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   Abstract—The  Möller  algorithm  is  a  self-stabilizing  minor
component  analysis  algorithm.  This  research  document  involves
the  study  of  the  convergence  and  dynamic  characteristics  of  the
Möller  algorithm  using  the  deterministic  discrete  time  (DDT)
methodology.  Unlike  other  analysis  methodologies,  the  DDT
methodology is capable of serving the distinct time characteristic
and  having  no  constraint  conditions.  Through  analyzing  the
dynamic characteristics of the weight vector, several convergence
conditions are drawn, which are beneficial for its application. The
performing  computer  simulations  and  real  applications
demonstrate the correctness of the analysis’s conclusions.
    Index Terms—Convergence  analysis,  deterministic  discrete  time
(DDT), dynamic characteristic, Möller algorithm.
 

I.  Introduction

M INOR component analysis (MCA) is termed as a robust
instrument  in  several  areas,  such  as  instance  frequency

estimation [1],  total  least  squares (TLS) [2],  and filter  design
[3].  Hebbian  neural  network  oriented  MCA  algorithms  that
are capable of adaptively estimating minor components (MCs)
from  input  signals  and  quickly  tracing  moving  signals  have
garnered  considerable  attention  [4].  Recently,  several  MCA
algorithms have been suggested, such as the Möller algorithm
[5],  the stable data projection method (SDPM) algorithm [6],
the  generalized  orthogonal  projection  approximation  and
subspace tracking (GOPAST) algorithm [7], etc.

For neural network algorithms, one of the key research tasks
involves  the  analysis  of  their  convergence  and  dynamic
characteristic  during  all  iterations.  To  the  best  of  our
knowledge,  three  methodologies  can  be  used  to  accomplish
this  task.  They  are  the  Lyapunov  function  methodology  [2],
the deterministic continuous time (DCT) methodology [8] and
the  deterministic  discrete  time  (DDT)  methodology  [9].  The

Lyapunov function methodology is capable of merely proving
whether this algorithm possesses the potential to estimate the
desired  components  or  not  while  being  unable  to  deliver
convergence  conditions.  The  DCT  methodology  requires  the
mandatory approximation of the learning rate to zero, which is
difficult  to  satisfy  in  real  applications.  Contrary  to  the  above
two  methodologies,  the  DDT  methodology  is  capable  of
preserving  the  distinct  time  characteristic  of  the  original
algorithms and establishing constraint conditions with respect
to  MCA algorithms.  Due  to  these  benefits,  the  extensive  use
of  the  DDT methodology  has  been  applied  for  analyzing  the
convergence characteristic of some algorithms [10], [11].

In [5], Möller proposed an MCA algorithm (denoted as the
Möller  algorithm  as  follows).  Through  analyzing  the
characteristics  of  its  weight  vector  norm,  Möller  proved  that
this  algorithm  is  self-stabilizing.  By  changing  the  weight
vector  into  a  weight  matrix  and  adding  a  diagonal  matrix  to
the Möller algorithm, Gao et al.  [12] modified this algorithm
into  a  multiple  minor  component  extraction  algorithm.  The
convergence  analysis  of  the  Möller  algorithm  was  finished
through the  DCT methodology in  [13].  As  mentioned above,
the  DDT  methodology  is  more  advantageous  than  the  DCT
methodology.  Therefore,  we  sought  to  analyze  the  Möller
algorithm through the DDT methodology.

The  organization  of  the  remainder  of  this  document  is  as
follows.  Section  II  presents  several  preliminaries  and  a
concise  description  of  the  Möller  algorithm.  Section  III
analyzes  the  convergence  and  dynamic  characteristics  of  the
Möller algorithm and derives some convergence conditions. In
Section IV, two computer simulations and two real application
experiments  are  conducted  to  confirm  the  correctness  of  the
obtained  conclusions.  Ultimately,  we  present  the  study’s
conclusions in Section V. 

II.  Preliminaries and Möller Algorithm

On  the  bases  of  the  Hebbian  neural  network,  Möller
suggested  a  self-stabilizing  MCA  algorithm  [5].  Its  discrete
time equation is given by
 

w(k+1) = w(k)+ηy2(k)w(k)−ηy(k)
[
2w(k)T w(k)−1

]
x(k) (1)

w(k) x(k)
y(k)

w(k)

where  is  the  weight  vector,  is  an  input  signal  and
 denotes the neural network output. In [5], Moller proved

that after some iterations, the norm of the weight vector 
must  converge  to  1  and  has  no  relationship  with  the  initial
weight vector. That is to say that Möller algorithm is as self-
stabilizing.

The DDT system of the Möller algorithm can be formulated
by  the  following  steps  [9].  By  incorporating  the  conditional
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E {w(k+1)/w(0), x(i), i < k}expectation  operator  into  (2)  and
identifying  the  conditional  expected  value  as  the  next
iteration, the DDT system is obtained and given by
 

w(k+1) = w(k)+ηwT (k)Rw(k)w(k)
−η(2wT (k)w(k)−1)Rw(k) (2)

R = E[x(k)xT (k)]
x(k)

R

where  represents  the autocorrelation matrix
of .  Comparing  (2)  with  (1),  we  can  find  that  (1)  can  be
interpreted as stochastic approximation of its DDT system by
replacing its correlation matrix  with its rank-1 instantaneous
approximation. According to [9], this approximation operation
does  not  change  the  convergence  property  of  Moller
algorithm.  In  other  words,  online  algorithm  and  its  DDT
system has same convergence property.

λ1 ≥ λ2 ≥ · · · ≥ λn−1 ≥ λn ≥ 0
vi (i = 1,2, . . . ,n) p (1 ≤ p ≤ n)

τ
τ

Vτ = span(vn−p+1,
vn−p+2, . . . ,vn)

By  using  the  matrix  theory  [14],  has  non-negative
eigenvalues  ( )  and corresponding
eigenvectors .  Suppose  that  is
the  multiplicity  of  the  smallest  eigenvalue  (denoted  as 
herein). Thus, the eigenvectors corresponding to  are defined
as  minor  subspaces  and  are  represented  by 

.
{vi|i = 1,2, . . . ,n}

n×n w(k)
Rw(k)

Clearly,  merely  composes  an  orthogonal
foundation  of .  Through  the  use  of  this  basis,  and

 are decomposed into
 

w(k) =
n∑

i=1

zi(k)vi

Rw(k) =
n∑

i=1

λizi(k)vi

(3)

zi(k) = wT (k)vi, i = 1,2, . . . ,n
vi

where  is  the  projection  of  the
weight vector onto the eigenvector .

From (2) and (3), we can derive the following equation
 

zi(k+1) =
{
1+ηwT (k)Rw(k)−η(2∥w(k)∥2−1)λi

}
zi(k) (4)

i = 1,2, . . . ,nwhere .
In accordance with the Rayleigh quotient [15], it holds that

 

0 ≤ λnwT (k)w(k) ≤ wT (k)Rw(k) ≤ λ1wT (k)w(k) (5)
w(k) , 0 k ≥ 0where  and . 

III.  Convergence and Dynamic Characteristic
Analysis of Möller Algorithm

τ

In this section, we will study the convergence and dynamic
characteristic  of  the  Möller  algorithm  through  the  DDT
methodology. In detail,  it  is necessary to prove that if certain
sufficient conditions are given, any weight vector can tend to
the  direction  of  the  eigenvector  with  respect  to .  To  finish
this proof, we first need to prove that the DDT system of the
Möller  algorithm  is  bounded,  which  is  given  by  Theorem  1
and Theorem 2 as follows.

ηλ1 ≤ 0.25 w(0) < Vτ⊥
∥w(0)∥ ≤ 1 ∥w(k)∥ < 1+2ηλ1

Theorem  1: Let  us  assume  that .  If 
and , it stands valid that .

Proof: See Appendix A. ■
ηλ1 ≤ 0.25 w(0) < Vτ⊥

∥w(0)∥ ≤ 1 ∥w(k)∥ > ck ∥w(0)∥
c = {1−ηλ1[2(1+2ηλ1)2−1]}

Theorem  2: Let  us  assume  that .  If 
and ,  it  stands  valid  that ,  where

.
Proof: See Appendix B. ■
Theorems  1  and  2  suggest  that  during  the  iterations,  the

w(k)
zi(k)
zi(k)

DDT system of the Möller algorithm has both upper and lower
bounds. The two conclusions lay the foundation for the future
proof. From (3), it is easy to see that the weight vector can be
expressed by its coefficients (i.e., the characteristic of  is
decided  by ).  Next,  we  will  analyze  the  dynamic
behaviors  of ,  which  will  be  provided  by  the  following
three lemmas.

ηλ1 ≤ 0.25 w(0) < Vτ⊥
∥w(0)∥ ≤ 1 θ1 > 0 Π1 > 0∑n−p

j=1 z j
2(k) ≤ Π1e−θ1k

Lemma 1: Let us assume that . If  and
, there must exist two constants  and  in

a way that .
Proof: See Appendix C. ■

ηλ1 ≤ 0.25 w(0) < Vτ⊥
∥w(0)∥ ≤ 1 θ2 > 0 Π2 > 0

Lemma 2: Let us assume that . If  and
, there must exist two constants  and  in

a way that
 ∣∣∣wT (k+1)Rw(k+1)− (2∥w(k+1)∥2−1)τ

∣∣∣
≤ (k+1)Π2

[
e−θ2(k+1)+max

{
e−θ2k,e−θ1k

}]
.

Proof: See Appendix. D. ■
θ > 0

Π > 0
Lemma 3: Let us assume that there exist two constants 

and  in a way that
 

η
∣∣∣∣[wT (k)Rw(k)− (2∥w(k)∥2−1)τ

]
zi(k)
∣∣∣∣ ≤ kΠe−θk.

Then, it holds that
 

lim
k→∞

zi(k) = zi
∗, i = n− p+1,n− p+2, . . . ,n

zi
∗ (i = n− p+1,n− p+2, . . . ,n)where  are some constants and

represent the convergence values.
Proof: See Appendix. E. ■

zi(k)To  date,  we  have  established  the  dynamic  trajectory 
through  all  of  the  iterations.  Through  the  use  of  these
conclusions,  we  are  able  to  present  the  convergence  analysis
of  the  weight  vector  in  the  Möller  algorithm,  which  will  be
presented by Theorem 3.

ηλ1 ≤ 0.25 w(0) < Vτ⊥
∥w(0)∥ ≤ 1

τ

Theorem  3: Let  us  assume  that .  If 
and , the weight vector in the Möller algorithm must
converge to the direction of the eigenvector corresponding to .

θ1 > 0 Π1 ≥ 0Proof: From  Lemma  1,  the  constants  and 
exist such that
 

n−p∑
i=1

zi
2(k) ≤ Π1e−θ1k, k ≥ 0. (6)

θ2 > 0 Π2 ≥ 0Through  Lemma  2,  the  constants  and  exist
such that
 ∣∣∣wT (k+1)Rw(k+1)− (2∥ w(k+1)∥2−1)τ

∣∣∣
≤ (k+1)Π2

[
e−θ2(k+1)+max

{
e−θ2k,e−θ1k

}]
. (7)

θ > 0 Π > 0Clearly, it is easy to find two constants  and  such
that
 

η
∣∣∣∣[wT (k)Rw(k)− (2∥w(k)∥2−1)τ

]
zi(k)
∣∣∣∣ ≤ kΠe−θk (8)

i = n− p+1,n− p+2, . . . ,nwhere .  Through  the  use  of
Lemmas 1 and 3, it holds valid that
 

lim
k→+∞

zi(k) = 0, i = 1,2, . . . ,n− p

lim
k→+∞

zi(k) = zi
∗, i = n− p+1,n− p+2, . . . ,n.

(9)
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By using (3) and (9), it is easy to obtain that
 

lim
k→+∞

w(k) = lim
k→+∞

n∑
i=1

zi(k)vi

= lim
k→+∞

n−p∑
i=1

zi(k)vi+ lim
k→+∞

n∑
i=n−p+1

zi(k)vi=

n∑
i=n−p+1

zi
∗vi.

(10)
w(k)

vi (i = n− p+1, . . . ,n)

τ

Clearly, the convergence values of  is combined by the
minor  components .  In  other  words,  the
weight  vector  converge  to  the  direction  of  the  eigenvector
corresponding  to . ■

ηλ1 ≤ 0.25
λ1

λ1

w(0) < Vτ⊥

Next,  we  make  several  comments  on  the  obtained
conditions.  From  Theorem  3,  we  know  that  there  are  two
limiting  conditions.  The  first  one  requires  that .  In
real  applications,  if  the  largest  eigenvalue  is  explicitly
provided, it is very easy to calculate the suitable learning rate.
If  the  exact  value  of  is  unknown,  under  this  case,  Zhang
et al. [16] proposed a new method to estimate it. By using the
estimated  value,  the  first  condition  can  be  satisfied.  The
second  condition  requires  that ,  which  is  reached
with  a  probability  of  1  when  the  initial  weight  vector  is
randomly generated. The two easily stratified conditions mean
that  they  are  very  useful  for  the  applications  of  the  Möller
algorithm. 

IV.  Computer Simulations and Real Applications

In  this  section,  we  apply  the  Möller  algorithm  on  four
experiments  for  the  purpose  of  illustrating  the  correctness  of
the  obtained  conclusions.  The  first  experiment  is  meant  to
exhibit  the  dynamic  characteristics  of  the  Möller  algorithm,
whereas  the  second  one  presents  an  example  in  which  the
Möller  algorithm  exhibits  the  divergence  phenomenon
because  of  the  discontentment  of  the  attained  conditions.  In
the  third  one,  we  investigate  the  performance  of  the  Möller
algorithm  on  addressing  one  data  fitting  issue.  In  the  fourth
one, the Möller algorithm is used the estimate the parameters
of one filter. 

A.  Dynamic Trajectories of Möller Algorithm
5×5Consider  the  following  symmetric  positive  definite

matrix, which is created in a random manner.
 

R1=


0.5684 −0.0960 −0.1307 0.1588 0.2084
−0.0960 0.4461 −0.0434 0.2871 −0.1961
−0.1307 −0.0434 0.5386 −0.0336 0.1738

0.1588 0.2871 −0.0336 0.7409 −0.0259
0.2084 −0.1961 0.1738 −0.0259 0.5166

 .
(11)

R1 λ1 = 0.9825,λ2 = 0.8391,λ3 =

0.6264,λ4 = λ5 = 0.1813
R1

η = 0.25

The  eigenvalues  of  are 
.  Next,  the  Möller  algorithm  is

implemented  for  estimating  the  MC  of .  The  preliminary
parameters  of  the  Möller  algorithm  have  been  established
hereunder.  The  learning  rate  is  fixed  to  be  and  the
random  generated  preliminary  weight  vector  is  adopted.
Clearly,  all  of  the  convergence  conditions  can  be  catered  to
through these settings.

zi(k),
(i = 1,2,3,4,5) zi(k) (i = 1,2,3)

Fig. 1 illustrates  the  convergence  of  the  component 
. As is evident from the Fig. 1, 

zi(k) (i = 4,5)
zi(k)

has  the  tendency  to  be  zero  following  approximately  50
iterations,  whereas  converges  to  a  constant
following approximately 30 iterations. The trajectories of 
are consistent with the conclusion evidenced in Theorem 3. As
suggested by this experiment, we conclude that, subject to the
attained  convergence  conditions,  the  Möller  algorithm
possesses a reasonable convergence characteristic.
 

0 10
−0.8

1.0

0.8

0.6

0.4

0.2

0

−0.2

−0.4

−0.6

20 30 40 50 60 70 80

C
om

po
ne

nt
 o

f W
(k

)

Number of iterations

z1(i)
z2(i)
z3(i)
z4(i)
z5(i)

 
zi(k)Fig. 1.     Convergence of the component .

  

B.  Divergency Experiment

η = 0.4
ηλ1 ≤ 0.25

w = [1.0391,
−1.1176,1.2607,0.6601,−0.0679]T

Next,  we  provide  an  example  through  this  experiment
wherein the Möller algorithm diverges due to the fact that the
conditions  applied  in  Theorem  3  have  not  been  addressed.
Matrix  (11)  continues  to  be  utilized  in  this  experiment.
Herein, we establish that , which clearly does not meet
the  condition . Fig. 2 illustrates  the  simulation
findings as  the initial  vector  that  is  provided by 

.  As  is  evident  from  this
figure, we obtain that the Möller algorithm may diverge based
on  the  dissatisfaction  of  the  convergence  conditions.
Conversely,  this  experiment  confirms  the  precision  of  the
conclusions in Theorem 3.
 

5

0

−5

−10

−15

C
om

po
ne

nt
 o

f W
(k

)

1 2 3 4 5 6 7 8 109
Number of iterations

×10165

z1(i)
z2(i)
z3(i)
z4(i)
z5(i)

 
zi(k)Fig. 2.     Divergence of the component .

  

C.  Data Fitting Experiment
There are extensive latent applications of MCA algorithms,
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and  one  of  the  significant  ones  solves  the  fitting  issue.  We
have delivered one surface fitting example in this experiment
for showing the efficacy of the Möller algorithm subject to the
attained  conditions.  Let  us  take  into  consideration  the
following curved surface.
 

2x2+0.5y2− z2 = 0. (12)

G = {(xi,yi,zi)}

G̃ = {(x̃i, ỹi, z̃i)}
G̃

a1x2+a2y2+a3z2 = 0 G̃

F =
{
(ui,vi,wi) |ui = x̃2

i ,vi = ỹ2
i ,wi = z̃2

i

}

Fig. 3 illustrates  the  surface  stated  by  (12).  Through  the
sampling  of  this  surface  in  such  a  way  that  the  sampling
intervals  are  evenly  distributed  on  the  plane,  we  are  able  to
attain  a  3-dimensional  data  set .  Through
adding  Gaussian  noises  to  this  data  set,  the  observation  data
set  is  acquired. Fig. 4 presents  the  observed
data  in .  The issue of  surface fitting involves  discovering a
parameterized framework  for fitting ,
which  can  be  solved  through  calculating  the  MC of  the  data
set .
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Fig. 3.     Original surface.
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Fig. 4.     Noise disturbed data set.
 

F
λ1 = 27.4800,

λ2 = 21.3790 λ3 = 1.4554

η = 0.008

In this experiment, the input signal is produced through the
random  selection  of  vectors  from  the  data  set .  The
eigenvalues  of  its  autocorrelation  matrix  are 

 and .  Then,  Möller  algorithm  is
applied  for  calculating  the  MC  from  this  input  signal.  The
preliminary  learning  rate  is  established  as ,  which
stratifies  the  conditions  in  Theorem  3. Fig. 5 presents  the
convergence of the elements of the weight vector. After 3500

w∗ = [0.8227,0.2122,−0.4160]T

[2,0.5,−1]

iterations,  the  ultimate  convergence  values  of  the  weight
vector are , which possess the
same  direction  as  that  of  the  coefficient  vector  in
(12).  As  suggested  by  this  experiment,  we  are  capable  of
observing that, subject to the extracted conditions, the Möller
algorithm possesses a convergence fitting performance.
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Fig. 5.     Convergence of the weight vector elements.
  

D.  Filter Coefficients Estimation Experiment

x(t) y(t)
d(t)

n1(t) n2(t)

h h

Another  important  application  of  the  MCA algorithm is  to
estimate  the  filter  coefficients. Fig. 6 shows  the  classical
structure of this issue, where  is the input signal,  is the
output  of  the  unknown  system  and  is  the  output  of  the
adaptive  filter.  and  are  two  additional  Gaussian
white  noises.  Suppose  that  the  coefficient  vector  of  the
unknown system is .  Then,  the  optimal  estimation of  can
be  obtained  by  solving  the  following  minimum  problem,
which has been proven in [17]
 

w∗ = arg min J(w), J(w) =
wT Rw
wT w

(13)

w = [hT ,−1]T R
z = [x(k)+ n1(k), y(k)+ n2(k)]

R

where  and  is the autocorrelation matrix of the
augmented  vector .  Clearly,  the
solution of (13) justly composes the MC of .

R λ1 = 11.7896

In this experiment, let the coefficient vector of the unknown
system be given by h = [−0.3, −0.9, 0.8, −0.7, −0.6, 0.1, 0.3,
−0.5,  0.5,  −0.4].  The  unknown  system  includes  Gaussian
white  noise  and  the  largest  eigenvalue  of  is .
 

x(t) y(t)

d(t)

e(t)

n1(t)

n2(t)

Unknown system

Adaptive filter
∑

∑

∑

−
+

 
Fig. 6.     Structure of the finite impulse response (FIR) filter.
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η = 0.02
h

h
h

For the Möller  algorithm, the learning rate  is  set  as .
The estimation results of  are presented in Fig. 7. From this
figure, we see that after approximately 1300 iterations, all the
components  of  tend  to  some  constants.  The  final
convergence values of  are [−0.3, −0.9, 0.8, −0.7, −0.6, 0.1,
0.3,  −0.5,  0.5,  −0.4],  which  are  the  same  as  the  exact  ones.
From this experiment, we confirm again that under the derived
conditions,  the  Möller  algorithm  has  good  convergence
performance.
 

V.  Conclusions

As a  self-stabilizing  MCA algorithm,  the  Möller  algorithm
has been applied in various areas.  In this  research document,
we  have  established  the  dynamic  characteristic  and
convergence analysis of the Möller  algorithm using the DDT
methodology.  First,  it  is  verified  that  the  DDT system of  the
Möller algorithm is bounded. Second, the dynamic trajectories
of  the  weight  vector  projection are  depicted.  Third,  based on
the  derived  lemmas,  we  prove  that  after  sufficient  iterations,
the weight vector must converge to the direction of the desired
MC.  Finally,  computer  simulations  and  real  applications
validate the precision of the attained conclusions. 

Appendix A
Proof of Theorem 1

Proof: From (3) and (4), we have
 

∥w(k+1)∥2 =
n∑

i=1

zi
2(k+1)

=

n∑
i=1

{
1−η[λi(2∥w(k)∥2−1)−wT (k)Rw(k)]

}2
zi

2(k)

≤
n∑

i=1

[
1−λiη(2∥w(k)∥2−1)+ηλ1∥w(k)∥2

]2
zi

2(k)

< (1+ηλ1+ηλ1∥w(k)∥2)2
n∑

i=1

zi2 (k)

= (1+ηλ1+ηλ1∥w(k)∥2)2∥w(k)∥2. (14)

Thereafter, it stands valid that
 

∥w(k+1)∥2 < (1+ηλ1+ηλ1∥w(k)∥2)2∥w(k)∥2 (15)

s = ∥w(k)∥2 f (s) = ∥w(k+1)∥2
f (s) = (1+ηλ1+ηλ1s)2s

[0,1] f (s) s

where  and . By substituting them
into (15), we get , which is consistent
in the interval . The gradient of  with respect to  is
represented by
 

ḟ (s) = (1+ηλ1+ηλ1s)(1+ηλ1+3ηλ1s). (16)

s1 = −(1+ηλ1)/ηλ1 s2 = −(1+ηλ1)/3ηλ1 ḟ (s) = 0
η > 0 λ1 > 0 s1 < s2 < 0

ḟ (s) > 0
0 ≤ s ≤ 1 f (s)

[0,1]

If  or , then .
Through  the  use  of  and ,  we  obtain .
Accordingly,  it  stands  valid  that  with  respect  to  all

,  which  implies  that  exhibits  a  monotonic
increase over the interval . Thereafter, it holds that
 

f (s) ≤ f (1) < (1+2ηλ1)2. (17)

∥w(k)∥ < 1+2ηλ1Thus,  we  obtain . ■ 

Appendix B
Proof of Theorem 2

Proof: Through the use of (2)–(4), we obtain
 

∥w(k+1)∥2 =
n∑

i=1

{
1−ηλi(2∥w(k)∥2−1)+ηwT (k)Rw(k)

}2
zi

2(k)

≥
n∑

i=1

{
1−ηλ1(2∥w(k)∥2−1)+ηλn∥w(k)∥2

}2
zi

2(k)

> [1−ηλ1(2∥w(k)∥2−1)]2
n∑

i=1

zi
2(k)

> [1−ηλ1(2(1+2ηλ1)2−1)]2∥w(k)∥2. (18)

c= {1−ηλ1(2(1+2ηλ1)2−1)}
ηλ1 ≤ 0.25

Denote .  Through  the  use  of
, we obtain

 

c =
[
1−ηλ1(2(1+2ηλ1)2−1)

]
>
{
1−0.25∗

[
2∗ (1+2∗0.25)2−1

]}
= 0.125 > 0. (19)

From (18) and (19), we obtain
 

∥w(k)∥2 > c2∥w(k−1)∥2 > · · · > c2k∥w(0)∥2. (20)

∥w(k)∥ >
ck ∥w(0)∥

As  is  evident  from  (20),  it  stands  valid  that 
.  ■ 

Appendix C
Proof of Lemma 1

wT (0) < Vτ⊥

i ((n− p+1) ≤ i ≤ n) zi(0) , 0
zn(0) , 0

j (1 ≤ j ≤ n− p)

Proof: Since ,  there  must  be  some  constant
 such  that .  Without  the  loss  of

generality,  let  us  suppose  that .  As  is  evident  from
(4), for each , it follows that 
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Fig. 7.     Dynamic trajectories of the elements of h.
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[ z j(k+1)
zn(k+1)

]2
=

1−η
[
λ j(2∥w(k)∥2−1)−w(k)T Rw(k)

]
1−η
[
τ(2∥w(k)∥2−1)−w(k)T Rw(k)

]


2[ z j(k)
zn(k)

]2

=

1− η(λ j−τ)(2∥w(k)∥2−1)

1+ηw(k)T Rw(k)−ητ(2∥w(k)∥2−1)


2[ z j(k)

zn(k)

]2

≤
1− η(λ j−τ)(2∥w(k)∥2−1)

1+ηλ1∥w(k)∥2−ητ(2∥w(k)∥2−1)


2[ z j(k)

zn(k)

]2

=

1− η(λ j−τ)(2∥w(k)∥2−1)

1+ηλ1
(
1−∥w(k)∥2

)
+η (λ1−τ) (2∥w(k)∥2−1)


2[ z j(k)

zn(k)

]2

≤ βk

[ z j(k)
zn(k)

]2
≤ βkβk−1 · · ·β0

[ z j(0)
zn(0)

]2

≤ βk+1
[ z j(0)
zn(0)

]2
=

z j
2(0)

zn2(0)
e−θ1(k+1)

(21)

θ1 = − lnβ β =max(β0,β1, . . . ,βk)where ,  and
 

βk =

1− η(λ j−τ)(2∥w(k)∥2−1)

1+ηλ1
(
1−∥w(k)∥2

)
+η (λ1−τ) (2∥w(k)∥2−1)


2

.

ηλ1 ≤ 0.25Through the use of , we obtain
 

1+ηλ1
(
1−∥w(k)∥2

)
≥ 1+ηλ1

(
1− (1+2ηλ1)2

)
≥ 1+0.25∗ (1− (1+2∗0.25)2)

= 0.6875 > 0. (22)

0 < βk < 1
θ1 > 0 c2k ∥w(0)∥ < ∥w(k)∥ ≤ 1+2ηλ1

zn(k) d > 0
zn

2(k) ≤ d k ≥ 0

This implies that . Thus, we are able to obtain that
.  Through  the  use  of ,  we

have  that  is  bounded  (i.e.,  a  constant  such  that
 with respect to all ). Subsequent to that, we are

able to obtain
 

n−p∑
i=1

zi
2(k) =

n−p∑
i=1

[
zi(k)
zn(k)

]2
zn

2(k) ≤ Π1e−θ1k. (23)

k ≥ 0With respect to all , where
 

Π1 = d
n−p∑
i=1

[
zi(0)
zn(0)

]2
≥ 0.

■
 

Appendix D
Proof of Lemma 2

Proof: From (2), we are able to obtain that
 

∥w(k+1)∥2

=

n∑
i=1

{
1−η

[
(2∥w(k)∥2−1)λi−w(k)T Rw(k)

]}2
zi

2(k)

=

n∑
i=1

{
1−η

[
(2∥w(k)∥2−1)τ−w(k)T Rw(k)

]}2
zi

2(k)

+

n−p∑
i=1

{
1−η

[
(2∥w(k)∥2−1)λi−w(k)T Rw(k)

]}2
zi

2(k)

−
n−p∑
i=1

{
1−η

[
(2∥w(k)∥2−1)τ−w(k)T Rw(k)

]}2
zi

2(k)

=
{
1−η

[
(2∥w(k)∥2−1)τ−w(k)T Rw(k)

]}2∥w(k)∥2+H(k)
(24)

where
 

H(k) =
n−p∑
i=1

η(2∥w(k)∥2−1)
[
η(2∥w(k)∥2−1)(λi+τ)

−2(1+ηw(k)T Rw(k))
]
(λi−τ)zi

2(k).

From (2), we obtain 

w(k+1)T Rw(k+1)

=

n∑
i=1

λi
{
1−η

[
(2∥w(k)∥2−1)λi−w(k)T Rw(k)

]}2
zi

2(k)

=

n∑
i=1

λi
{
1−η

[
(2∥w(k)∥2−1)τ−w(k)T Rw(k)

]}2
zi

+

n−p∑
i=1

λi
{
1−η

[
(2∥w(k)∥2−1)λi−w(k)T Rw(k)

]}2
zi

2(k)

−
n−p∑
i=1

λi
{
1−η

[
(2∥w(k)∥2−1)τ−w(k)T Rw(k)

]}2
zi

2(k)

=
{
1−η

[
(2∥w(k)∥2−1)τ−w(k)T Rw(k)

]}2
×w(k)T Rw(k)+H′(k) (25)

where
 

H′(k) =
n−p∑
i=1

λi
{
η(2∥w(k)∥2−1)

[
η(λi+τ)(2∥w(k)∥2−1)

−2(1+w(k)T Rw(k))
]}

(λi−τ)zi
2(k).

From (24) and (25), it holds that
 

wT (k+1)Rw(k+1)− (2∥w(k+1)∥2−1)τ

=
{
1−
[
η2
(
(2∥w(k)∥2−1)τ−w(k)T Rw(k)

)
−2η
]

×(w(k)T Rw(k)−2τ∥w(k)∥2)
}

×
[
w(k)T Rw(k)−(2∥w(k)∥2−1)τ

]
+H′(k)−2τH(k). (26)

V(k) =
∣∣∣wT (k)Rw(k)− (2∥w(k)∥2−1)τ

∣∣∣Denote . Thus, it holds
that
 

V(k+1) ≤ V(k)
∣∣∣∣{1−η [w(k)T Rw(k)−2τ∥w(k)∥2

]
×
[
η
(
(2∥w(k)∥2−1)τ−w(k)T Rw(k)

)
−2
]}∣∣∣∣

+
∣∣∣H′(k)−2τH(k)

∣∣∣ . (27)
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Denote
 

δ =
∣∣∣∣1−η [w(k)T Rw(k)−2τ∥W(k)∥2

]
×
[
η
(
(2∥w(k)∥2−1)τ−w(k)T Rw(k)

)
−2
]∣∣∣∣ .

ηλ1 ≤ 0.25Through  the  use  of  Theorem  1  and ,  it  stands
valid that
 

η
{
η
[
(2∥w(k)∥2−1)τ−w(k)T Rw(k)

]
−2
}

×
[
w(k)T Rw(k)−2τ∥w(k)∥2

]
=η
[
2ητ∥w(k)∥2w(k)TRw(k)+2ητ2∥w(k)∥2

+ 4τ∥w(k)∥2−ητw(k)T

Rw(k) −η
(
w(k)T Rw(k)

)2−2w(k)T Rw(k)−4ητ2∥w(k)∥4
]

< η
[
2ηλ1

2∥w(k)∥4+2ητ2∥w(k)∥2+4τ∥w(k)∥2−ητ2∥w(k)∥2

−ητ2∥w(k)∥4−2τ∥w(k)∥2−4ητ2∥w(k)∥4
]

< 2η2λ1
2∥w(k)∥4+2ηλ1∥w(k)∥2

≤ 2η2λ1
2(1+2ηλ1)4+2ηλ1(1+2ηλ1)2 ≤ 0.9141. (28)

0 < δ < 1 V(k+1) ≤
δV(k)+ |H′(k)−2τH(k)|

Therefore,  if ,  then  it  holds  that 
 Because

 ∣∣∣H′(k)−2τH(k)
∣∣∣

=

∣∣∣∣∣∣∣
n−p∑
i=1

λi
{
η(λi−τ)(2∥w(k)∥2−1)zi

2(k)

×
[
η(λi+τ)(2∥w(k)∥2−1)−2(1+ηwT (k)Rw(k))

]}
−2τ

n−p∑
i=1

{
η(λi−τ)(2∥w(k)∥2−1)zi

2(k)

×
[
η(λi+τ)(2∥w(k)∥2−1)−2(1+ηwT (k)Rw(k))

]}∣∣∣∣
=

∣∣∣∣∣∣∣
n−p∑
i=1

{
η(λi−τ)(2∥w(k)∥2−1)(λi−2τ)zi

2(k)

×
[
η(λi+τ)(2∥w(k)∥2−1)−2(1+ηwT (k)Rw(k))

]}∣∣∣∣
< ηλ1(2∥w(k)∥2−1)

(
2ηλ1∥w(k)∥2−2ηλ1−2

)
|λi−2τ|
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2(k)
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(
2ηλ1 (1+2ηλ1)2−2ηλ1−2

)
× |λi−2τ|

n−p∑
i=1

zi
2(k)

≤ ϕΠ1e−θ1k (29)

where
 

ϕ = ηλ1(2(1+2ηλ1)2−1) |λi−2τ|
×
(
2ηλ1(1+2ηλ1)2−2ηλ1−2

)
.

We have
 

V(k+1) ≤ δV(k)+
∣∣∣H′(k)−2τH(k)

∣∣∣
≤ δk+1V(0)+ϕΠ1

k∑
r=0

(δeθ1 )
r
e−θ1k

≤ δk+1V(0)+ (k+1)ϕΠ1 max
{
δk,e−θ1k

}
≤ (k+1)Π2

[
e−θ2(k+1)+max

{
e−θ2k,e−θ1k

}]
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θ2 = − lnδ > 0where  and
 

Π2 =max
{
wT (0)Rw(0)− (2∥w(0)∥2−1)τ,ϕΠ1

}
> 0.

■ 

Appendix E
Proof of Lemma 3

ε > 0 K ≥ 1Proof: Provided any , there is a  such that
 

ΠKe−θK

(1− e−θ)2 ≤ ε. (31)

k1 > k2 > KWith respect to any , it holds that
 

|zi(k1)− zi(k2)|

=

∣∣∣∣∣∣∣∣
k1−1∑
r=k2

[zi(r+1)− zi(r)]

∣∣∣∣∣∣∣∣
=

k1−1∑
r=k2

η
∣∣∣∣[wT (r)Rw(r)− (2∥w(r)∥2−1)τ

]
zi(r)
∣∣∣∣

≤
k1−1∑
r=k2

rΠe−θr ≤ Π
+∞∑
r=K

re−θr

≤ ΠKe−θK
+∞∑
r=0

r
(
e−θ
)r−1

≤ ΠKe−θK

(1− e−θ)2 ≤ ε. (32)

{zi(k)}

limk→∞ zi(k) =
zi
∗, i = n− p+1,n− p+2, . . . ,n zi

∗

As  suggested  by  (32),  we  can  conclude  that  is
considered  to  be  a  Cauchy  order.  Through  the  application  of
the Cauchy convergence principle, it holds that 

, where  is a constant. ■
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