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   Abstract—For the complex batch process with characteristics of
unequal  batch  data  length,  a  novel  data-driven  batch  process
monitoring  method  is  proposed  based  on  mixed  data  features
analysis  and  multi-way  kernel  entropy  component  analysis
(MDFA-MKECA)  in  this  paper.  Combining  the  mechanistic
knowledge, different mixed data features of each batch including
statistical and thermodynamics entropy features, are extracted to
finish  data  pre-processing.  After  that,  MKECA  is  applied  to
reduce  data  dimensionality  and  finally  establish  a  monitoring
model.  The  proposed  method  is  applied  to  a  reheating  furnace
industry  process,  and  the  experimental  results  demonstrate  that
the  MDFA-MKECA  method  can  reduce  the  calculated  amount
and effectively provide on-line monitoring of the batch process.
    Index Terms—MDFA,  MKECA,  process  monitoring,  reheating
furnace, statistical features, thermodynamics entropy feature.
 

I.  Introduction

BATCH  and  semi-batch  processes,  as  the  traditional
industrial  processes,  have  been  generally  used  in  the

chemical,  food,  biochemical,  and  semiconductor  industries
[1].  In  order  to  ensure  the  safety  of  these  industrial  batch
processes  and  improve  the  final  quality  of  products,  on-line
process  monitoring  is  becoming  increasingly  important.
Multivariate  statistical  process  monitoring  (MSPM)  [2]  is  a
powerful  tool  for  the  comprehensive  monitoring  of  industry
processes  and  detection  of  abnormal  operation.  It  has  been
widely  applied  to  both  continuous  and  batch  processes  with
many  successful  applications.  For  continuous  processes,
principal  component  analysis  (PCA)  [3]  and  partial  least
squares  (PLS)  [4],  as  two  well-known  typical  MSPM
methods,  have  been  utilized  to  monitor  performance  and
quality.  Batch  process  data  typically  has  a  three-dimensional
data structure. However, PCA and PLS can only handle two-
dimensional  data  matrix,  so  they  are  not  suitable.  Therefore,
multi-way  principal  component  analysis  (MPCA)  [5],  multi-
way  partial  least  square  (MPLS)  [6],  and  multi-way

independent  component  analysis  (MICA) [7]  are  proposed to
adapted  to  batch  processes.  In  order  to  tackle  process
nonlinearity,  the  kernel  functions  are  introduced  and  then
multi-way kernel principal component analysis (MKPCA) [8],
MKICA [9], and MKPLS [10] are developed as an extension
of  regular  methods.  Considering  that  more  data  information
can  be  revealed  by  information  entropy,  recently,  the  multi-
way  kernel  entropy  component  analysis  (MKECA)  method
has  been  proposed  [11].  It  is  a  new  method  of  data
transformation  and  dimensionality  reduction,  which  chooses
the  best  principal  component  vectors  according  to  the
maximal  Renyi  entropy  rather  than  judging  by  the  top
eigenvalues and eigenvectors of the kernel matrix simply. The
MKECA  method  provides  a  more  effective  way  for  batch
process monitoring.

A real industrial process, such as a reheating furnace, has a
heavy  and  unequal  batch,  plentiful  process  measurements,
nonlinear  behavior,  and  other  complex  characteristics.  For
these industries processes, the MKECA monitoring method is
not useful since its basis are all batches with equal data length.
Another  disadvantage  is  that  as  a  second-order  method,  the
MKECA  method  loses  sight  of  data  information  included  in
higher-order representations, such as non-Gaussian, which are
universal  characteristics  of  industrial  data.  Additionally,  the
calculated amount is also enormous due to a large amount of
measurements  and  projections  based  on  the  kernel  matrix,
which has a negative impact to the on-line monitoring. Hence,
to  overcome  the  above  disadvantages,  a  data  pre-processing
method before MKECA is needed. In the literatures, data pre-
processing  methods  for  batch  data  of  unequal  length  have
been  developed,  including “Minimum  length”, “Maximum
length” [12],  and “Indicator  variable” [13].  However,  these
methods  are  not  efficient  enough  in  the  real  industrial
processes  because  of  the  many  operational  stages  and
uncertain  length  of  the  batch  data.  Alternately,  the  dynamic
time  warping  (DTW)  algorithm  [14],  as  a  time-series
similarity measure which minimizes the effects of shifting and
distortion, is developed to solve the problem of unequal batch
data.  In  DTW,  the  batch  data  length  is  made  the  same  by
conversion,  expansion  or  compression  of  some  local  data
fragments.  However,  this  method  is  only  suitable  for
processes whose batch data length have little difference. Once
there are great differences, an unrealistic correspondence will
occur.

As  an  important  means  of  representing  data  information,
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data  feature  extraction  is  widely  used  in  various  data
processing [15], [16]. In this paper, based on the integration of
mixed  data  features  analysis  and  multi-way  kernel  entropy
component analysis, a novel batch process monitoring method
named  MDFA-MKECA  is  proposed  to  obtain  better
monitoring performance. This method consists of two phases:
data  pre-processing  (by  MDFA)  and  process  monitoring
(by MKECA).  The  main  idea  of  pre-processing  is  that
combined  with  mechanistic  knowledge,  various  data  features
involving  statistics  features  and  thermodynamics  entropy
features are extracted and calculated. In addition to reduce the
size  of  data  and  achieve  the  purpose  of  equal  length  for
different  batches,  complex characteristics  of  data  can also  be
addressed  effectively  by  this  step.  In  the  second  phase,
MKECA is used to reduce data dimensionality and establish a
monitoring model. Three-dimensional feature data is unfolded
and  then  KECA  is  applied  to  choose  the  best  principal
component vectors, which ensures that the data information is
lost slightly during the dimensionality reduction. The MDFA-
MKECA method exerts the advantage of MDFA in processing
unequal  batch  data,  reducing  data  size  and  tackling  the
complex characteristics of industrial process, which makes up
for  the  lack  of  MKECA in  data  pre-processing.  Finally,  it  is
applied in the reheating furnace process analysis and real-time
monitoring with great performance. This paper is organized as
follows. A reheating furnace industry process is introduced in
Section II.  Section III focuses on the selection and extraction
procedure  of  mixed  data  features  with  engineering  and
mechanistic  knowledge.  In  Section IV,  the  further  discussion
of the proposed MDFA-MKECA is described. The simulation
results  and  discussion  are  given  in  Section  V.  Finally,  we
conclude the paper in Section VI. 

II.  An Industrial Case Research Background

As  a  typical  industry  process  with  the  above  complex
characteristics,  a  reheating  furnace  is  an  important  piece  of

equipment  for  the  hot  rolling  process  of  iron  &  steel  and
nonferrous  metal,  where  the  billets  are  heated  to  a  preset
temperature before entering the rolling mill [17]. A structural
representation  of  the  furnace  is  shown  in Fig. 1.  In  the
reheating  furnace,  the  billets  are  fed  to  the  preheating  zone,
and  then  moved  through  three  combustion  zones  (including
two  heating  zones  and  a  soaking  zone)  sequentially  to  the
outlet by the walking beam. Throughout the duration of billet
heating,  the  gas  and  air  flow  is  controlled  so  that  the  billets
reach the preset temperature when arriving at the outlet.

The  accuracy  and  the  uniformity  of  the  billet  outlet
temperature are two important indexes to evaluate the quality
of  reheating  furnace  running state.  As  the  temperature  of  the
moving billets cannot be measured directly in the furnace, the
heat exchange model [18] has been a major and vital means to
monitor  the  distribution  of  the  billet  temperature.  However,
more than 90% heat exchange is based on heat radiation, and
radiation coefficients  are  susceptible  to  various factors  in  the
furnace, i.e, the heat exchange coefficient is often affected by
the  changed  operating  state  of  furnace.  Therefore,  the  model
calculation result often does not correspond with the real billet
temperature.  Once  the  production  state  deviates  from  the
normal condition, for example if the value of the air-fuel ratio,
fuel  flow  and  production  rate  change,  that  can  cause  the
calculated temperature to be higher (or lower) than the actual
temperature,  and bad reheating quality  of  billets  (or  waste  of
fuel) will occur as a result. The process monitoring is mainly
used  to  detect  the  deviation  level  between  the  running  state
and  standard  state  of  the  heating  process,  which  helps  to
adjust the control parameters and correct the deviation in time.
Furthermore,  good  control  performance  can  be  achieved  and
the heating quality is also improved.

In  the  reheating  furnace  discussed  above,  each  billet  is
moved through the same process in four zones, which in turn
can  be  regarded  as  one  batch.  However,  the  variation  in
production  rhythm  for  various  billets  results  in  different
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Fig. 1.     The structural representation of walking beam reheating furnace.
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heating  times  and  heat  exchange.  Hence,  from  the  point  of
view  of  the  billets,  the  reheating  furnace  is  regarded  as  a
typical complex industrial batch process to study in this paper.

x1 x20There are 20 measured process variables –  involved in
furnace operation as shown in Table I. Beside the gas and air
pressure  of  main  pipes,  each  combustion  zone  also  has  6
variables  including  gas  flow,  air  flow  and  temperature  of
upper  and  lower  part,  respectively.  The  major  characteristics
of process variables are as follows:

1)  Nonlinearity: The  heat  exchange  within  the  furnace  is
due  to  heat  release  from  the  combustion  of  fuel  and  the
absorption of heat by the billet mainly, and these heat transfer
modes  including  radiation  heat  transfer  and  convection  heat
transfer have typical non-linear characteristics.

2) Heavy Unequal Batch Data: Each billet is regarded as a
unit and its heating process is defined as one batch. Influenced
by  the  variational  production  rhythm,  the  heating  time  is  not
consistent  for  different  batches.  For  example,  although  the
standard  heating  time  of  billet  is  about  3.5  hours,  some  of
billets’ heating  time  will  be  4  or  6  hours  when  the  rolling
rhythm  is  changed.  Hence,  for  the  fixed  time  sampling  data,
the length of each batch may not be equal.

3)  A  Large  Amount  of  Process  Measurements: The  data
sample interval is ten seconds while billet heating time is 3.5
to  6  hours  and  up  to  40  billets  are  in  the  reheating  furnace
simultaneously, which results in a large amount of data being
recorded,  enormous  calculated  resources  are  needed  to
monitor  temperature  profile  of  all  the  billets  in  reheating
furnace. 

III.  Data Pre-Processing Based on Mixed Data
Features Analysis

According  to  the  above  process  analysis,  there  are  heavy
unequal  batches,  a  large  amount  of  process  measurements,
nonlinear  behavior  and  other  characteristics  in  the  reheating
furnace  industry  that  results  in  its  complex  mechanism  and
inner  structure.  Consequently,  general  batch  process
monitoring  methods  such  as  MKECA  cannot  be  applied
directly  to  the  original  data.  Several  steps  of  data  pre-
processing such as trajectory warping and centralized criterion
are  needed,  because  of  plentiful  batch  data  and the  existence
of  kernel  matrix,  which  leads  to  extensive  calculation  during

model building.
In  this  section,  we  propose  a  novel  data  pre-processing

method based on mixed data features analysis (MDFA). This
method  can  not  only  eliminate  the  data  pre-processing  steps
mentioned  above  but  allows  us  to  acquire  more  data
information.  The  main  goal  of  MDFA  is  to  analyze  data
information  included  in  statistic  and  thermodynamic  entropy
features, and then select and extract different data features of
each batch with mechanistic knowledge. The features selected
from  different  batches  are  consistent,  which  allows  different
batch data to be compressed into the same feature row vector
or  matrix  so  that  the  unequal  batch  problem  can  be  solved
effectively. Meanwhile, the size of the process data is reduced
significantly  because  the  number  of  mixed  data  features  is
much  smaller  than  the  original  data.  Additionally,  as  the
statistic features consist of first-order, second-order and high-
order statistics, more data information can be captured and the
complexity like nonlinearity can also be addressed effectively.

The mixed data features D is defined as
 

D = [DS F ,DT EF] (1)
DS F DT EFwhere  and  denote  statistics  features  and

thermodynamics entropy features, respectively. 

A.  Statistics Features Extraction
Statistical  pattern  analysis  (SPA),  a  multivariate  statistical

monitoring  framework,  is  proposed  by  [19]  and  applied  to
extract  statistical  features  of  original  data.  Different  process
behavior  is  represented  by  various  statistics  including  first-
order,  second-order,  and  high-order  statistics  of  the  process
variables. Therefore, the abnormalities of the system are easily
captured  since  the  statistical  distribution  of  processes  under
abnormal  conditions  would  result  in  obvious  information  for
process monitoring. The following part shows that the statistic
characteristics  of  a  batch  trajectory  are  extracted  by
calculating various statistics.

Xp is used to denote the pth batch of process measurements,
shown below:
 

Xp = [x1, x2, . . . , xm]n×m

=


x1(1) x2(1) . . . xm(1)
x1(2) x2(2) . . . xm(2)
...

...
. . .

...
x1(n) x2(n) . . . xm(n)

 (2)

m n
m

n

where  is  the  number  of  variables  measured  and  is  the
batch duration. For different batches records,  is same while
 takes different values.
In general, three groups of batch statistics are included in a

statistics feature
 

DS F = [µ|Σ|Ξ] (3)
µ = [µi]1×mwhere  denotes the first-order statistics, namely,

 

µ =
[
µ1,µ2, . . .µm

]
containing  the  means  of  all  process  variables,  the  single
variable mean calculated as follow:
 

 

TABLE I  
Reheating Furnace Process Variables Description

Serial
number

Variable
name The description of variable

1, 3, 5 x1 x3 x5, , Gas flow of upper part in three combustion zones

2, 4, 6 x2 x4 x6, , Gas flow of lower part in three combustion zones

7, 9, 11 x7 x9 x11, , Air flow of upper part in three combustion zones

8, 10, 12 x8 x10 x12, , Air flow of lower part in three combustion zones

13, 15, 17 x13 x15x17
, , Upper part temperature of three combustion zones

14, 16, 18 x14 x16x18
, , Lower part temperature of three combustion zones

19 x19 Gas pressure
20 x20 Air pressure

 

 1440 IEEE/CAA JOURNAL OF AUTOMATICA SINICA, VOL. 7, NO. 5, SEPTEMBER 2020



µi =
1
n

n∑
l=1

xi(l). (4)

The covariance is selected as second-order statistics, which
is defined as
 

cov(xi, x j) =
1

n−1

n∑
l=1

(xi(l)−µi)(x j(l)−µ j). (5)

Ci, j cov(xi, x j)

(xi, x j)
Σ = [cov(xi, x j)]1×m(m+1)

2

 is  used  to  denote ,  for  simplicity,  which
represents  the  covariance  between  two  random  variables

. All the covariances are arranged in the following order
to form , namely:
 

Σ = [C1,1C1,2 . . .C1,mC2,2 . . .C2,m · · ·Cm−1,mCm,m]. (6)

Ξ =
[

[si]1×m [ki]1×m
]

The higher-order  statistics  include
the skewnesses and kurtoses of all process variables.
 

si =
E
[
(xi−µi)3

]
E
[
(xi−µi)2

]3/2 (7)

 

ki =
E[(xi−µi)4]

E[(xi−µi)2]2 −3. (8)
 

B.  Thermodynamics Entropy Feature Extraction
The  heating  process  for  the  billet  is  a  thermodynamic

process  where  heat  is  always  transferred  and  exchanged
continually.  It  is  tied  closely  to  the  running  state  of  the
reheating  furnace.  Statistic  features  by  themselves  are  not
sufficient  to  describe  energy  transfer,  hence,  thermodynamic
entropy  features  extraction  is  applied  to  represent  all  the
production states and heat exchange experienced by the billet.

Entropy is an important concept of thermodynamics [20]. It
was created by German physicist Rudolf Clausius in the 1850s
and  1860s  and  used  to  interpret  the  second  law  of
thermodynamics.  In  the  viewpoint  of  thermodynamics,
according  to  the  Carnot  cycle,  an  isolated  system’s  entropy
never decreases.

The  quantitative  and  macroscopical  representation  of  the
irreversibility  of  the  system  is  an  increase  in  entropy.
Similarly,  the  microscopic  quantitative  description  is
interpreted by an increase in the number of microscopic states
or the thermodynamic probability of system. There are certain
Boltzmann  relations  between  the  number  of  microscopic
states and the entropy of the system.
 

S = k lnw. (9)
S

w
k

It  means  that  the  entropy  of  system  equals  the  natural
logarithm of number of states , multiplied by the Boltzmann
constant . The expression denotes that with a higher number
of  microscopic  states,  the  disorder  and  chaos  will  be  higher.
Namely,  the  entropy  is  a  measure  of  the  disorder  for  system
molecular thermal motion and the chaos of system.

For a reheating furnace, the heat exchange of system and the
billet  temperature  rise  are  macroscopic  performance  of  the
heating  process.  The  nature  of  the  heating  process,  namely  a
microcosmic representation, is the disorderly movement of the

Et

Ei

Et Ei

thermal  molecules  associated  with  the  production  state.
Hence,  according  to  the  above  expression,  thermodynamic
entropy  can  be  a  good  reflection  of  running  state  changes  of
the  reheating  furnace.  However,  it  is  difficult  to  extract  and
calculate  thermodynamics  entropy ,  directly  in  the  real
production due to its complex internal mechanisms and energy
exchange.  Hence,  information  entropy  is  introduced  and
applied in computing the thermodynamic entropy. Information
entropy can be  regarded as  a  measure  of  disorder  and chaos,
which  explains  the  uncertainty  of  the  state  of  motion  for  a
system.  Modern  information  theory  has  proved  that
mathematical  quantitative  relations  between  thermodynamic
entropy  and information entropy  are
 

Et = k ln2Ei. (10)
k ln2

DT EF

Ei

Et

That  is  to  say,  the  thermodynamics  entropy  of  the
system is increased at least enough to compensate when 1 bit
information  is  received  by  the  system.  A  classic  type  of
information entropy is Renyi entropy and it can be seen in the
first part of Section IV. The thermodynamics entropy features

 of  each  batch  data  can  be  extracted  by  two  steps:  the
Renyi entropy  of each batch data is calculated at first, and
then  this  information  entropy  is  transformed  into  thermo-
dynamics entropy  by (10). 

C.  Data Pre-Processing Method Based on Mixed Data Features
Analysis

D

On  the  basis  of  the  above  analysis,  mixed  data  features
(MDF)  including  statistics  and  thermodynamics  entropy  are
acquired and the dimension of the MDF row vector  is (m2 +
7m + 2)/2.
 

D = [DS F ,DT EF]

=

[
[µi]1×m, [cov(xi, x j)]1×m(m+1)

2
, [si]1×m, [ki]1×m,Et

]
. (11)

The  heating  process  consists  of  four  combustion  zones.
Their  flow  and  pressure  characteristics  are  not  exactly  the
same  because  of  different  combustion  characteristics  and
target  temperatures.  Consequently,  the  monitoring  results
might  be  inaccurate  if  a  MDF  is  obtained  by  extracting
features of a whole batch. That is to say, it is not reasonable to
regard  batch  data  as  a  whole.  Engineering  and  mechanistic
knowledge  are  applied  to  divide  the  batch  data  into  different
windows  of  measurements  before  extracting  MDFs  in  this
section.  Mechanistic  knowledge  is  a  description  of  inner
mechanisms  and  phenomena  of  a  system,  which  can  provide
much  more  information  on  the  process  and  is  of  paramount
importance to process monitoring.

Dwhole

The reheating furnace is divided into four zones in Section II
and there are variables measurements only in the heating and
soaking  zones.  Therefore,  an  original  batch  data  should  be
denoted  by  a  MDF  matrix  including  three  MDF  row
vectors corresponding to 1st heating, 2nd heating, and soaking
zones  measurements,  respectively.  Then  these  matrices  are
used  on  behalf  of  original  data  and  involved  in  the  process
monitoring later. 
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Dwhole =

 D1
D2
D3

 =
 DS F1

DS F2
DS F3

DT EF1
DT EF2
DT EF3

 . (12)

3× [(m2+7m+2)/2]
(n×m) n

m

It is worth noting that, the dimension of the MDF matrix is
,  and is  smaller  compared to  the  original

data  matrix ,  as  the  batch  duration  is  usually  much
larger than the number of variables . Hence, the mixed data
feature  extraction method has  great  performance on reducing
the  size  of  data.  In  addition,  as  the  existence  of  higher-order
statistics, the complexity can also be addressed effectively.

Fig. 2 shows  the  detailed  steps  involved  in  the  data  pre-
processing  method  based  on  mixed  data  features  analysis.
Firstly,  original  batch  data  is  divided  into  three  data  areas
corresponding  to  three  combustion  zones  with  mechanistic
knowledge.  And  then,  a  MDF  matrix  can  be  acquired  by
calculating  various  data  features.  As  the  MDF  matrices  are
equal  in  dimension  for  different  batches,  a  new  MDF  three-
dimensional  data  feature is  obtained.  The data-driven MDFA
model  is  combined  with  engineering  and  mechanistic
knowledge, which has a great advantages in reflecting the real
process  status,  making  the  MDFA model  more  accuracy  and
reliability. Moreover, monitoring statistics from each batch in
each  combustion  zone  can  be  calculated  by  introducing
mechanistic  knowledge,  which  can  capture  more  specific
abnormalities of the running state. 

IV.  MDFA-MKECA for Process Monitoring

A  data  pre-processing  method  based  on  MDFA  has  been
discussed  in  Section  III.  Thereafter,  the  proposed  MDFA-
MKECA  method  and  its  application  for  process  monitoring
are needed to discuss and display further. 

A.  Multi-Way Kernel Entropy Component Analysis
After the data pre-processing based on MDFA, the original

batch  data  with  an  unequal  length  has  been  transformed  into
MDF data with equal batch. MKECA can be used for process
monitoring directly.

XB×F×Z

XB×F×Z

The  data  after  pre-processing  is  inputted  into  a  three-
dimensional matrix , where B is the number of batches,
F is the number of mixed data features, and Z is the number of
combustion  zones.  As  a  continuous  process  monitoring
method,  KECA  cannot  be  applied  in  the  three-dimensional
array  directly,  so  should  be  unfolded  into  two-
dimensional  matrix.  The  AT  approach  [21]  is  the  most

frequently  used  unfolding  procedure,  because  it  combines
with the advantages of batch-wise unfolding [2] and variable-
wise  unfolding  [22]  and  thus,  can  express more  process
information. After the AT approach, the unfolded data matrix
X is acquired and kernel entropy component analysis (KECA)
will be performed.

From  an  information  theory  view,  combing  Renyi  entropy
with  the  kernel  method,  Jenssen  proposed  a  novel  method
called  KECA  [23].  It  has  the  ability  to  retain  the  main
information of the data structure and is good in nonlinear data-
processing.

The Renyi quadratic entropy is given by
 

H(p) = − log
w

p2(x)dx (13)

p(x)
X = [x1, ..., xN]
where  is  the  probability  density  function  of  the  data  set

.  Since  the  logarithm  is  a  monotonic  function,
alternatively, one expression can be used
 

V(p) =
w

p2(x)dx. (14)

V(p) H(p)In order to estimate , and hence , a Parzen window
density  estimator  is  invoked.  The  Parzen  window  is  a  non-
parametric  density  estimation  method.  Using  the  Parzen
window, the probability density estimation is given below:
 

p̂(x) =
1
N

N∑
l=1

Kσ(xi, x j) (15)

Kσ(xi, x j) xi

σ

where  is the Parzen window or kernel centered at ,
and  parameter  is  the  kernel  size.  Using  the  sample  mean
approximation of the expectation operator, we get
 

V̂(p) =
1
N

N∑
i=1

1
N

N∑
j=1

Kσ(xi, x j)

=
1

N2

N∑
i=1

N∑
j=1

Kσ(xi, x j) =
1

N2 1T K1.

(16)

N ×N
Kσ(xi, x j) N ×1

K = EDλET Dλ
λ1, ...,λN

α1, ...,αN

Here,  each  element  of  the  kernel  matrix K equals
, and 1 is ( ) column vector of ones. The Renyi

entropy  estimator  may  be  expressed  in  terms  of  the
eigenvalues and eigenvectors of the kernel matrix, which may
be decomposed as , where  is a diagonal matrix
storing  the  eigenvalues  and E is  a  matrix  with  the
corresponding  eigenvectors  as  columns.  Rewriting
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Fig. 2.     The schematic plot of the MDFA framework for data pre-processing.
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(16), we have
 

V̂(p) =
1

N2

N∑
i=1

(
√

1iα
T
i 1)

2
(17)

l

entropy  estimate  is  contributed  to  each  term  in  (17),  which
means  that  it  is  contributed  to  more,  by  certain  eigenvalues
and  eigenvectors.  The  eigenvalues  and  eigenvectors  selected
are the first  that contribute the most to the entropy estimate
in KECA. 

B.  Process Monitoring Based on MDFA-MKECA
According  to  the  above  analysis,  in  this  section,  we

integrate  improved  mixed  data  features  analysis  and  multi-
way kernel entropy component analysis to develop a MDFA-
MKECA  for  process  monitoring.  This  strategy  is  used  to
construct various mixed data feature sets as the substitutes of
process  variables  and  then  apply  MKECA  between  training
and testing datasets.

The  process  monitoring  using  MDFA-MKECA  has  two
phases:  off-line modeling and on-line monitoring. Details are
given as follows.

1) Off-Line Modeling

X(B×m×n) m
n

p
Xp(m×n)
Xp1(m×n1) Xp2(m×n2) Xp3(m×n3)

a)  Firstly,  some  normal  operating  original  batches  data
whose  lengths  are  different  are  selected  as  training  data

,  where B is  the  number  of  batches,  is  the
number  of  process  variables,  and  is  the  sampling  time,  as
shown in Fig. 2. Each piece of batch data, using the th batch

 as  an  example,  is  divided  into  three  data  areas
, ,  and ,  corresponding  to

1st heating zone, 2nd heating zone, and the soaking zone with
mechanistic knowledge;

Dp1
Dp2 Dp3 d Dp

d = (m2+7m+2)/2

b)  According  to  (4)–(8)  and  (10),  three  data  areas  are
transformed  into  corresponding  three  MDF  row  vectors ,

,  with  a  dimensional  of .  The  MDF matrix  can
then be acquired, where ;
 

Dp =

 Dp1
Dp2
Dp3

 =
 DS F1

DS F2
DS F3

DT EF1
DT EF2
DT EF3

 . (18)

XM(B×d×3)
B

X′M(3B×d)

c) The new three-dimensional training data  is
obtained  and  composed  of  different  MDF  matrixes  with
equal dimensions. Then it is unfolded into a two-dimensional
matrix  using the AT approach.

σd) Select a radical basis kernel function and parameter 
 

K(x,y) = exp(−||x− y||2/2σ2). (19)

K = EDλET
Then, the kernel matrix K can be obtained and applied to the

eigen-decomposition .

l
e)  According  to  (16),  Renyi  entropy  which  corresponds  to

each eigenvalue can be estimated and then  eigenvectors are
selected  according  to  the  contribution  towards  the  entropy
estimate.

ϕeca = D−1/2
l ET

l t = K ×E
f)  Calculate  the  kernel  feature  space  data  points

 and score vectors .
Q

T 2
g) Calculate squared prediction error (SPE) statistics  and

statistic  of the training data 

Q =
d∑

s=1

t2
s −

l∑
s=1

t2
s (20)

 

T 2 = [t1, t2, ..., tl]Λ−1[t1, t2, ..., tl]T (21)
Λ−1

l
T 2 Q T 2(c) Q(c)

where  is  the  inverse  matrix  of  the  covariance  of  the
principal  component  matrix  containing  extracted  principal
components. The control limits  of and  are  and 
 

Q(c) ∼ gχ2
h,α (22)

g = v/2m h = 2m2/v α m,v
Q

where , ,  is confidence level,  are the
mean  and  variance  of  statistics  obtained  from the  training
batches.
 

T 2(c) ∼ l(B2−1)
B(B− l)

Fl,B−l,α (23)

α
l

B− l

where  is  confidence  level, B is  the  number  of  batches  and
obey  the F distribution  whose  degrees  of  freedom  is  and
condition is  .

2) On-Line Process Monitoring
xnew

Dnew

a) Collect the real-time monitoring new data , similar to
training  data,  the  MDF  matrix  of  new  data  can  be
calculated.

t̂ = K̂ ×E
Q T 2

b) Afterwards, score vectors  are obtained and the
 and  statistic are calculated according to (20) and (21).

 

Qnew =

d∑
s=1

t̂2
s −

l∑
s=1

t̂2
s (24)

 

T 2
new = [t̂1, t̂2, ..., t̂l]Λ̂−1[t̂1, t̂2, ..., t̂l]T . (25)

T 2(c) Q(c)
c) Making a comparison between the statistics of the testing

MDF  matrixes  and  control  limit  and  calculated  in
(22)  and  (23).  If  statistics  are  below  the  control  limit,  it  is
classified  as  a  normal  batch;  otherwise,  it  is  classified  as  an
abnormal batch. 

V.  Experiment and Monitoring Results

To  prove  the  effectiveness  of  the  proposed  method  in  this
paper,  some  simulation  experiments  are  designed  based  on
real production data provided by a steel mill. The whole data
set  includes  70  billet  batches  which  consist  of  37  batches  of
data under normal working conditions and 33 batches of data
under  abnormal  working  conditions.  The  batch  records  are
collected  by  the  control  system  at  ten  second  intervals.  The
process variables are shown in Table I.

In  our  experiments,  15  normal  batches  are  used  to  be
training data,  and 55 batches  of  data  including 22 batches  of
data under normal working conditions and 33 batches of data
under  abnormal  working  conditions  are  used  as  testing  data.
The  original  batch  includes  5600–9000  pieces  of  data  while
there  are  only  183  pieces  of  data  after  data  pre-processing,
which  fully  demonstrates  the  effectiveness  of  MDFA  on
reducing  the  size  of  the  data.  The  abnormal  working
conditions are specifically divided into mild abnormalities and
heavy abnormalities in testing data, which corresponds to the
small and big deviations of outlet temperature between model
outputs  and  measurements  in  field.  In  process  monitoring,  if
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the  statistic  of  a  batch  exceeds  control  limits  of  two or  three
combustion zones, the batch is regarded as a heavy abnormal
batch. Analogously, if the overrun occurs only in one or none
of  the  combustion  zone,  the  batch  is  defined  as  a  mild
abnormal  or  normal  batch.  Hence,  the  detection  result  for  a
batch  will  be  reasonable  when  the  deviation  of  the  outlet
temperature is consistent with the monitoring results.

The monitoring performances of every testing batch in three
combustion  zones  are  shown  in Fig. 3,  respectively.  In  the
monitoring  charts, Fig. 3(a) shows  the  normal  and  abnormal
batch  in  the  1st  heating  zone, Figs. 3(b) and 3(c) are  the
monitoring  plots  of  the  2nd  heating  zone  and  soaking  zone.
The  statistics  of  the  batches  exceed  corresponding  control
limits  which  means  there  are  abnormal  running  states.  From
Fig. 3,  we  can  observe  the  monitoring  performance  of  every
testing batch in three combustion zones, which helps us to sort
out  the  normal,  mild,  and  heavy  abnormal  batches.  For
instance,  the  batch  32  and  batch 33  are  heavy  abnormal
batches  since  their  statistics  exceed  control  limits  in  two  or
three subfigures. Similarly, the batch 10 and batch 41 are mild
abnormal  and  normal  batches  respectively  because  the
overruns occur only in one or no subfigure.
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Fig. 3.     The monitoring charts of all batches in different combustion zones.

Fig. 4 more clearly and vividly demonstrates the monitoring
results  of  all  testing  batches  from  the  3D  view,  in  which  all
batches of the three zones are obviously displayed as bars, and
their  statistic  values  are  marked by the  color  level  of  the  bar
sidewall.  If  a  batch of  statistics  in  a  certain combustion zone
exceeds the corresponding control limit plane, then it indicates
that  abnormal  behavior  has  occurred.  For  example,  the  batch
30 and batch 12 are heavy abnormal batches because in three
or  two combustion  zones  there  are  behaviors  that  exceed  the
control limit plane. Since only in one or no combustion zone
do their statistics exceed the control limit plane, batch 19 and
batch 1 are mild abnormal and normal batch.
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Fig. 4.     The whole 3D monitoring charts for all batches.
 

In  order  to  further  demonstrate  the  superiority  of  the
proposed MDFA-MKECA, it is necessary to do a comparison
among  MDFA-MKECA,  DTW-MKECA,  and  MDFA-
MKPCA.  The  purpose  of  comparison  between  MDFA-
MKECA  and  DTW-MKECA  is  to  show  the  data  pre-
processing based on MDFA has more merits than DTW. And
the  comparison  between  MDFA-MKECA  and  MDFA-
MKPCA proves  that  MKECA has  a  better  performance  than
MKPCA. The results using a percentage of the detection rate
(DR)  and  the  abnormality  false  alarm  rate  (FAR)  as  well  as
the  abnormality  detection omission rate  (DOR) are  displayed
in Table II.  The  detection  rate  includes  the  normal  batches
detection  rate  (NDR),  mild  abnormality  detection  rate
(MADR), and heavy abnormality detection rate (HADR). DR,
FAR, and DOR are defined as follows:
 

Rd =
Bdet

Breal
×100% (26)

Rd Bdet

Breal

where  is  the  detection  rate,  is  the  number  of  batches
detected  (normal,  mild  abnormality,  heavy  abnormality),  and

 is  the  numbers  of  batches  that  match  real  production
conditions.
 

R f =
Bdetf

Ball
×100% (27)

R f Bdetf

Ball

where  is  the  abnormality  false  alarm  rate,  is  the
numbers of batches that is detected as abnormal but actually is
normal,  is the total numbers of all testing batches.
 

Rdo =
Bdeta

Ball
×100% (28)

Rdo Bdetawhere  is the abnormality omission-detection rate,  is
the numbers of batches that is detected as normal but actually
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Ballis  abnormality,  is  the  numbers  of  all  testing  batches.
Higher DR, lower FAR, and DOR indicate the better process
monitoring performance. Table II shows that MDFA-MKECA
has  a  higher  DR,  and  a  smaller  FAR  and  DOR  than  other
methods.  For  the  same  amount  of  testing  data,  the  less
processing  time  is  used  for  MDFA-MKECA  than  DTW-
MKECA since the size of data is reduced dramatically by data
features extraction.

Except  for  great  monitoring  performance,  the  proposed
method also  has  a  merit  where  the  total  amount  of  modeling
data  is  minimal.  The  MDFA-KECA  monitors  the  process
variation  in  a  timely  and  effective  fashion,  only  using  15
batches modeled. This indicates that the system running state
can  be  represented  by  a  small  amount  of  modeling  data  and
that  the  proposed  MDFA-KECA  method  has  an  edge  on
describing  the  inner  mechanisms,  process  knowledge  and
essential information contained in the original data. 

VI.  Conclusion

In this  paper,  a  novel  process  monitoring method based on
mixed  data  features  analysis  and  multi-way  kernel  entropy
component analysis is applied in modeling a reheating furnace
process.  The  superiority  of  MDFA-MKECA  is  that  it  can
detect  an  abnormal  running  state  effectively  and  handle
complex  characteristics  among  different  variables.  It  proves
that  mixed data  features  extraction is  an  efficient  method for
capturing  original  information  and  reducing  the  amount  of
calculation. At the same time, MKECA has a great monitoring
performance for batch processes. Extensive simulation results
with  a  reheating  furnace  process  reveal  that  the  proposed
method is an appropriate approach to process monitoring.
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