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   Abstract—This  paper  is  concerned  with  the  problem of  finite-
time  control  for  a  class  of  discrete-time  networked  systems.  The
measurement  output  and  control  input  signals  are  quantized
before  being  transmitted  in  communication  network.  The
quantization  density  of  the  network  is  assumed  to  be  variable
depending  on  the  throughputs  of  network  for  the  sake  of
congestion  avoidance.  The  variation  of  the  quantization  density
modes  satisfies  persistent  dwell-time  (PDT)  switching  which  is
more  general  than  dwell-time  switching  in  networked  channels.
By  using  a  quantization-error-dependent  Lyapunov  function
approach,  sufficient  conditions  are  given  to  ensure  that  the
quantized  systems  are  finite-time  stable  and  finite-time  bounded
with  a  prescribed  performance,  upon  which  a  set  of
controllers  depending  on  the  mode  of  quantization  density  are
designed.  In  order  to  show the  effectiveness  of  the  designed 
controller,  we  apply  the  developed  theoretical  results  to  a
numerical example.

H∞    Index Terms—Finite-time,  controller  design,  quantization-
error-dependent Lyapunov function, quantized signal.
 

I.  Introduction

THE  past  decades  have  witnessed  a  rapid  advance  in
studies  of  networked  control  systems  (NCSs)  which  are

widely applied in power networks [1], fuzzy systems [2], fault
detection  [3],  etc.  NCSs,  which  consist  of  dispersing  system
components and signal transmission networks, have more com-
patibility  and  application  diversity  compared  with  integrated
control systems whose system components, such as actuators,
controllers,  and  sensors  are  located  at  the  same  place.  Since
information  exchange  between  system  components  heavily
rely  on  the  performance  of  communication  networks,  many
efforts have been devoted to this field, which is seen in [4]–[6]
and the references therein.

Although  various  advantages  such  as  increased  flexibility
and  reduced  cost  are  associated  with  NCSs,  the  applicability

of  communication  networks  can  be  seriously  affected  by
limited  network  capacity,  which  is  generally  caused  by
network  congestion.  In  order  to  reduce  the  amount  of  data
transmission,  signals  should  be  quantized  before  transmitted.
In practice, network throughput may vary in order to improve
system  performance,  and  as  a  result  quantization  density
should  also  vary,  which  may  lead  to  a  varying  quantization
error.  Such  variation  can  be  modeled  via  switched  system
theory,  i.e.,  each  quantization  density  can  be  regarded  as  a
subsystem mode and the overall  networked control  system is
therefore  regarded  as  a  class  of  switched  system.  One  can
address  the  variation  of  quantization  density  using  persistent
dwell-time  (PDT),  since  its  actual  variation  sequence  can
hardly be obtained. A PDT switching signal refers to a class of
switching  signal  composed  of  infinitely  many  dispersed
intervals in which the subsystem mode remains stationary. In
the  intermissions  of  such  intervals,  however,  the  subsystem
mode  can  randomly  switch.  Compared  with  other  kinds  of
switching  signal  [7]–[9],  only  a  small  amount  of  the  current
literature has addressed the problems of PDT switching signal.

The controller design problem has been extensively probed
for conventional dynamic control systems, and various control
strategies  are  extended  to  network-based  case  [10]–[12].  It
should be noted that the majority of existing works are based
on  the  hypothesis  that  a  quantizer  is  associated  with  only
control  input  or  measurement  output,  and  the  quantization
density  is  assumed  to  be  invariant.  Obviously  such
assumptions  are  ideal  and  may  result  in  an  increased
quantization error or degraded system performance. Although
some efforts have been devoted to addressing the problem of
variable  quantization  densities  [13],  [14],  to  the  best  of  our
knowledge,  the  controller  design  problem  for  NCSs  with
quantized  control  input  and  measurement  output  subject  to
variable quantization densities remains open.

In  order  to  prevent  saturation  caused  by  excessive  state
value  of  the  system,  the  concept  of  finite-time  stability  was
introduced  in  1953  [15].  Compared  with  conventional
asymptotic stability in Lyapunov sense, finite-time stability is
concerned with the state of the systems at each time instead of
the  trend  of  system.  Therefore,  finite-time  stability  is  of
practical significance in many fields such as power electronics
[16],  networked  systems  [17],  flight  control  systems  [18].
Despite  the  fact  that  studies  of  finite-time  stability  can  be
found  in  many  literatures  [19]–[22],  finite-time  stability  of
NCSs,  especially  NCSs  with  variable  quantization  density  is
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seldom addressed.
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Motivated  by  the  aforementioned  discussions,  this  paper  is
concerned  with  finite-time  stability  analysis  and  control
problems  for  a  class  of  NCSs  with  variable  quantization
density.  The  contributions  of  this  paper  include:  1)  the
interested  quantization  density  of  networked  system  is
modeled as a class of switched systems with persistent  dwell
time switching signals;  2)  a class of Lyapunov-like functions
that  are  both  mode-dependent  and  quantization  density-
dependent  is  developed;  3)  the  switched  system  with  PDT
switching  is  finite-time  bounded  and  has  a  prescribed 
performance.

H∞

The  remainder  of  this  paper  is  organized  as  follows.  In
Section  II,  the  controller  design  problem  is  formulated,  and
preliminary  knowledge  is  given.  Section  III  investigates  the
finite-time  stability  analysis  result,  which  is  finite-time
bounded  with  the  performance  analysis  result  and
controller design method. A numerical simulation is performed
in  Section  IV  to  illustrate  the  validity  and  advantage  of
developed results. Section V concludes this paper.

Rn n

0 I P ⪯ 0 P ≺ 0
P

P ⪰ 0 P ≻ 0 P

−1 diag{·}
∗

λmax{P} λmin{P}
P

.

Notations:  represents  the -dimensional  Euclidean
space. The zero matrix and the identity matrix are denoted as
 and  respectively.  The  matrix  inequalities  ( )

means  that  is  symmetric  and  semi-negative  (negative)
definite. The matrix inequalities  ( ) means that  is
symmetric  and  semi-positive  (positive)  definite.  The  super-
scripts “ ” represents inverse of a matrix. We use  as a
block-diagonal  matrix.  The  symbol “ ” is  used  as  an  ellipsis
for  the  symmetric  term  in  symmetric  matrices  or  complex
matrix  expressions.  and  represent  the
maximum  and  minimum  eigenvalues  of  matrix ,  respec-
tively 

II.  Problem Formulation and Preliminaries

Consider the following discrete-time linear system:
 

x (k+1) = Ax (k)+Bũ (k)+Eω (k) (1)
 

z (k) =Cx (k)+Dũ (k)+Fω (k) (2)
x(k) ∈ Rnx , ũ(k) ∈ Rnu z(k) ∈ Rny

ω (k) ∈ Rnω l2[0,∞)
A,B,C,D,E,F

where   and  represents  system
state,  control  input,  and  system  output,  respectively;

 refers to external disturbance belonging to 
and  represent system matrices.

In  practice,  it  is  very  common  to  have  signal  quantized
before  transmission  in  order  to  mitigate  network  congestion
due  to  limited  communication  network  capacity.  As  a  sketch
of  networked  system  layout  is  shown  in Fig. 1,  system  state

x(k) u(k) and  control  input  should  both  be  quantized.  In  this
paper,  we  are  interested  in  a  class  of  logarithmic  quantized
signals with the following form:
 

x̃(k) = Qx,σk (x(k)), ũ(k) = Qu,σk (u(k)) (3)
x̃(k) ∈ Rnx Qu,σk (·)

Qx,σk (·)

σk
I = {1, . . . ,L} ,

L
k1,k2, . . . ,ks, . . .

ks
s ∈ Z+ k ∈ [ks,ks+1) σk

ks+1− ks

where  is  the  input  of  the  controller;  and
 represent odd-symmetric logarithmic quantizers of the

control  input  channel  and  the  measurement  output  channel,
respectively;  is the switching signal,  which is a piecewise
constant  function  taking  value  in  a  finite  set 
where  denotes  the  number  of  subsystems.  The  switching
sequence  are unknown a priori, but are known
instantly,  in  which  the  switching  instants  are  denoted  as ,

. When , it is said that th system is active
for .  It  is  assumed  that  the  quantization  density  may
change,  and  each  quantization  density  corresponds  to  a
subsystem mode. The set of logarithmic quantization levels is
depicted as
 

Uv,σk =
{
±µv,σk ,q|µv,σk ,q = ρ

q
v,σkµv,0,

q = 0, ±1,±2, . . .
}
∪{0} (4)

v ∈ {x,u}
µv,σk ,q > 0

ρv,σk ∈ (0,1)

Qv,σk (·) . Qv,σk (·)

where  indicates the system or controller, with which
the  quantizer  is  associated;  represents  a  quanti-
zation level for a corresponding segment that is mapped to this
quantization  level  by  the  logarithmic  quantizer; 
can  be  regarded  as  the  quantization  density  of  the  quantizer

 The associated quantizer  is defined as [10]
 

Qv,σk (v) =


µv,σk ,q, vmin < v ≤ vmax
0, v = 0
−Qv,σk (−v), v < 0

(5)

δv,σk v(k),where  is the sector bound of 
 

δv,σk =
1−ρv,σk

1+ρv,σk

vmin =
µv,σk ,q

1+δv,σk

vmax =
µv,σk ,q

1−δv,σk

.

Define the quantization errors as
 

ev(k) = Qv,σk (v(k))− v(k) = ∆v,σk v(k) (6)
∆v,σk ∈ [−δv,σk , δv,σk ]where  and the quantizer can therefore be

given by
 

ũ(k) = Qu,σk (u(k)) =
(
1+∆u,σk

)
u(k) (7)

 

x̃(k) = Qx,σk (x(k)) =
(
1+∆x,σk

)
x(k). (8)

In this  paper,  we are interested in a  class  of  state  feedback
controller as follows:
 

u(k) = Kσk x̃(k) (9)
Kσkwhere  is the controller gain matrix. The resulting closed-

loop system can be given by
 

x(k+1) = Ãix(k)+Ew(k) (10)
 

z(k) = C̃ix(k)+Fw(k) (11)

 

Physical system

Quantizer

Network

Controller Quantizer

Network
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Fig. 1.     The quantized networked control system.
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Ãσk (k) = A+∆u,x,σk BKσk , C̃σk (k) =C+∆u,x,σk DKσk ,

∆u,x,k = (1+∆u,σk )(1+∆x,σk )
where  

.
Some  definitions  should  be  introduced  before  proceeding

further.
k1, k2, . . . ,

ks, . . . k1 = 0 τ

τ σ
Ωi

Definition 1 [23]: Consider the switching instants   
  with .  A  positive  constant  is  said  to  be  the

persistent dwell-time (PDT) if there exists an infinite number
of disjoint intervals of length no smaller than  on which  is
constant  at  subsystem ,  and consecutive  intervals  with  this
property  are  separated  by  no  more  than T,  where T is  the
period of persistence.

τ
τ

Remark  1: According  to  the  above  definition,  a  PDT
switching  signal  is  composed  of  infinitely  many  consecutive
switching stages.  Each stage includes  a  period with  length at
least  and a period with length no greater than T. The former
period is called the -portion, in which subsystem switching is
prohibited,  and  the  latter  period  is  regarded  as  the T-portion,
in  which  no  constraint  is  applied  to  the  sequence  and
frequency of subsystem switching.

kn
p

T T (p)

T
T (p) =

∑S [k1
p,kp+1)

n=1 Tσ(kn
p) ≤ T S [k1

p,kp+1)
[k1

p,kp+1). kp

ki
p

T

Remark 2: Some notations for PDT switching signal should
be  introduced  for  the  sake  of  conciseness.  Let  denote  the
actual running time of the -portion of the pth stage, and 
denotes the actual running time of entire -portion. It follows
that  where  denote  the
switching  times  within  Additionally,  indicates
the instant entering pth stage and  is the ith switching instant
within -portion.

c1,c2,N
c1 < c2, R

[k1,kN] σ (k) ,

(c1,c2,R,N,σ) , {xT (k1)Rx (k1)} ≤ c1 =⇒ xT (k)Rx (k) ≤ c2
k ∈ [k1,kN]

Definition  2  [24]: Given  positive  constants  with
 and  a  positive  definite  matrix ,  consider  a  finite

interval  and  a  certain  switching  signal  where
systems (10) and (11) is finite-time (FT) stable with respect to

 if 
for any .

c1,c2,d,N
c1 < c2 R

[k1,kn] σ (k)

(c1,c2,R,d,N,σ) ∀ω (k) :
∑kn

k=k1
ωT (k)ω (k) ≤ d {xT (k1)

Rx (k1)} ≤ c1⇒ xT (k)Rx (k) ≤ c2 k ∈ [k1,kn]

Definition 3 [24]: Given positive constants  with
,  and  a  positive  definite  matrix ,  consider  a  finite

interval  and  a  certain  switching  signal ,  where
systems  (10)  and  (11)  is  finite-time  bounded  with  respect  to

,  if , 
 for any .

As  a  consequence,  the  main  objective  of  this  paper  is  to
determine a set of controllers with appropriate PDT switching
signals  such  that  the  closed-loop  systems  (10)  and  (11)  is
finite-time  bounded  under  the  condition  of  the  quantized
signal (3). 

III.  Main Results

H∞
In  this  section,  we  present  the  finite-time  stability  criteria

and  the  finite-time  bounded  performance  analysis  result.
Based  on  the  analysis  result,  a  controller  design  method  is
proposed  under  the  condition  of  quantized  signal  with  PDT
switching.

x(k+1) = fσ(k)(x(k)) c1 c2 N µ α T
c1 < c2 µ > 1 α ≥ 1. ∀ (σ (k)×σ (k−1)) =

(i× j) ∈ I×I i , j,
Vσ(k) : (Rnx ,Z+)→ R R

P̄i, P̄i = R1/2PiR1/2,

Lemma 1: Consider a class of discrete-time switched system
, and , , , , ,  are given positive

constants  with , ,  For 
,  suppose  that  there  exists  a  family  of

functions ,  positive  definite  matrices 
and   such that

 

Vi (x(k+1),k+1) ≤ αVi (x(k),k) (12)
 

Vi (x(k),k) ≤ µV j (x(k),k) (13)
 

c2λ2α
−N > c1λ1. (14)

(c1,c2,R,N,σ)
Then  the  system  is  finite-time  stable  with  respect  to

 for the PDT switching signals satisfying
 

τ ≥ N (T +1) lnµ
lnφ1− lnφ2−N lnα

−T (15)

λ1 =max∀i∈I (λmax (Pi)) λ2 =min∀i∈I (λmin (Pi)) φ1 =

c2λ2 φ2 = c1λ1

where , , 
, and .

σ(kp) = i, σ(k1
p+T (p)) = j

τi k1
p+T (p) p

Proof: Suppose  that   are  the
modes  of  the  portion  and  the  mode  at  in  the th
stage  of  switching,  respectively.  It  then  follows  from
(12)–(14) that
 

V j
(
x(kp+1),kp+1

)
≤ αV j

(
x(kp+1−1),kp+1−1

)
≤ µαTl Vl

(
x(kp+1−Tl),kp+1−Tl

)
...

≤ µS
[
k1

p,kp+1
) n∏

i=1

αT [ki
p,k

i+1
p )Vσ(k1

p)

(
x(k1

p),k1
p

)
≤ µS

[
k1

p,kp+1
) n∏

i=1

αT [ki
p,k

i+1
p )×µαT (kp,k1

p)Vi
(
x(kp),kp

)
≤ µS

[
k1

p,kp+1
)
αT ×µατVi

(
x(kp),kp

)
(16)

Tl

T
where  denotes the actual running time of the subsystem in
the  portion of the pth stage.

For the entire stage, it holds that
 

Vσ(kp+1)
(
x(kp+1),kp+1

)
≤ µ
(
S
[
k1

p,kp+1
)
+1
)
pα(T+τ)pVσ(k1) (x(k1),k1) . (17)

P̃i = R1/2PiR1/2,Considering  it can be derived that
 

Vσ(k1) (x(k1),k1)

= xT (k1)P̄σ(k1)x(k1)

≤ λmax
(
Pσ(k1)

)
xT (k1)Rx(k1) ≤ λ1c1 (18)

and
 

Vσ(kp+1)
(
x(kp+1),kp+1

)
= xT (kp+1)P̄σ(kp+1)x(kp+1)

≥ λmin
(
Pσ(kp+1)

)
xT (kp+1)Rx(kp+1)

≥ λ2xT (kp+1)Rx(kp+1). (19)
From (14), one can obtain that

 

ln
c2λ2

c1λ1
−N lnα > 0. (20)

Therefore, according to (15) and (20), one can conclude that
 

ln
λ1

λ2
+

N (T +1)
T +τ

lnµ+N lnα < ln
c2

c1
. (21)

Due to the fact that
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S
[
k1

p,kp+1
)
≤ T,N =

(
kp+1− k1

)
, p ≤

kp+1− k1

T +τ

one can obtain that
 

ln
λ1

λ2
+
(
S
[
k1

p,kp+1
)
+1
)

p lnµ+ (T +τ) p lnα < lnc2− lnc1.

(22)

Based on (17)–(19) and (22), it follows that
 

xT
(
kp+1
)
Rx
(
kp+1
)
≤ λ1

λ2
µ
(
S
[
k1

p,kp+1
)
+1
)
pα(T+τ)pc1 < c2. (23)

(c1,c2,R,N,σ)
According  to  Definition  2,  the  system  is  finite-time  stable

with respect to  for PDT switching signals (15).
■

c1 = 0

Remark 3: Due to the difference between globally uniformly
asymptotically  stability  and  finite-time  stability,  the  PDT
signal  obtained  in  this  paper  distinguishes  from  the  one  in
[23]. To be specific,  in this paper the PDT is associated with
matrix  eigenvalues  of  Lyapunov  function.  It  is  noted  that  in
the  case  of  zero  initial  condition,  i.e., ,  the  inequality
(14)  is  tenable  and  the  PDT  switching  signal  is  unrelated  to
the maximum eigenvalue of a matrix.

H∞

It  can  be  seen  that  the  sufficient  conditions  of  finite-time
stability  is  proposed  without  exogenous  disturbances  in
Lemma  1.  In  order  to  suppress  disturbance  and  achieve 
performance at the same time, we give Lemma 2 as follows.

x(k+1) = fσ(k)(x(k)), c2 N µ α d T
µ > 1 α ≥ 1. ∀ (σ (k)×σ (k−1)) =

(i× j) ∈ I×I i , j,
Vσ(k) : (Rnx ,Z+)→ R R

P̄i, P̄i = R1/2PiR1/2,

Lemma  2: Consider  a  class  of  discrete-time  systems
 and , , , , ,  are given positive

constants  with ,  For 
,  suppose  that  there  exists  a  family  of

functions ,  positive  definite  matrices 
and   such that
 

Vi (x(k+1),k+1) ≤ αVi (x(k),k)−Γ(k) (24)
 

Vi (x(k),k) ≤ µV j (x(k),k) (25)
 

c2λ2α
−N > γ2d. (26)

(0,c2,R,d,γl,N,σ)
Then  the  system  is  finite-time  bounded  with  respect  to

 for PDT switching signals satisfying
 

τ ≥max {τ1, τ2} (27)

Γ(k) = zT (k)z(k)−γ2ω(k)ω(k), τ1 =
N(T+1) lnµ
lnκ1−lnκ2

−T, τ2 =
(T+1) lnµ

lnα −T, λ1 =max∀i∈I (λmax (Pi)) , λ2 =min∀i∈I (λmin (Pi)) ,

κ1 = c2λ2 (µ−1)+γ2dαN , κ2 = γ
2dαN , γl = γα

N
√
µ(T+1)/(T+τ).

where   
  

  
Proof: The inequality (24) implies that

 

Vi (x(k+1),k+1)

≤ αVi (x(k),k)−
(
zT (k)z(k)−γ2ω(k)ω(k)

)
≤ αVi (x(k),k)+γ2ω(k)ω(k). (28)

According to (28), one can obtain that
 

Vσ(kl
p)

(
x(kp+1),kp+1

)
≤ µαTl Vσ(km

p )
(
x(kl

p),kl
p

)
+αTl−1γ2ωT

(
kl

p

)
ω
(
kl

p

)
+ · · ·+αγ2ωT

(
kp+1−2

)
ω
(
kp+1−2

)
+γ2ωT

(
kp+1−1

)
ω
(
kp+1−1

)
...

≤ µS
[
k1

p,kp+1
)
αT ×µατVσ(kp)

(
x(kp),kp

)
+γ2d

 l∏
i=1

µiαT (ki
p,k

i+1
p )+ · · ·+αT

(
kl

p,kp+1
)
µ+1


≤ µN(T+1)/(T+τ)αNVσ(k1) (x(k1),k1)

+γ2dαN µ
(T+1)N/(T+τ)−1
µ−1

. (29)

k1At the initial time , one can obtain that
 

Vσ(k1) (x(k1),k1) = 0. (30)
kp+1At the final time , one can get that

 

Vσ(kl
p)

(
x(kp+1),kp+1

)
≥ λ2xT (kp+1)Rx(kp+1) (31)

which implies that
 

xT (kp+1)Rx(kp+1) ≤ 1
λ2

Vσ(kl
p)

(
x(kp+1),kp+1

)
. (32)

Therefore, according to (27), one can conclude that
 

T +τ ≥ N (T +1) lnµ
ln
(
c2λ2 (µ−1)+γ2dαN)− ln

(
γ2dαN) . (33)

From (33), it is derived that
 

µ
N(T+1)

T+τ ≤ c2λ2 (µ−1)+γ2dαN

γ2dαN

which results in
 

γ2dαN
[
µ

N(T+1)
T+τ −1

]
µ−1

< c2λ2. (34)

Based  on  (30)–(32)  and  (34),  under  the  zero  initial
condition, one can conclude
 

xT (kp+1)Rx(kp+1) ≤ γ
2dαN

λ2

µ
N(T+1)

T+τ −1
µ−1

< c2. (35)

(0,c2,R,d,N,σ)
H∞

As  Definition  3  stated,  the  system  is  finite-time  bounded
with  respect  to  for  PDT  switching  signals.
Furthermore,  considering  the  performance,  from  (17),  it
follows that
 

Vσ(kn) (x(kn),kn)

≤ µS (k1,kn)αkn−k1Vσ(k1) (x(k1),k1)

−
kn−1∑
l=k1

µS (l,kn)αkn−1−lΓ(l).

Vσ(k1) (x(k1),k1) = 0As  a  consequence,  one  has  under  the
zero initial condition. Due to the fact that
 

Vσ(kn) (x(kn),kn) ≥ 0
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and
 

Γ(l) = zT (l)z(l)−γ2ω(l)ω(l)

it follows that
 

kn−1∑
l=k1

µS (l,kn)αkn−1−l
(
zT (l)z(l)−γ2ω(l)ω(l)

)
≤ 0.

n ∈ Z≥2,Considering  it is derived that
 

kn−1∑
l=k1

µS (l,kn)αkn−1−lzT (l)z(l)

≤
kn−1∑
l=k1

µ
kn−l
T+τ S maxαkn−1−lγ2ω(l)ω(l)

≤
kn−1∑
l=k1

µ
1

T+τ S maxµ
kn−1−l

T+τ S maxαkn−1−lγ2ω(l)ω(l)

≤ µ 1
T+τ S max

kn−1∑
l=k1

µ
kn−1−l

T+τ S maxαkn−1−lγ2ω(l)ω(l)

≤ µ 1
T+τ S max

kn−1∑
l=k1

(
µS maxαT+τ

) kn−1−l
T+τ γ2ω(l)ω(l)

S max = T +1. αT+τ ≥ µS max .where  From  (27),  it  implies  that 
Thus, it satisfies that
 

kn−1∑
l=k1

zT (l)z(l)

≤
kn−1∑
l=k1

µS (l,kn)αk−1−lzT (l)z(l)

≤ γ2µ
1

T+τ S max

kn−1∑
l=k1

α2(kn−1−l)ωT (l)ω(l).

k1 = 0, kn = N +1,Suppose that   it follows that
 

N∑
l=0

α2(kn−1−l)ωT (l)ω(l)

= α2Nω(0)ω(0)+α2(N−1)ω(1)ω(1)
+ · · ·+ω(N)ω(N)

≤ α2N
N∑

l=0

ω(l)ω(l).

Therefore, one can conclude that
 

N∑
l=0

zT (l)z(l) ≤ γ2µ
1

T+τ S maxα2N
N∑

l=0

ω(l)ω(l) ≤ γ2
l

N∑
l=0

ω(l)ω(l)

(36)
where
 

γl = γα
N
√
µ(T+1)/(T+τ).

■
H∞ γl

γ

Remark 4: It is evident that the  performance index  is
affected  by  the  parameters  of  the  PDT  signal  and .

γl α µ.Moreover,  grows with the increase of  and 

H∞

∆x,u,k

It can be seen that the finite-time stability and the finite-time
boundness with  performance are considered in Lemma 1
and  Lemma  2,  respectively.  A  quantization-error  dependent
(QED)  Lyapunov  function  which  is  distinguished  from  the
one  in  [10]  consists  of  a  class  of  multiple  Lyapunov-like
functions  dependent  on  both  system  mode  and  quantization
error .  Multiple  Lyapunov-like  functions  can effectively
reduce the analysis conservatism compared with the common
Lyapunov  function  and  the  QED  Lyapunov  function  can
overcome  the  effect  of  signal  quantization  error.  The  QED
Lyapunov function is proposed as follows:
 

Vi(x(k),k) = xT (k)P̄i(∆x,u,k)x(k)

P̄i
(
∆x,u,k

)
= βi,1P̄i,1+βi,2P̄i,2+βi,3P̄i,3+βi,4P̄i,4,

P̄i,b > 0,∀b ∈ {1,2,3,4}
where  with

 

βi,1 =

(
δx,i+∆x,i,k

)
2δx,i

(
δu,i+∆u,i,k

)
2δu,i

βi,2 =

(
δx,i+∆x,i,k

)
2δx,i

(
δu,i−∆u,i,k

)
2δu,i

βi,3 =

(
δx,i−∆x,i,k

)
2δx,i

(
δu,i+∆u,i,k

)
2δu,i

βi,4 =

(
δx,i−∆x,i,k

)
2δx,i

(
δu,i−∆u,i,k

)
2δu,i∑4

r=1 βr = 1.and 

c1 c2 N µ α T
c1 < c2 µ > 1 α ≥ 1. ∀ (σ (k)×σ (k−1)) = (i× j) ∈ I×I
i , j, ∀a,b ∈ {1,2,3,4} ,

R, P̄i,a = R1/2Pi,aR1/2,

P̄i,a ≻ 0,

Lemma  3: Consider  discrete-time  switched  system  (10)-
(11),  and , , , , ,  are  given positive constants  with

, ,  For ,
  suppose  that  there  exists  positive

definite  matrix   if  there  exists  a  set  of
matrices  such that (14) is satisfied, and
  −P̄i,a P̄i,aÃi,b

∗ −αiP̄i,b

 ≺ 0 (37)

 

4∑
r=1

βi,r P̄i,r ⪯ µ
4∑

r=1

β j,r P̄ j,r (38)

where
 

Ãi,1 = A+
(
1+δx,i

) (
1+δu,i

)
BKi

Ãi,2 = A+
(
1+δx,i

) (
1−δu,i

)
BKi

Ãi,3 = A+
(
1−δx,i

) (
1+δu,i

)
BKi

Ãi,4 = A+
(
1−δx,i

) (
1−δu,i

)
BKi.

(c1,c2,R,N,σ)
λ1 =max∀i∈I

(
λmax
(
Pi,a
))
λ2 =min∀i∈I

(
λmin
(
Pi,a
))Then, the switched system is finite-time stable with respect

to  for  PDT  switching  signals  satisfying  (15)
where , .

∀b ∈ {1,2,3,4}Proof: if (37) is satisfied, for  one can obtain
that
  −P̄i,1 P̄i,1Ãi,b

∗ −αP̄i,b

 ≺ 0 (39)

  −P̄i,2 P̄i,2Ãi,b

∗ −αP̄i,b

 ≺ 0 (40)
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  −P̄i,3 P̄i,3Ãi,b

∗ −αP̄i,b

 ≺ 0 (41)

  −P̄i,4 P̄i,4Ãi,b

∗ −αP̄i,b

 ≺ 0. (42)

β1, β2, β3 β4,By multiplying both sides of (39)–(42) by    and 
respectively, and summing up their results, it can be obtained
that
  −P̄i(∆x,u,k) P̄i(∆x,u,k)Ãi,b

∗ −αP̄i,b

 ≺ 0. (43)

By the Schur complement, it is easy to show
 

ÃT
i,bP̄i(∆x,u,k)Ãi,b−αP̄i(∆x,u,k) ≺ 0. (44)

Hence, (44) and (38) implies that (12) and (13) are satisfied,
which  guarantees  the  systems  (10)  and  (11)  is  finite-time
stable. ■

P̄i,m = P̄i,n ∀m,n ∈ {1,2,3,4}

∆x,i,k/δx,i = ∆x, j,k/δx, j ∆u,i,k/δu,i = ∆u, j,k/δu, j.

Remark  5: By  setting ,  in
Lemma 3,  the  Lyapunov  function  is  reduced  to  conventional
multiple  Lyapunov-like  functions,  which  is  of  greater
conservatism.  Since  it  is  difficult  to  obtain  the  quantization
error,  one  can  assume  that  the  ratio  of  quantization  error  to
quantization  bound  is  the  same  at  the  instant  just  before  and
the  instant  just  after  the  switching,  which  means  that

 and  It  is  noted
that  the  assumption  is  only  applied  in  the  switching  instant
and there are no restrictions on the quantization error at other
instants.  Therefore,  the  theoretical  analysis  based  on  the
assumption  is  believable.  The  inequalities  (38)  can  be
simplified as
 

P̄i,a−µP̄ j,a ⪯ 0. (45)

H∞

The  following  lemma  and  theorem  are  based  on  the
assumption that the ratio of quantization error to quantization
bound is same at different modes in switching adjoining times.
In order to suppress disturbance and achieve  performance,
Lemma 4 is proposed as follows.

c2 N µ α d T µ > 1
α ≥ 1. ∀ (σ (k)×σ (k−1)) = (i× j) ∈ I×I,∀a,b ∈ {1,2,3,4} ,

R,
P̄i,a = R1/2Pi,aR1/2, P̄i,a ≻ 0,

Lemma 4: Consider  discrete-time switched  system (10,11),
where , , , , ,  are given positive constants with ,

 For  
suppose  that  there  exists  a  positive  definite  matrix 

 if  there  exists  a  set  of  matrices 
such that (26) is satisfied
 

Ξi ≺ 0 (46)
 

P̄i,a−µP̄ j,a ⪯ 0 (47)
where
 

Ξi =

 Ξ11 Ξ12

∗ Ξ22


Ξ11 = −diag{P̄i,a, I}

Ξ12 =

 P̄i,aÃi,b P̄i,aE

C̃i,b F


Ξ22 = −diag{αiP̄i,b,γ

2}.

(0,c2,R,d,N,σ)
H∞

γl

Then, the corresponding system is finite-time bounded with
respect  to  for  the  PDT  switching  signal
satisfying  (27)  and  has  an  performance  index  no  greater
than .

ξ(k) =
[
xT (k) wT (k)

]T
Proof: By  defining ,  one  can  obtain

that
 

Vi(x(k+1),k+1)−αVi(x(k),k)+Γ(k) = ξT (k)Φiξ(k)
where
 

Φi =

 Φ11 Φ12

Φ21 Φ22

 (48)

with
 

Φ11 = ÃT
i P̄iÃi+ C̃T

i C̄i−αiP̄i

Φ12 = ÃT
i P̄iE+ C̃T

i F

Φ21 = ET P̄iÃi+FT C̃i

Φ22 = ET P̄iE+FT F −γ2.

If (46) holds, by applying the same approach in Lemma 3, it
can be implied that
 

−P̄i 0 P̄iÃi PiE

∗ −I C̃i F

∗ ∗ −αP̄i 0

∗ ∗ ∗ −γ2


⪯ 0. (49)

Φi ⪯ 0.By  the  Schur  complement,  one  can  observe  that 
Furthermore,  one  can  obtain  that  (24)  holds.  Similarly,  (47)
implies  that  (25)  holds.  Hence,  (46)  and  (47)  guarantee  that
the systems (10) and (11) is finite-time bounded. ■

Obviously  there  exists  cross  couplings  of  matrices  which
have different  modes as  shown in  (46),  Lemma 4 can not  be
used for controller design. Therefore, we present the following
controller design method.

c2 N d µ α T
µ > 1 α ≥ 1. ∀ (σ (k)×σ (k−1)) = (i× j) ∈

I×I, ∀a,b ∈ {1,2,3,4} ,
R, Z̄i,a = YT P̄i,aY Wi,a = Z̄i,a−YT −Y

P̄i,a = R1/2Pi,aR1/2 Xi, Y,
Z̄i,a ≻ 0

Theorem  1: Consider  the  discrete-time  switched  systems
(10)  and  (11),  where , , , , ,  are  given  positive
constants  with ,  For 

  suppose  that  there  exists  a  positive
definite  matrix  ,  and

;  if  there  exists  a  set  of  matrices  
 such that (26) is satisfied

 

Ωi ≺ 0 (50)
 

Wi,a−µW j,a ≺ 0 (51)
ϖ1 = (1+δx) (1+δu) , ϖ2 = (1+δx) (1−δu) , ϖ3 = (1−

δx) (1+δu) , ϖ4 = (1−δx) (1−δu)
where   

  and
 

Ωi =

 Ω11 Ω12

∗ Ω22


Ω11 = −diag{Wi,a, I}

Ω12 =

 AiY +ϖbBiXi E

CiY +ϖbDiXi F


Ω22 = −diag{αiZ̄i,b,γ

2I}
then  there  exists  a  set  of  controllers  such  that  the  system  is
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(0,c2,R,d,N,σ)
H∞

γl λ1 =

max∀i∈I
(
λmax
(
Pi,a
))
, λ2 =min∀i∈I

(
λmin
(
Pi,a
))
.

finite-time  bounded  with  respect  to  for  the
PDT  switching  signal  satisfying  (27)  with  the 
performance  index  no  greater  than  where 

  Moreover,  if
(50) and (51) have a solution, the admissible controller can be
given by
 

Ki = XiY−1. (52)
P̄i,a ≻ 0Proof: Since , it follows that

 (
Y − P̄−1

i,a

)T
P̄i,a
(
Y − P̄−1

i,a

)
≻ 0

Wi,a ≻ −P̄−1
i,a Xi = KiYwhich  implies .  With ,  it  implies  that,

from (50)
 

−P̄−1
i,a 0 (Ai+ϖbBiKi)Y E

∗ −I (Ci+ϖbDiKi)Y F

∗ ∗ −αYT P̄i,bY 0

∗ ∗ ∗ −γ2I


≺ 0. (53)

diag
{
I, I,V−1, I

}Performing  congruence  transformations  to  (53)  by
, one can obtain that

 
−P̄−1

i,a 0 Ai+ϖbBiKi E

∗ −I Ci+ϖbDiKi F

∗ ∗ −αP̄i,b 0

∗ ∗ ∗ −γ2I


≺ 0. (54)

Θi ≺ 0
If  (54)  holds,  by  applying  the  same  approach  in  Lemma  3

and  Schur  complement,  one  can  finally  obtain  in
Lemma  4.  From  (51),  one  can  imply  that  (47)  is  satisfied.
Hence,  (50)  and  (51)  guarantee  the  systems  (10)  and  (11)  is
finite-time bounded. ■

γ

γ

Remark 6: It is worth noting that the PDT switching signal
(27) can not be calculated, since the parameter  is not given
in this paper which distinguishes from the one in [22]. We can
get  the  minimum  value  of  parameter  and  the  matrix
eigenvalues by solving matrix inequalities (50) and (51). 

IV.  Numerical Example

A  numerical  example  is  presented  to  show  the  validity  of
the obtained theoretical results.  Consider a class of NCSs (1)
and (2) given by
 

A =

 0.6 0.24

1.5 0.6

 , B =
[
−0.42 −2.4

]T
E =
[

0.48 0.84
]T
, C =

[
0.18 0.12

]
D = 0.18, F = 0.3

and  a  zero  initial  condition  with  the  following  exogenous
disturbance :
 

ω(k) = 0.04cos(k)e−0.5k. (55)
α = 1.01, µ = 1.03, c1 = 0,

c2 = 200, R = I, N = 40, d = 0.018
T = 3.

Qx,σk

Assigning associated parameters   
   ,  and  period  of  persistence

 Suppose  that  the  quantization  density  may  vary
between  two  modes  and  the  variation  is  subject  to  PDT
switching  signal.  The  maximum  error  bounds  in  and

Qu,σk are assigned to be
 

Mode 1 : δx,1 = 0.02, δu,1 = 0.04
Mode 2 : δx,2 = 0.05, δu,2 = 0.07. (56)

λ1 = 0.2976, λ2 = 0.00043, γ = 0.5751,
τ1 = 15.3581, τ2 = 8.8825
τ = 16 ≥max {τ1, τ2}

γl = 0.8590

xT (k)Rx (k) < 3×10−4

One can obtain  that   
  and  the  minimal  PDT

. In order  to  verify the correctness of  the
developed results,  the state response of the open-loop system
under  the  zero  initial  condition  is  depicted  in Fig. 2,  from
which  can  be  clearly  seen  that  the  uncontrolled  system
diverges.  One  can  obtain  a  set  of  controllers  and  the
performance  index  based  on  Theorem  1. Fig. 3
demonstrates the performance of the closed-loop system with
controllers obtained by Theorem 1. Compared with the open-
loop  system  in Fig. 2,  the  state  response  of  the  closed-loop
system converges in Fig. 3. Therefore, the designed controller
which is against the signal quantization error in the networked
channel  is  effective.  As  shown  in Fig. 4,  it  can  be  seen  that

 which  means  that  the  closed-loop
system is finite-time bounded.

H∞ γreal
γl = γ

√
Ψ

γreal = 0.7024 < γl = 0.8590 H∞

For the definition of the actual  performance index 
and  the  obtained  in  Lemma 2,  one  can  obtain  that

.  It  suggests that the obtained 
performance  can  be  well  guaranteed  for  these  different
maximum quantization errors in (56); thus the effectiveness of
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Fig. 2.     State response of the open-loop system.
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Fig. 3.     State response of the closed-loop system.
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H∞the designed  controller has been manifested.
H∞

γl
,

To elucidate the influence of the obtained  performance
index  in  different  quantization  error  bounds  of  the  two
modes,  one  assumes  that  all  parameters  remain  the  same
moreover
 

δ1 = δx,1 = δu,1
δ2 = δx,2 = δu,2. (57)

H∞
γl

γl
δ1 δ2.

δmax δ1 δ2 γl
δ1 δ2

δ1 δ2
δmax = 0.54. γl

α

By  simulation  and  calculation,  one  can  obtain  the 
performance index  in different quantization error bounds of
two modes as shown in Fig. 5. It  is easy to see that  grows
with  the  increase  of  and  Moreover,  there  exists  upper
bound  to  and .  As  shown  in Fig. 5,  the  rate  of 
growth is faster when  or  is close to the upper bound. In
addition, there is no feasible solution, if  or  is greater than

 Fig. 6 is given to illustrate that  grows with the
increase of  in different quantization error bounds. 

V.  Conclusion

H∞

H∞
H∞

This paper investigates the finite-time control problem for a
class  of  NCSs  with  signal  quantization  density  variation.  A
quantization  error  dependent  Lyapunov  function  is  adopted,
and  the  finite-time  bounded  analysis  and  performance
analysis are carried out. Based on the analysis results, a set of

 controllers  suitable  for  the  interested  NCSs are  designed
to  guarantee  finite-time  boundedness  along  with 

performance.  A  numerical  example  is  provided  to  illustrate
the  validity  and  potential  of  the  developed  results.  We  will
carry  out  practical  systems  in  order  to  support  theoretical
results in the future work.
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