trajectories that the robot obtained by using three models when starting from three arbitrary start points.
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1) Fuzzy states have an impact on the learning space of the
robot.  In  the  Q-learning  training  process,  states  of  the  robot
had been fuzzed. An excessive degree of fuzzification leads to
inaccurate  execution  of  robot  actions;  a  small  degree  of
fuzzification  will  greatly  increase  the  learning  space  of  the
robot and the learning time.

2)  Limited  amounts  of  data  were  used  for  training  neural
network. It is critical to train a neural network with sufficient
training data. There are some limitations in training the neural
network when using the data in the Q-table as training data.

DQL  with  ER  also  has  good  generalization  ability.  After
combining  heuristic  knowledge,  it  can  move  more  optimally
towards the end point. This, DQL with ER and HK can reach
the end point with fewer steps and get a larger average reward.

In  DQL  with  the  ER  and  HK  algorithm,  the  state  of  the
robot is represented by raw data directly, which is used as the
input  of  the  neural  network.  Training  of  the  neural  network
runs through the moving process of the robot, the data of each
step  the  robot  moves  is  applied  to  the  training  of  the  neural
network.  Heuristic  knowledge  guides  the  behavior  of  the
robot,  and  it  makes  the  actions  selected  by  the  robot  more
purposeful.  However,  the  trajectories  obtained  by  our
approach  in  the  new  map  is  not  the  shortest  one.  This  is
because  that  when  avoiding  obstacles,  the  robots  will  try  to
keep  away  from  obstacles,  which  leads  to  detours.  The
accuracy of neural network is also a reason, which will bring
uncertainty.

The above two tests verify the generalization and flexibility
of our approach, and our approach shows stronger robustness
and  adaptability  than  Q-table  with  neural  network  and  DQL
with ER. It can provide a relatively superior action strategy. 

V.  Discussion of Related Work

Q-learning  is  widely  used  in  path  planning  and  obstacle
avoidance of an intelligent robot. Jaradat et al. proposed a new
definition for states space in [26] to reduce the size of the Q-
table; in [27], [28], a method based on reinforcement learning
and  fuzzy  logic  is  proposed.  However,  those  just  limit  the
number  of  states  and  cannot  solve “curse  of  dimensionality”
completely.  Also,  the  degree  of  fuzzification  limits  the
learning states  of  the robot.  In  our  work,  a  neural  network is
used to deal  with this  problem, where the input of the neural
network  is  the  state  of  the  robot  and  consists  of  raw  sonar
data.

To  solve  the  problem  of  slow  convergence  and  low
efficiency  in  path  planning,  reinforcement  learning  based  on
virtual potential field has been proposed in [29]. It regards the
unknown environment as a potential field, and Y Zheng et al.
propose a new algorithm based on hierarchical reinforcement
learning  and  an  artificial  potential  field  [30].  But  as  we
known,  the  potential  field  method  easily  falls  into  a  local
optimum.

Neural  networks  have  been  used  to  enhance  reinforcement
learning’s  generalization  ability,  but  a  large  amount  of
training samples are needed to train a neural network. In [23],
[31],  researchers  use  traditional  reinforcement  learning  to
generate  training samples  for  neural  networks  and then,  train
the neural network with those training samples. There are two
training  processes  in  those  algorithms,  and  they  are  time-
consuming.  In  [32],  [33],  the neural  network is  trained while
the  robot  is  moving,  but  because  the  neural  network  trains
once  each  step  the  robot  moves,  the  training  efficiency  is
lowered. Furthermore, the correlation of training samples will
affect  the representation of the neural  network.  However,  the
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Fig. 9.     Nine trajectories that the robot obtained by using three models in the three obstacles-changed maps.
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experience  replay  mechanism  solves  the  above  problems
perfectly, where training samples are stored in replay memory
and  each  step  of  experience  data  can  be  used  for  updating
many weights and the relevance of training data is disrupted.
It  reduces  the  burden  of  collecting  prior  experience  data  to
train  the  neural  network  and  improves  the  efficiency  of
experience data utilization.

The work of [24] is  similar to our work, and the system in
this  literature  is  based on deep Q-network which combines  a
CNN (convolutional neural network) with deep Q-learning. In
contrast to our work, this method uses CNN to process image
data  and  takes  the  obtained  result  as  the  input  of  deep  Q-
learning.  We  also  add  heuristic  knowledge  based  on  the
original  DQL.  Heuristic  knowledge  provides  suitable  and
effective  data  for  training the  neural  network,  and it  helps  to
train a satisfactory neural network. 

VI.  Conclusion

In this paper, we combined deep Q-learning with experience
replay and heuristic knowledge for path planning and obstacle
avoidance of intelligent robots. This method has been tested in
three  different  environments,  and  the  robot  converges  to  an
optimal  strategy  faster  and  reaches  the  end  point  with  fewer
steps  than  Q-learning  with  the  neural  network  and  normal
DQL  with  ER.  The  experiments  have  also  shown  that  our
model has better adaptiveness in an unknown environment.

In the future, we will work on the following aspects:
1)  Optimizing  the  planned  path  for  robots.  We  should

design  a  better  strategy  to  collaborate  path  planning  and
obstacle avoidance.

2)  Explore  more  complicated  neural  network  architectures.
In this paper, we complete the simulation experiment with the
simplest  neural  network  architecture.  We  hope  that  more
complex neural network architectures can further improve the
experimental results.

3)  Dynamic obstacle  avoidance.  In  this  paper  the  obstacles
are static. We consider dynamic obstacles which will increase
the difficulty of robot path planning.

4)  Applying  our  method  to  real  robots.  In  this  paper,  we
only  perform  the  simulation  for  our  method  in  an  ideal
environment,  which  is  hard  to  satisfy  in  real  life.  We  will
implement our method on a robot in a real environment. Due
to the uncertainties in the environment, we may need to adjust
our method.
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