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   Abstract—Filtering is a recursive estimation of hidden states of
a  dynamic  system  from  noisy  measurements.  Such  problems
appear  in  several  branches  of  science  and  technology,  ranging
from  target  tracking  to  biomedical  monitoring.  A  commonly
practiced approach of filtering with nonlinear systems is Gaussian
filtering.  The  early  Gaussian  filters  used  a  derivative-based
implementation,  and  suffered  from  several  drawbacks,  such  as
the smoothness requirements of system models and poor stability.
A derivative-free numerical approximation-based Gaussian filter,
named the unscented Kalman filter (UKF), was introduced in the
nineties,  which  offered  several  advantages  over  the  derivative-
based Gaussian filters.  Since the proposition of  UKF, derivative-
free  Gaussian  filtering  has  been  a  highly  active  research  area.
This  paper  reviews  significant  developments  made  under
Gaussian  filtering  since  the  proposition  of  UKF.  The  review  is
particularly  focused  on  three  categories  of  developments:  i)
advancing  the  numerical  approximation  methods;  ii)  modifying
the  conventional  Gaussian  approach  to  further  improve  the
filtering performance; and iii) constrained filtering to address the
problem  of  discrete-time  formulation  of  process  dynamics.  This
review  highlights  the  computational  aspect  of  recent
developments in all three categories. The performance of various
filters  are  analyzed  by  simulating  them  with  real-life  target
tracking problems.
    Index Terms—Bayesian  framework,  cubature  rule-based  filtering,
Gaussian  filters,  Gaussian  sum  and  square-root  filtering,  nonlinear
filtering, quadrature rule-based filtering, unscented transformation.
 

I.  Introduction

THE modern era  of  science  and technology has  witnessed
huge  applications  requiring  state  estimations  from  noisy

measurements,  e.g.,  target  tracking,  stochastic  modeling,
industrial  diagnosis,  and  prognosis  etc.  [1].  Thanks  to  the
filtering algorithms [1]–[5], which offer an efficient recursive
state  estimation  tool.  Filtering  algorithms  have  helped  in  the
modernization  of  several  domains,  such  as  space  technology
[1],  medical  [6],  finance  and  economics  [7],  weather
monitoring [8], etc.

The  Bayesian  framework  [9],  [10]  is  a  common  choice
among  the  practitioners  dealing  with  real-life  estimation  and
filtering problems. It gives a probabilistic estimate of states by

formulating  prior  and  posterior  probability  density  functions
(pdf)  [9],  [10].  An  analytical  simplification  is  perceived  by
analyzing these pdfs numerically, and the Gaussian filters [1],
[10]  are  most  popular  in  this  practice  because  of  their  high
estimation accuracy at  low computational cost.  The Gaussian
filters approximate the pdfs (prior and posterior) as Gaussian,
and characterize them with mean and covariance.

Researchers  and  industrial  practitioners  engaged  with
estimation  applications  would  be  grateful  to  Rudolph  E.
Kalman,  who  developed  an  optimal  state  estimation  and
filtering technique [11] for linear systems with white Gaussian
noises.  In  the  filtering  literature,  this  technique  is  popularly
known  as  Kalman  filter  [1]–[4].  The  Kalman  filter  can  be
implemented  with  several  linearly  approximated  filtering
problems in different domains, like in target tracking [12] and
communication  systems  [13].  However,  the  linearity
constraint  restricts  its  application  with  many  more  practical
problems,  where  the  linear  approximation  gives  a  poor
characterization  of  system  dynamics.  A  nonlinear  filter,
named  as  extended  Kalman  filter  (EKF)  [1],  [3],  was
developed  in  the  latter  half  of  the  sixties.  It  introduced  a
derivative-based  local  linearization  of  system  dynamics,  and
propagated  the  mean  and  covariance  through  the  locally
linearized system models. It  was further modified to improve
the  filtering  performance  by  introducing  several  variants
[14]–[16].  However,  the  derivative-based  local  linearization
introduces  many  disadvantages  to  the  EKF  and  its  variants,
like  the  smoothness  requirement  for  systems  model,  poor
estimation  accuracy,  and  low  convergence  rate  [1]–[3].
Despite all these drawbacks, the EKF and its variants were the
only alternative for more than three decades.

×

A  derivative-free  filtering  method  was  introduced  in  the
nineties,  which  is  known  as  the  unscented  Kalman  filter
(UKF) [17]–[20].  The UKF approximates the desired pdfs as
Gaussian,  and  characterizes  them with  mean  and  covariance.
Although  the  Gaussian  approximation  of  unknown  pdfs
encounters an error, it is more accurate compared to the EKF
[17]–[20]. Furthermore, the mean and covariance are obtained
from the first and second moments. The moment computation
encounters  an  integral  of  the  form “nonlinear  function 
Gaussian  distribution.” Such  integrals  are  generally
intractable, and approximated with numerical methods. These
methods approximate the integrals up to a particular order of
Taylor  series  expansion.  Thus,  the  moment  of  higher-order
terms  is  another  source  of  approximation  error  or  the
estimation error.  Full  expression of  mean in  terms of  higher-
order  moments  is  derived  in  Appendix  A.  Nevertheless,  it
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finds  other  sources  of  errors,  such  as  noise  Gaussian
approximation  and  discrete-time  formulation  of  process
models, which appear for the EKF as well.

The  UKF  implements  an  unscented  transformation-based
numerical  method  of  integral  solving.  Using  the  same
numerical method, many variants of UKF [21]–[27] appear in
the  literature.  The  derivative-free  filtering  approach  of  UKF
offers  several  advantages,  such  as  better  stability  and
improved  estimation  accuracy.  Subsequently,  the  research
continued  further,  and  several  derivative-free  filtering
methods were developed to further improve the performance.
The  aforementioned  Gaussian  filtering  is  a  popular  class  of
numerical  approximation-based  derivative-free  filtering
methods  (particle  filtering  is  another  popular  class  of
derivative-free  filters;  however,  this  review  is  particularly
focused on the Gaussian filters).

The  Gaussian  filtering  literature  after  the  development  of
UKF  can  be  classified  in  three  categories:  i)  advancing
numerical approximation accuracy; ii) modifying the Gaussian
filtering  approach  against  several  limitations;  and  iii)
removing  the  constraints  on  conventional  Bayesian
framework.  This  paper  reviews  the  computational  aspects  of
significant developments in all three categories.

In the first category, the numerical approximation accuracy
of  intractable  integrals  has  been  remarkably  improved  by
updating the numerical approximation methods. The improved
accuracy  of  numerical  approximation  of  intractable  integrals
leads to accurate characterization of original pdfs, resulting in
an  enhanced  estimation  accuracy.  The  literature  in  this
category  can  be  further  classified  into  two  sub-categories:
cubature  rule-based  filters  and  quadrature  rule-based  filters.
Cubature  rule-based  filtering  begins  with  cubature  Kalman
filter  (CKF)  [28],  which  is  further  modified  with  several
variants [29]–[31]. Other important developments in this sub-
category  are  cubature  quadrature  Kalman  filter  (CQKF)  and
its  variants  [32]–[34],  high-degree  CKF  (HDCKF)  [35]  and
high-degree  CQKF  (HDCQKF)  [36].  The  objective  of
sequentially  developed  filters  is  to  improve  the  estimation
accuracy.  However,  the  computational  burden  is  also
increased with every development. Under the quadrature rule-
based filtering, the literature begins with Gauss-Hermite filter
(GHF)  [37],  [38]  and  its  variants  [39]–[41].  The  estimation
accuracy of GHF is better than the cubature rule-based filters.
However,  it  failed  to  attract  the  practitioners  due  to  its  high
computational  burden.  A  series  of  further  developments,
namely the sparse-grid GHF (SGHF) [42]–[44], multiple GHF
(MGHF)  [45],  [46],  and  adaptive  SGHF  (ASGHF)  [47],
appeared  to  reduce  the  computational  burden.  Another
interesting  development  on  improving  the  numerical
approximation  accuracy  is  transformed  filtering  [27],  [34],
[48],  [49],  where  the  sample  points  used  for  numerical
approximation are orthogonally transformed. The transformed
filtering  could  enhance  the  estimation  accuracy  without
adding extra computational burden.

The  second  category  reformulates  the  Gaussian  filtering
approach  in  different  aspects.  The  square-root  filtering  [22],
[33],  [39],  [50]–[52],  and  the  Gaussian-sum  filtering  [30],
[53]–[55]  are  popular  developments  in  this  category.  The

objective  of  square-root  filtering  is  to  preclude  the  positive-
definite  requirement  of  error  covariance  matrix  (essentially
required in traditional Gaussian filters). It does not impact the
estimation accuracy, but extends the filter applicability to the
systems where the positive-definiteness is not guaranteed. The
Gaussian-sum  filtering,  on  the  other  hand,  improves  the
estimation accuracy by approximating the unknown pdfs with
multiple Gaussian components instead of a single Gaussian.

In the third category, our discussion is focused on removing
the  constraint  of  discrete-time  formulation  of  process
dynamics.  Under  this  constraint,  the  process  dynamics  is
approximated  as  discrete,  though  it  generally  comes  from
continuous physical laws. In many problems (especially, if the
sampling  interval  is  large),  this  approximation  is  significant
enough  to  harm  the  estimation  accuracy.  A  continuous-
discrete filtering technique [56]–[60] is developed to mitigate
this approximation.

The  literature  witnesses  other  review  papers  pertaining  to
the  Gaussian  filtering,  such  as  [61]  and  [62].  However,  the
scope  of  this  review  is  widely  different  from  them,  more
extensive,  and  more  recent.  Reference  [61]  was  published  in
2012, while many of the filtering techniques discussed in this
review  were  introduced  after  that.  Reference  [61]  discusses
the  computational  aspects  of  the  UKF  only  (out  of  all  the
filtering  techniques  reviewed  in  this  paper),  though  a  very
brief  discussion  about  the  idea  of  CKF  and  GHF  is  also
provided. It provides no discussion about square-root filtering,
Gaussian-sum  filtering,  continuous-discrete  filtering,  and
filtering with transformed sample points. The survey in [62] is
focused  more  on  the  EKF  and  its  extensions,  though  it  puts
some highlight on the UKF and the Gaussian-sum filtering.

The  remaining  part  of  this  paper  is  organized  as  follows:
Section  II  revisits  the  conventional  Bayesian  framework  and
the  Gaussian  filtering  approach.  A brief  discussion  about  the
UKF  formulation  is  provided  in  Section  III.  Cubature  rule-
based filters  are  discussed in  Section IV,  followed by a  brief
discussion  on  quadrature  rule-based  filters  in  Section  V.
Section  VI  highlights  the  effect  of  orthogonal  transformation
over  sample  points.  Sections  VII  and  VIII  describe  square-
root filtering and Gaussian-sum filtering, respectively. Section
IX  introduces  the  continuous-discrete  filtering  method.  In
Section X, the Gaussian filters are implemented with real-life
nonlinear  filtering  problems,  and  their  performance  is
analyzed  with  simulation  results.  Finally,  discussions  and
conclusions  are  drawn  in  Section  XI.  A  moment-based
derivation  of  estimates  is  provided  in  Appendix  A,  followed
by  a  brief  discussion  on  Gaussian  sigma  point  Kalman
filtering algorithm in Appendix B. 

II.  Bayesian Framework of Filtering

The  dynamic  state  space  model  of  a  system  is  represented
with state and measurement equations, as [1]
 

xk = ϕk−1(xk−1)+ηk (1)
 

yk = γk(xk)+vk (2)
xk ∈ Rn yk ∈ Rd

kth k ∈ {0,1, . . . } ϕk : xk−1→ xk

where    and    are  state  and  measurement
variables  at  the  instant; ,  and
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γk : xk→ yk ηk ∈ Rn vk ∈ Rd are nonlinear functions,    and    are
process and measurement noises.

xk
yk

P(xk |y1:k) yk

The  filtering  is  a  recursive  estimation  of  state  on  the
receipt of a new measurement . The Bayesian framework is
a  conceptual  solution,  which  offers  a  probabilistic
interpretation.  Therefore,  the objective is  to construct  the pdf

 as soon as  is  received.  It  is  implemented in two
steps:  time  update  and  measurement  update,  which  are  also
known as prediction and update.

xThe time update step reveals how the conditional pdfs of 
propagates  in  time.  It  is  performed  using  Chapman-
Kolmogorov equation, which gives [1], [62]
 

P(xk |y1:k−1) =
w

P(xk |xk−1)P(xk−1|y1:k−1)dxk−1. (3)

P(xk |y1:k−1)
P(xk |y1:k−1)

yk
P(xk |y1:k)

 is  commonly  known  as  the  prior  pdf.  The
measurement update corrects the prediction  using
the  noisy  information  received  from  the  measurement .
Subsequently, it constructs the pdf  as [1], [62]
 

P(xk |y1:k) =
1
ck

P(yk |xk)P(xk |y1:k−1) (4)

P(yk |xk)
ck

where  is  measurement  likelihood  obtained  from  (2)
and  is a normalization constant, given as [1], [62]
 

ck =
w

P(yk |xk)P(xk |y1:k−1)dxk. (5)

P(xk |y1:k) is popularly known as the posterior pdf.
P(xk |y1:k−1)

P(xk |y1:k) P(xk|k−1) P(xk|k)
The remaining part of this paper represents  and

 as  and , respectively.
The  Bayesian  framework,  being  a  probabilistic  approach,

fails  to  deliver  a  decisive  solution.  Therefore,  a  decisive
solution  is  derived  by  analytical  simplification  of  the  pdfs.
The Gaussian filtering is a commonly accepted solution due to
its  high  estimation  accuracy  at  low computational  costs.  The
interest of this paper is limited to sigma point-based Gaussian
filters,  which  is  most  commonly  practiced  in  real-life.  It
encounters  intractable  integrals  during  the  filtering,  and
approximates them numerically. The numerical approximation
of integral is based on deterministically chosen sample points,
known  as  sigma  points,  and  associated  weights.  A  brief
discussion on sigma point-based Gaussian filters, also known
as  Gaussian  sigma  point  Kalman  filtering,  is  provided
herewith.

In general,  the Gaussian filtering is  based on the following
assumptions:

i)  The prior and posterior pdfs are assumed to be Gaussian
[62]–[64], i.e.,
 

P(xk|k−1) ≈ ℵ(xk; x̂k|k−1,Pk|k−1) (6)
 

P(xk|k) ≈ ℵ(xk; x̂k|k,Pk|k) (7)
and
 

P(yk|k−1) ≈ ℵ(yk; ŷk|k−1,P
yy
k|k−1) (8)

ℵ x̂k|k−1 x̂k|k
xk Pk|k−1 Pk|k

xk ŷk|k−1 Pyy
k|k−1

yk

where  represents  Gaussian  distribution,  and  are
prior  and  posterior  estimates  of ,  and  are  prior
and  posterior  covariances  of ,  and,  and  are
estimate and covariance of .

ηk vkii)  The  noises,  and ,  are  assumed  to  be  uncorrelated,

Q R
E[ηk] = E[vk] = E[ηkvT

k ] = 0 ηk ∼ ℵ(0,Q)
vk ∼ ℵ(0,R) Q = E[ηkη

T
k ] R = E[vkvT

k ]

white and Gaussian with zero mean and covariance  and ,
respectively.  Thus, , 
and , where  and .

The time update and measurement update steps for Gaussian
sigma point Kalman filtering are discussed below. 

1)  Time Update

x̂k|k−1 Pk|k−1

This step determines the prior estimate and covariance, i.e.,
 and , based on (3), which gives [1], [28], [38], [62]

 

x̂k|k−1 ≈
w
ϕk−1(xk−1)ℵ(xk−1; x̂k−1|k−1,Pk−1|k−1)dxk−1 (9)

 

Pk|k−1 ≈
w
ϕk−1(xk−1)ϕk−1(xk−1)Tℵ(xk−1; x̂k−1|k−1,

Pk−1|k−1)dxk−1− (x̂k−1|k−1)(x̂k−1|k−1)T +Q. (10)
 

2).  Measurement Update
x̂k|k−1

Pk|k−1 yk
x̂k|k Pk|k

x̂k|k Pk|k
ŷk|k−1 Pyy

k|k−1
Pxy

k|k−1
Kk

This  step  updates  the  prior  estimate  and  covariance, 
and , using the noisy information received from . The
outcome is the posterior estimate and covariance,  and ,
respectively.  The  computation  of  and  requires  the
estimate  and  covariance  of  measurement  (  and ),
the  cross-covariance  between  state  and  measurement  ( )
and  a  Kalman  gain  ( ),  which  are  computed  as  [1],  [28],
[38], [62]
 

ŷk|k−1 = E[(γk(xk)+vk) |y1:k−1]

≈
w
γk(xk)ℵ(xk; x̂k|k−1,Pk|k−1)dxk (11)

 

Pyy
k|k−1 = E[(yk − ŷk|k−1)(yk − ŷk|k−1)T ]

≈
w
γk(xk)γk(xk)Tℵ(xk; x̂k|k−1,Pk|k−1)dxk

− (ŷk−1|k−1)(ŷk−1|k−1)T +R (12)
 

Pxy
k|k−1 = E[(xk − x̂k|k−1)(yk − ŷk|k−1)T ]

≈
w

xkγk(xk)Tℵ(xk; x̂k|k−1,Pk|k−1)dxk

− (x̂k|k−1)(ŷk|k−1)T (13)
and
 

Kk = Pxy
k|k−1(Pyy

k|k−1)−1. (14)

x̂k|k Pk|kSubsequently,  and  are  obtained  as  [1],  [28],  [38],
[62]
 

x̂k|k = x̂k|k−1+Kk(yk − ŷk|k−1) (15)
 

Pk|k = Pk|k−1−KkPyy
k|k−1KT

k . (16)

A  flow  chart  for  implementing  the  Gaussian  filtering
approach is shown in Fig. 1.

The  implementation  of  Gaussian  filtering  requires  the
solution of integrals in (9)–(13), which are mostly intractable
for  nonlinear  systems.  The  Gaussian  sigma  point  Kalman
filtering  approximates  the  integrals  numerically  using
deterministically  chosen  sample  points  and  associated
weights. The integrals follow a general form of:
 

I( f ) =
w

f (x)ℵ(x; x̂, P)dx (17)

x x̂ Pwhere  is  a random variable with mean  and covariance ,
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f : Rn→ Rn x

ℵ(x;0n×1, In) In
0n×1 n

I0( f )

and  is  a  general  nonlinear  function  of .  The
numerical  methods  used  for  integral  approximation  are
generally  defined  for  zero  mean  and  unity  covariance
Gaussian, i.e., for  with  being a unit matrix and

 being an -dimensional array of all zero element. Let us
denote this integral as , i.e.,
 

I0( f ) =
w

f (x)ℵ(x;0n×1,In)dx. (18)

ξ W
I0( f )

A numerical method, with  and  being the set of sample
points and weights, respectively, approximates  as
 

I0( f ) ≈
Ns∑
i=1

Wi f (ξi) (19)

Ns ξi Wi ith

ℵ(x; x̂,P)
ξ x̂ P

where  is the number of sample points, and  and  are 
sample  point  and  weight,  respectively.  The  same  numerical
method can be extended for  by simply transforming

 with mean  and covariance . Thus,
 

I( f ) ≈
Ns∑
i=1

Wi f (x̂+Σξi) (20)

ΣΣT = Pwhere . The algorithm for implementing the Gaussian
sigma point Kalman filtering is presented in Appendix B.

In  the  remaining  part  of  this  survey,  the  Gaussian  sigma
point  Kalman  filtering  is  referred  to  as  Gaussian  filtering.
However,  the readers must  take note that  the term “Gaussian
filtering” may have a broader meaning.

ξ
W

Section  I  discussed  several  Gaussian  filters,  broadly
categorized in cubature rule-based filters and quadrature rule-
based filters. These filters are different from each other mainly
in  terms  of  their  numerical  approximation  technique.  In  fact,
the  implementation  of  the  Gaussian  filters  are  mostly
identical,  except  for  the  sample  points  ( )  and  associated
weights ( ) used for approximating the intractable integrals.

Remark  1: Gaussian  filters  approximate  unknown  pdfs  as
Gaussian, which is not satisfied in most cases. Consequently,
Gaussian filters are not optimal. 

III.  Unscented Kalman Filter

2n+1

The UKF [17], [18] is the first nonlinear filter to introduce a
derivative-free  implementation  in  filtering  with  nonlinear
systems.  It  utilizes  an  unscented  transformation-based
numerical  approximation  technique  for  approximating
intractable  integrals.  The  sample  points  generated  using  the
unscented  transformation  are  commonly  known  as  sigma
points.  In  its  simplest  form,  the  unscented  transformation
generates  symmetrically  distributed  sigma  points,  as
[17], [18]
 

ξk|k(0) = x̂k|k

ξk|k(i) = x̂k|k +
( √

(n+ κ)Pk|k
)
i

ξk|k(n+ i) = x̂k|k −
( √

(n+ κ)Pk|k
)
i

(21)

i = 1,2, . . . ,n ξk|k kth
κ

( √
(n+ κ)Pk|k

)
i

where ,  is  the  set  of  sigma  points  at 
instant,  is constant (practitioner’s choice) and 

 

Measurement
system/
process

Compute the
prior mean

and covariance

Compute the mea-
surement estimate,

covariance and
cross-covariance

Compute the
Kalman gain

k
Compute the

posterior mean
and covariance

x0|0 and P0|0 at k = 1ˆ

ˆ

Previous step pa-
rameters: xk − 1|k − 1

and Pk − 1|k − 1

ˆ

xk|k − 1

ŷk|k − 1

x̂k|k

yk

Pk|k − 1

Pk|k − 1

Pk|k

yy Pk|k − 1
xy

 
Fig. 1.     Block diagram for implementing ordinary Gaussian filters.
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ith
( √

(n+ κ)Pk|k
)

κ 3−n n+ κ = 3
represents  the  column  of .  The  preferred
value  of  is ,  i.e., ,  though  it  is  not  restricted.
The weights are generated as [17], [18]
 

W(0) = κ/(n+ κ)
W(i) =W(n+ i) = 1/ (2(n+ κ)) . (22)

x̂k−1|k−1
Pk−1|k−1

x̂k|k−1 Pk|k−1
x̂k−1|k−1 Pk−1|k−1

x̂ = x̂k−1|k−1 σx =
( √

(n+ κ)Pk−1|k−1
)

The UKF generates different set of sigma points in the time
update  ((9)  and  (10))  and  measurement  update  ((11)–(16));
however,  the  associated  weights  are  unchanged.  The  sigma
points during the time update are generated using  and

.  However,  during  the  measurement  update,  they  are
generated using  and .  The expression of predicted
mean for  and  can be derived from Appendix
A by substituting  and .

α β

The UKF is further modified in scaled UKF [65] to improve
the filtering performance. The scaled UKF reshapes the sigma
points  by  introducing  two  scaling  parameters,  and ,  i.e.,
[65]
 

ξk|k(0) = x̂k|k

ξk|k(i) = x̂k|k +
( √

(n+λ)Pk|k
)
i

ξk|k(n+ i) = x̂k|k −
( √

(n+λ)Pk|k
)
i

(23)

λ = α2(n+ κ)−nwhere .  The  weights  associated  with  the
modified sigma points are reconstructed as [65]
 

W(0) = λ/(n+λ)
W(i) = λ/ (n+λ)+ (1−α2+β)
W(n+ i) = 1/ (2(n+λ)) . (24)
α 0 ≤ α ≤ 1

β

β

The parameter  ( ) controls the spread of the sigma
points,  while  reduces  the  higher-order  errors  discussed  in
Appendix A. In approximating a Gaussian pdf, as the case of
Gaussian filtering, the optimal value of  is 2.

The  unscented  transformation  approximates  up  to  second-
order  Taylor  series  expansions;  therefore,  the  higher-order
terms contribute to approximation error.

The  derivative-free  implementation  of  UKF  shows  several
advantages over the derivative-based EKF. Although both are
approximated  filtering  approaches,  the  UKF  is  intended  to
offer a higher-order of approximation. Moreover, it precludes
the  smoothness  requirement  of  system models.  Note  that  the
state  dynamics  may  consist  of  sharp  edges  and  lack  of
smoothness,  which  provide  a  large  value  for  the  derivative.
Thus, the transition matrix may become inappropriately large
and  may  cause  poor  accuracy  or  estimation  failure  for  the
EKF.  In  another  drawback  to  the  EKF,  the  measurement
update  step  propagates  the  mean  and  covariance  through
locally linearized system models.  The linearized models  may
be  significantly  mismatched  with  the  true  system  model,
especially  if  the  nonlinearity  is  high,  e.g.,  in  high  frequency
oscillatory  systems  [66],  [67].  The  UKF  precludes  this
drawback  by  propagating  the  mean  and  covariance  through
nonlinear  functions  representing  the  true  system  model.
Furthermore, it should be mentioned that a second-order EKF
[3], [14] is developed with a focus on improving the accuracy
of  EKF  to  match  with  UKF.  However,  it  has  high
computational  complexity  and  the  derivative  computation
(which requires a smooth system model) remains a concern.

With  all  the  advantages  discussed  above,  the  UKF  attracts
practitioners,  and  the  same  is  apparent  from  a  series  of
publications  [68]–[71]  available  on  its  real-life
implementation.  Moreover,  it  is  observed  that  the  unscented
transformation-based  numerical  approximation  is  not  very
accurate  compared  to  the  existing  numerical  methods  of
integral  solving.  This  leaves  a  wide  scope  for  further
development. Many of the filtering methods discussed in this
review aim to replace the unscented transformation method to
improve  numerical  approximation  accuracy,  and  thus,
improve the estimation accuracy. 

IV.  Cubature Rule-Based Filters

The  unscented  transformation,  used  in  UKF,  is  reportedly
an  inefficient  numerical  approximation  technique  given  the
existing  literature  on  numerical  approximation  methods.  An
early replacement of unscented transformation is based on the
spherical-cubature  rule,  which  forms  the  basis  for  cubature
rule-based filtering.

I( f )
The  cubature  rule-based  filters  decompose  the  intractable

integral  in  a  multivariate  spherical  integral  and  a
univariate  radial  integral.  The  spherical  integral  is
approximated  using  the  spherical-cubature  rule  [72],  [73],
while  the univariate  radial  integral  is  approximated using the
quadrature rule [74], [75]. The literature witnesses a series of
filters in this family by varying the order of spherical-cubature
rule and quadrature rule.

Decomposition of Integral
Recalling  (17),  the  intractable  integral  appears  in  the  form

of
 

I( f ) =
w

f (x)ℵ(x; x̂,P)dx

=
1

√
| P | (2π)n

w
Rn

f (x)e−(1/2)(x−x̂)T P−1(x−x̂)dx.
(25)

I( f )
x ∈ Rn

x = ΣrZ̄+ x̂ r ∈ [0,∞) Z̄
Z̄

Z̄T Z̄ = 1 xT x = r2

The  decomposition  of  is  based  on  the  spherical-radial
transformation of .  The transformation is performed by
substituting ,  where  is  the radius and 
is  a  unit  vector  representing  direction.  As  is  a  unit  vector,

 and .  The  decomposed  intergral  can  be
expressed as [28], [32], [35], [36]
 

I( f ) =
1

√
(2π)n

w ∞
r=0

w
Un

[
f (ΣrZ̄+ x̂)dσ(Z̄)

]
rn−1e−r2/2dr (26)

Un dσ(Z̄)
Un

where  is  surface  of  unit  hyper-sphere  and  is  an
elementary area over .

I0( f ) I0( f )

The  cubature  rule-based  filters  are  originally  defined  for
zero  mean  and  unity  covariance  Gaussian,  i.e.,  for
approximating . The decomposed  can be given as
 

I0( f ) ≈ 1
√

(2π)n

w ∞
r=0

w
Un

[
f (rZ̄)dσ(Z̄)

]
rn−1e−r2/2dr. (27)

The concerned spherical and radial integrals are
 

Is =
w

Un
f (rZ̄)dσ(Z̄) (28)

 

Ir =
w ∞

r=0
Isrn−1e−r2/2dr. (29)

As  discussed  earlier,  the  same  rule  can  be  generalized  for
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I( f )
x̂ P

approximating  by  transforming  the  sample  points  with
mean  and covariance . 

A.  Cubature Kalman Filter

Is Ir

The  CKF  is  the  earliest  development  under  cubature  rule-
based  filtering.  It  implements  a  third-degree  spherical-
cubature  rule  and  first-order  Gauss-Laguerre  quadrature  rule
for approximating  and , respectively. 

1)  Third-Degree Spherical-Cubature Rule
IsUsing  third-degree  spherical-cubature  rules,  could  be

approximated as [28]
 

Is ≈
2
√
πn

2nΓ(n/2)

2n∑
i=1

f (r[u]i) (30)

Γ [u]

[u] = {(1,0), (0,1), (−1,0), (0,−1)}

where  represents  the  gamma  function  and  is  a  set  of
indices representing the interstion points of unit hyper-sphere
and  coordinate  axes,  e.g.,   
for  a  2-dimensional  system.  The  readers  may  refer  to  [28],
[72], [73] for a detailed discussion on this rule. 

2)  First-Order Gauss-Laguerre Quadrature Ruler ∞
ρ=0 f (ρ)ρn−1e−ρ

2
dρThis rule states that an integral of form 

can be approximated as [28]
 w ∞

ρ=0
f (ρ)ρn−1e−ρ

2
dρ ≈ ω1 f (ρ1) (31)

ρ1 =
√

n/2 ω1 =
Γ(n/2)

2
where  and  are  sample  point  and
weight,  respectively.  The  readers  may  refer  to  [28]  for  a
detailed discussion. 

3)  Third-Degree Spherical-Radial Rule

Io( f ) Is
r =
√

2t

The CKF combines the third-degree spherical-cubature rule
with  the  first-order  Gauss-Laguerre  quadrature  rule,  and  the
combined rule  is  called the third-degree spherical-radial  rule.
To  derive  this  rule,  let  us  simplify  by  substituting 
from (30) into (27), and replacing , i.e.,
 

Io( f ) ≈ 2
2nΓ(n/2)

w ∞
t=0

 2n∑
i=1

f [
√

2tu]i

 tn−1e−t2dt. (32)

This  integral  is  in  the  form  of  (31).  Thus,  it  can  be
approximated using the first-order Gauss-Laguerre quadrature
rule, as [28]
 

Io( f ) ≈ 1
2n

 2n∑
i=1

f (
√

n[u]i)

 (33)

√
n[u]i i ∈ {1,2, . . . ,2n}where  with  are  sample  points,  named

as cubature points.

I( f )
As  discussed  earlier,  (33)  can  be  extended  for

approximating  as
 

I( f ) ≈ 1
2n

2n∑
j=1

f (x̂+Σ
√

n[u] j). (34)

The  following  are  some  important  literature  on  CKF
highlighting its potential for practical applications:

i) Reference [76] studies the convergence of CKF.
ii) Reference [28] compares CKF with UKF, and studies its

advantages over UKF.
iii)  References  [50],  [77],  and  [78]  discuss  some

applications of CKF in real-life problems.
κ = 0The  CKF  is  the  same  as  the  ordinary  UKF  with .

However,  it  is  broadly  accepted  as  it  provides  a  specific
choice of sample points and weights.  Moreover, it  introduces
a new strategy for integral approximation, which combines the
spherical and radial rules of integral approximation. This new
strategy  was  of  huge  interest  for  researchers,  leading  to
several extensions, such as HDCKF, CQKF, and HDCQKF. It
will  be  shown  in  later  discussions  that  the  accuracy  is
improved  with  every  extension,  though  the  computational
burden also increases. 

B.  High-Degree Cubature Kalman Filter

Is

Ir

The  HDCKF  [35]  implements  a  high-degree  spherical-
cubature rule [72], [79], [80] for approximating , which was
approximated with only third-degree spherical-cubature rule in
the CKF.  is approximated using the same first-order Gauss-
Laguerre  quadrature  rule  used in  CKF.  The combined rule  is
known  as  the  high-degree  spherical-radial  rule,  and  the
resulting  sample  points  are  known  as  high-degree  cubature
points. 

1)  High-Degree Spherical-Cubature Rule

Is

The  high-degree  spherical-cubature  rule  was  developed  by
Genz [72] and utilized by Jia et al. [35] in the filtering domain.
It is flexible in terms of degree (odd only) of approximation for
intractable integrals. The discussion in this review is limited to
its  implementation  in  approximating .  The  author  refers  to
[72], [79], and [80] for a detailed discussion.

2md +1 md ∈ Z+
Z+ Is

A ( )-degree spherical-cubature rule ( ,  where
 is the set of positive integers) approximates  as [35]

 

Is ≈
∑

i

wϑi f
{
ruϑi

}
(35)

ϑi = (ϑ1,ϑ2, . . . ,ϑn)i, ∀ i ∈ {1,2, . . . ,cn} cn∑n
j=1ϑ j = md

(ϑ1,ϑ2, . . . ,ϑn)i ith (ϑ1,ϑ2, . . . ,ϑn)∑n
j=1ϑ j = md

where    with  being the
number  of  possible  combinations  for  which ,
while  is the  combination of 
satisfying .  The  set  of  high-degree  cubature
points and weights are obtained as
 {

ruϑi
}
≜ {(β1ruϑ1 ,β2ruϑ2 , . . . ,βnruϑn )} (36)

 

wϑi ≜ 2−(cn−z
ϑi )

wUn

 n∏
j=1

ϑ j−1∏
k=0

Z̄2
j −u2

k

u2
ϑ j
−u2

k

dσ(Z̄)

 (37)

βi = ±1 zϑi ϑi uϑ j =
√
ϑ j/md

Z̄ j wϑir
Un

Z̄δ1
1 Z̄δ2

2 . . . Z̄δn
n dσ(Z)

Z = [Z̄1, Z̄2, . . . , Z̄n]T

where ,  is the number of zeros in , ,
and  is  a  unit  vector.  In  (37),  the  computation  of 
encounters an integral of form , where

.  An  approximated  solution  to  such
integrals is derived in [74] and [35] as
 w

Un
Z̄δ1

1 Z̄δ2
2 . . . Z̄δn

n dσ(Z̄) ≈ 2
Γ((δ1+1)/2) . . .Γ((δn+1)/2)

Γ((| δ | +n)/2)
| δ |= δ1+δ2+ · · ·+δnwhere . 

2)  High-Degree Spherical-Radial Rule
Is

I0( f )

To  derive  the  high-degree  spherical-radial  rule,  is
approximated  using  high-degree  spherical-cubature  rule
((35)), then substituted into (27) to simplify  in the form
of a radial integral given as [35]
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I0( f ) ≈ 1
√

(2π)n

w ∞
r=0

[∑
i

wϑi f
{
ruϑi

} ]
rn−1e−r2/2dr. (38)

Then,  the  radial  integral  is  then  approximated  using  the
first-order Gauss-Laguerre quadrature rule ((31)), as [35]
 

I0( f ) ≈ 1

2
√
πn

[∑
i

wϑiω1 f
{
uϑiρ1

} ]
uϑiρ1

wϑiω1

2
√
πn

∀
i ∈ {1,2, . . . ,cn}
where  and  are  sample  points  and  weights 

.
I( f )

uϑiρ1

Following  the  previous  discussion,  can  be
approximated  by  transforming  with  mean  and
covariance, i.e.,
 

I( f ) ≈ 1

2
√
πn

[∑
i

wϑiω1 f
{
x̂+Σuϑiρ1

} ]
.

md = 1Note:  represents  a  third-degree  spherical-cubature
rule, hence HDCKF reduces to CKF under this condition.

Is

Is Ir

Is

The  higher-degree  approximation  of  results  in  better
estimation  accuracy  for  the  HDCKF  compared  to  the  CKF,
but  adds  extra  sample  points,  which  also  increases  the
computational burden. Note that a higher-order approximation
is introduced only for , and the order of approximation of 
remains  unchanged.  Furthermore,  the  order  of  approximation
of  is  restricted  to  odd  orders  only.  Subsequently,  even  a
slight  improvement  in  accuracy  requires  a  two-order  jump,
requiring extra sample points. 

C.  Cubature Quadrature Kalman Filter

Ir

Is

The CQKF [32] implements a higher-order Gauss-Laguerre
quadrature rule for approximating , instead of the first-order
Gauss-Laguerre  quadrature  rule  used  in  CKF  and  HDCKF.
Moreover, it approximates  using the third-degree spherical-
cubature rule utilized in CKF. The combined rule is named as
cubature quadrature rule. 

1)  High-Order Gauss-Laguerre Quadrature Rule
n′ r ∞

ρ=0 f (ρ)ρυe−ρdρ
An -order  Gauss-Laguerre  quadrature  rule  approximates

the integral of form  as [36]
 w ∞

ρ=0
f (ρ)ρυe−ρdρ ≈

n′∑
i′=1

Ai′ f (ρi′ ) (39)

υ ρi′ Ai′ ∀ i′ ∈ {i,2, . . . ,n′}

ρi′ i′th n′

where  is  constant,  while  and    are
sample  points  and  associated  weights,  respectively.  The
sample  point  is  given  as  root  of -order  Chebyshev-
Laguerre polynomial equation [74], [81]
 

Lυn′ (ρ) = (−1)n′ρ−υeρ
dn′

dρn′ ρ
υ+n′e−ρ = 0. (40)

Ai′The weight  is obtained as
 

Ai′ =
n′!Γ(υ+n′+1)
ρi′ [L̇υn′ (ρi′ )]2

(41)

L̇υn′ (ρi′ ) Lυn′ (ρ)
ρ = ρi′

where  represents  the  first  derivative  of  at
.

ρi′ Ai′

I( f )
I0( f )

The  readers  should  note  that  and  are  designed  for
approximating the radial integral, not the desired integral 
or .  The  author  refers  to  [74],  [81]  for  a  detailed

discussion on high-order Gauss-Laguerre quadrature rule. 

2)  Cubature Quadrature Rule

t = r2/2 t = r/
√

2 Io( f )
t = r2/2

v = n/2−1 n′

The derivation of  the cubature quadrature rule is  similar  to
the  third-degree  spherical-radial  rule  (Section  IV-A-3)),
except  for  instead  of .  The  simplified 
(with  replacement  of )  appears  in  the  form  of  (39)
with .  This  integral  is  approximated  using  the -
order Gauss-Laguerre quadrature rule, as [32]
 

I0( f ) ≈ 1
2nΓ(n/2)

 2n∑
i=1

n′∑
i′=1

Ai′ f (
√

2ρi′ [u]i)

 . (42)

I( f )Following  the  previous  discussion,  can  be
approximated as
 

I( f ) ≈ 1
2nΓ(n/2)

 2n∑
i=1

n′∑
i′=1

Ai′ f
(
x̂+Σ(

√
2ρi′ [u]i)

) . (43)

n′ = 1Note:  represents  the  first-order  Gauss-Laguerre
quadrature  rule,  reducing  the  CKF  to  the  CQKF  under  this
condition.

Ir Is

Ir Is

The contribution of CQKF in cubature rule-based filtering is
similar  to  the  HDCKF,  but  it  utilizes  higher-order
approximations  for  instead  of .  However,  a  major
difference is that it allows any integer-order of approximation
(for ),  unlike  the  odd-order  restriction  (for )  in  HDCKF.
Similar  to  the  HDCKF,  it  could  enhance  the  estimation
accuracy of the CKF with an increased computational burden. 

D.  High-Degree Cubature Quadrature Kalman Filter

Is

Ir

The HDCQKF [36] is the most generalized form of cubature
rule-based  filtering,  which  reduces  to  each  of  the  CKF,
CQKF,  and  HDCKF  under  certain  simplifications.  It  is  the
most  accurate  cubature  rule-based  filter,  but  also  the
computationally most inefficient. It approximates  using the
high-degree  spherical-cubature  rule  and  using  the  high-
order  Gauss-Laguerre  quadrature  rule.  The  combined  rule  is
named as high-degree cubature quadrature rule. 

1)  High-Degree Cubature Quadrature Rule
I0( f )

r =
√

2t
The  high-degree  spherical-cubature  rule  simplifies  in

the  form  of  (38).  Let  us  replace  in  this  simplified
expression, i.e.,
 

I0( f ) ≈ 1

2
√
πn

w ∞
t=0

∑
i

wϑi f
{√

2tuϑi

} tn/2−1e−tdt. (44)

I0( f )This  integral  is  in  the  form  of  (39),  hence  could  be
further  approximated  using  the  high-order  Gauss-Laguerre
quadrature rule, as [36]
 

I0( f ) ≈ 1

2
√
πn

n′∑
i′=1

Ai′

∑
i

wϑi f
{ √

2ρi′uϑi

}
√

2ρi′uϑi
Ai′wϑi

2
√
πn

i′ ∈ {1,2, . . . ,n′} i ∈ {1,2, . . . ,cn}
where  and  are  sample  points  and  associated
weights with  and .

I( f )Following the  previous  discussion,  the  integral  can  be
approximated as
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I( f ) ≈ 1

2
√
πn

n′∑
i′=1

Ai′

∑
|ϑ|

wϑ f
{
x̂+Σ

√
2ρi′uϑ

} .
The following are some important notes about HDCQKF:

Is md Ir n′
i) It is flexible in terms of degree of approximation for both
 (by varying ) and  (by varying ).

md
n′

ii) The estimation accuracy improves with increasing  as
well as . However, the computational cost also increases.

md = 1 n′ = 1iii) For  and , it reduces to CKF.
md ≥ 2 n′ = 1iv) For  and , it reduces to HDCKF.

md = 1 n′ ≥ 2v) For  and , it reduces to CQKF.

md n′

Is Ir

Is

The  HDCQKF is  competent  for  practical  applications  as  it
provides a fine trade-off between accuracy and computational
burden by varying  and . It is a generalized filter in terms
of order of approximation for  and ,  except that the even-
order of approximation is not possible for .

It  should  be  noted  that  the  computational  burden  increases
consistently  with  successive  development  in  cubature  rule-
based  filtering.  However,  the  computational  burden  still
increases  with  polynomial  order  as  the  system  dimension
increases. Subsequently, the cubature rule-based filters do not
suffer from the curse of conditionality problem, as the case of
the quadrature rule-based filters. Thus, the cubature rule-based
filters  can  be  implemented  with  relative  higher  dimension
compared to the quadrature rule-based filters. 

V.  Quadrature Rule-Based Filters

The  quadrature  rule-based  filtering  is  another  popular
category  under  the  Gaussian  filtering.  The  filters  in  this
category  are  known  for  high  estimation  accuracy,  but  their
practical  applicability  is  limited  due  to  high  computational
costs.  However,  there  is  ongoing  research  to  reduce  the
computational  burden,  so  that,  the  high  estimation  accuracy
can be celebrated in a broader sense.

The filters in this category utilize Gauss-Hermite quadrature
rule  for  approximating  the  intractable  integrals.  It  is  a
univariate  numerical  approximation  rule,  while  practical
problems  are  mostly  multivariate.  Therefore,  an  additional
mathematical law is implemented for extending the univariate
rule  in  multivariate  domain.  The  literature  witnesses  several
filters  with different  approaches used for  this  extension.  This
section  first  introduces  the  univariate  Gauss-Hermite
quadrature rule, then reviews the existing filters. 

A.  Gauss-Hermite Quadrature Rule
xLet us assume  be a univariate random variable. Then, the

Gauss-Hermite quadrature rule can be represented as [38]
 w ∞

−∞
f (x)

1
(2π)1/2 e−x2

dx ≈
Ns1∑
i=1

f (qi)ωi (45)

qi ωi ∀ i ∈ {1,2, . . . ,Ns1}
Ns1

qi ωi

q

where  and    are  univariate  sample
points  and  associated  weights,  respectively,  and  is  the
number of univariate sample points. Two popular methods for
generating  and  are  the  moment  matching  method  [42]
and  Golub’s  method  [38],  [48].  The  sample  points  are
commonly known as quadrature points [38], [42], [47]. 

1)  Moment Matching Method
qi ωi

Ns1

The  moment  matching  method  generates  and  by
matching  moments. The moment equations are formulated
as [10], [12]
 

1 1 · · · 1
q1 q2 · · · qNs1
...

...
. . .

...

qNs1−1
1 qNs1−1

2 · · · qNs1−1
Ns1




ω1
ω2
...

ωNs1

 =


M0
M1
...

MNs1−1


M0 M1 . . . MNs1−1 Ns1 −1where , , ,  are moments of order 0 to .

Ns1
2Ns1 Ns1

Ns1

The  moment  matching  principle  offers  equations.
However,  the  number  of  unknowns  is  (  quadrature
points and  weights). Two approaches are commonly used
to  tackle  this  problem:  i)  quadrature  points  are  chosen
arbitrarily,  then  the  weights  are  obtained  by  solving  moment
equations; and ii) quadrature points are determined as zeros of
Hermite polynomial  [82],  [83],  then the weights are obtained
by solving moment equations. 

2)  Galub’s Method

J J j, j = 0 ∀ j ∈ {1,2, . . . ,Ns1}
Ji,i+1 =

√
i/2 ∀ i ∈ {1,2, . . . ,Ns1−1} Λi i ∈ {1,2, . . . ,Ns1}

ith J ith qi =
√

2Λi

ωi ith
J

Golub’s method is a simplification of the moment matching
method itself.  However,  it  is  broadly  used as  an independent
method [38], [46], [48] in filtering literature, being the reason
for  a  separate  discussion  in  this  review.  Its  computational
simplicity  and  specific  choice  of  quadrature  points  and
weights  attracts  practitioners.  The  desired  quadrature  points
and  weights  are  generated  by  formulating  a  symmetric
tridiagonal  matrix ,  i.e.,    and

  . If  ( ) is
the  eigenvalue of , then  quadrature point is 
[38],  [48].  The weight  is  square of the first  element of 
normalized eigenvector of . 

B.  Gauss-Hermite Filter

I0( f )

The  GHF  [37],  [38]  is  the  first  development  under  the
quadrature rule-based filtering. It implements the product rule
for extending the univariate Gauss-Hermite quadrature rule in
multivariate  domain.  Subsequently,  is  approximated  as
[38], [48]
 

I0( f ) ≈
Ns1∑
i1=1

. . .

Ns1∑
in=1

f
( [

qi1 ,qi2 , . . . ,qin

]T )
ωi1ωi2 . . .ωin (46)

[
qi1 ,qi2 , . . . ,qin

]T ∀ i j ∈ {1,2, . . . ,Ns1−1} ( j ∈ {1,2, . . . ,n})
ωi1ωi2 . . .ωin

T
{q1,q2, . . . ,qNs1

} {ω1,ω2, . . . ,ωNs1
}

where    
are  univariate  quadrature  points,  and  are
associated  weights,  and  represents  matrix  transpose.  Note
that  and  can be determined
using either of the moment matching method or Golub’s method.

I( f )The generalized integral, , can be approximated as
 

I( f ) ≈
Ns1∑
i1=1

. . .

Ns1∑
in=1

f
(
x̂+Σ

[
qi1 ,qi2 , . . . ,qin

]T )
ωi1ωi2 . . .ωin . (47)

(Ns1)nGHF  requires  quadrature  points,  which  means  that
the  sample  point  requirement  increases  exponentially  with
increasing dimension. Subsequently, it suffers from the “curse
of  dimensionality” problem.  However,  the  high  estimation
accuracy and fast convergence of GHF attract the practitioners

SINGH: MAJOR DEVELOPMENT UNDER GAUSSIAN FILTERING SINCE UNSCENTED KALMAN FILTER 1315 



despite  of  the  high  computational  burden.  It  finds  several
applications in defense and space technologies [84], where the
computational  budget  is  significantly  high.  Moreover,  the
efficacy of computational  devices is  improving with growing
technology, which brings a hope of even broader applicability
in the future. 

C.  Sparse-Grid Gauss-Hermite Filter
The  SGHF  is  an  attempt  to  reduce  the curse  of

dimensionality problem  associated  with  GHF,  so  that,  the
quadrature  filters  can  be  implemented  with  relatively  higher
dimension.  In  this  regard,  it  replaces  the  product  rule  by
Smolyak  rule  [42],  [85]  in  extending  the  univariate  Gauss-
Hermite quadrature rule in multivariate domain.

L L
f (x) =

r
xi1

1 xi2
2 . . . x

in
n dx x = [x1, x2, . . . , xn]T∑n

j=1 i j ≤ 2L−1 I0( f )

The  Smolyak  rule  [42],  [85]  implements  a  linear  combin-
ation of tensor products based on a predefined accuracy level

.  The  accuracy  level  means  that  the  approximation  of
,  where ,  is  exact  if

 [42].  Using this  rule,  the integral  could
be approximated as
 

I0( f ) ≈
L−1∑

a=L−n
(−1)L−1−aCL−1−a

n−1

× ∑
Φ∈Nn

a

(Ii1 ⊗ Ii2 ⊗ · · ·⊗ Iin ) f (x)
(48)

C Cn
k = n!/k!(n− k)!

⊗ Ii j

i j ∈ Φ Φ ≜ {i1,
. . . , in} Nn

q

where  represents binomial coefficient, i.e., ,
 stands  for  tensor  product,  is  univariate  Gauss-Hermite

quadrature  rule  [42]  with  accuracy  level  if 
 is a set of univariate accuracy levels. The index set 

is defined as
 

Nn
a =

Φ :
n∑

j=1
i j = n+a

 for a ≥ 0

= {} for a < 0

a L−n ≤ a ≤ L−1 {}where  is constant with , and  represents a
null set.

Xi j

Ii j

Let  us  assume  is  a  set  of  univariate  quadrature  points
corresponding to , then (48) can be simplified as
 

I0( f ) ≈
L−1∑

a=L−n

∑
Φ∈Nn

a

∑
qi1∈Xi1

. . .
∑

qin∈Xin

f
(
[qi1 , . . . ,qin ]T

)
× (−1)L−1−aCL−1−a

n−1

(
ωi1 . . .ωin

)︸                               ︷︷                               ︸
weight

.

I( f )Subsequently,  can be approximated as
 

I( f ) ≈
L−1∑

a=L−n

∑
Φ∈Nn

a

∑
qi1∈Xi1

. . .
∑

qin∈Xin

f (x̂+Σ× [qi1 , . . . ,qin ]T )

× (−1)L−1−aCL−1−a
n−1

(
ωi1 . . .ωin

)︸                               ︷︷                               ︸
weight

.

The  Smolyak  rule-based  SGHF  retains  the  estimation
accuracy  of  GHF  at  a  significantly  reduced  computational
cost.  Subsequently,  the  high  estimation  accuracy  and  fast
convergence of quadrature rule-based filters can be celebrated
over  a  wider  horizon.  However,  the  computational  burden  is
still  substantial  for  an  ordinary processor  if  the  dimension of

the  system  is  beyond  5  or  6.  Furthermore,  the  mathematical
background is not as simple as the product rule-based GHF to
understand. 

D.  Multiple Gauss-Hermite Filter
The  MGHF  [45]  is  another  attempt  to  reduce  the

computational  burden  of  GHF.  Note  that  the  computational
burden  of  GHF is  acceptable  for  lower  dimensional  systems,
but it  is  arbitrarily large for higher dimensional systems (due
to the curse of dimensionality problem). Therefore, the MGHF
aims to preclude the high dimensionality by implementing the
principle  of  state  partitioning.  Subsequently,  it  partitions  the
high  dimensional  state  space  in  multiple  subspaces  with
smaller  dimensions.  During  the  filtering,  the  subspaces  are
propagated  independently  by  parallel  processing  of  ordinary
GHF.

x(1)
k x(2)

k · · · x(S )
k

xk

Let us assume , , ,  are independent subspaces
of , then the process model could be partitioned as
 

xk =



x(1)
k

x(2)
k

...

x(S )
k


=



ϕ(1)
k−1(x(1)

k−1)

ϕ(2)
k−1(x(2)

k−1)

...

ϕ(S )
k−1(x(S )

k−1)


+



η(1)
k

η(2)
k

...

η(S )
k


(49)

ϕ(s)
k−1 : xs

k−1→ xs
k ∀ s ∈ {1,2, . . . ,S }

sth
η(s)

k ∼ ℵ(0,Q(s)) sth
Q(s) Q

sth n(s) sth
n(s) < n ∀ s ∈ {1,2, . . . ,S } ∑S

s=1 n(s) = n

where    are  nonlinear
functions representing the state dynamics for  subspace and

 is  the  process  noise  associated  with 
subspace.  is  obtained  from  as  the  entries  associated
with  subspace.  If  is  the  dimension  of  subspace,
then    and .

x(1)
k x(2)

k · · · x(S )
k

n(1)

n(2) · · · n(S ) n(s) < n ∀ s ∈ {1,2, . . . ,S }

The  MGHF  estimates , , ,  independently  by
parallel  processing  of  ordinary  GHF  with  dimensions ,

, , ,  respectively.  As   ,  the
partitioning  helps  in  reducing  the  high  dimensional  filtering
problems  into  several  lower  dimensional  filtering  problems,
which further helps in reducing the computational burden. In a
similar  development,  the  multiple  SGHF  (MSGHF)  [46]  is
introduced  by  replacing  GHF  with  SGHF  to  reduce  the
computational burden further.

The  state  partitioning  assumes  the  subspaces  to  be
independent  of  each  other,  though  they  are  dependent  and
correlated in most of the practical problems. Subsequently, the
MGHF  and  MSGHF  may  not  be  applicable  to  many  of  the
real-life filtering problems. 

E.  Adaptive Sparse-Grid Gauss-Hermite Filter

n
In Nn

a
In

ϵ − e j ∈ In ∀ ϵ ∈ {In− I1} e j jth n
I1 = [1,1, . . . ,1]T

In In I0( f )

The  ASGHF  [47]  introduced  an  adaptive  approach  for
generating  a  reduced  number  of  quadrature  points  depending
on the degree of nonlinearity along different dimensions. The
adaptive  approach  generates  an -dimensional  admissible
index set , with a reduced number of indices compared to 
generated by the SGHF. The admissibility of  is  defined as

;     with  being  column  of -
dimensional  identity  matrix  and  being  the
first  entry  in .  Based  on ,  the  integral  of  interest  is
approximated as [47], [86]
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I0( f ) ≈
∑
ϵ∈In

△ϵ f (x) =
∑
ϵ∈In

(△ϵ1 ⊗ · · ·⊗△ϵn ) f (x) (50)

△
f 1 △i f 1 = (Ii− Ii−1) f 1 I0 f 1 = 0

△ϵ △ϵ1 △ϵ2 · · · △ϵn
ϵ = {ϵ1, ϵ2, . . . , ϵn}

Nn
a

In

where  represents difference formula which is  defined for a
univariate  function  as  with ,
and  stands  for  tensor  product  of , , ,  with

. The Smolyak rule, used by SGHF, is also a
difference formula-based numerical approximation technique,
but  it  is  implemented  over  a  relatively  larger  index  set 
compared to .

In I1The  construction  of  begins  with ,  and  addition  of  new
points are based on local error indicator [47], [86]
 

gϵ =max
{
ψ
|△ϵ f |
|△I1 f | , (1−ψ)

ϖI1

ϖϵ

}
(51)

|△ϵ f | △ϵ f
ψ ∈ [0,1] ϖϵ

ϵ
|△ϵ f |
|△I1 f |

ϖI1

ϖϵ

ψ

In({[2,1, . . . ,1]T , . . . , [1,1, . . . ,2]T }
I1)

A
O g

A O O

TOL

where  represents  the  first  norm  of  absolute  of ,
 is  error  weighting  parameter  and  is  the  number

of  function  evaluations  for .  The  terms  and  are
proxies  to  accuracy  and  computational  load,  respectively,
while  bags a condition for achieving a trade-off between the
accuracy and computational load. During the scanning of new
indices,  the  adaptive  approach  examines  the  forward  indices
for their possible inclusion in 
are  forward  indices  of .  A  new  index  is  first  taken  in  an
active index set . After the inclusion possibility is examined,
it is shifted to an old index set . The index with smallest  in

 is shifted to  if it satisfies the admissibility with latest . A
global error parameter is monitored, and the process of adding
new  indices  is  stopped  after  this  parameter  is  smaller  than  a
predefined tolerance level .

ψ TOL

ψ TOL

ψ TOL

The  ASGHF  is  computationally  most  efficient  among  the
existing  quadrature  rule-based  filters.  It  reduces  the
computational  burden  without  compromising  much  on  the
estimation accuracy. It also allows a fine-tuning of the number
of  sample points  by varying  and ,  which is  helpful  in
close to optimal utilization of available computational budget.
However,  and  vary  with  the  system,  and  no  specific
rule  is  provided  for  their  selection.  Subsequently,  sufficient
offline analysis is required before going for online implement-
ation to generate model specific  and . Moreover, if the
online model is mismatched with the offline training model, it
may suffer from poor estimation accuracy. 

VI.  Filtering With Transformed Sample Points

Chang et al. [27] enhanced the estimation accuracy of UKF
and CKF by orthogonal transformation of sample points. It was
shown  that  a  particular  class  of  orthogonal  transformation
reduces the higher-order moments of Taylor series expansion
around  the  estimates  (see  Appendix  A  for  a  better
understanding of  higher-order  moments).  The sum of higher-
order moments is the residue, which quantifies the numerical
approximation  error.  Thus,  the  residue  reduction  (by
orthogonal  transformation)  leads  to  a  better  numerical
approximation, which further leads to an enhanced estimation
accuracy.

The  initial  objective  is  to  derive  an  orthogonal
transformation which maintains the orthogonality for  varying
system dimension (so that the transformation can be applied to

O
Oi, j

ith jth O

systems with arbitrary dimension), and reduces the residue for
changing  system  dynamics.  Chang et  al. introduced  an
orthogonal matrix  to serve the purpose and demonstrated its
efficacy with  a  series  of  mathematical  evidences  [27].  If 
is  row and  column of , then [27], [34]

Oi,2 j−1 =

√
2
n

cos((2 j−1)iπ/n) ∀ i ∈ {1,2, . . . ,n}
j ∈ {1,2, . . . , [n/2]} [n/2]

n/2

1) ;   with
,  where  is  the  greatest  integer  not

exceeding .

Oi,2 j =

√
2
n

sin((2 j−1)iπ/n)2) .
n Oi,n = (−1)i/

√
n3) If  is odd, .

ξ

O×ξ

Let us assume,  is the set of sample points for an ordinary
nonlinear  filter.  Then the set  of  transformed sample points  is

.  The weights  associated  with  the  sample  points  remain
unchanged after the transformation.

The  analysis  and  mathematical  evidence  presented  by
Chang et  al. [27]  were  limited  to  the  UKF  and  CKF  only.
Later,  it  was  extended  for  the  CQKF  in  [34],  [49],  with
additional  supporting  mathematical  evidence.  A  preliminary
analysis of the transformation over GHF is provided in [48].

The transformed filtering is an interesting development as it
enhances  the  estimation  accuracy  without  adding  extra
computational  budget.  However,  the  mathematical  evidences
introduced  until  now  are  only  applicable  to  the  UKF,  CKF,
and  CQKF.  In  future  developments,  it  may  be  interesting  to
see if the transformation may be extended for other filters, like
the quadrature rule-based filters. 

VII.  Square-Root Filtering Algorithm

The Gaussian filtering is constrained with a positive-definite
requirement of error covariance matrices. Therefore, it fails in
many real-life problems, where the positive-definiteness is not
guaranteed.  To  counter  this  constraint  and  extend  the  filter
applicability  further,  a  square-root  extension  [22],  [33],  [39],
[50]–[52] of  Gaussian filtering is  introduced in the literature,
which  is  based  on  QR decomposition.  The  steps  followed  in
implementing the square-root filtering are provided herewith. 

A.  Time Update
x̂k|k−1

Σk|k−1 x̂k|k−1 Pk|k−1

The time update step in square-root filtering computes 
and ,  instead  of  and .  The  steps  involved  in
this computation are as followed [33]:

x̂k|k−11) Compute , similar to (9).
Wsr ith√

Wi

2)  Construct  a  diagonal  matrix  with  diagonal
element being .

ith3)  Transform  the  sample  point  with  posterior  estimate
and covariance
 

x̂k−1|k−1+Σk−1|k−1ξi.

4) Propagate the transformed sample points through process
model
 

χi
k|k−1 = ϕk−1(x̂k−1|k−1+Σk−1|k−1ξi).

5) Obtain the weighted error matrix
 

χ∗k|k−1 = [χ1
k|k−1− x̂k−1|k−1 χ

2
k|k−1− x̂k−1|k−1

. . . χNs
k|k−1− x̂k−1|k−1]Wsr.

[χ∗k|k−1

√
Q]6) Perform QR decomposition of , i.e.,
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R̄x = qr
(
[χ∗k|k−1

√
Q]

)
R̄xwhere  is  upper  triangular  component  of  QR  decomposi-

tion.
7) Predict the square-root of error covariance

 

Σk|k−1 = R̄x.
 

B.  Measurement Update
The measurement update parameters are computed through

the following steps [33]:
ith1)  Transform  the  sample  point  with  predicted  estimate

and covariance
 

x̂k|k−1+Σk|k−1ξi.

2)  Propagate  the  transformed  sample  points  with  measure-
ment model
 

Ȳi
k|k−1 = γk(x̂k|k−1+Σk|k−1ξi).

ŷk|k−1,3) Compute  similar to (11).
4) Compute weighted error matrix

 

Ȳ∗k|k−1 = [Ȳ1
k|k−1− ŷk|k−1 Ȳ2

k|k−1− ŷk|k−1

. . . ȲNs
k|k−1− ŷk|k−1]Wsr.

[Ȳ∗k|k−1

√
R]5) Perform QR decomposition of , i.e.,

 

R̄y = qr
(
[Ȳ∗k|k−1

√
R]

)
R̄ywith  being upper triangular component of the QR decom-

position.
6) Compute the square-root of innovation covariance

 

Σyk|k−1 = R̄y.

7) Compute the cross-covariance matrix
 

Pxy = χ
∗
k|k−1Ȳ∗k|k−1.

8) Compute the Kalman gain
 

Kk =
(
Pxy/Σ

T
yk|k−1

)
/Σyk|k−1 .

9) Compute the posterior estimate
 

x̂k|k = x̂k|k−1+Kk(yk − ŷk|k−1). (52)
10) Perform the following QR decomposition:

 

R̄ = qr
(
[χ∗k|k−1−KkȲ∗k|k−1

√
Q Kk

√
R]

)
R̄where  is upper triangular component of the QR decomposi-

tion.
11) Obtain the square-root of posterior estimate

 

Σk|k = R̄. (53)
The objective of square-root filtering is limited to improving

the  filter  applicability.  It  does  not  impact  the  estimation
accuracy significantly. Moreover, the computational efficiency
is  also  similar  to  that  of  the  ordinary  filtering  algorithm.
Despite  these  facts,  it  is  highly  useful  as  the  practical
problems often fail to satisfy the positive-definiteness criteria
for the covariance matrices. 

VIII.  Gaussian-Sum Filtering

Gaussian-sum  filtering  [53],  [54]  approximates  the  unkn-

own pdf by multiple Gaussian components, instead of a single
Gaussian  component  used  in  ordinary  Gaussian  filters.  Each
Gaussian component is assigned with an individual weight. It
is  shown  in  [53]  and  [54]  that  the  multiple  Gaussian
components  approximate  the  unknown  pdf  with  better
precision, resulting in an improved estimation accuracy.

P(xk−1|yk−1) NGLet  us  assume  is  approximated  with 
Gaussian components, then [53], [54]
 

P(xk−1|yk−1) ≈
NG−1∑
g=0

wg
k−1ℵ(xk−1; x̂g

k−1|k−1,P
g
k−1|k−1) (54)

x̂g
k−1|k−1 Pg

k−1|k−1 gth
wg

k−1
gth

wg
k−1 ≥ 0

∑NG−1
g=0 wg

k−1 = 1

where  and  are estimate and covariance of 
Gaussian  component,  and  is  the  weight  associated  with

 component. The weights are non-negative and normalized,
i.e.,  and .

The  Gaussian-sum  filtering  consists  of  two  steps:  time
update and measurement update. 

A.  Time Update
Let us recall (3)

 

P(xk|k−1) =
w

P(xk |xk−1)P(xk−1|yk−1)dxk−1. (55)

P(xk−1|yk−1)Substituting  from (54), we get
 

p(xk|k−1) =
NG−1∑
g=0

wg
k−1

w
P(xk |xk−1)ℵ(xk−1;

x̂g
k−1|k−1,P

g
k−1|k−1)dxk−1. (56)

P(xk |xk−1) xkNote  that  is  the  likelihood  of  state  given  by
(1). 

B.  Measurement Update
Let us recall (4)

 

P(xk|k) =
P(yk |xk)P(xk |y1:k−1)r

P(yk |xk)P(xk |y1:k−1)dxk
. (57)

It can be represented as [53], [54]
 

P(xk|k) ≈
NG−1∑
g=0

wg
kℵ(xk; x̂g

k|k,P
g
k|k) (58)

where
 

wg
k =

P(yk |xk,g)wg
k−1∑NG−1

g=0 P(yk |xk,g)wg
k−1

. (59)

The readers may refer to [53], [54] for a detailed discussion.
Any  of  the  filters  discussed  earlier  can  be  extended  under

the Gaussian-sum filtering approach to improve the estimation
accuracy.  It  is  advantageous in dealing with highly nonlinear
systems,  where  the  Gaussian  assumed  pdf  takes  an  arbitrary
shape  after  the  transformation  by  nonlinear  system  models.
The  multiple  Gaussian  approximates  this  arbitrary  shape  pdf
with  better  precision  compared  to  the  ordinary  filters.  The
literature  in  recent  years  has  witnessed  many  developments
under  the  Gaussian-sum  filtering  [30],  [54],  [55]  with
motivation to improve the estimation accuracy and extend the
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filter applicability in adverse conditions. 

IX.  Continuous-Discrete Filtering

The  traditional  Bayesian  framework  is  designed  with
discrete-time  formulation  of  process  dynamics,  though  the
process  dynamics  generally  follows  a  continuous-time
physical  law  (e.g.,  in  target  tracking  problems,  the  target
motion follows the continuous laws of motion, but formulated
in  discrete  time-domain).  Note  that  the  measurements  are
usually generated from a discrete source, hence a continuous-
discrete formulation of systems dynamics (continuous process
and  discrete  measurement)  is  more  precise  compared  to  a
discrete-time formulation ((1) and (2)).

The  discrete-time  approximation  of  continuous  process
dynamics  stands  as  a  source  of  error,  especially  if  the
sampling  interval  is  large,  resulting  in  a  reduced  estimation
accuracy. The filtering problems with large sampling intervals
commonly  appears  in  target  tracking  [3],  navigation  [87],
stochastic control [88], etc.

The  literature  witnesses  few  developments  [58],  [59]  to
reduce the error encountered due to discrete-time formulation
of  continuous  process  dynamics.  The  class  of  such
developments  is  popular  as  continuous-discrete  filtering.  In
this filtering technique, the process is discretized at an interval
much smaller than the sampling interval.  A general approach
used  for  the  discretization  is  the  Itô-Taylor  expansion  [58],
[59],  though the Fokker-Plank-Kolmogorov equation (FPKE)
has  also  been  used  in  recent  developments  [55],  [89],  [90].
The  discussion  in  this  review  is  limited  to  the  Itô-Taylor
expansion.

The literature on continuous-discrete filtering reports only a
few  noticeable  developments  [56],  [58],  [59],  which
reformulate the ordinary EKF, UKF, and CKF to perform with
continuous-discrete formulation of state space model. 

A.  Continuous-Discrete State-Space Model
The continuous process model is mathematically formulated

with the differential equation [59]
 

dx(t) = f (x(t), t)dt+
√

QdB(t) (60)
x(t) ∈ Rn n t

f : Rn→ Rn Q B(t)
n

dB(t)

where  is  an -dimensional  state  variable  at  time ,
 is drift function,  is diffusion matrix, and  is

an -dimensional  standard  Wiener  process  with  increment
.  The  discrete-time  measurement  model  remains  the

same as (2). 

B.  Discretization of Process Model
As discussed  above,  the  process  model  is  discretized  at  an

interval  much  smaller  than  the  sampling  interval.  The  early
literature [56], [58] used Itô-Taylor expansion of order 0.5 for
the discretization, which is more commonly known as Euler’s
method.  This  method  was  later  replaced  by  the  Itô-Taylor
expansion  of  order  1.5  [59],  [91]  to  ensure  a  better
approximation  accuracy.  The  discussion  in  this  review  is
limited to the Itô-Taylor expansion of order 1.5.

Using the Itô-Taylor expansion of order 1.5, the continuous
process model is discretized as [59], [91] 

x(t+δ) = x(t)+δ f (x(t), t)+
1
2
δ2(L0 f (x(t), t))

+
√

Qw+ (L f (x(t), t))q (61)
δ w ∈ Rn q ∈ Rn

L0 L

where  is  the  discretization  interval,  and  are
Gaussian random variables, and,  and  are given as
 

L0 =
∂

∂t
+

n∑
i=1

fi
∂

∂xi
+

1
2

n∑
j=1

n∑
p=1

n∑
q=1

√
Qp, j

√
Qq, j

∂2

∂xp∂xq

L =
n∑

i=1

n∑
j=1

√
Qi, j

∂

∂xi
.

δ T = mδ
m ∈ Z+ Z+ w q

E[wwT ] = δIn E[wqT ] =
1
2
δ2In

E[qqT ] =
1
3
δ3In

 is a practitioner’s choice, but it  must ensure ,  i.e.,
 with  being the set of natural numbers.  and  are

zero mean Gaussian, i.e., , , and

.
A simplified form of (61) is [59]

 

x(t+δ) = fd(x(t), t)+
√

Qw+ (L f (x(t), t))q (62)
where
 

fd(x(t), t) = x(t)+δ f (x(t), t)+
1
2
δ2(L0 f (x(t), t)) (63)

is noise-free process model. 

C.  Continuous-Discrete Filtering
Similar  to  discrete-time  filtering,  the  continuous-discrete

filtering  process  consists  of  two  steps  [56],  [58],  [59]:  time
update and measurement update. 

1)  Time Update
tk+1 x̂k+1|k Pk+1|k

m δ
mδ = T tk tk+1 m

tk tk+1 tk + jδ
j ∈ {1,2, . . . ,m} jth

The  time  update  parameters  at , ,  and ,  are
obtained  by  performing -step  iteration  of  length  (i.e.,

)  between  and .  In  this  regard,  intermediate
time-steps  are  defined  between  and ,  as  with

.  The  estimate  and  covariance  at 
intermediate step are obtained as
 

x̂ j
k|k ≈

w
fd(xk+( j−1)δ)ℵ(xk+( j−1)δ; x̂ j−1

k|k ,P
j−1
k|k )dxk+( j−1)δ (64)

 

P j
k|k ≈

w
fd(xk+( j−1)δ) fd(xk+( j−1)δ)Tℵ(xk+( j−1)δ;

x̂ j−1
k|k ,P

j−1
k|k )dxk+( j−1)δ− (x̂ j−1

k|k )(x̂ j−1
k|k )T . (65)

mAn -step iterative implementation of (64) and (65) gives
 

x̂k+1|k = x̂m
k|k and Pk+1|k = Pm

k|k.
 

2)  Measurement Update
The  measurement  update  steps  are  similar  to  discrete-time

filtering, as presented in Section II-A-2).
It  should  be  noted  that  any  of  the  earlier  discussed  filters

can  be  extended  under  the  continuous-discrete  filtering
method. In the literature, the performance of EKF, UKF, and
CKF  have  been  explicitly  tested  with  this  extension,  see
[56]–[59] for detailed discussion. 

X.  Simulation

This  section  presents  simulation  results  to  validate  the
performance  of  different  Gaussian  filters.  For  this  purpose,
two  nonlinear  filtering  problems  are  simulated  in  Matlab
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environment over a personal computer with Intel Core i7, 1.99
GHz processor, 8 GB RAM, and 64-bit operating system. The
first  problem  is  used  for  validating  the  performance  of
discrete-time  filters;  however,  the  other  problem  is  used  for
validating the continuous-discrete filters. 

A.  Problem 1: Maneuvering Target Tracking With Discrete-Time
System Model

This problem is a discrete-time maneuvering target tracking
problem  [28],  [47].  The  target  follows  a  coordinated  turn
model, given as [28], [47]
 

xk+1 = Fkxk +ηk (66)
x = [x ẋ y ẏ ω]T x y

ω

where  with  and  denote  displacement
along two-dimensional  Cartesian coordinates,  respectively, 
is angular turn rate, and
 

Fk =



1
sin(ωkT )

ωk
0 −1− cos(ωkT )

ωk
0

0 cos(ωkT ) 0 −sin(ωkT ) 0

0
1− cos(ωkT )

ωk
1

sin(ωkT )
ωk

0

0 sin(ωkT ) 0 cos(ωkT ) 0
0 0 0 0 1


.

yk

The  measurement  consists  of  radial  displacement  and
bearing angle. Therefore,  is modeled as [28], [47]
 

yk =

[√
x2

k + y2
k atan2(yk, xk)

]T
+vk

atan2
ηk vk

Q R Q
T = 0.5s

R diag([σ2
r σ

2
t ]) σr = 10 m

σt =
√

10×10−3 rad
x0 = [1000 m 30 m/s

1000 m 0 m/s ω]T ω = 6 ◦/s
x0

P0|0 = diag([200 m2 20 m2/s2 200 m2 20 m2/s2

10−4 rad2/s2]) 100
x y

where  is the four quadrant inverse tangent function. The
noise  components,  and ,  are  considered  to  be  Gaussian
with  zero  mean  and  covariance  and ,  respectively. 
depends on sampling interval , with the full expression
given in [47].  is taken as  with  and

.  A  simulated  dataset  of  true  state  is
generated by considering the initial state 

 with . The initial estimate of state
is  considered  as  normally  distributed  with  mean  and
covariance    

. The filters are implemented over  time-steps.
True and estimated (using CKF and GHF) trajectories  of -
position are shown in Fig. 2. The figure concludes a successful
tracking of the moving target using CKF and GHF. Moreover,
the mean of absolute relative error obtained over 200 Monte-
Carlo simulations are shown in Table I for various discrete-time
filters.  A comparative analysis  of  absolute relative error  with
CKF and GHF concludes a successful tracking for other filters
as well.

kth
The  further  performance  analysis  is  based  on RMSE.  The

RMSE for position at  instant is obtained as
 

RMS Epos,k =

√√√
1

Mc

Mc∑
i=1

((
xi

k(1)− x̂i
k(1)

)2
+

(
xi

k(3)− x̂i
k(3)

)2
)

(67)
Mc = 100

k = 1,2, ...,N x̂i
k( j) jth x̂k ith

x̂k

where  is  number  of  Monte-Carlo  simulations,
, and  represents the  element of  at 

Monte-Carlo simulation. The RMSE for velocity is  computed
similarly with elements of  corresponding to the velocity.

The RMSE obtained from the cubature rule-based filters are
compared  with  UKF in Fig. 3.  The  figure  concludes  a  lower
RMSE, i.e.,  an  improved  estimation  accuracy,  with  cubature
rule-based  filters.  Among  the  cubature  rule-based  filters,  the
RMSE decreases  with  successive  developments,  i.e.,  CQKF,
HDCKF, and HDCQKF, which validates an improved estim-
ation  accuracy.  However,  the  relative  computational  time  is
observed  as  1,  1.03,  1.8,  3.29,  and  4.98  for  the  UKF,  CKF,
CQKF,  HDCKF,  and  HDCQKF,  respectively.  It  indicates  an
increased  computational  burden  for  the  successive  develop-
ment under cubature rule-based filtering.

The  performance  of  quadrature  rule-based  filters  is
compared with the UKF and CKF in Fig. 4. The figure shows
a  reduced RMSE with  quadrature  rule-based  filters,  which
validates  an  improved  estimation  accuracy.  However,  the
relative  computational  time  was  observed  as  1,  1.03,  13.26,
3.94,  and  3.78  with  UKF,  CKF,  GHF,  SGHF,  and  ASGHF,
respectively,  which  concludes  an  increased  computational
burden  for  the  quadrature  rule-based  filters.  Moreover,  the
analysis  further  concludes  a  successive  reduction  in
computational time with SGHF and ASGHF (in comparison to
GHF), while maintaining the estimation accuracy.

The  performance  of  filtering  with  transformed  sample
points is  analyzed in Fig. 5,  which shows the RMSE of CKF
and  CQKF  along  with  their  transformed  counterparts  TCKF
and  TCQKF,  respectively.  The  figure  concludes  a  reduced
RMSE  with  transformed  filters,  so  that  an  improved
estimation  accuracy.  Moreover,  the  computational  time
remains  unchanged  after  the  transformation.  The  analysis  is
limited to the CKF and CQKF only, as the literature witnesses
a detailed study of transformation with these two filters only. 

 

TABLE I  
Mean of Absolute Relative Error for Various

Discrete-Time Filters

Filter State 1 State 2 State 3 State 4

UKF 0.00482666 0.22140210 0.00576063 0.22303688

CKF 0.00472118 0.21566884 0.00562553 0.21763431

CQKF 0.00464522 0.21176369 0.00552336 0.21344328

HDCKF 0.00459917 0.21011360 0.00548579 0.21145179

HDCQKF 0.00459996 0.21014015 0.00548637 0.21149179

GHF 0.00459999 0.21013906 0.00548621 0.21148573

SGHF 0.00459905 0.2101096 0.00548572 0.21144615

ASGHF 0.00459897 0.21010825 0.00548569 0.21144579

TCKF 0.00465111 0.2129956 0.00554156 0.21458457

TCQKF 0.00459798 0.21085377 0.00549281 0.21197251
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B.   Problem 2:  Maneuvering  Target  Tracking  With  Continuous-
Discrete System Model

This  problem  is  simulated  to  analyze  the  performance  of
continuous-discrete filters. The problem considered here is an
air-traffic  control  problem,  where  the  height  of  the  target  is
considered as constant.  The continuous state dynamics of the
target is modeled as [59]
 

dx(t) = f (x(t))dt+
√

Qdβ(t) (68)
x = [ϵ ϵ̇ η η̇ ζ ζ̇ ω]T ϵ η, ζ

ω

f (x)

where        is  state  vector  with ,  and 
representing the displacement along the Cartesian coordinates
x, y, and z,  respectively,  is  turn rate,  and the drift  function

 is [59]

 

f (x) = [ϵ̇ −ωη̇ η̇ ωϵ̇ ζ̇ 0 0]T (69)
β(t) = [β1(t) β2(t) β7(t)]T

βi(t)
β j(t) ∀ i , j

which shows a horizontal  motion,   ... 
is  noise  vector  with  being  standard  Brownian  motion
independent of   .

The  continuous  process  model  ((68))  is  discretized  at  an
interval  much  smaller  than  the  sampling  interval  to
characterize  the  continuity  with  high  precision.  The
discretization  is  based  on  the  Itô-Taylor  expansion  of  order
1.5, which discretizes the process model as [59]
 

x j+1
k = fd(x j

k)+
√

Qw+ (L f (x j
k)q (70)

fd(x) L f (x)
Q = diag([0 σ2

1 0 σ2
1 0 σ2

1 σ2
2)] σ1 =

√
2 m

σ2 = 2.85×10−7 o/s

where  and  are  nonlinear  functions  given  in  [59],
and        with  and

.
The measurement equation is [59]

 

rk
θk
ϕk

 =


√
ϵ2

k +η
2
k + ζ

2
k

tan−1
(
ηk

ϵk

)
tan−1

 ζk√
ϵ2

k +η
2
k




+vk

r θ ϕ

vk ∼ ℵ(0,R) R = diag[(σ2
r σ2

θ σ2
ϕ)]

σr = 0.1m σθ = 0.1 o, σϕ = 0.1 o

where  is  range,  is  elevation  angle,  is  azimuth,  and
 is  measurements  noise;   

with ,  and .
x0 = [1000 0 2650

150 200 0 ω]T ω = 1 ◦/s

x0 P0|0 = diag([100
(
√

0.1 deg/s)2])
T = 1s

m = 10 x y

The true value of initial state is taken as   
    with , which indicates a constant height

motion.  The  initial  estimate  is  considered  as  normally
distributed  with  mean  and  covariance  10
100 100 . The simulation is performed over 250 s
with sampling interval  and the number of intermediate
steps .  The  estimated  trajectory  of  the -  position
obtained using the CD-UKF and CD-CKF are shown in Fig. 6,
and are compared with the true trajectory. A close match of the
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Fig. 3.     Problem 1: RMSE plots for UKF and cubature rule-based filters.
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true and estimated trajectories concludes a successful tracking
using the CD-UKF and CD-CKF. The mean of absolute relative
error for the CD-UKF and CD-CKF obtained over 200 Monte-
Carlo executions are shown in Table II. The relative error is not
analyzed along the height (state 5 and 6) as a constant height
motion is considered. Moreover, the RMSEs obtained from the
CD-UKF and CD-CKF are compared with their discrete-time
counterparts, UKF and CKF, in Fig. 7. The figure concludes an
arbitrarily large RMSE,  such that  divergence for  the discrete-
time filters, the UKF, and CKF.

The  covariance  matrices  failed  to  satisfy  the  positive-
definiteness  criteria  during  the  implementation  of  the
continuous-discrete  filters.  Subsequently,  the  traditional
filtering approaches  failed.  However,  a  square-root  extension
could  help  in  successful  implementation,  which  validates  the
importance of square-root filtering. 

XI.  Discussions and Conclusions

The  Bayesian  framework  of  filtering  has  been  a  common
choice  among  practitioners  for  several  decades.  It  is  a

conceptual  solution,  and  a  commonly  practiced  analytical
interpretation  is  Gaussian  filtering,  which  offers  high
estimation  accuracy  at  low  computational  cost.  The  early
Gaussian filters, the EKF and its variants, suffered from several
limitations  due  to  derivative-based  implementation.  A
derivative-free approach, named as UKF, was introduced in the
nineties  based  on  numerical  approximation  of  intractable
integrals.  The  UKF  shows  several  advantages  over  the
derivative-based  filtering.  Subsequently,  the  research
continued  further,  leading  to  many  derivative-free  filters
developed  by  advancing  the  numerical  approximation
techniques.  This  review classifies  these  developments  in  two
categories:  cubature  rule-based  filters  and  quadrature  rule-
based  filters.  The  cubature  rule-based  filters  decompose  the
intractable  integrals  into  spherical  and  radial  sub-parts.  The
spherical sub-part is approximated using the spherical-cubature
rule, while the radial sub-part is approximated using the Gauss-
Laguerre  quadrature  rule.  Several  developments  appeared  in
this category by offering different order of approximation for
the spherical and radial sub-parts. Some popular developments
are CKF, CQKF, HDCKF, and HDCQKF. The quadrature rule-
based filters, on the other side, implement a univariate Gauss-
Hermite quadrature rule for the numerical approximation. An
additional mathematical law is implemented for extending the
univariate  rule  in  multivariate  domain.  The  filters  in  this
category  are  known  for  high  estimation  accuracy,  but  often
inapplicable  due  to  high  computational  cost.  The  initial
development  was  GHF,  which  is  followed  by  several
developments, like SGHF, ASGHF, and MGHF, to improve the
computational efficiency.

The  quadrature  rule-based  filters  are  preferred  over  the
cubataure  rule-based  filters  if  the  estimation  accuracy  is
crucial  and  a  large  computational  budget  is  allotted.  On  the
other  hand,  the  practitioners  may  choose  to  cut  the
computational  budget  by  using  cubature  rule-based  filters  if
the estimation accuracy is not very crucial. Both the cubature
rule-based  filtering  and  quadrature  rule-based  filtering  offer
different  choices  (with  varying  estimation  accuracy  and
computational budget) to reach a trade-off between the desired
estimation accuracy and the available computational budget.

The literature consists of some developments to modify the
traditional  Gaussian  filtering  approach  and  the  Bayesian
framework  as  well.  Some  popular  modifications  in  the
Gaussian  filtering  approach  are  square-root  filtering  and
Gaussian-sum  filtering.  The  square-root  filtering  aims  to
extend  the  filter  applicability,  while  the  Gaussian-sum
filtering  is  motivated  to  improve  the  estimation  accuracy.  In
the  modification  to  the  Bayesian  framework,  this  paper
reviews the continuous-discrete filtering methods. 

Appendix A
Estimates in Terms of Moments

The Gaussian  filters  implement  a  numerical  approximation
technique  in  the  computation  of  estimates.  The  numerical
approximation techniques are accurate only up to a particular
order  of  Taylor  series  expansion.  The  higher-order  terms
contribute  to  the  approximation  error,  which  further
contributes  to  estimation  error.  Subsequently,  the
representation  of  estimates  in  terms  of  moments  helps  in

 

TABLE II  
Mean of Absolute Relative Error for Continuous-Discrete

Filters

Filter State 1 State 2 State 3 State 4

CD-UKF 0.008912910 0.07939975 0.00829650 0.05744977

CD-CKF 0.008582399 0.07938377 0.00829650 0.05744935
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characterizing  the  error  (the  higher-order  moments).  Before
proceeding forward, let us define the following notations:

n l ∈ {1,2, . . . ,∞}1) For a being an -dimensional vector and 
 

s(a,k,n,2l) = kth term of

 n∑
j=1

a j


2l

(71)

kwhere  is an integer.
ms(a,k,n,2l) = E[s(a,k,n,2l)]

s(a,k,n,2l)
2)  is  the  first  moment  of

.
σx = ξ

√
P ξ3) ,  where  is  set  of  sample  points  defined  for

zero-mean and unity covariance system.
z = f (x) x̂Let  us  expand  around  using  Taylor  series

expansion
 

z = f (x̂+σx) = f (x̂)+ (σT
x∇) f (x̂)+

1
2!

(σT
x∇)2 f (x̂)+ · · ·

∇ =
[
∂

∂x1
,
∂

∂x2
, . . . ,

∂

∂xn

]T

zwhere .  The expectation  of  can  be
given as
 

ẑ = f (x̂)+E[(σT
x∇)] f (x̂)+

1
2!

E[(σT
x∇)2] f (x̂)+ · · · .

The  symmetric  property  of  Gaussian  distribution  nullifies
the odd moments, hence,
 

ẑ = f (x̂)+
∞∑

l=1

1
(2l)!

E[(σT
x∇)(2l)] f (x̂).

σT
x∇Substituting , we get

 

ẑ = f (x̂)+
∞∑

l=1

1
(2l)!

E


 n∑

j=1

σxi, j

∂

∂x j


(2l) f (x̂)

where
 

E


 n∑

j=1

σxi, j

∂

∂x j


2l = E

σ2l
xi,1

∂2l

∂x2l
1

+σ2l−1
xi,1

σxi,2

∂2l

∂x2l−1
1 ∂x2

+σ2l−2
xi,1

σ2
xi,2

∂2l

∂x2l−2
1 ∂x2

2

+σ2l−2
xi,1

σxi,2σxi,3

∂2l

∂x2l−2
1 ∂x2∂x3

+ · · ·
 .

s(a,k,n,2l) ms(a,k,n,2l)

ẑ
Under  the  definition  of  and ,  a

simplified form of  is obtained as
 

ẑ = f (x̂)+
∞∑

l=1

1
(2l)!

n2l∑
k=1

(
ms(σx,k,n,2l)

∂2l f (x̂)
s(∂x,k,n,2l)

)
.

l ≥ 2The moment terms for  represent higher-order moments. 

Appendix B
Gaussian Sigma Point Kalman Filtering Algorithm

1) Prerequisites
ξ j W j ∀

j ∈ {1,2, . . . ,Ns} Ns

i)  The  sample  points  and  associated  weights,  and  
 with  being the number of sample points.

x̂0|0 P0|0ii) The initial estimate and covariance of state,  and ,
respectively.

2) Step 1: Time Update

Pk−1|k−1i) Obtain the square root of  by performing Cholesky
decomposition
 

Pk−1|k−1 = Σk−1|k−1Σ
T
k−1|k−1.

ii) Transform the sample points by mean and covariance
 

ξ j,k−1|k−1 = x̂k−1|k−1+Σk−1|k−1ξ j.

iii)  Propagate  the  transformed  sample  points  through  the
process dynamics
 

ξ j,k|k−1 = ϕk−1(ξ j,k−1|k−1).

iv) Predict the estimate and error covariance for states
 

x̂k|k−1 =
∑

j

W jξ j,k|k−1

 

Pk|k−1 =
∑

j

W j(ξ j,k|k−1− x̂k|k−1)(ξ j,k|k−1

− x̂k|k−1)T +Q.
3) Step 2: Measurement Update

Pk|k−1i)  Obtain  the  square  root  of  by performing Cholesky
decomposition
 

Pk|k−1 = Σk|k−1Σ
T
k|k−1.

ii)  Transform  the  sample  points  with  predicted  mean  and
covariance
 

ξ′j,k|k−1 = x̂k|k−1+Σk|k−1ξ j.

iii)  Propagate  the  transformed  sample  points  through  the
measurement equation
 

Ȳ j,k|k−1 = γk(ξ′j,k|k−1).

iv)  Obtain  the  predicted  estimate  and  covariance  of
measurement
 

ŷk|k−1 =
∑

j

W jȲ j,k|k−1

 

Pyy
k|k−1 =

∑
j

W j(Ȳ j,k|k−1− ŷk|k−1)

× (Ȳ j,k|k−1− ŷk|k−1)T +R.
v)  Compute  the  cross-covariance  between  state  and

measurement
 

Pxy
k|k−1 =

∑
j

W j(ξ j,k|k−1− x̂k|k−1)(Ȳ j,k|k−1− ŷk|k−1)T .

vi) Compute the Kalman gain
 

Kk = Pxy
k|k−1(Pyy

k|k−1)−1.

vii)  Compute  the  posterior  estimate  and  covariance  for
states
 

x̂k|k = x̂k|k−1+Kk(yk − ŷk|k−1),
 

Pk|k = Pk|k−1−KkPyy
k|k−1KT

k .
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