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   Abstract—The paper proposes a novel approach for formation-
containment  control  based  on  a  dynamic  event-triggering
mechanism  for  multi-agent  systems.  The  leader-leader  and
follower-follower  communications  are  reduced  by  utilizing  the
distributed dynamic event-triggered framework. We consider two
separate  sets  of  design  parameters:  one  set  comprising  control
and  dynamic  event-triggering  parameters  for  the  leaders  and  a
second  set  similar  to  the  first  one  with  different  values  for  the
followers. The proposed algorithm includes two novel stages of co-
design  optimization  to  simultaneously  compute  the  two  sets  of
parameters.  The  design  optimizations  are  convex  and  use  the
weighted sum approach to enable a structured trade-off between
the  formation-containment  convergence  rate  and  associated
communications.  Simulations  based  on  non-holonomic  mobile
robot  multi-agent  systems  quantify  the  effectiveness  of  the
proposed approach.
    Index Terms—Co-design  convex  optimization,  dynamic  event-
triggered  schemes,  formation-containment  control,  multi-agent
systems.
 

I.  Introduction

COOPERATIVE  behaviours  have  attracted  considerable
attention  in  a  variety  of  multi-agent  system  (MAS)

applications,  including  leaderless  consensus  [1],  leader-
following consensus [2], [3], containment control [4]–[7], and
formation  control  [8],  [9].  Recently,  the  formation-
containment control (FCC) framework, which can be regarded
as  the  combined  problem  of  formation  and  containment  for
multi-agent  systems,  has  arisen  in  several  engineering
applications  [10]–[20].  In  FCC,  the  leaders  converge  to  a
desired  geometric  formation.  Simultaneously,  the  followers
merge  within  the  convex  hull  spanned  by  the  leaders.  As

compared  to  solitary  containment  [4]–[7]  and  solitary
formation  [8],  [9],  FCC  is  more  complex  and  a  topic  of
increasing  interest  in  the  control  and  signal  processing
community.  A  related  application  for  FCC  is  the  mixed
containment-sensing  problem  [21]  where  the  objective  is  to
have a group of  mobile  agents  (followers)  cover  and provide
surveillance  sequentially  from  one  region  of  interest  to
another.  In  this  application,  the  leaders  steer  the  followers
from  one  operational  region  (formation)  to  another  and
coordinate  the  sensing  task  for  the  followers.  This  paper
considers  the  FCC  problem  for  general  linear  multi-agent
systems  using  a  comprehensive  event-triggering  scheme,
usually known as the dynamic event-triggering mechanism.

Formation-containment  has  been  studied  for  agents  with
different dynamics, including second-order linear agents [10],
[11],  general  linear  agents  [12]–[14],  heterogeneous  agents
[15],  [16],  Euler–Lagrange systems [17],  [18],  and a  class  of
nonlinear  agents  [19].  All  of  these  implementations  impose
the strict condition of real-time data transmissions between the
agents. To preserve the limited energy allocated to each agent,
event-triggered  mechanisms  [22]–[28]  that  reduce
communications are of great interest in FCC applications.

H∞

The  implementation  of  an  event-triggered  scheme  often
requires  a  design  step  for  computing  parameters  associated
with  the  control  protocol  and  event-triggering  scheme.  In
many  event-triggered  implementations  used  in  cooperative
control  of  networked  systems,  control  gains  are  either
assumed  as a  priori information  [22]–[24]  or  designed  as  a
separate step based on the Hurwitz stability of the closed-loop
systems  [25],  [26].  In  such  emulation-based  approaches,  the
design  of  event-triggering  thresholds  is  based  on  a  pre-
selected  value  for  the  control  gain.  The  operational  regions
obtained  for  the  event-triggered  parameters  are,  therefore,
conditioned  on  the  control  gains  and  may  not  be  the  best
choices.  Alternatively,  the  control  gain  and  event-triggering
parameters  are  designed  simultaneously  through  a  unified
optimization  framework.  In  this  co-design  approach,  all
parameters  are  computed  together  based  on  a  predefined
objective, such as  optimization [27] or inter-event interval
maximization [28].

As  one  of  the  most  advanced  event-triggered  schemes,
dynamic event-triggered  mechanism  (DEM)  have  recently
been  proposed  in  [29]–[31].  In  DEM,  an  internal  dynamic
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variable  is  included  as  an  additional  threshold  to  the  event-
triggering parameters. One interesting feature of the DEMs is
that their inter-event interval can be longer than the so-called
static  event-triggered  schemes.  At  the  same time,  the  desired
cooperative  objectives  (such  as  formation  and  containment)
can  still  be  reached  using  DEM  without  introducing  steady-
state errors. This is in contrast to some other implementations
[32] where the event-triggered scheme reduces the number of
transmissions at the expense of a bounded error for the desired
cooperative behaviour.

Motivated by the aforementioned limitations in the existing
FCC approaches, the paper proposes a formation-containment
control approach using a dynamic event-triggered mechanism
(FCC/DEME)  that  offers  optimality  for  design  parameters,
namely the control gains and event-triggering parameters. The
main features of the proposed FCC/DEME are listed below:

1)  To  the  best  of  our  knowledge,  FCC/DEME  is  the  first
implementation  for  formation-containment  that  utilizes  the
dynamic event-triggered mechanism. This leads to considerable
energy and communication savings for the multi-agent systems.

2)  Two  different  sets  of  control  and dynamic event-
triggering  parameters  are  introduced  for:  i)  formation  of  the
leaders; and ii) containment of the followers. To design these
parameters,  FCC/DEME  utilizes  two  convex  optimizations
based on enabling a trade-off between the rate of convergence
for formation-containment and the frequency of the events.

3)  The  design  approaches  [30],  [31],  derive  some bounded
regions  for  the  DEM  design  parameters.  It  should  be  noted
that even when the regions for design parameters are known,
selecting  the  operating  values  that  efficiently  save
transmissions is still difficult and requires some trial and error.
Instead,  in  FCC/DEME the  co-design  optimization  computes
the  exact  values  of  the  design  parameters  based  on  one
proposed objective function.

Perhaps,  the closest  work to FCC/DEME is  [20],  where an
event-triggered  formation-containment  implementation  is
proposed.  Unlike  [20],  the  DEM  used  in  this  paper  is  more
general  and  adds  additional  degrees  of  freedom.  As  another
difference,  FCC/DEME  (unlike  [20])  is  based  on  an
optimization  framework  to  develop  a  structured  trade-off
between  the  formation-containment  convergence  rate  and
frequency of the transmissions.

The  remaining  paper  is  organized  as  follows.  Section  II
introduces  notation  and  preliminary  concepts.  Section  III
formulates  the  formation-containment  problem.  Section  IV
develops  two  unified  optimizations  (one  for  the  leaders  and
one  for  the  followers)  for  parameter  design.  Simulation
examples  are  included  in  Section  V.  Finally,  Section  VI
concludes the paper. 

II.  Preliminaries

∥ · ∥ L2
( · )† A>0

0 ⊗ ∗

We  use  alphabets  in  bold  fonts  for  matrices  and  vectors.
Scalars are denoted by alphabets in normal font. :  norm;

:  Pseudo  inverse; :  Matrix  A is  symmetric  positive
definite;  1:  Column  vector  with  all  entries  equal  to  1; I:
Identity  matrix; :  Zero  matrix; :  Kronecker  product; :
Transpose of the corresponding block matrix. 

A.  Multi-Agent System
Consider the following general linear MAS:

 

ẋi(t) = Axi(t)+Bui(t), i ∈ V= {1, . . . ,N+M} (1)
xi(t)∈Rn ui(t)∈Rm

i (A,B)
where  and  are  respectively  the  state  and
control input for agent . Matrix pair  is controllable.

F = {i∈V|1≤ i≤N}
L= {i∈V|N+1≤ i≤N+M} i (1 ≤ i ≤ N)

N i
F←F

i
N i
F←L i

(N+1 ≤ i ≤ N+M)
N i
L←L

i N i
L←F

There  exist  two  sets  of  agents  in  MAS  (1),  namely,  the
followers  and  leaders.  The  follower  and  leader  sets  are,
respectively,  denoted  by ,  and

.  For  follower  ,  we use
notation  to  represent  the  set  of  its  neighbours,  which
are  also  followers.  The  neighbours  of  follower  within  the
leaders’ set  are  denoted  by .  For  leader 

,  the  set  of  its  neighbours  which  are  also
leaders is denoted by .  Additionally,  the neighbours of
leader  within the followers’ set is denoted by .

N i
L←F

Assumption  1: The  follower-follower  and  leader-leader
communication  network  topologies  are  connected  and
undirected.  None  of  the  leaders  receive  communication  from
the  followers’ set,  i.e.,  is  a  null  set  for  all  leaders.  In
physical  terms,  the  leaders  are  autonomous  and  are  not
restrained in their movement by the followers. There exists at
least  one directed path originating from one of  the leaders  to
any follower in MAS (1).

L ∈ R(N+M)×(N+M)
Under  Assumption  1,  the  associated  Laplacian  matrix

 with MAS (1) is given as follows:
 

L =
[

LF(N×N) LFL(N×M)

0 LL(M×M)

]
. (2)

LF
−L−1
F LFL

−L−1
F LFL

Under Assumption 1, all eigenvalues of  are positive real
scalars.  Each element in  is non-negative, and each
row of  has a sum equal to one [4].

M=4 N=6

N6
F←F = {1,5} N

6
F←L= {8} N

7
L←L= {8,10} N7

L←F = {}

Illustrative Example: To illustrate the graph notation used in
this paper, an example of a network with 10 agents (4 leaders,
i.e., ,  and  6  followers,  i.e., )  is  provided.  This
network is shown in Fig. 1. Based on Fig. 1, the neighbouring
sets  for  agents  6  and  7,  for  example,  are  as  follows:

, , , .  The
following  blocks  represent  different  partitions  for  the
Laplacian matrix (2) corresponding to this network:
 

LF



2 0 0 −1 0 −1
0 2 −1 −1 0 0
0 −1 2 0 −1 0
−1 −1 0 3 0 0
0 0 −1 0 3 −1
−1 0 0 0 −1 3



LL


2 −1 0 −1
−1 2 −1 0
0 −1 2 −1
−1 0 −1 2

 , LFL =



0 0 0 0
0 0 0 0
0 0 0 0
−1 0 0 0
0 0 −1 0
0 −1 0 0


.

(3)

hi ∈Rn

r(t)∈Rn

Definition  1 (Formation): For  a  given  formation  vector
, the leaders are said to achieve state formation if there

exists  a  formation  reference  function  such  that
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limt→∞(xi(t)−hi−r(t))=0 ∀i∈L ∀xi(0)∈Rn

limt→∞(xi(t)− x j(t))=hi−h j ∀i, j∈L

hi ∀i∈L

, , .  As  a  result,  it
holds  that , .  In  this
paper, we consider constant (time-invariant) formation vector

, .

hi
(i∈L)

limt→∞(xi(t)−hi)= limt→∞ r(t) ∀i∈L
xi(t)

hi
r(t)

xi(t) hi r(t)

r(t)
hi

xi(t) r(t)
r(t)

hi

We  note  that  the  leaders  can  determine  the  desired  state
formation by selecting proper  values  for  formation vector ,

. According to Definition 1, when formation is achieved
it  holds  that , .  This
implies  that  the  disagreements  between  and  its
corresponding  formation  vector  approaches  the  reference
function  for  all  leaders. Fig. 2 is  provided  to  show  the
relationships  between , ,  and  for  an  illustrative
formation  for  3  leaders.  From Fig. 2,  we  infer  that  the
formation reference  describes the macroscopic movement
of  the  whole  formation,  and  is  the  relative  offset  between

 and .  As  shown  later  in  Remark  5,  the  reference
function  is dependent on the initial state of the leaders and
formation vectors .

Definition  2 (Containment): Containment  is  said  to  be
solved  if  starting  from  any  initial  states,  the  states  of  the
followers converge to a convex hull formed by the leaders.

Definition  3 (Formation-Containment): MAS  (1)  is  said  to
achieve  formation-containment  if  for  any  initial  values,  the
leaders  converge  to  the  desired  formation  and  the  followers
achieve containment. 

B.  Dynamic Event-Triggering Scheme and Control Protocol
The agents share their states within their neighbourhoods to

achieve  formation-containment.  To  reduce  the  amount  of
transmission,  an  event-detector  is  incorporated  with  each

i

xi(t)

ti
k[i] i i

k[i]=0,1, . . . i
i xi

(
ti
k[i]

)
xi

(
ti
k[i]

)
j i

i
xi

(
ti
k[i]

)
j

i x̂i(t) ≜ xi
(
ti
k[i]

)
, t∈

[
ti
k[i] , t

i
k[i]+1

)
.

agent.  The  event-detector  in  agent  (leader  or  follower)
monitors a “dynamic event-triggering condition” to determine
whether  to  transmit  the  state  value  within  its
neighbourhood.  If  the  event  detector  detects  an event  at  time
instant  (superscript  indicates  agent ,  and  subscript

 denotes  the sequence of  events  for  agent ),  then
agent  transmits  to  its  neighbours.  Upon  receiving

, agent  (a neighbour of agent ), updates its previous
database with the newly received state from agent . This state
value,  i.e., ,  is  used  at  agent  until  the  next  event  is
triggered  by  agent .  Let  We
denote  the  following disagreement  vectors,  for  followers  and
leaders:
 

Xi(t) =
∑

j∈N i
L←L

ai, j
(
(Λi(t)x̂i(t)−hi)− (Λ j(t)x̂ j(t)−h j)

)
, ∀i∈L

(4)
 

Xi(t) =
∑

j∈N i
F←F

ai, j
(
Λi(t)x̂i(t)−Λ j(t)x̂ j(t)

)

−
∑

j∈N i
F←L

ai, jx j(t), ∀i∈F

(5)
ai, j (i, j)

Λi(t)=e
A
(
t−ti

k[i]

)
Λi(t)

where  is  element  in  the  weighted  adjacency  matrix

and . In Remark 2 (to be introduced later), we
comment on  and its impact on MAS (1).

Remark 1: Based on (4) and (5),  the follower-follower and
leader-leader  state  exchanges  are  event-triggered.  Similar  to
[5],  [6],  [20],  [26],  the  leader-to-follower  transmission  in
FCC/DEME  is  continuous.  Compared  with  the  existing
formation-containment  implementations  [10]–[13],  [15]–[19]
where all transmissions across the network are continuous, all
in-neighbour  transmissions  in  FCC/DEME  except  for  the
leader-to-follower  communication  are  event-triggered.  It
should be noted that  the leader-to-follower state transmission
can  be  performed  by  a  different  subset  of  leaders  during  the
formation-containment  process  (as  shown  later).  This
enhances the longevity of the leaders.

xi(0)
ti
0=0 ∀i∈F ∪L

t ei(t)=Λi(t)x̂i(t)− xi(t) ∀i∈F ∪L
ti
k[i] ∀i∈F ∪L

Let all agents transmit their initial state values  to their
neighbours, i.e., , . We denote the state error at
time instant  by , , Motivated
by [30], the next event instant after , , is triggered
based on the following dynamic event-triggering condition:
 

ti
k[i]+1 = inf{t> ti

k[i] | ∥Φcei(t)∥ ≥ αc∥Xi(t)∥+βcηi(t)} (6)

Φc ∈ Rn×n>0 αc>0 βc>0 c∈{1,2}
i ∈ L c=1 i ∈ F

c=2 ηi(t)

where , ,  and  for  are  design
parameters. In (6), if  then  is used and if  then

. Parameter  satisfies
 

η̇i(t)= −γc ηi(t)+ρc ∥Xi(t)∥ , ∀i∈V (7)
ηi(0)>0 γc>0 ρc>0

i ∈ L c=1 i ∈ F
c=2

where .  Parameters  and  are  to  be
designed. Similar to (6),  in (7) if  then  and if 
then .

The  proposed  distributed  control  protocol  for  the  control
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27
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Fig. 1.     An illustrative network topology.
 

 

x1(t)

x2(t)

x3(t)
r(t)

h1

h2h3

X

Y
r(t)

r(t)

 

limt→∞(xi(t)−hi−r(t))=0 (1 ≤ i ≤ 3)
Fig. 2.     An  illustrative  example  for  3  leaders  forming  a  triangle.  When
formation is achieved, it holds that  .
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input is given below:
 

ui(t) =

K1Xi(t)+H
∑

j∈N i
L←L

ai, j(hi− h j), i∈L

K2Xi(t), i∈F .
(8)

K1 ∈Rm×n K2 ∈Rm×n

H∈Rm×n

H
∑

j∈N i
L←L
ai, j(hi− h j)

Matrices  and  are  the  control  gains  to
be  designed.  Additionally,  matrix  is  the  formation
gain  which  is  also  unknown  and  needs  to  be  designed.  As
shown  later  in  Remark  4,  the  term  is
used  in  (8)  to  expand  the  set  of  possible  formations  that  the
leaders can achieve [9].

eA(t−ti
k[i] ) xi(ti

k[i] )

xi(t) ti
k[i] ≤ t ≤ ti

k[i]+1

Remark  2 (State  Estimation  in  Control  Protocol): The
proposed  control  protocol  (8)  benefits  from  an  open  loop
estimate  of  the  states  in  their  event  intervals  [33].  More
specifically,  the  expression  is  an  open-loop
estimate of  for . Using the open-loop state
estimation  helps  reduce  the  number  of  event-triggerings  [34]
as  compared  to  other  approaches  where  the  events  are
triggered without any estimation.

Remark 3 (Special Cases for DEM (6)): We note that many
existing  event-triggered  schemes  can  be  regarded  as  special
cases of  (6).  Under certain conditions,  DEM (6) reduces to a
number of widely used event-triggered schemes, including the
followings:

αc=0 η̇i(t)= −γcηi(t)
ηi(t)=ηi(0)e−γct

i)  If  and  (7)  is  revised  to ,  then
. Therefore, DEM (6) reduces to

 

ti
k[i]+1 = inf { t> ti

k[i] | ∥Φcei(t)∥ ≥ βcηi(0)e−γct }.
αc=0 η̇i(t)=0ii) If  and , then DEM (6) reduces to

 

ti
k[i]+1 = inf { t> ti

k[i] | ∥Φcei(t)∥ ≥ βcηi(0) }.
βc=0 ηi(t)iii) If , then threshold  is not involved in the event-

triggering condition. Hence,
 

ti
k[i]+1 = inf { t> ti

k[i] | ∥Φcei(t)∥ ≥ αc ∥Xi(t)∥ }.
The  event-triggering  schemes  used  in  [35],  [36]  are  a

combination  of  the  aforementioned  items  i)  and  ii).
Additionally,  combining  ii)  and  iii)  results  in  the  event-
triggering schemes used in [32], [37], [38]. 

C.  Design Objectives
The design objectives in FCC/DEME are as follows:
1) Reduce  the  frequency  of  follower-follower  and  leader-

leader state transmissions (event-triggerings).
2) Add  flexibility  to  control  the  rate  of  formation-

containment convergence rate.
3) Govern  the  potential  trade-off  between  the  formation-

containment  convergence  rate  and  the  frequency  of  event-
triggerings.

4) Compute  the  exact  values  of  unknown  parameters  in  a
co-design  optimization  framework  based  on  an  objective
function which increases the inter-event interval. 

III.  Problem Formulation

In  this  section,  we  obtain  the  closed-loop  MAS.  Then,  we
convert the FCC problem into an equivalent stability problem.
The co-design optimizations proposed in Section IV are based
on stabilization of the converted systems. 

A.  Closed-Loop Multi-Agent System
We define the following global vectors:

 

xF = [xT
1 (t), . . . , xT

N(t)]T xL= [ xT
N+1(t), . . . , xT

N+M(t) ]T

x̂F = [x̂T
1 (t), . . . , x̂T

N(t)]T x̂L= [x̂T
N+1(t), . . . , x̂T

N+M(t)]T

eF =
[
eT

1 (t), . . . ,eT
N(t)

]T eL =
[
eT

N+1(t), . . . ,eT
N+M(t)

]T

ηF = [η1(t), . . . ,ηN(t)]T ηL = [ηN+1(t), . . . ,ηN+M(t)]T

XF = [XT
1 (t), . . . ,XT

N(t)]T XL = [XT
N+1(t), . . . ,XT

N+M(t)]T

ΛF = diag(Λ1(t), . . . ,ΛN(t))
ΛL = diag(ΛN+1(t), . . . ,ΛN+M(t))

X̄F = [∥X1(t)∥ , . . . ,∥XN(t)∥ ]T

X̄L = [∥XN+1(t)∥ , . . . ,∥XN+M(t)∥ ]T

ēF =
[∥e1(t)∥ , . . . ,∥eN(t)∥ ]T

ēL =
[∥eN+1(t)∥ , . . . ,∥eN+M(t)∥ ]T

h = [h1, . . . ,hM]T . (9)
eL = ΛL x̂L− xL eF = ΛF x̂F − xFIt  holds  that  and .  The

closed-loop system from (1) and (8) is given below:
 

ẋL= (IM⊗A+LL⊗BK1) xL+ LL⊗BK1 (eL−h)
+

(
LL⊗BH

)
h (10)

 

ẋF = (IN⊗A+ LF⊗BK2) xF + LF⊗BK2 eF
+ LFL⊗BK2 xL. (11)

 

B.  System Transformation
In this section, we convert the FCC problem for the original

closed-loop MAS (10) and (11) into the stability problem for a
transformed  system.  System  transformation  is  accomplished
in the following 3 steps.

z= xL−h z

Step  1: In  the  first  step,  we  convert  the  problem  of
formation for the leaders into an equivalent stability problem.
Let . Based on , system (10) is expressed as
 

ż= (IM ⊗ A+ LL⊗BK1) z+ LL⊗BK1 eL
+ (IM ⊗ A+ LL⊗BH)h. (12)

LL 0<λ2,L ≤ · · · ≤ λM,L
LL

W= [wi, j] ∈ RM×M LL

One widely-used approach to guarantee stability in (12) is to
convert  it  into  an  equivalent  system  by  eigenvalue
decomposition  of .  Let  denote  the
eigenvalues  of  in  the  ascending  order.  Let  matrix

 include the normalized eigenvectors of 
such that
 

W J1W−1=LL, ∥W∥ =1

J1=diag(0,λ2,L, . . . ,λM,L)
LL W−1= [w̃i, j] W−1 (M−1)×M

W̃= [w̃i, j] 2 ≤ i ≤ M 1 ≤ j ≤ M
W̃ W−1

where  includes  all  eigenvalues  of
.  Let .  From ,  we construct  the 

dimensional matrix , for  and . In
other words,  includes rows 2 to M of matrix . Now, we
consider the following transformation:
 

ψL = W̃⊗ In z. (13)
Using (13), system (12) is transformed to

 

ψ̇L= (IM−1⊗A+ J̃1⊗BK1)ψL+ J̃1W̃⊗BK1 eL
+ (W̃⊗ A)h+ (W̃⊗ In)(LL⊗BH)h (14)

J̃1=diag(λ2,L, . . . ,λM,L) ψLwhere .  In  fact,  is  a  disagreement
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limt→∞ψL=0
(W̃⊗ A)h+ (W̃⊗ In)(LL⊗BH)h

limt→∞ψL=0

between the state of the leaders and their respective formation
vectors.  It  is  proved  in  [9,  Theorem  1]  that  formation  is
achieved in  (10)  if  and  only  if .  Similar  to  [9],
[12]–[14], [16], [39], the term 
in (14) should be made zero to guarantee . More
precisely,  the  following  condition,  which  is  known  as  the
formability condition, should be satisfied.

hi
(i∈L) H

Formability  Condition: For  given  formation  vectors ,
,  if  there  exists  a  formation  gain  such  that  the

following condition is satisfied:
 

(A+BH)
∑

j∈N i
L←L

ai, j(hi− h j)=0, (∀i∈L) (15)

hithen  formation  for  leaders  is  feasible  with  respect  to .  For
proof  of  (15),  refer  to  [9,  Theorem  2].  Under  (15),  (14)
reduces to
 

ψ̇L= (IM−1⊗A+ J̃1⊗BK1)ψL+ J̃1W̃⊗BK1 eL. (16)
Step 2: Let

 

ψF = xF +
(
L−1
F LFL

)
⊗ InxL. (17)

limt→∞ψF =0If , it holds that
 

lim
t→∞

[
xF +

(
LF−1LFL

)
⊗ InxL

]
= 0.

−LF−1LFL
(LF−1LFL)⊗ InxL

xF
limt→∞ψF =0

Since  the  row  sum  of  equals  one,  the  term
 expresses  a  convex  hull  of  the  leaders’

states  to  which  converges.  Therefore,  containment  is
achieved in  the  sense  of  Definition  2  if .  Now,
we  transform  (11)  under  transformation  (17)  and  formability
condition (15)
 

ψ̇F = (IN ⊗ A+ LF ⊗BK2)ψF + LF ⊗BK2 eF
+ (IN ⊗BK1)(L−1

F LFLLL⊗ In) z

+ (IN ⊗BK1)(L−1
F LFLLL⊗ In)eL. (18)

limt→∞ψL=0

limt→∞ z= xL−h=1M ⊗ r(t)
(IN⊗BK1)(L−1

F LFLLL
⊗In)1M ⊗ r(t) LL1M=0

Step  3: If ,  formation  is  achieved  for  the
leaders with respect  to Definition 1.  As a result,  it  holds that

.  Therefore,  the  third  term on the
right  hand  side  of  (18)  approaches 

. Since , it holds that
 

lim
t→∞

(IN ⊗BK1)(L−1
F LFLLL⊗ In) z=0. (19)

eL
limt→∞ eL=0

The  state  error  for  leaders  approaches  zero,  i.e.,
.  This  fact  together  with  (19)  imply  that  the

asymptotic  stability  for  (18)  can  be  simplified  to  the
asymptotic stability of the following system:
 

ψ̇F = (IN ⊗ A+ LF ⊗BK2)ψF + LF ⊗BK2 eF . (20)

V LF
We  use  a  similar  eigenvalue  decomposition  for  (20).  Let

matrix  be  the  normalized  eigenvector  matrix  for  such
that
 

VJ2V−1=LF , ∥V∥ = 1 (21)
J2=diag(λ1,F , . . . ,λN,F ) LFwhere  includes all eigenvalues of .

We consider the following transformation:
 

ψ̃F =V−1⊗ InψF . (22)
Using (22), system (20) is transformed to

 

˙̃ψF = (IN ⊗ A+ J2⊗BK2) ψ̃F + (J2V−1⊗BK2)eF . (23)
In conclusion, the formation-containment problem for MAS

(1) is solved if systems (16) and (23) are stable.
LL LF

V

We note  that,  unlike ,  all  eigenvalues  of  are  strictly
positive.  Therefore,  the  transformation  used  in  (22)  is  based
on  all  eigenvectors  included  in .  In  contrast,  in  (13)  we
excluded the corresponding eigenvector to eigenvalue of zero.

H=0
A

∑
j∈N i

L←L
ai, j(hi− h j)=0

Remark  4: According  to  the  formability  condition  (15),
linear  MASs  cannot  achieve  all  the  formation  vectors  due  to
the dynamic constraints of the agents. Similar observations for
formability  in  general  linear  MASs  have  been  made  in  other
implementations  including  [9],  [12]–[14],  [16],  [39].  The
physical  interpretation  of  (15)  is  that  the  expected  formation
should comply with the dynamics of the leaders [12]. We note
that if  in control protocol (8), the formability condition
(15) reduces to . Therefore, including
the  formation  gain H expands  the  set  of  feasible  formations
that the leaders can achieve. It  should be noted that for some
formation  vectors  and  agent  dynamics,  the  formation  gain H
may be  unnecessary  (i.e., H can  be  zero).  We  will  comment
on this matter in Section V.

limt→∞ψL=0
r(t)

Remark  5: It  is  worth  mentioning  that  if  formation  is
achieved  (i.e., ),  the  explicit  expression  for
formation reference function  satisfies
 

lim
t→∞

(r(t)− r0(t)− rh(t)) =0 (24)

where
 

r0(t)=eAt(w̃1⊗ In)xL(0)

rh(t)=−eAt(w̃1⊗In)h

+
w t

0
eA(t−v)((w̃1⊗ In)(IM ⊗ A+LLBH)) hdv

w̃1 W−1

r(t)
xL(0)

h r0(t) xL(0)
r(t) rh(t) hi

r(t)

and  is row 1 of . For proof of (24) refer to [9, Theorem
3].  Based  on  (24),  the  formation  reference  function 
depends  on  both  the  leaders’ initial  states  and  global
formation vector .  In particular,  is the impact of 
on ,  while  shows how different  choices of  impact

. 

IV.  Main Results

K1 Φ1 α1
β1 γ1 ρ1

K2 Φ2 α2 β2 γ2 ρ2

In  this  section,  we  first  exclude  the  possibility  of  Zeno-
behaviour  for  DEM  (6)  by  obtaining  a  lower  bound  for  the
interval between two successive events.  We explain how this
lower  bound  relates  the  design  objectives  mentioned  in
Section  II-C.  Two  separate  optimizations  are  then  developed
to  co-design  unknown  parameters.  The  first  optimization
simultaneously  computes  all  design  parameters  ( , , ,

, ,  and )  for  the  leaders.  The  second  optimization  co-
designs all design parameters ( , , , , ,  and ) for
the followers. 

A.  Exclusion of Zeno-Behaviour
We begin this section with the following lemma which will

be used for the exclusion of the Zeno-behaviour.
ηi(t) > ηi(0)e−(γc+βc

ρc
αc )t ∀t≥0

∀i ∈ V c ∈ {1,2} ηi(t)
Lemma  1: It  holds  that , ,

, and . Hence,  remains positive over time.
t∈ [ti

k[i] , t
i
k[i]+1

) ∥Φcei(t)∥Proof: Based on (6), for , it holds that 
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−βcηi(t) ≤ αc∥Xi(t)∥
ρc

αc
∥Φcei(t)∥ −βc

ρc

αc
ηi(t) ≤

ρc∥Xi(t)∥

η̇i(t) ≥ −
(
γc+βc

ρc

αc

)
ηi(t)+

ρc

αc
∥Φcei(t)∥ η̇i(t) ≥ − (γc+

βc
ρc

αc

)
ηi(t) ηi(t) > ηi

(
ti
k[i]

)
e
−
γc+βc

ρc

αc

(t−ti
k[i] )

ti
k[i] ti

k[i]−1
. . . ti

0=0
ηi(t)>ηi(0)e−

(
γc+βc

ρc
αc

)
t

.  Therefore, 

.  Incorporating  this  inequality  in  (7),  results  in

.  Hence,  

. Thus, . By induction

and moving back through all  events , , , ,  one
obtains  referring to its positive value. ■

Next,  we  obtain  the  minimum inter-event  time  (MIET)  for
leaders  which  excludes  the  Zeno-behaviour.  The  MIET  for
followers can be obtained in a similar way.

i
(∀i ∈ L)

Theorem  1: The  minimum  inter-event  time  for  leader ,
, is strictly positive and lower-bounded by

 

ti
k[i]+1− ti

k[i]≥
1
∥A∥ ln (1+∥A∥ (κ1i+ κ2i)) , (i ∈ L) (25)

where
 

κ1i=
α1

κ3i

∥∥∥∥Xi
(
ti
k[i]+1

)∥∥∥∥ κ2i=
β1

κ3i
ηi(0)e

−
(
γ1+β1

ρ1
α1

)
ti
k[i]+1

κ3i= ∥Φ1∥
(
∥BK1∥∥Xi

(
ti
k[i]+1

)
∥+ κ4i

)
κ4i=

∥∥∥∥∥∥∥∥∥BH
∑

j∈N i
L←L

ai, j(hi− h j)

∥∥∥∥∥∥∥∥∥ . (26)

ti
k[i] ti

k[i]+1
i

∥∥∥∥ei
(
ti
k[i]

)∥∥∥∥ = 0 t ≥ ti
k[i]

ei(t)
t= ti

k[i]+1
ei(t)=Λi(t)x̂i(t)

−xi(t) ėi(t)= AΛi(t)x̂i(t)−ẋi(t)
ẋi(t)= Axi(t)+BK1Xi(t)+BH

∑
j∈N i

L←L
ai, j

(hi−h j). ėi(t) = Aei(t)−BK1Xi(t)−
BH

∑
j∈N i

L←L
ai, j(hi− h j) ∥ėi(t)∥ ≤ ∥A∥∥ei(t)∥+ ∥BK1∥

∥Xi(t)∥+ κ4i t∈ [ti
k[i] , t

i
k[i]+1

)

Proof: Consider  and  as two consecutive events for
leader .  From (6),  it  holds that .  For ,  the
state  error  evolves  from  zero  until  the  next  event  is
triggered  at  which  fulfills  (6).  From 

,  it  follows  that .  From  (8)  and
(1), we obtain that 

 After simplifying one gets 
,  or 

, . It, then, follows that:
 

∥ei(t)∥ ≤
∥BK1∥∥Xi(t)∥+κ4i

∥A∥

(
e
∥A∥

(
t−ti

k[i]

)
−1

)
. (27)

t = ti
k[i]+1

∥Φ1ei
(
ti
k[i]+1

)
∥ = α1∥Xi

(
ti
k[i]+1

)
∥+β1ηi

(
ti
k[i]+1

)
∥ei

(
ti
k[i]+1

)
∥ ≥ α1

∥Φ1∥
∥Xi

(
ti
k[i]+1

)
∥+

β1

∥Φ1∥
ηi(0)e

−
(
γ1+β1

ρ1
α1

)
ti
k[i]+1

The  next  event  is  triggered  by  (6)  at  where
.  Then,  from

Lemma  1,  it  follows  that 

.  The  latter  inequality  together  with

(27)  leads  to  (25).  The  right  hand  side  of  (25)  is  strictly
positive. Therefore, the minimum time between two events is
strictly  positive.  Hence,  DEM (6)  does  not  exhibit  the  Zeno-
behaviour. ■

κ4i=0 (i ∈ F )
K2 Φ2 α2 β2 γ2

ρ2

Corollary 1: It is straightforward to show that the MIET for
followers is obtained from (25) by considering , ,
and  replacing  the  followers’ parameters , , , , ,
and .

{∥Kc∥ ,∥Φc∥ ,γc}
{αc,βc,ρc} c∈ {1,2}

One  approach  to  reduce  the  frequency  of  events  (Design
objective 1 mentioned in Section II-C), is to increase the value
of  MIET (25).  To  this  end,  one  should  limit 
and  increase  for .  On  the  other  hand,  the
formation-containment convergence rate (Design objective 2)

∥Kc∥
∥Kc∥

∥Kc∥

is  impacted  by .  Accelerating  the  convergence  rate,  for
example, tends to increase , which decreases MIET (25).
As  mentioned  previously,  increasing  the  MIET  tends  to
reduce ,  which  may  lead  to  a  conservative  convergence
rate. To cope with the trade-off between the frequency of the
events and convergence of the MAS, it  is  desirable to design
unknown  parameters  using  an  optimization  framework
(Design  objectives  3  and  4)  based  on  an  objective  function
that increases the inter-event interval for a desired convergence
rate for formation-containment. 

B.  Parameter Optimization for Leaders

K1 Φ1 α1 β1 γ1 ρ1

LL J̃1

W

In this section, we propose an optimization to co-design all
required parameters ( , , , , , and ) for the leaders.
To solve the optimization, each leader should locally estimate
the  eigenvalues  of  (included  in )  and  its  matrix  of
eigenvectors  as a preliminary step. These eigenparameters
can be estimated in a distributed fashion using [40].

hi

ζ1

P∈Rn×n>0 Φ̃∈Rn×n>0 Ω∈Rm×n α̃ β̃ γ̃ ρ̃

τ1 τ2 θc 1 ≤ c ≤ 7

Theorem 2: Let the formation gain H and formation vectors
 satisfy  the  formability  condition  (15).  Given  (15)  and  a

desired  convergence  rate ,  if  there  exist  matrices
, , , positive scalars , , , ,

, , and  ( ), satisfying the following optimization:
 

min F1 =

7∑
c=1

θc (28)

s.t.
 

Ξ =


Ξ11 J̃1W̃⊗BΩ J̃1⊗ P 0
∗ −IM ⊗ Φ̃ 0 IM ⊗ P
∗ ∗ −τ1I 0
∗ ∗ ∗ −τ2I

 < 0

π1 = 1−2γ̃+2β̃+2ζ1 < 0
π2 = 4α̃+2ρ̃+ (−2+τ1) < 0

π3 = (4α̃+2ρ̃)J̃2
1 + (−2+τ2)IM−1 < 0[

θ1I I
∗ P

]
> 0

[
−θ2I Φ̃

∗ −I

]
< 0

[
θ3 1
∗ α̃

]
> 0[

θ4 1
∗ β̃

]
> 0

[
−θ5 γ̃
∗ −1

]
< 0

[
θ6 1
∗ ρ̃

]
> 0[

−θ7I Ω

∗ −I

]
< 0 (29)

Ξ11= IM−1⊗ (PAT + AP)+ J̃1⊗BΩ+ ( J̃1⊗BΩ)T+

2ζ1IM−1⊗P
where 

, then design parameters for leaders are computed as
 

K1 =ΩP−1 Φ1= (P−1Φ̃P−1)1/2 α1=
√
α̃

β1=
√
β̃ γ1= γ̃ ρ1=

√
ρ̃.

(30)

Using design parameters  (30),  system trajectories  converge
at a rate which satisfies the following inequality:
 

λmin(P−1)ψT
L(t)ψL(t)+ ηT

L(t)ηL(t) ≤ µe−2ζ1t (31)

µ = λmax(P−1)ψT
L(0)ψL(0)+ ηT

L(0)ηL(0)
F1

where . The following
bounds are guaranteed by minimizing : 
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∥K1∥≤θ1
√
θ7 ∥Φ1∥≤θ1θ1/42 α1≥

1
√
θ3
β1≥

1
√
θ4

γ1 ≤
√
θ5 ρ1≥

1
√
θ6
. (32)

Proof: The proof is included in Appendix A. ■ 

C.  Parameter Optimization for Followers

K2 Φ2 α2 β2 γ2 ρ2

LF LF
Lest= [LF LFL;0 0]

Lest

In  the  following  theorem,  we  co-design  all  required
parameters ( , . , , , and ) for the followers. The
following  optimization  is  based  on  the  knowledge  of  the
eigenvalues  and  eigenvectors  of .  The  eigenvalues  of 
are  equal  to  non-zero  eigenvalues  of .
The eigenvalues of  can be computed by the followers in a
distributed fashion using [40].

ζ2
P∈Rn×n>0 Φ̃∈Rn×n>0 Ω∈Rm×n α̃ β̃ γ̃ ρ̃

τ1 τ2 θc 1 ≤ c ≤ 7

Theorem 3: Let  the  formability  condition  (15)  hold.  Given
(15) and a desired convergence rate , if there exist matrices

, , , positive scalars , , , ,
, ,  and ,  ( ),  satisfying  the  following

optimization1:
 

min F2 =

7∑
c=1

θc (33)

s.t.
 

Ξ =


Ξ11 J2V−1⊗BΩ IN⊗P 0
∗ −IN ⊗ Φ̃ 0 IN⊗P
∗ ∗ −τ1I 0
∗ ∗ ∗ −τ2I

< 0

π1=1−2γ̃+2β̃+2ζ2 < 0
π2=4α̃+2ρ̃+ (−2+τ1) < 0

π3= (4α̃+2ρ̃)J2
2 + (−2+τ2)IN <0[

θ1I I
∗ P

]
>0

[
−θ2I Φ̃

∗ −I

]
<0

[
θ3 1
∗ α̃

]
>0[

θ4 1
∗ β̃

]
>0

[
−θ5 γ̃
∗ −1

]
<0

[
θ6 1
∗ ρ̃

]
>0[

−θ7I Ω

∗ −I

]
<0 (34)

Ξ11= IN ⊗ (PAT + AP)+ J2⊗BΩ+ (J2⊗BΩ)T +2ζ2IN

⊗P
where 

, then design parameters for followers are computed as:
 

K2 =ΩP−1 Φ2 = (P−1Φ̃P−1)1/2 α2 =
√
α̃

β2 =

√
β̃ γ2 = γ̃ ρ2 =

√
ρ̃. (35)

F2The following bounds are guaranteed by minimizing :
 

∥K2∥≤θ1
√
θ7 ∥Φ2∥≤θ1θ1/42 α2≥

1
√
θ3
β2≥

1
√
θ4

γ2 ≤
√
θ5 ρ2≥

1
√
θ6
. (36)

   Proof: The proof is included in Appendix B. ■

Based  on  Theorems  2  and  3,  the  proposed  formation-
containment control using dynamic event-triggered mechanism
(FCC/DEME) is summarized in Algorithm 1.

LFL
Remark  6: We  note  that  the  parameter  design  stage  in

FCC/DEME  is  independent  of .  Therefore,  the
communication  topology  between  the  leaders  and  followers
can change during the formation-containment process without
requiring  a  re-design  of  the  control  and  event-triggering
parameters. In other words, the leader-to-follower transmission
can be performed by different leaders at  each period of time.
This  prolongs  the  leaders’ communication  energy  resources
since one subset of leaders can transmit to the followers for a
certain  time  interval.  Then,  this  subset  ceases  the  leader-to-
follower  transmission  and  another  subset  takes  the
responsibility of transmitting to the followers.

Algorithm 1 FCC/DEME

I(a) Parameter Design (Leaders): D1–D3
H

hi

D1.  Formation  gain  is  selected  such  that  the  formability
condition (15) is satisfied for formation vectors .

LL
J̃1 W̃

D2.  Each  leader  uses  a  distributed  approach  such  as  [40],  [41]  to
locally  estimate  eigenvalues  and  eigenvectors  of .  Then,  they
construct  and  following Section III-B.

ζ1D3. Each leader solves optimization (28) for an agreed value of .
The  control  gain  and  dynamic  event-triggering  parameters  are
computed from (30).

I(b) Parameter Design (Followers): D1 and D2

LF

D1. Each follower uses a distributed approach [40], [41] to locally
estimate eigenvalues and eigenvectors of .

ζ2D2.  Followers  solve  optimization  (33)  for  an  agreed  value  of .
The control gain and event-triggering parameters are computed from
(35).

II Execution: E1 and E2
xi(0)E1. Leaders and followers transmit their initial state values  to

their neighbourhoods.

hi

E2.  Using  designed  parameters  the  states  of  the  leaders  approach
the  desired  formation  specified  by  formation  vectors .  The
followers achieve the event-triggered containment.
 

V.  Simulations

YALMIP

In  this  section,  we  conduct  simulations  to  evaluate  the
performance  of  the  proposed  formation-containment
implementation.  The  parser  and  SDPT3  solver  are
used to solve the proposed optimizations.

1) Multi-Agent System Dynamics: We test FCC/DEME for a
MAS comprising of 4 leader and 6 follower robots as shown
in Fig. 3. The dynamics of each robot [42] is
 

˙̄xi= f (x̄i)+ B̄ūi, (1 ≤ i ≤ 10) (37)
where
 

x̄i=
[
rx,i,ry,i, θi,vi,ωi

]T

f (x̄i) = [vi cos(θi),vi sin(θi),ωi,0,0]T

B̄ =

 0 0 0 0
1
J

0 0 0
1
m

0


T

, ūi=
[
fi, τi

]T .

  

Ξ

Ξ

1 To  improve  comprehension,  common  notation  used  for  leaders  and
followers is intentionally kept the same in Theorems 2 and 3. For example, 
in Theorem 2 corresponds to the constraint  matrix for the leaders.  Likewise,

 in  Theorem 3 corresponds  to  the  constraint  matrix  for  the  followers.  The
difference  between  them is  evident  from the  context  where  the  symbols  are
used.
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i rx,i ry,i

θi vi ωi

τi fi m=
10.1 J=0.13

For robot , parameters  and  are the inertial positions;
 is  the  orientation;  is  the  linear  speed;  is  the  angular

speed;  is  the  applied  torque;  is  the  applied  force; 
 kg  is  the  mass;  and  kg •m2 is  the  moment  of

inertia [42].
We  use  the  network  topology  shown  in Fig. 1 which  is

represented by the partitioned Laplacian matrices (3). It holds
that
 

J̃1= diag(2,2,4)

J2 = diag(4.613,3.808,3.258,0.387,1.192,1.742)

W̃ =

 0.707 0 −0.707 0
0 0.707 0 −0.707
−0.5 0.5 −0.5 0.5



V−1 =



0.354 0.261 −0.300 −0.381 0.524 −0.544

0.216 0.355 0.064 −0.707 −0.472 0.317
0.425 −0.413 0.565 −0.046 −0.299 −0.488

−0.381 −0.544 −0.524 −0.354 −0.300 −0.261

0.707 −0.317 −0.472 0.216 −0.064 0.355

−0.046 −0.488 0.299 −0.425 0.565 0.413


.

The formation-containment objective in this example is that
the 4 leaders in (37) form a regular square and the 6 followers
merge within the square form by the leaders.

2) Feedback Linearization: As shown in [42], robot (37) is
state feedback linearizable.  To this  end,  denote the following
variables:
 

x1,i=rx,i+Lcos(θi) x2,i=ry,i+Lsin(θi)
x3,i=vi cos(θi)−Lωi sin(θi) x4,i=vi sin(θi)+Lωi cos(θi)
x5,i=θi (38)

L=0.12where  m is an internal distance in the structure of the
robot  as  shown in Fig. 3.  Now,  consider  the  following linear
system:
 

ẋi = Axi+Bui (1 ≤ i ≤ 10), (39)
xi=

[
x1,i, x2,i, x3,i, x4,i

]Twhere  and
 

A =


0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0

 B =


0 0
0 0
1 0
0 1

 . (40)

iThe feedback linearizing control for robot  is

 

ūi=


1
m

cos(θi) −L
J

sin(θi)

1
m

sin(θi)
L
J

cos(θi)


−1

×
ui−

 −viωi sin(θi)−Lω2
i cos(θi)

viωi cos(θi)−Lω2
i sin(θi)

 . (41)

Following [42], the states of actual system (37) is obtained
from the states of linear system (39) as:
 

rx,i= x1,i−Lcos(x5,i) ry,i= x2,i−Lsin
(
x5,i

)
θi= x5,i vi=

1
2

x3,i cos
(
x5,i

)
+

1
2

x4,i sin
(
x5,i

)
ωi= −

1
2L

x3,i sin
(
x5,i

)
+

1
2L

x4,i cos
(
x5,i

)
(42)

ẋ5,i= −
1

2L
x3,i sin

(
x5,i

)
+

1
2L

x4,i cos
(
x5,i

)
ui

where .  To  solve
formation-containment  for  the  nonlinear  MAS  (37),  one  can
design  a  control  protocol  for  linear  system  (39)  with  control
input . Trajectories of system (37), then, follows (42) if the
feedback linearizing control (41) is applied.

3)  Formation  Vector  and  Formation  Gain: As  specified
previously,  the  4  leaders  in  (37)  are  supposed  to  form  a
regular  square.  According to  Definition 1,  when formation is
achieved it holds that
 

lim
t→∞

(xi−xi+1) =hi−hi+1, (1 ≤ i ≤ M−1). (43)

hi M
M

d (0,0) pi= (pi,x, pi,y)
pi,x=d cos(2πi/M) pi,y=d sin(2πi/M)

(1 ≤ i ≤ M) i
x1,i x2,i i

x3,i= x3, j= x̄3 x4,i= x4, j= x̄4
1 ≤ i, j ≤ M i

To  compute  formation  vectors ,  we  remind  that  the 
vertices  of  a  2-dimensional -sided  regular  polygon  with
edge ,  centered  at ,  can  be  given  by ,
where  and  for

.  We  assume  that  the  position  states  of  leader 
(i.e.,  and )  converge  to  vertice  of  the  square.
Additionally,  the  velocity  states  of  all  leader  converge  to
constant  values  (i.e.,  and ,

). Therefore, the steady-state for leader  converges
to the following vector:
 

lim
t→∞

xi=
[
px,i, py,i, x̄3, x̄4

]T
. (44)

The following equality holds from (43) in the steady state:
 [

px,i, py,i, x̄3, x̄4
]T −

[
px,i+1, py,i+1, x̄3, x̄4

]T
=hi− hi+1 (45)

(1 ≤ i ≤ M−1)
h1=[0,0,0,0]T
for .  Based  on  (45)  and  considering

, the remaining formation vectors are computed
iteratively as follows:
 

hi+1=hi− bi, (1 ≤ i ≤ M−1) (46)
biwhere  is the left-hand side of (45) and equals

 

bi=d
[
cos

2πi
M
−cos

2π(i+1)
M

,sin
2πi
M
−sin

2π(i+1)
M

,0,0
]T

.

M=4 d=3
d=3

A
∑

j∈N i
L←L

(
hi− h j

)
=0

(1 ≤ i ≤ 4)
H=0

H=0

with  and ,  the leaders  in  this  example will  form a
regular square with an edge of  m. From (40) and (46), it
is  straightforward  to  show  that ,

,  which  implies  that  the  formability  condition  (15)
holds  with .  Therefore,  the  formation  gain  in  (8)  is
considered as .

 

Hand position
(x, y)

(rx, ry)

x

y

θ

L

 
Fig. 3.     Non-holonomic mobile robot coordinates.
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ζ1=0.34)  Parameter  Design  for  Leaders: Let .  Using  the
SDPT3 solver, optimization (28) is solved which leads to the
following solution:
 

P =
[

0.0675 −0.0505
∗ 0.2057

]
⊗ I2 Φ̃ =

[
1.1849 −0.0437
∗ 1.4451

]
⊗ I2

Ω =
[
−0.0144 −0.1971

]
⊗ I2 α̃ = 0.0178

β̃ = 0.5980 γ̃ = 1.3980 ρ̃ = 0.0252 τ1 = 1.8783
τ2 = 0.0536 θ1 = 19.6111 θ2 = 2.1089 θ3 = 56.1314
θ4 = 1.6721 θ5 = 1.9545 θ6 = 39.6909 θ7 = 0.0391.

Design parameters are calculated form (30) as follows:
 

K1 = −[1.1414,1.2390]⊗ I2 Φ1 =

[
19.7233 4.8133
∗ 7.0278

]
⊗ I2

α1 = 0.1335 β1 = 0.7733 γ1 = 1.3980 ρ1 = 0.1587.

F1=121.20The value of the objective function is .

ζ2=0.3

5)  Parameter  Design  for  Followers: Next,  we  compute
design  parameters  for  the  followers.  We  solve  optimization
(33) with  which leads to the following solution:
 

P=
[

0.1844 −0.0837
∗ 0.1605

]
⊗I2 Φ̃=

[
1.6485 −0.0651
∗ 1.7888

]
⊗I2

Ω=
[
−0.0449 −0.3973

]
⊗I2 α̃=0.0134

β̃=0.5980 γ̃=1.3980 ρ̃=0.0184 τ1=1.9086
τ2=0.0544 θ1=11.3746 θ2=3.2921 θ3=74.6831
θ4=1.6721 θ5=1.9545 θ6=52.8089 θ7=0.1598.

The following design parameters are then computed:
 

K2 = −[1.7906, 3.4091]⊗ I2 Φ2 =

[
9.0799 4.6743
∗ 10.7708

]
⊗I2

α2=0.1157 β2=0.7733 γ2=1.3980 ρ2=0.1376.

F2=145.94The objective function is computed as .
x1(0) =

[−10,−4,0,0]T, x2(0) = [−6,−4,0,0]T , x3(0) = [3,−8,0,0]T,

x4(0) = [10,−2,0,0]T, x5(0) = [−5,8,0,0]T, x6(0) = [5,8,0,0]T,

x7(0) = [0,0,0,0]T, x8(0) = [3,0,0,0]T, x9(0) = [1.5,2,0,0]T

x10(0) = [3,3,0,0]T ηi(0)=1 (1 ≤ i ≤ 10)
t⋆

t⋆

6)  Formation-Containment  Implementation: Let 
  

  
  ,
,  and , .  We  use  the

following  criterion  to  determine  which  is  the  time  when
formation-containment  is  achieved.  Time  is  determined  as
follows:
 

t⋆= inf{ t | max


∥∥∥ψL(t)

∥∥∥∥∥∥ψL(0)
∥∥∥ ,

∥∥∥ψF (t)
∥∥∥∥∥∥ψF (0)
∥∥∥
 ≤δ }. (47)

t⋆

δ∥∥∥ψL(0)
∥∥∥ ∥∥∥ψF (0)

∥∥∥
t⋆

t⋆

δ=0.005

Conceptually  speaking,  time  is  the  smallest  time  when
both  the  formation for  leaders  and containment  for  followers
are  achieved  within  at  least  factor  of  the  initial
disagreements specified by  and , respectively.
This  time,  i.e., ,  is  used  as  an  index  to  compare  the
convergence rates for different examples. A larger value for 
corresponds  to  a  smaller  rate  of  convergence  and  vice  versa.
We  set  to  provide  a  high  accuracy  for  formation-

t⋆=12.72
δ=0.005

=79.70
t⋆/AE

ηi(t) (1 ≤ i ≤ 10)

ηi(t) (1 ≤ i ≤ 10)

ηi(t)

containment  achievement.  For  this  setting,  s  with
2. In Fig. 4, the trajectory of (37) is plotted where the

leaders  (shown  in  blue  color)  reach  a  regular  square  and  the
followers (shown in red color) achieve containment inside the
square.  The  leaders,  respectively,  trigger  89,  75  104,  and  69
events  shown  in Fig. 5(a).  The  number  of  events  for  the
followers  are,  respectively,  69,  76,  79,  73,  83,  and  80.  The
event  instants  for  followers  are  shown in Fig. 5(b).  The  total
average  number  of  events  (including  both  the  leaders  and
followers)  per  agent  is  AE .  We  report  the  average
inter-event  time (AIET) computed by AIET = .  In  this
example,  AIET  =  0.1596.  In  fact,  AIET  measures  the
frequency  of  events.  The  minimum  inter-event  time  (MIET)
considering both the leaders and followers is MIET = 0.007 s
in  this  example.  As  expected  from  Theorem  1,  the  MIET  is
strictly  positive  which  rules  out  the  possibility  of  the  Zeno-
behaviour. The trajectories of  , are included in
Figs. 6(a) and 6(b).  As  shown  in Figs. 6(a) and 6(b),
parameter  , provides a considerable threshold
for  (6)  and  efficiently  contributes  in  reducing  the  number  of
events.  Variable  converges  zero  and  does  not  cause
steady-state error for formation-containment.

ζ1 ζ2
ζ1 ζ2

ζ1 ζ2

7)  Impact  of  Convergence  Rates  and : In  this  section,
we  study  the  impact  of  different  values  for  and  on  the
formation-containment  features.  We  solve  (28)  and  (33)  for
the  given  values  of  and  listed  in Table I.  Then,
formation-containment  for  (37)  is  run  using  the  designed
parameters. According to Table I, we observe that:

ζ1 ζ2
t⋆

i)  With higher values for  (or ) the rate of convergence
increases  and  steadily  gets  reduced.  In  return,  the  value
AIET is also reduced which is translated to more dense event-
triggerings.

ζ1 ζ2 ∥K1∥ ∥K2∥

ui(t)

ii) Larger values for  (or ) lead to larger  (or ).
This  is  consistent  with  the  fact  that  increasing  the  desired
convergence  rate  requires  higher  values  for  the  control  input

.
ζ1 ζ2

{α1,β1,ρ1} {α2,β2,ρ2} {∥Φ1∥ ,γ1}
{∥Φ2∥ ,γ2}

iii)  Larger  values  for  (or )  lead  to  smaller  values  for
 (or ) and higher values for  (or
)  which  together  increase  the  frequency  of  the

event-triggerings  to  cope  with  the  higher  given  rate  of
convergence.  The  AIET,  in  return,  becomes  smaller  (i.e.,

 

−5

10

0r y,
 i

10
rx, i

0

5

Time (s)5−10
0

Followers
Leaders

 
Fig. 4.     Formation-containment for MAS (37).
 

  
δ=0.01

δ=0.01 t⋆=9.43
δ=0.005

 2 It  should  be  noted  that  convergence  within  1% of  the  initial  disagreement  (i.e.,  in  (47))  provides  a  satisfactory  level  of  formation-containment
convergence in MAS (37).  With ,  formation-containment is  achieved at  in this  example.  We run simulations using a higher accuracy of

 to better observe the differences between different examples.
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ζ1 ζ2higher  frequency  for  event-triggerings)  as  (or )  is
increased.

These  results  verify  the  flexibility  of  FCC/DEME  for
formation-containment  based  on  a  structured  trade-off
between  the  rate  of  convergence  and  events  frequency.  We
tested FCC/DEME for a variety of other multi-agent systems.
The  results  corroborate  the  observations  reported  in  the
aforementioned simulation. 

VI.  Conclusion

Referred  to  as  the  FCC/DEME,  this  article  proposes  a
formation-containment  control  implementation  using  the
dynamic event-triggered strategy for  multi-agent  systems.  To
achieve  formation  for  the  leaders  and  containment  for  the
followers,  we  transform  the  formation  and  containment
formulations  into  stability  problems  of  equivalent  systems.
The Lyapunov stability  theorem is  used to  develop sufficient
conditions  to  guarantee  formation-containment.  A  novel
objective function is proposed for optimal parameters design.
Namely,  the  control  gains  and  dynamic  event-triggering
parameters,  are  computed  through  a  constrained  convex

optimization  framework.  Furthermore,  it  is  verified  that  the
dynamic  event-triggering  mechanism  does  not  exhibit  the
Zeno-behavior.  Finally,  the  effectiveness  of  FCC/DEME  is
studied  through  simulations  for  non-holonomic  mobile  robot
multi-agent  systems.  Future  work  will  extend  the  dynamic
event-triggered  mechanism  to  communication  from  the
leaders to the followers. 

Appendix A
Proof of Theorem 2

tTo improve  readability,  we  remove  the  time  argument  in
the proof. We note that all global vectors used in the proof are
defined in (9).

Proof: Consider the following inequality:
 

V̇ +2ζ1 V < 0 (48)
V = V1+V2where  with

 

V1=ψ
T
L
(
IM−1⊗P−1

)
ψL V2=η

T
LηL. (49)

V1

Inequality  (48)  leads  to  the  exponential  convergence  rate
specified in (31). We obtain the time derivative for  

 

TABLE I  
{ζ1, ζ2}Impact of Different Desired Convergence Rates  on Computed Parameters and FCC Features.

Given rates Computed parameters from Opt. (28) Computed parameters from Opt. (33) Features

ζ1 ζ2 ∥K1∥ ∥Φ1∥ α1 β1 γ1 ρ1 ∥K2∥ ∥Φ2∥ α2 β2 γ2 ρ2 t⋆ AE AIET
0.00 0.00 0.8904 13.36 0.1339 0.8107 1.1573 0.1592 2.4696 9.66 0.1161 0.8107 1.1573 0.1381 19.76 86.3 0.2290

0.10 0.10 1.1307 15.59 0.1338 0.7975 1.2360 0.1591 2.9551 11.14 0.1160 0.7975 1.2360 0.1379 17.17 80.2 0.2141

0.20 0.20 1.3949 18.22 0.1336 0.7851 1.3163 0.1589 3.4106 12.81 0.1159 0.7851 1.3163 0.1378 14.93 74.5 0.2004

0.30 0.30 1.6846 21.28 0.1335 0.7733 1.3980 0.1587 3.8507 14.67 0.1157 0.7733 1.3980 0.1376 12.72 79.7 0.1596

0.40 0.40 2.0011 24.78 0.1333 0.7623 1.4811 0.1585 4.2849 16.75 0.1156 0.7623 1.4810 0.1374 11.81 88.5 0.1334

0.50 0.50 2.3465 28.75 0.1331 0.7518 1.5652 0.1583 4.7201 19.04 0.1154 0.7518 1.5652 0.1372 10.44 95.6 0.1092
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Fig. 5.     Event instants (a) for leaders; (b) for followers.
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ηi(t)Fig. 6.     Trajectory of the dynamic threshold , (a) for leaders; (b) for followers.
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V̇1 = ψ
T
L Ξ̄11ψL+2ψT

L Ξ̄12 eL (50)

where
 

Ξ̄11= IM−1⊗ (AT P−1+ P−1 A)+2J̃1⊗ P−1BK1

Ξ̄12= J̃1W̃⊗ P−1BK1.

V̇2In what follows  is expanded based on (7):
 

V̇2=2ηT
L(−γ1ηL+ρ1X̄L). (51)

ηT
L
(
ρ1X̄L

)
+

ρ1X̄
T
LηL ≤ η

T
LηL+ ρ

2
1X̄

T
LX̄L

From  Young’s  inequality,  it  holds  that 
.  We  obtain  the  following  upper-

bound for (51):
 

V̇2 ≤ (1−2γ1) ηT
LηL+ρ

2
1 X̄

T
LX̄L. (52)

The global form of (4) for leaders can be viewed as follows:
 

XL=LL⊗ In
(
ΛL x̂L−h

)
. (53)

eL = ΛL x̂L− xL z = xL− h LL =
W̃† J̃1W̃

Knowing  that , ,  and 
,  we develop the following expression from (13)  and

(53):
 

XL=
(
W̃† J̃1

)
⊗ InψL+

(
W̃† J̃1W̃

)
⊗ IneL. (54)

W̃†T W̃†= I X̄T
LX̄LConsidering that , we expand 

 

X̄T
LX̄L=X

T
LXL ≤ 2σT

1σ1+2σT
2

(
J̃2

1 ⊗ In
)
σ2 (55)

σ1=
(
W̃† J̃1

)
⊗ InψL σ2=W̃⊗ IneLwhere  and .  The following

upper-bound holds from (52) and (55):
 

V̇2 ≤ (1−2γ1)ηT
LηL+2ρ2

1σ
T
1σ1+2ρ2

1σ
T
2

(
J̃2

1⊗In
)
σ2. (56)

The following two equalities hold by definition:
 

τ−1
1

(
ψT
L
(
J̃2

1 ⊗ In
)
ψL−σT

1σ1
)
= 0 (57)

 

τ−1
2

(
eT
LeL−σT

2σ2
)
≥ 0 (58)

τ1>0 τ2>0
∥Φ1ei(t)∥ ≤ α1∥Xi(t)∥+β1ηi(t) a1 =

[∥Φ1eN+1(t)∥ , . . . ,∥Φ1eN+M(t)∥ ]T

a1 ≤ α1X̄L+β1ηL

where  and  are  decision  variables.  Based  on  (6),
it  holds  that .  Let 

.  In  a  collective  fashion  it
holds that , which is equivalent to
 

aT
1 a1=eT

L
(
IM⊗Φ2

1

)
eL ≤

(
α1X̄L+β1ηL

)T (
α1X̄L+β1ηL

)
≤ 2α2

1X̄
T
LX̄L+2β2

1η
T
LηL.

(59)
Using (55), the following expression holds from (59):

 

eT
L
(
IM⊗Φ2

1

)
eL ≤4α2

1σ
T
1σ1+4α2

1σ
T
2

(
J̃2

1 ⊗ In
)
σ2

+2β2
1η

T
LηL. (60)

ν=
[
ψT
L,e

T
L,η

T
L,σ

T
1 , σ

T
2

]T
Let .  Based  on  (50),  (56)–(58),

and (60), we re-arrange (48) as follows:
 

νT
[
Ξ̃ 0
∗ Π̃

]
ν < 0 (61)

Ξ̃=

[
Ξ̃11 Ξ̄12
∗ Ξ̃22

]
Π̃=diag(π̃1, π̃2, π̃3)where  and  and

 

Ξ̃11= Ξ̄11+τ
−1
1 J̃2

1 ⊗ In+2ζ1IM−1⊗P−1

Ξ̃22= − IM ⊗Φ2
1+τ

−1
2 IMn

π̃1=
(
1−2γ1+2β2

1+2ζ1
)

IM

π̃2=
(
2ρ2

1−τ−1
1 +4α2

1

)
IMn

π̃3= −τ−1
2 I+

(
4α2

1+2ρ2
1

) (
J̃2

1 ⊗ In
)
. (62)

Ξ̃<0 Π̃<0
Ξ̃ T = diag(IM−1⊗P, IM⊗P)

Ξ̂=

[
Ξ̂11 Ξ̂12
∗ Ξ̂22

]
< 0

Based on (61), (48) is guaranteed if  and . We pre-
and  post  multiply  inequality  by  

which results in ,
where 

Ξ̂11= IM−1⊗
(
PAT + AP

)
+2 J̃1⊗BK1 P

+τ−1
1

(
J̃1⊗ P

)2
+2ζ1IM−1⊗P

ψ̂12= J̃1W̃⊗BK1 P

ψ̂22= − IM ⊗
(
PΦ2

1 P
)
+τ−1

2 IM ⊗ P2. (63)

Ω=K1 P Φ̃= PΦ2
1 P

Ξ̂

Ξ<0
α̃=α2

1 β̃=β2
1 γ̃=γ1 ρ̃=ρ2

1

Denote  and  as  alternative  variables.
Then,  we  apply  the Schur  complement Lemma  [43]  on 
which  results  in  given  in  the  statement  of  the  theorem.
Next,  we  denote , , ,  and .  The
following inequality is also considered:
 

−τ−1
i ≤ −2+τi, i ∈ {1,2}. (64)

α̃ β̃ γ̃ ρ̃ π1<0
π2<0 π3<0

Using , , , ,  and  considering  (64),  inequalities ,
,  and  given  in  the  statement  of  the  theorem  are

obtained.  The  relations  between  design  parameters  and
decision variables are given in (30).

K1 Φ1 α1 β1 γ1 ρ1

Motivated  by  [44,  Sec.  2.2]  and  similar  to  [28],  [45],  a
linear  scalarization  method  is  used  to  decrease/increase  the
decision variables used in , , , , , and  (see (30)).
To this end, consider the following constraints:
 

P−1 < θ1I Φ̃T Φ̃ < θ2I α̃−1 < θ3 β̃−1 < θ4

γ̃2 < θ5 ρ̃−1 < θ6 ΩTΩ < θ7I (65)
θc>0 (1 ≤ c ≤ 7)

θc (1 ≤ c ≤ 7)
{
∥∥∥Φ̃∥∥∥ , γ̃,∥Ω∥} {∥P∥ , α̃, β̃, ρ̃}

{∥K1∥ ,∥Φ1∥ ,γ1}
{α1,β1,ρ1}

F1
θc

θc (1 ≤ c ≤ 7)

where  ,  are  decision  variables.  Based  on
inequalities  (65),  if  one  decreases  ,  parameters

 are  decreased  and  parameters  are
increased.  Therefore,  design  parameters  are
decreased  and  are  increased  based  on  (30).  These
together  increase  MIET  (25).  Inequalities  (32)  are  obtained
from  (65).  The  objective  function  in  (28)  minimizes  a
weighted  sum  of  the  decision  variables  with  all  weights
equal to 1. The LMIs given in (29) that include  ,
are  equivalent  to  (65)  using Schur  complement.  Once (28)  is
solved, design parameters are computed from (30). ■ 

Appendix B
Proof of Theorem 3

Proof: The proof follows the same steps given in the proof
of Theorem 2. Consider the following inequality:
 

V̇ +2ζ2 V < 0 (66)
V = V1+V2where  with

 

V1= ψ̃
T
F

(
IN ⊗ P−1

)
ψ̃F V2=η

T
F ηF . (67)
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From (23) and (67), it follows that:
 

V̇1 = ψ̃
T
F Ξ̄11 ψ̃F +2ψ̃T

F Ξ̄12 eF (68)

where
 

Ξ̄11= IN ⊗ (AT P−1+ P−1 A)+2J2⊗ P−1BK2

Ξ̄12= J2V−1⊗ P−1BK2 (69)
V̇2In what follows,  is expanded based on (7):

 

V̇2=2ηT
F

(
−γ2ηF +ρ2X̄F

)
. (70)

Similar to (52) the following condition holds from (70):
 

V̇2 ≤ (1−2γ2) ηT
F ηF +ρ

2
2 X̄

T
F X̄F . (71)

The global form of (4) for followers is given below:
 

XF =LF ⊗ InΛF x̂F + LFL⊗ InxL. (72)
eF = ΛF x̂F − xF VJ2V−1=LFConsidering , ,  and

transformation  (17),  we  develop  the  following  expression
from (72):
 

XF =ψF + (VJ2⊗ In)σ (73)
σ= (V−1⊗ In)eF VT V= I

X̄T
F X̄F

where .  Recalling  that  (symmetric
matrices have orthogonal eigenvectors), we expand 
 

X̄T
F X̄F =X

T
FXF =2ψT

FψF +2σT (J2⊗ In)2σ. (74)

The following upper-bound holds from (71) and (74):
 

V̇2 ≤ (1−2γ2) ηT
F ηF +2ρ2

2ψ
T
FψF +2ρ2

2σ
T (J2⊗ In)2σ. (75)

∥Φ2ei(t)∥ ≤ α2∥Xi(t)∥+β2ηi(t)
a1 = [∥Φ2e1(t)∥ , . . . ,∥Φ2eN(t)∥ ]T

a1 ≤ α2X̄F +β2ηF

Based  on  (6),  it  holds  that .
Let .  Collectively,  it  holds
that , which is equivalent to
 

aT
1 a1=eT

F
(
IN⊗Φ2

2

)
eF ≤

(
α2X̄F +β2ηF

)T (
α2X̄F +β2ηF

)
≤ 2α2

2X̄
T
F X̄F +2β2

2η
T
F ηF .

(76)
Using (74), the following expression holds from (76):

 

eT
F

(
IN⊗Φ2

2

)
eF ≤4α2

2ψ
T
FψF +4α2

2σ
T (J2⊗ In)2σ

+2β2
2η

T
F ηF . (77)

The following equality holds by definition:
 

τ−1
1

(
ψ̃T
F ψ̃F −ψ

T
FψF

)
= 0 (78)

 

τ−1
2

(
eT
F eF −σTσ

)
≥ 0 (79)

τ1>0 τ2>0 ν=[
ψ̃T
F ,e

T
F ,η

T
F ,ψ

T
F ,σ

T
]T

where  and  are  decision  variables.  Let 
. Based on (68), (75), and (77)–(79), we

re-arrange (66) as follows:
 

νT
[
Ξ̃ 0
∗ Π̃

]
ν < 0 (80)

Ξ̃=

[
Ξ̃11 Ξ̄12
∗ Ξ̃22

]
Π̃=diag(π̃1, π̃2, π̃3)where  and  and

 

Ξ̃11= Ξ̄11+τ
−1
1 INn+2ζ2IN⊗P−1

Ξ̃22= − IN ⊗Φ2
2+τ

−1
2 INn

π̃1=
(
1−2γ2+2β2

2+2ζ2
)

IN

π̃2=
(
2ρ2

2−τ−1
1 +4α2

2

)
INn

π̃3= −τ−1
2 INn+

(
4α2

2+2ρ2
2

) (
J2

2 ⊗ In
)
. (81)

Following  the  same  steps  given  in  (63)–(65)  leads  to  the
LMIs  given  in  the  statement  of  the  Theorem.  The  proposed
objective  function  (33)  follows  the  same  logic  explained  in
Theorem 2 and that completes the proof. ■
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