

Processes 2021, 9, 351. https://doi.org/10.3390/pr9020351 www.mdpi.com/journal/processes

Review

Evolving Container to Unikernel for Edge Computing and Ap-
plications in Process Industry
Shichao Chen 1,2 and Mengchu Zhou 1,3,4,*

1 The Institute of Systems Engineering and Collaborative Laboratory for Intelligent Science and Systems,
Macau University of Science and Technology, Macau 999078, China; shichao.chen@ia.ac.cn

2 The State Key Laboratory for Management and Control of Complex Systems, Institute of Automation,
Chinese Academy of Sciences, Beijing 100190, China

3 Department of Electrical and Computer Engineering, New Jersey Institute of Technology, Newark,
NJ 07102, USA

4 Center of Research Excellence in Renewable Energy and Power Systems, King Abdulaziz University,
Jeddah 21589, Saudi Arabia

* Correspondence: zhou@njit.edu

Abstract: Industry 4.0 promotes manufacturing and process industry towards digitalization and
intellectualization. Edge computing can provide delay-sensitive services in industrial processes to
realize intelligent production. Lightweight virtualization technology is one of the key elements of
edge computing, which can implement resource management, orchestration, and isolation services
without considering heterogenous hardware. It has revolutionized software development and de-
ployment. The scope of this review paper is to present an in-depth analysis of two such technologies,
Container and Unikernel, for edge computing. We discuss and compare their applicability in terms
of migration, security, and orchestration for edge computing and industrial applications. We de-
scribe their performance indexes, evaluation methods and related findings. We then discuss their
applications in industrial processes. To promote further research, we present some open issues and
challenges to serve as a road map for both researchers and practitioners in the areas of Industry 4.0,
industrial process automation, and advanced computing.

Keywords: Big data analytics; lightweight virtualization; cloud computing; edge computing; indus-
trial process; Industry 4.0; Internet of things; machine learning; process industry; fault diagnosis

1. Introduction
Industry 4.0 represents a new industrial revolution, enabling suppliers and manu-

facturers to leverage new technologies, i.e., Internet of Things (IoT), Big Data analytics,
Edge Computing, Cloud Computing, and Cyber-Physical Systems to improve various
processes ranging from wafer fabrication and electronic manufacturing to oil refinery and
pharmaceutical production [1]. It promotes the development of manufacturing towards
informatization, digitalization, and intellectualization. Edge computing and cloud com-
puting play an important role in realizing the vision that industry 4.0 promises. In partic-
ular, edge computing can handle the data locally and provide delay-sensitive services.
Cloud computing can deal with large-scale aggregated data, e.g., data mining, training of
deep learning models, in different applications of industrial processes. Virtualization
technologies are key elements of edge computing and cloud computing.

Virtualization technologies have been in use for years. It makes large expensive
mainframes of computing easily shared among different user applications. It can enable
users to run multiple operating systems on a single physical server. In this physical server,
each operating system runs as a self-contained computer [2]. Virtualization is becoming
increasingly important in different scenarios (e.g., computing, storage, and networking).

Citation: Chen, S.; Zhou, M.

Evolving Container to Unikernel for

Edge Computing and Applications

in Process Industry. Processes 2021, 9,

351. https://doi.org/10.3390/

pr9020351

Academic Editor: Luis Puigjaner

Received: 2 February 2021

Accepted: 10 February 2021

Published: 14 February 2021

Publisher’s Note: MDPI stays neu-

tral with regard to jurisdictional

claims in published maps and institu-

tional affiliations.

Copyright: © 2021 by the authors.

Submitted for possible open access

publication under the terms and con-

ditions of the Creative Commons At-

tribution (CC BY) license (http://crea-

tivecommons.org/licenses/by/4.0/).

Processes 2021, 9, 351 2 of 19

It can improve system efficiency, reliability, and availability, reduce cost, and provide
great flexibility to users. In order to be shared over diverse applications, the virtualization
of Information Technology (IT) infrastructure enables the consolidation and pooling of IT
resources. It abstracts physical computing resources logically, producing a computing en-
vironment that is not limited by the configuration and architecture of physical hardware
[3]. It is the creation and orchestration of small virtual computational chunks in the form
of an abstract computing platform. Virtualization technologies are widely used in cloud
computing [4,5], which can offer an efficient method to harness the cloud power by frag-
menting a cloud physical host into small manageable virtual portions [6]. They make
cloud computing services simple, convenient, and cost-effective. Hypervisor (e.g.,
VMware and VirtualBox [7]) has been widely used in hardware virtualization of cloud
computing. However, there are some problems, such as high resource overhead [8], long
start-up time [9], and large attack surface [10,11]. To overcome its disadvantages, light-
weight virtualization technology (e.g., Container and Unikernel) with fast deployment
and high efficiency is now applied to cloud computing and edge computing [12,13].
Docker container [14] is gaining great attraction in the IT community, since it allows users
to deploy applications in most environments faster and more efficiently than using virtual
machines (VMs). Container can use only one kernel for multiple isolated environments or
operation systems. Container-based application virtualization is viewed as an appropriate
isolation solution with less overhead than VMs. Container has several advantages, e.g.,
rapid development, portability across different machines, and simplified maintenance
[14]. They solve the problems of traditional VMs. As a result of their ease-of-use and per-
formance enhancements, such containers as Docker [15], OpenVZ [16], and Linux Con-
tainer (LXC) [17], are being widely adopted in industry, academia, and other scientific
communities. Undoubtedly, Container-based virtualization delivers a lightweight and ef-
ficient environment, but raises some security concerns as it allows an isolated process to
utilize an underlying host kernel [18]. Moreover, Docker container is not suitable for IoT
applications with frequent interaction of small data and resource-constrained IoT devices
[19].

In order to solve the problems of VMs and the low security of Container in the appli-
cations, Madhavapeddy et al. propose a lightweight virtualization technology called
Unikernel [20]. It has high level security, simplified architecture, and high efficiency. In
addition to its container features, it can take full advantage of the resource management
and isolation techniques of Hypervisor to provide high-level security. It can also be de-
ployed directly on bare metal hardware without any system dependencies, which is ben-
eficial to the application of an edge computing paradigm in IoT scenarios. Hence it prom-
ises to be a virtualization technology beyond containers. Edge computing is an extension
of cloud computing at the edge network [21], and it promotes the IoT development. Light-
weight virtualization technology is a key to facilitating the realization of edge computing.
This paper focuses on the research and applications of lightweight virtualization technol-
ogy, Container and Unikernel, in edge computing. In Section 2, the research and applica-
tions of Container for edge computing are summarized. The applicability of Unikernel for
edge computing are illustrated and the comparison between Container and Unikernel is
depicted in Section 3. We describe the evaluation metrics and results of lightweight virtu-
alization technologies in Section 4. The applications of Container and Unikernel to indus-
trial processes are discussed in Section 5. Open issues related to lightweight virtualization
technologies are analyzed in Section 6. The conclusion of this review paper is concluded
in Section 7.

2. Container for Edge Computing
Container-based virtualization can be considered as one of the lightweight alterna-

tives to Hypervisor-based virtualization. Traditional VMs has been applied for a decade
in cloud computing with resource virtualization and isolation. VMs are based on Hyper-
visor, which operates at the hardware level and supports standalone VMs. In each VM

Processes 2021, 9, 351 3 of 19

instance, a full operating system (OS) is installed on top of the virtualized hardware. Thus,
the image files of based on VMs are large and its overhead is non-negligible.

Container avoids the virtualization of hardware and drivers [22]. It implements the
virtualization at the OS level. It shares the same OS kernel with the host machine, making
it possible to isolate standalone applications that own independent virtual network inter-
faces, independent process space, and separate file systems. The shared kernel feature al-
lows Container to run a higher density of virtualized instances with small image volume
on a single machine. Docker Container is popular and has achieved much more practical
use recently, which is a high-level platform. It introduces a container engine, which allows
easily one to build, run, manage, and remove containerized applications. It has been
widely used for deployment, live migration, orchestration, and isolation of applications
in edge computing. A large number of container applications are managed by different
orchestration tools and cluster managers such Google Borg, Docker Swarm Manager, and
Kubernetes [23]. To realize the resource management of edge nodes with relatively low
computing power, Park et al. [24] propose a method of dynamic container layer replace-
ment for a serverless architecture-based Function-as-a-Service, considering a resource-
limited environment on edge nodes. Its experimental results show that it can improve
boot-up latency by using their proposed method, and provide faster service than con-
tainer creation. The boot-up latency of the proposed method is lower than that required
to create the container. The smaller the size of the dynamic container, the much lower the
boot-up latency. Mendki [25] uses Docker container-based analytics services to process
the data locally in edge computing. Their feasibility is verified by setting up a deep learn-
ing framework on Raspberry Pi for real-time analysis of surveillance video. Its perfor-
mance benchmarking shows that its overhead is negligible in terms of central processing
unit (CPU) processing compared with the bare metal deployment. Deploying the analytics
solution in Docker container can provide ease of service management and orchestration
for edge nodes. Anand et al. [26] use Docker container to deploy a practical, edge analytics
framework in resources-constrained heterogenous environments. It provides an agnostic
logical abstraction layer residing over existing hardware and software layers enabling
ease of orchestration. Through the framework and use case, it demonstrates how to em-
ploy an edge analytics framework that integrates existing systems agnostically and seam-
lessly. To solve the problems of live migration for offloading services in mobile edge com-
puting environment, Ma et al. [27] propose an edge computing platform architecture,
which uses Docker container to support seamless migration of offloading services. In con-
trast to the state-of-the-art service handoff method in edge computing, the system yields
80 percent (56 percent) reduction in handoff time under 5 Mbps (20 Mbps) network band-
width conditions. In edge computing, virtualized resources can support and enhance ser-
vice provisioning. However, migration of edge-enabled services poses significant chal-
lenges in the edge computing environment. Bellavista et al. [28] propose an edge compu-
ting platform architecture that supports service migration through Docker Container
among heterogeneous edge devices. Their experimental results confirm that proactive mi-
gration can significantly minimize the service downtime in the case of layered services,
by imposing a very limited overhead on the overall support infrastructure. Other studies
[29–31] use Container for live migration in a mobile edge computing environment, which
can reduce the service downtime to ensure the quality of services (QoS) for users. In terms
of security concerns in edge computing, Maurantonio et al. [32] discuss the security of
Container in different application scenarios, e.g., Augmented Reality, Smart Home, Smart
Cities, E-health, and smart factories. Container can leverage the flexibility given by the
additional layers between application images and hardware to provide seamless patch-
ing, and ease the need for updates. It is less vulnerable to be attacked than Real Time
Operating System (RTOS). Soltesz et al. [33] provide insights into resource, security and
isolation for avoiding crosstalk unwanted snooping and fault propagation between con-
tainerized systems, although container usage for provisioning security isolation may not

Processes 2021, 9, 351 4 of 19

seem favorable [34,35]. Table 1 summarizes the studies of Container for different func-
tions.

Table 1. Studies of Container for different functions.

Reference Migration Orchestration
Security
Isolation Summary of Findings

Park et al., 2019 [24] √

① Realizing the resource management of edge
nodes;
② Performing dynamic container layer re-
placement;
③ Improving boot-up latency;
④ Providing faster services than container cre-
ation.

Mendiki, 2019 [25] √

① Providing analytics services based on
Docker in edge computing;
② Verifying a deep learning framework on
Raspberry Pi;
③ Docker’ overhead being negligible.

Anand et al., 2017 [26] √
① Deploying an edge analytics based on
Docker;
② Easing the services orchestration

Ma et al., 2019 [27] √

① Proposing an edge computing platform
based on Docker to support seamless migration of
services;
② Reducing handoff time.

Bellavista et al., 2019
[28] √

① Proposing an edge computing platform
based on Docker for proactive migration;
② Reducing the service downtime.

Elgazar and Harras,
2019 [29]; Maheshwari

et al., 2018 [30]; Du-
pont et al., 2017 [31]

√
① Being suitable for live migration in mobile
edge computing;
② Reducing service downtime.

Caprolu et al., 2019 [32] √

① Comparing the security among Container,
Unikernel, and RTOS;
② Being less vulnerable to security attacks
than RTOS

Soltesz et al., 2007 [33] √
① Achieving security and isolation between
containerized systems

Bernstein, 2014 [34] √

① Comparing security between Container and
VMs;
② Presenting a cluster manager for Docker
Container.

Combe et al.,
2016 [35]

 √ ① Being more flexible than VMs;
② Being vulnerable to security attacks.

According to [27] and [28], resources, e.g., computing, storage, and networking ones,
can be virtualized by Container without regard to their heterogeneousness. Container is
running on OS and their images occupy some memory, and edge devices in IoT edge
computing have no OS, and are resource-constrained. They are suitable for edge compu-
ting but not for IoT edge computing. Container can be utilized for image deployment,
resource management, and orchestration services, which only imposes little time to the

Processes 2021, 9, 351 5 of 19

systems. In addition, Container directly shares the kernel with their host machines. They
occupy fewer resources and have lower virtualization overhead than VMs. Container-vir-
tualization technologies used in edge nodes with relatively rich resources produces an
almost negligible impact for edge computing systems’ overhead. In terms of security iso-
lation, Container is able to protect Container-specific information from unwanted leakage
to some extent. However, Container-based applications share the same system core,
which challenges system security.

In addition, Container has been applied in edge computing platforms. Next, we pre-
sent a review of the work concerning the combination of an edge computing platform and
Container. ParaDrop is a research project in Wisconsin Wireless and NetworkinG Systems
(WiNGS) laboratory at the University of Wisconsin-Madison (Madison, WI, USA) [36]. It
is suitable for IoT applications and uses Container (Docker) to isolate the operating envi-
ronment of different applications. A single edge server can run multiple tenant applica-
tions. All applications on the gateway are deployed and revoked by a cloud server. EdgeX
Foundry is founded by the Linux Foundation to create an interoperable, plug and play,
and modular IoT edge computing ecosystem. It is a standardized microservice framework
focusing on IoT applications, and its design meets the independence of hardware and OS.
All microservice applications in EdgeX Foundry can run in various operating systems in
the form of Container [37]. FocusStack [38] is developed to support the deployment of
complex applications to IoT devices. Container on edge devices supports its OpenStack
services, including virtual network access and application-based granularity configura-
tion. CloudPath [39] is an edge computing system to support the on-demand allocation
and dynamic deployment of a multi-level architecture. Its PathExecute module has a con-
tainer architecture and supports lightweight application functions. AirBox is a secure,
lightweight system with scalable edge functions. Its edge functions are deployed through
system-level containers [40]. Central office Re-architected as a Datacenter (CORD) is an
open-source project for network operators. It can reconstruct the existing network edge
integration implementation by using a software-defined-network (SDN), network func-
tion virtualization (NFV), and cloud computing technology. OpenStack in CORD is used
to manage computing and storage resources, create and configure VMs, and provide an
Infrastructure-as-a-Service (IaaS) function. Docker as a Container engine uses Container
technology to instantiate services provided to users [41]. AKraino Edge Stack is an open-
source project for high-performance edge services, and provides an overall solution for
edge infrastructure. It includes an application, middle, and infrastructure layers. The ap-
plication layer is dedicated to creating an ecosystem of virtual network function (VNF) to
promote the development of edge applications [42]. Azure IoT Edge is a fully hosted ser-
vice built on the Azure IoT center launched by Microsoft. Its IoT Edge modules run as
Docker, which can deploy Azure services, third-party services or custom code to IoT Edge
nodes, which are locally executed at the nodes [43]. OpenEdge [44] is an open-source edge
computing system developed by Baidu. It adopts modular and containerized design. Ku-
beEdge [45] is an open-source edge computing system that relies on container arrange-
ment and scheduling capabilities based on kubernetes to achieve cloud-edge collabora-
tion.

After introducing the existing virtualization techniques of these edge computing sys-
tems, we can conclude that Container, especially Docker, are widely used in edge compu-
ting systems due to their rapid deployment and resource management services. Yet some
edge computing systems adopt the virtualization mode of combining VMs and Container
to manage the hardware resources and application services. Table 2 shows the illustration
of virtualization technologies used in an edge computing system.

Table 2. Illustration of Container used in edge computing platforms.

Platform Virtualization Technique Application Scenarios
ParaDrop [36] Container IoT

Processes 2021, 9, 351 6 of 19

EdgeX Foundry [37] Container IoT
FocusStack [38] Container IoT
CloudPath [39] Container Mobile

AirBox [40] Container IoT
CORD [41] VM and Container No Limit

AKraino Edge Stack [42] VM and Container No Limit
Azure IoT Edge [43] Container No Limit

OpenEdge [44] Container No Limit
KubeEdge [45] Container No Limit

Container can be utilized in edge nodes with relatively sufficient resources, e.g., edge
servers. It is not suitable for edge nodes without OS and enough resources, especially for
edge devices in IoT edge computing environment. In addition, security is another vulner-
ability of Container. We demand other lightweight virtualization technologies for edge
computing. Unikernel to be discussed next, stands out as such lightweight virtualization
technology.

3. Unikernel for Edge Computing
Unikernel [46] is a single-purpose appliance that is specialized at compile time into

standalone kernel and sealed against modification after deployment. Additionally, it pro-
vides increased security through a reduced attack surface and better performance by re-
ducing unnecessary components from the applications. It was designed initially for cloud
computing, but its small footprint and flexibility make it suitable for edge computing,
especially upcoming IoT edge computing. The attack surface of Unikernel is strictly con-
fined to the application embedded within. It does not include a uniform operating system
layer, and everything is directly compiled into the application layer. Therefore, each
Unikernel may have a different set of vulnerabilities, which implies that an attacker that
can penetrate one may not threaten to others. In addition, Unikernel is principally de-
signed to be stateless. Therefore, edge intelligent algorithms (e.g., compression, encryp-
tion, and NFV) can be executed easily with it.

There are many research projects about Unikernel, mainly including MirageOS
Unikernel [47], IncludeOS [48], OSv Unikernel [49], ClickOS [50], and others [51–57]. Table
3 summarizes their characteristics, in terms of programming languages, supporting plat-
forms, characteristics, and application scenarios.

Table 3. Summary of different Unikernel based products.

Unikernel
Programming Lan-

guages Supporting Platforms Characteristics Application Scenarios

MirageOS [47] OCaml
Xen,

FreeBSD,
POSIX

Supporting secure and
high performance net-

work services

Cloud computing,
edge computing

HalVM [51] Haskell Xen
Implementing ad-

vanced lightweight VM
on Xen by developers

Cloud computing,
edge computing

LING [52] Erlang Xen

Supporting for concur-
rency, distribution, and

fault tolerance;
High security and

avoiding most attacks

Cloud computing

Clive [53] Go Xen, KVM Being designed for dis-
tributed and cloud

Cloud computing,
edge computing

Processes 2021, 9, 351 7 of 19

computing environ-
ments.

ClickOS [50] C++ Xen

Building a multifunc-
tional and high perfor-
mance software mid-

dleware platform

Network function
virtualization

IncludeOS [48] C++ KVM/VirtualBox Supporting for full vir-
tualization

Cloud computing,
edge computing

Drawbridge [54] C
Windows” picopro-

cess”

Combining picoprocess
and library operating
system to improve the
performance of appli-
cations and isolation

security.

Desktop applications
on Windows

Runtime.js [55] Javascript Xen, KVM

Realizing the manage-
ment of low-level CPU

and memory;
Running JavaScript us-

ing an embedded V8
engine.

Cloud computing

OSv [49] Java, C, C++, Node.js
Xen, KVM,
VMware,

VirtualBox

Supporting a variety of
programming lan-

guage;
Being compatible with
existing Java programs;

Being supported by
multiple hypervisors.

Cloud computing,
edge computing

Rumprun [56]
C, C++, Erlang, Go,

Java, Javascript, PHP,
Bsash, Pythons

Xen, KVM
, bare metal

Supporting from bare
metal ARM hardware

to hypervisor;
Supporting applica-

tions written in various
languages.

Cloud computing,
edge computing

HermitCore [57] C, C ++, Fortran, Go Xen, KVM,
x86_64

Supporting to expand
into multi-core proces-

sor VM system;
Supporting limit scale

computing

Cloud computing

Due to its small image file size and high security, Unikernel has been under active
research and development since its inception in 2013, especially for edge computing. Ex-
pending it from cloud computing to edge computing, researchers focus on the issues re-
lated to migration, orchestration, network, and isolation for edge computing. To enable
service migration in mobile edge environment, Ramirez et al. [58] develop a practical
framework for service management in vehicular networks. Docker and Unikernel are
used as the migration techniques for the migration of a Network Memory Server. Experi-
mental results show that the average migration time with Unikernel is less than one with
Docker, and Unikernel can support new applications and services in highly mobile envi-
ronment. To provide reliable network storage in highly mobile environments, Ezenwigbo
et al. [59] explore how services can be migrated as users travel around. They use migration
techniques, e.g., Docker and Unikernl, to implement the migration of a simple Network

Processes 2021, 9, 351 8 of 19

Memory Server. Their results show that the migration time based on Unikernel is less than
other virtualization technologies in proactive and reactive service migration scenarios.

In [60], a fog-enabled cellular vehicle-to-everything architecture is proposed, which
provides resources at core, edge and vehicle layers. This architecture enables the connec-
tion of VMs, Container and Unikernel to form an Application-as-a-Service function chain,
which can efficiently manage and orchestrate all the underlying physical resources. In a
cellular Vehicle-to-everything (C-V2X) use case, the live migration and scaling function-
alities are evaluated, and the experimental results demonstrate that the proposed scheme
maximizes the accepted requests, without violating the applications’ service level agree-
ment. To support the composition and deployment of machine learning-based data ana-
lytics in IoT devices, Zhao et al. [61] design a Zoo system to address these challenges.
MirageOS, a Unikernel technology, is utilized for the model deployment. Deploying
Unikernel is proved to be of low memory footprint, and thus quite suitable for resource-
constrained IoT devices.

An orchestration framework is proposed to enable edge-cloud collaborative compu-
ting for road context assessment [62]. Mirage OS Unikernel is utilized for developing this
orchestration platform due to its multiple advantages in terms of isolation, memory foot-
print and fine-grained function encapsulation. Experimental results illustrate the Uniker-
nel’s boot time is substantially lower than Amazon Firecracker microVM’s. In addition, it
is suitable for processing a small amount of information. To efficiently exploit the re-
sources of constrained edge devices through fine-grained computation offloading, Fine-
Grained edge offloading with Unikernels (FADES) is proposed [63]. It takes advantage of
MirageOS Unikernel to isolate and embed application logic in concise Xen-bootable im-
ages. Its performance is evaluated under various hardware and network conditions. The
results show that FADES can effectively strike a balance between running complex appli-
cations in the cloud and simple operations at the edge.

Valsamas et al. [64] propose an elastic content distribution platform, which serves the
Internet content using tiny Unikernel-based VMs. It provides a dynamic deployment ser-
vice at the edge. It is demonstrated that the proposed platform is valid. Virtualization
technologies are widely used in NFV. In [65], VMs, Container and Unikernel are utilized
to deploy virtualized network functions at the network edge. Their performances are eval-
uated by deploying two services, i.e., Apache and Redis with them. Experimental results
show that Unikernel has a small image size and very small memory consumption. More-
over, Unikernel can eliminate the overhead of context switching, applications with high
context switching between user and kernel mode can outperform than other two. Filipe et
al. [66] also compare the use of two virtualization technologies, e.g., Container and
Unikernel, for virtual network function (VNF) instantiation in edge computing. They de-
velop a failure detection and recovery mechanism to ensure VNF reliability. The experi-
mental results show that the mechanism can ensure near zero downtime. In a resource-
scarce isolated environment, multiple virtualization techniques including VMs, Con-
tainer, Unikernel, and kata-containers are explored to deploy network functions [67]. The
performance of NFV virtualization by deploying web services is analyzed. Experimental
results show that Unikernel is secure, lightweight and is suitable for running applications
requiring many interactions among various smart devices or smart objects. Table 4 sum-
marizes the studies of Unikernel for different functions.

Table 4. Studies of Unikernel for different functions.

Reference Migration Orchestration Network
Security
Isolation Summary of Findings

Ramirez et al., 2020 [58] √

① Enabling service migration by using
Unikernel in mobile edge environment;
② Comparing the average migration
time between Docker and Unikernel;

Processes 2021, 9, 351 9 of 19

Ezenwigbo et al., 2020 [59] √

① Using Docker and Unikernel to im-
plement the migration;
② Requiring less migration time based
on Unikernel than other virtualization tech-
nologies.

Sarrigiannis et al., 2020 [60] √ √

① Proposing a fog-enabled cellular vehi-
cle-to-everything architecture;
② Using Unikernel to efficiently manage
and orchestrate all the physical resources.

Zhao et al., 2018 [61] √ √

① Designing a Zoo system to implement
the deployment of machine learning-based
data analytics;
② Using MigrageOS for model deploy-
ment

Cozzolino et al., 2020 [62] √ √
① Using MigrageOS for services orches-
tration;

Cozzolino et al., 2017 [63] √
① Proposing FADES for computation of-
floading;
② Using MirageOS to isolate images.

Valsams et al., 2018 [64] √

① Proposing an elastic content distribu-
tion platform;
② Using Unikernel-based VMs to serve
Internet content.

Behravesh et al., 2019 [65] √

① Utilizing Unikernel to deploy virtual-
ized network functions;
② Using it to eliminate the overhead of
context switching.

Filipe et al., 2019 [66] √

① Comparing the performance of VNF
between Container and Unikernel;
② Developing a failure detection and re-
covery mechanism.

Aggarwal and Thangaraju,
2020 [67]

 √

① Comparing the performance of NFV
among VMs, Container, and Unikernel.
② Concluding that Unikernel is suitable
for running applications demanding inter-
action among devices.

Caprolu et al., 2019 [32] √

① Comparing the security among Con-
tainer, Unikernel, and RTOS;
② Concluding that Unikernel has the
high-level security.

According to the above analysis and discussion, we conclude that Unikernel has a
smaller image size and very small memory consumption. It can be used for the migration
in a mobile edge computing environment, especially Vehicular Networks. It can quickly
respond to user requests. Since its image size is small, it can run on the edge devices with
highly limited resources. It can also reduce the attack surface that can help guarantee code
integrity and ease of updates, and keep high security isolation. Its OS overhead is negligi-
ble, and it is suitable for running applications with high context switching, processing a
small amount of information.

Processes 2021, 9, 351 10 of 19

VMs, Container and Unikernel virtualization technologies, are expected to co-exist
for cloud computing, edge computing and IoT edge computing. We can choose an appro-
priate virtualization technology to meet different requirements. The three virtualization
architectures are shown in Figure 1. Table 5 summarizes their main characteristics the
comparison among VMs, Container and Unikernel.

VM VM VM VM

Hypervisor engine

Hardware

Application
Dependencies

Guest OS

VM

VM VM VM VM

Hypervisor engine

Host OS

HardwareType 1

Type 2

Container engine

Hardware

Host OS

LIBS/BIN/
RUNTIME

App 1

Container Container

App 2

LIBS/BIN/
RUNTIME

Container

App n

LIBS/BIN/
RUNTIME

…

…

Hardware

Hypervisor

LIBS/
RUNTIME

App 1

Library OS Library OS

App 2

LIBS/
RUNTIME

Library OS

App n

LIBS/
RUNTIME

…

…

(a) (b) (c)

Figure 1. Virtualization Architectures: (a) Virtual machines; (b) Container; an (c) Unikernel.

Table 5. Comparison among VM, Container and Unikernel.

Virtual Machine

• KVM
• QEMU

Container
• Docker

• Open VZ
• LXC

Unikernel
• MirageOS
• IncludeOS

• ClickOS
• OSv

Instantiation Time ~5/10 s ~800/100 ms ~＜50 ms
Start-Up Time Slow Medium Fast

Image Size ~1000 MBs ~50 MBs ~＜5 MBs
Memory Footprint ~100 MBs ~5 MBs ~8 MBs

Programming Language No No Yes
Hardware Portability High High Medium

Security High Medium High

Live Migration Support Yes Yes
Requires manual implemen-

tation

Application Scenario Cloud computing
Cloud computing,
Edge computing

Cloud computing, Edge com-
puting, IoT edge computing

Multitenancy Yes Yes Yes

4. Evaluation for Lightweight Virtualization Technologies
A number of metrics can be used to evaluate the performance of Lightweight Virtu-

alization technologies, e.g., CPU performance, memory performance, Disk Input/Output
(I/O) performance, and Network I/O performance.

Watada et al. [68] present a performance comparison between Container and Uniker-
nel. They use some standard benchmarks called Sysbench (CPU performance); Iperf (for
checking network bandwidth) and STREAM (measuring sustained bandwidth of entire
cache hierarchy). Their experimental evaluation is done by using HP-Blade server with
64-bit Ubuntu 16:04. They choose tiny OSv and Rumprun VMs on top of Xen and kvm as
unikernels. The CPU performance for lightweight virtualization technologies (e.g.,
Docker, LXC/LXD, OSv, and Rumprun) are tested by Sysbench. Their experimental results
show that CPU performance of Docker is near that of the native system for a single in-
stance, but performance significantly drops down for multiple instances. OSv and
Rumprun reveal the worse performance than other containers. Their network perfor-
mances are evaluated by iperf. They have tested them via two instances (one acting as
server and the others as client). Their experimental results show Docker container and

Processes 2021, 9, 351 11 of 19

OSv are promising. In terms of memory performance, Rumprun offers the better perfor-
mance than others. In [65], the performance of Container and Unikernel are also evalu-
ated, including image size, memory utilization, CPU utilization, the time serving each re-
quest, and transfer rate. Experimental verification is done by using Intel Next Unit of
Computing (NUC) device equipped with a Kingston SODIMM DDR4 RAM with 16 GB
capacity and Intel(R) Core (TM) i7-7567U CPU with 3.5 GHz clock rate. Ubuntu 18.04.1
LTS is utilized as the host OS (64-bit Ubuntu 16:04) for all the platforms. Docker container
engine (version18.06.1-ce) is installed for running containers on the system. The experi-
ment has two instances, i.e., Apache Hyper Text Transport Protocols (HTTP) server and
Redis. Experimental results [65] show the image size of Rumprun unikenels for both ser-
vices are significantly lower than Docker container. This is because unikernels only con-
tain the dependencies required to run the application. Additionally, the memory usage of
containers is much less than Rumprun unikernels. The main reason is that containers can
have the efficient and dynamic usage of memory. However, Rumprun unikernels have
the fixed size memory allocation. In the idle mode, the CPU utilization of the services
based on Container and Unikernel is very low. It increases drastically, when more and
more service requests arrive and the corresponding services are performed. This is espe-
cially true for Rumprun unikernels aas caused by their poor process management. By
evaluating the transfer rate of the service, Rumprun performs poorly and has a lower
transfer rate than containers.

In another study [67], the performances of Container and Unikernel are evaluated in
terms of the image size, boot time, memory utilization and CPU utilization. Its system
comprises of a Xen server with DDR4 4 GB RAM and 10 GB storage capacity. Ubuntu
18.04 LTS is used as the host OS for all platforms. Unikernel uses QEMU, and Docker
engine (version 18.09.5) is installed for running docker containers. The Apache Bench-
marking tool is installed on the host operating system to send requests and analyze their
performances. The experimental results and findings of [67] are similar to those of [65].

In summary, Container has satisfactory performances in almost all aspects on servers
with rich resources. It provides near real-time and good resource utilization, and its over-
heads are negligible. Its image size is bigger than Unikernel’s, and it is not free from an
issue regarding isolation and security. From the perspective of its maturity and perfor-
mance evaluation, Container is highly suitable for edge servers with sufficient resources
in edge computing. Unikernel offers promising features such as significantly reduced
memory footprint, fast booting, high-level security, efficient resource utilization, and
many more. Unikernel offers important advantages for those cases with many IoT devices
and especially fit to IoT edge computing whose nodes have highly limited processing
power and storage facilities. It is not suitable for processing the services with large vol-
umes of data. However, to achieve the desired technical maturity, much work remains to
be done, including microprocessor stability, process management, and persistent storage.

5. Applications to Industrial Processes
With the development of artificial intelligence, IoT, digital twin [69], and parallel in-

telligence [70], the manufacturing industry is moving towards the goal of smart manufac-
turing. A number of edge computing frameworks or applications based on virtualization
technologies are deployed to different industrial processes, e.g., semiconductor manufac-
turing [71], robotic assistance for emergency management [72], explosion prevention in
mining industry [73], maintenance management [74,75], Fabric defect detection for textile
production [76], oil and gas production [26,77], spectroscopic inspection for olive [78], and
Augmented Reality for shipbuilding [79]. In this section, we focus on illustrating equip-
ment fault diagnosis and computation of scheduling tasks. Additionally, we depict the
reasons for adopting a specific lightweight virtualization technology for this application.

Processes 2021, 9, 351 12 of 19

5.1. Fault Diagnosis Processes
Fault diagnosis in industry can improve the production efficiency, and reduce equip-

ment maintenance cost. Machine learning (ML) has been applied to fault diagnosis [80,81].
Figure 2 is a data-driven and edge-cloud collaboration-based fault diagnosis system for
an industrial process (semiconductor manufacturing). It includes three tiers, i.e., edge de-
vices, edge servers, and cloud data centers layers. The models of fault diagnosis are de-
ployed to edge servers by Container and Unikernel. Thus, it can reduce the delay time of
fault detection by edge computing. In this system, models are trained in cloud data centers
rich with resources, and the processes of inferring faults are executed in edge servers.
Additionally, the unidentified fault data can be transmitted to the cloud data center for
updating models, and then updating the corresponding models in edge servers. In edge
nodes and servers, we need to install Docker container environment, and then Docker-
based model image can be deployed and executed quickly. It greatly facilitates the de-
ployments and execution of applications. Unikernel can also be used to deploy models to
edge nodes with limited resources, and it has high security isolation.

Manufacturing
data

Fault detection
 result

Updating models

Model

AI

Model base

Edge Sever

Cloud Center

Silicon Crystal Cutting
Equipment

Silicon Crystal Cutting
Equipment

Silicon Crystal Cutting
Equipment

C3C2C1

Container
Management

Syetem

C3C2C1

Unikernel

C3C2C1

Container
Management

Syetem

Manufacturing
data

Fault detection
 result

Fault detection
 result

Manufacturing
data

Edge Sever Edge Sever

Returning
unrecognized data

Updating models

Returning
unrecognized data

Figure 2. Data-driven and edge-cloud collaboration based a fault diagnosis system.

In our experiment [81], the Tennessee Eastman dataset is used, which contains 52
process variables and 21 process faults. Firstly, we use a dimensionality reduction algo-
rithm called fisher discriminant analysis (FDA) to extract fault features. Then, an ensemble
learning method called AdaBoost is utilized for classifying faults. We build the image files
based on Container and Unikernel for fault diagnosis, and then deploy them to Raspberry

Processes 2021, 9, 351 13 of 19

Pi 3B+. Experimental results show that Unikernel image only occupies 81 MB, thus only
11.86% of Docker’s 683 MB

It only takes 24.003 s to package the Python file into Unikernel image and execute the
program, thereby requiring 68.6% of Docker’s 35.022 s. Thus, Unikernel has some ad-
vantages over Container, especially for edge devices with constrained resources.

5.2. Oil Extraction Process
An oil extraction process in the Oil and Gas industry is a fault-sensitive process. It

requires high reliability and extra safety measures to protect the surrounding environ-
ment. Thus, efficient and environment-friendly oil extraction is a challenging operation.
To overcome these challenges and protect the environment from pollution, one needs to
build smart oil fields with many devices (e.g., sensors and actuators) for achieving clean
oil and gas extraction. Cloud data center can handle the generated data by devices, but
impose high latency, which cannot for detecting oil spill anomalies [82], and analyzing a
large amount of data to predict the oil spill spread direction and quantity [83]. Figure 3 is
the system architecture of collaborative edge computing for environment-friendly oil ex-
traction, where an edge scheduler-based an edge device in every oil extraction site is
demonstrated. The system includes three tiers, i.e., IoT, edge nodes, and cloud data center
layers. IoT devices, including physical sensors of smart oil fields, takes physical quantities.
Edge nodes are located locally for processing data. Containers satisfy latency-sensitive
operational requirements. Instead, edge computing can provide delay-sensitive services,
due to its ability to process data locally. Thus, edge computing systems are utilized to each
rig of smart oil fields. To overcome the limited resources of single oil rig and rapid de-
ployment of edge computing systems, it is necessary to build a collaborative edge com-
puting platform with nearby oil rigs at the edge, thus sharing computing resources among
each other [77].

C 3C 2C 1

C ontainer
M anagem ent

S yetem

E dge scheduler

E dge 3

C 3C 2C 1

C ontainer
M anagem ent

S yetem

E dge scheduler

E dge 1

C 3C 2C 1

C ontainer
M anagem ent

S yetem

E dge scheduler

E dge 2

sensors

S atellite
C loud

D atacenter

actuators

Figure 3. System architecture of collaborative edge computing for environment-friendly oil extrac-
tion.

Processes 2021, 9, 351 14 of 19

In this scenario, the computation tasks of each rig can offload to nearby edge nodes
(rigs). In this system, edge machines own limited storage, computing, and networking
resources, which are placed on the platform of oil rig. They process different tasks, e.g.,
image processing, are used, which makes the migration and deployment of applications
easy. To verify the system model, Minimum Expected completion Time (MECT) [84], Suc-
cess with Computational Certainty (SCC) heuristics, and Highest Probability of Success
[77] are adopted to evaluate the resulting system. Experimental results show that they can
greatly reduce improve task deadline miss rate.

6. Open Issues and Challenges
In this section, we discuss the technical challenges research issues for Container and

Unikernel. To promote the development in industrial applications, we must focus on the
following issues of Container to achieve its convenience, faster and easier deployment,
and greater elasticity.

1) Weaker isolation: The existing Container isolation mechanism [68] is much
weaker than that of Unikernel. It shares one kernel for multiple isolated environments,
thus facing the risk to collapse the entire containerized environment. To solve the security
problems of Container, several methods can be explored, including using trusted images,
managing container secret, securing the runtime environment, and vulnerability scanning
[68].

2) Lack of tools and support: To realize the large-scale application of containers,
the container monitoring and managing tools are needed. However, we have only Con-
tainer orchestrators, like Kubernetes. More container management orchestrators need to
be researched and developed to support the management of different containers

3) Generalization for all services: Container is suitable for microservices and it
does not well support monolithic architecture. For a monolithic architecture, Container
only provides simplified a delivery mechanism by offering easy packaging technologies.

4) Data storage. Container is not suitable for storing permanent data, i.e., data
collected for IoT sensors. It is risky to storage significant data on edge nodes due to both
the volatile environment of edge nodes and the security risks of containers. Therefore,
important data need to be stored in centralized nodes or cloud datacenters and retrieved
on demand. This may reduce the feasibility of lightweight virtualization-based edge com-
puting in some highly data-intensive applications. To address the situation, we should
improve the Data Volumes of Container, which are needed to be implemented in more
seamless way.

Although Unikernel has many advantages, e.g., faster booting, small size, and high
security, it has the following problems and challenges.

1) Unikernel’s usability. Unikernel does not have a shell and not support online
debugging. If Unikernel fails, we can only reboot it. It does not support online upgrades
and updates either. If the application and configuration need to be updated, the user needs
to recompile the source code to produce a new Unikernel and deploy a new version, which
can be very costly and sometimes prohibitive. We can build a mechanism similar to
Docker container’s to realize the remote deployment, update, and upgrading of Uniker-
nel.

2) Security. Unikernel’s security is guaranteed by the isolation provided by the
underlying operating system or Hypervisor, and it is more secure than Container. How-
ever, it is just a process in application space, and thus it is vulnerable to various traditional
attacks. Process management needs to be improved for promoting Unikernel’s security.
Blockchain technologies [85] can be considered.

3) High development cost of Unikernel based on library operating sys-
tem(LibOS). LibOS is the core technology of Unikernel. When developing it, we should
consider not only specific application requirements and programming languages, but also

Processes 2021, 9, 351 15 of 19

the association and boundary among the underlying operating systems. To solve this
problem, we can build a platform adaption layer, which can resolve the dependencies of
LibOS on the underlying host operating systems, and improve its compatibility.

4) Construction and deployment. There are no mature compilation tools for
Unikernel, and there are certain technical barriers to build and deploy Unikernel. It is very
inconvenient that different unikernels need to build and generate a matching tool chain,
and configure the corresponding development environment. So we can build comprehen-
sive and easy-to-use tools for quickly compiling application into Unikernel, like Unik [86]
to facilitate more applications, e.g., [87–97].

7. Conclusions
In this paper, we have summarized lightweight virtualization technologies in edge

computing, and compared the characteristics of Container and Unikernel to indicate what
edge computing scenarios they fit. According to their performance evaluation results, we
have discussed which lightweight virtualization technologies fit to what application sce-
narios. We have presented their possible applications in some industrial processes in
which lightweight virtualization technologies are required. Finally, we have discussed
some technical challenges and open issues for future research in this area. We hope that
this review article can stimulate more researchers and engineers to apply recent edge com-
puting technologies to their various industrial processes and realize what industry 4.0
promises to bring.

Author Contributions: Conceptualization, S.C. and M.Z.; investigation, S.C.; writing—original
draft preparation, S.C.; writing—review and editing, M.Z. All authors have read and agreed to the
published version of the manuscript.

Funding: This research was funded in part by the Deanship of Scientific Research (DSR) at King
Abdulaziz University under grant no. D-422-135-1441.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data is contained within the article or supplementary materials.

Acknowldgement: We would like to acknowledge the help of Yue Liu, School of Artificial Intelli-
gence and Automation, Beijing University of Technology, Beijing, China for her help in drawing
some figures and text revision. We also appreciate the anonymous reviewers for their constructive
comments that help improve this manuscript.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Petrasch, R.; Hentschke, R. Process modeling for industry 4.0 applications: Towards an industry 4.0 process modeling language

and method. In Proceedings of the 2016 13th International Joint Conference on Computer Science and Software Engineering
(JCSSE), Khon Kaen, Thailand, 13–15 July 2016; pp. 1–5, doi: 10.1109/JCSSE.2016.7748885.

2. Sahoo, J.; Mohapatra, S.; Lath, R. Virtualization: A Survey on Concepts, Taxonomy and Associated Security Issues. In Proceed-
ings of the 2010 Second International Conference on Computer and Network Technology, Bangkok, Thailand, 23–25 April 2010;
pp. 222–226.

3. Elsayed, A.; AbdelBaki, N.; Elsayed, A. Performance evaluation and comparison of the top market virtualization hypervisors.
In Proceedings of the 2013 8th International Conference on Computer Engineering & Systems (ICCES), Cairo, Egypt, 26–27
November 2013; pp. 45–50.

4. Sotiriadis, S.; Bessis, N.; Xhafa, F.; Antonopoulos, N.; Antonopoulos, N. Cloud Virtual Machine Scheduling: Modelling the
Cloud Virtual Machine Instantiation. In Proceedings of the 2012 Sixth International Conference on Complex, Intelligent, and
Software Intensive Systems, Palermo, Italy, 4–6 July 2012; pp. 233–240.

5. Kapse, P.V.; Dharmik, R.C. An effective approach of creation of virtual machine in cloud computing. In 2017 International Con-
ference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud) (I-SMAC), Palladam, India, 10–11 February 2017; pp. 145–147.

6. Linlin, W.; Saurabh, G.; Rajkumar, B. SLA-based Admission Control for a Software-as-a-Service Provider in Cloud Computing
En-vironments. J. Comput. Syst. Sci. 2012, 78, 1280–1299.

Processes 2021, 9, 351 16 of 19

7. Vojnak, D.T.; Eordevic, B.S.; Timcenko, V.V.; Strbac, S.M. Performance Comparison of the type-2 hypervisor VirtualBox and
VMWare Workstation. In Proceedings of the 2019 27th Telecommunications Forum (TELFOR), Belgrade, Serbia, 26–27 Novem-
ber 2019; pp. 1–4, doi:10.1109/telfor48224.2019.8971213.

8. Garg, S.; Dwivedi, R.K.; Chauhan, H. Efficient utilization of virtual machines in cloud computing using Synchronized Throttled
Load Balancing. In Proceedings of the 2015 1st International Conference on Next Generation Computing Technologies (NGCT),
Dehradun, India, 4–5 September 2015; pp. 77–80.

9. Patel, K.D.; Bhalodia, T.M. An Efficient Dynamic Load Balancing Algorithm for Virtual Machine in Cloud Computing. In Pro-
ceedings of the 2019 International Conference on Intelligent Computing and Control Systems (ICCS), Madurai, India, 6–8 May
2019; pp. 145–150.

10. Nishad, L.S.; Paliwal, J.; Pandey, R.; Beniwal, S.; Kumar, S. Security, privacy issues and challenges in cloud computing: a survey.
In Proceedings of the International Conference on Information and Communication Technology for Competitive Strategies New York; ACM
Press: New York, NY, USA, 2016; p. 47.

11. Grobauer, B.; Walloschek, T.; Stocker, E. Understanding Cloud Computing Vulnerabilities. IEEE Secur. Priv. Mag. 2010, 9, 50–
57, doi:10.1109/msp.2010.115.

12. Linthicum, D.S. Moving to Autonomous and Self-Migrating Containers for Cloud Applications. IEEE Cloud Comput. 2016, 3, 6–
9, doi:10.1109/mcc.2016.122.

13. Ahmed, A.; Pierre, G. Docker Container Deployment in Fog Computing Infrastructures. In Proceedings of the 2018 IEEE Inter-
national Conference on Edge Computing (EDGE), San Francisco, CA, USA, 2–7 July 2018; pp. 1–8.

14. Abdelbaky, M.; Diaz-Montes, J.; Parashar, M.; Unuvar, M.; Steinder, M. Docker Containers across Multiple Clouds and Data
Centers. In Proceedings of the 2015 IEEE/ACM 8th International Conference on Utility and Cloud Computing (UCC), Limassol,
Cyprus, 7–10 December 2015; pp. 368-371, doi: 10.1109/UCC.2015.58.

15. Docker—Build, Ship, and Run Any App, Anywhere. Available online: http://www.docker.com/ (accessed on 14 December 2014).
16. OpenVZ Linux Containers Wiki. Available online: http://openvz.org/Main_Page (accessed on 14 December 2014).
17. Linux Containers. Available online: http://linuxcontainers.org (accessed on 11 December 2014).
18. Sarkale, V.V.; Rad, P.; Lee, W. Secure Cloud Container: Runtime Behavior Monitoring Using Most Privileged Container (MPC).

In Proceedings of the 2017 IEEE 4th International Conference on Cyber Security and Cloud Computing (CSCloud), New York,
NY, USA, 26–28 June 2017; pp. 351–356.

19. Hajji, W.; Fung, T. Understanding the Performance of Low Power Raspberry Pi Cloud for Big Data. Electronics 2016, 5, 29.
20. Madhavapeddy, A.; Mortier, R.; Rotsos, C.; Scott, D.; Singh, B.; Gazagnaire, T.; Steven, S.; Steven, H.; Jon, C. Unikernels: library

operating systems for the cloud. ACM SIGARCH Comput. Archit. News 2013, 48, 461–472.
21. Chen, S.; Li, Q.; Zhou, M.; Abusorrah, A. Recent Advances in Collaborative Scheduling of Computing Tasks in an Edge Com-

puting Paradigm. Sensors 2021, 21, 779, doi:10.3390/s21030779.
22. Felter, W.; Ferreira, A.; Rajamony, R.; Rubio, J. An updated performance comparison of virtual machines and Linux containers.

In Proceedings of the 2015 IEEE International Symposium on Performance Analysis of Systems and Software (ISPASS), Phila-
delphia, PA, USA, 29–31 March 2015; pp. 171–172.

23. Verma, A.; Pedrosa, L.; Korupolu, M.; Oppenheimer, D.; Tune, E.; Wilkes, J. Large-scale clus-ter management at Google with
borg. In Proceedings of the Tenth European Conference on Computer Systems, Bordeaux, France, 21–24 April 2015, p. 18.

24. Park, J.; Kim, Y.; Son, A.-Y.; Lim, Y.; Huh, E.-N. A Method of Dynamic Container Layer Replacement for Faster Service Providing
on Resource-Limited Edge Nodes. In Proceedings of the 2019 IEEE 2nd International Conference on Electronics and Commu-
nication Engineering (ICECE), Xi’an, China, 9–11 December 2019; pp. 434–437.

25. Pankaj, M. Docker container based analytics at IoT edge Video analytics use case. In Proceedings of the International Conference
on Internet of Things: Smart Innovation and Usages, Bhimtal, India, 23–24 February 2018.

26. Anand, N.; Chintalapally, A.; Puri, C.; Tung, T. Practical Edge Analytics: Architectural Approach and Use Cases. In Proceedings
of the 2017 IEEE International Conference on Edge Computing (EDGE), Honolulu, HI, USA, 25–30 June 2017; pp. 236–239.

27. Ma, L.; Yi, S.; Carter, N.; Li, Q. Efficient Live Migration of Edge Services Leveraging Container Layered Storage. IEEE Trans.
Mob. Comput. 2018, 18, 2020–2033, doi:10.1109/tmc.2018.2871842.

28. Bellavista, P.; Corradi, A.; Foschini, L.; Scotece, D. Differentiated Service/Data Migration for Edge Services Leveraging Container
Characteristics. IEEE Access 2019, 7, 139746–139758, doi:10.1109/access.2019.2943848.

29. Elgazar, A.; Harras, K. Teddybear: Enabling Efficient Seamless Container Migration in User-Owned Edge Platforms. In Pro-
ceedings of the 2019 IEEE International Conference on Cloud Computing Technology and Science (CloudCom), Sydney, Aus-
tralia, 11–13 December 2019; pp. 70–77.

30. Maheshwari, S.; Choudhury, S.; Seskar, I.; Raychaudhuri, D. Traffic-Aware Dynamic Container Migration for Real-Time Sup-
port in Mobile Edge Clouds. In Proceedings of the 2018 IEEE International Conference on Advanced Networks and Telecom-
munications Systems (ANTS), Indore, India, 16–19 December 2018; pp. 1–6.

31. Dupont, C.; Giaffreda, R.; Capra, L. Edge computing in IoT context: Horizontal and vertical Linux container migration. Glob.
Internet Things Summit (GIoTS) 2017, 1–4, doi:10.1109/GIOTS.2017.8016218.

32. Caprolu, M.; Di Pietro, R.; Lombardi, F.; Raponi, S. Edge Computing Perspectives: Architectures, Technologies, and Open Se-
curity Issues. In Proceedings of the 2019 IEEE International Conference on Edge Computing (EDGE), Larnaca, Cyprus, 16 May
2019; pp. 116–123.

Processes 2021, 9, 351 17 of 19

33. Soltesz, S.; Pötzl, H.; Fiuczynski, M.E.; Bavier, A.; Peterson, L. Container -based operating system virtualization: A scalable, high
performance alternative to hypervisors. In Proceedings of the 2nd ACM SIGOPS/EuroSys european conference on computer
systems 2007, Lisbon, Portugal, 20–23 March 2007; Volume 41, pp. 275–287.

34. Bernstein, D. Containers and Cloud: From LXC to Docker to Kubernetes. IEEE Cloud Comput. 2014, 1, 81–84,
doi:10.1109/mcc.2014.51.

35. Combe, T.; Martin, A.; Di Pietro, R. To Docker or Not to Docker: A Security Perspective. IEEE Cloud Comput. 2016, 3, 54–62,
doi:10.1109/mcc.2016.100.

36. Liu, P.; Willis, D.; Banerjee, S. ParaDrop: Enabling Lightweight Multi-tenancy at the Network’s Extreme Edge. In Proceedings
of the 2016 IEEE/ACM Symposium on Edge Computing (SEC), Washington, DC, USA, 27–28 October 2016; pp. 1–13.

37. Brasil. Decreto—Lei nº 227, de 28 de fevereiro de 1967. Dá nova redação ao Decreto-lei nº 1.985, de 29 de janeiro de 1940 (Código
de Minas). Brasília. 1967. Available online: http://www. planalto.gov.br/ccivil_03/Decreto-Lei/Del0227.htm (accessed on 19 Oc-
tober 2020).

38. Amento, B.; Balasubramanian, B.; Hall, R.J.; Joshi, K.; Jung, G.; Purdy, K.H. FocusStack: Orchestrating Edge Clouds Using Lo-
cation-Based Focus of Attention. In Proceedings of the 2016 IEEE/ACM Symposium on Edge Computing (SEC), Washington,
DC, USA, 27–28 October 2016; pp. 179–191.

39. Mortazavi, S.H.; Salehe, M.; Gomes, C.S.; Phillips, C.; de Lara, E. Cloudpath: A multi-tier cloud computing frame work. In
Proceedings of the Second ACM/IEEE Symposium on Edge Computing, San Jose, CA, USA, 12–14 October 2017; pp. 1–13.

40. Bhardwaj, K.; Shih, M.-W.; Agarwal, P.; Gavrilovska, A.; Kim, T.; Schwan, K. Fast, Scalable and Secure Onloading of Edge Func-
tions Using AirBox. In Proceedings of the 2016 IEEE/ACM Symposium on Edge Computing (SEC), Washington, DC, USA, 27–
28 October 2016; pp. 14–27.

41. Cord. 2018. Available online: https://www.open- networking.org/cord (accessed on 11 September 2020).
42. Akraino Edge Stack. 2018. Available online: https://www.akraino.org (accessed on 25 August 2020).
43. Azure IoT. 2018. Available online: https://azure. micro-soft.com/en-us/overview/iot/ (accessed on 18 July 2020).
44. Baetyl. Baetyl architecture [EB/OL]. Available online: https://baetyl.io/zh/docs/overview/Baetyl-design (accessed on 9 Septem-

ber 2019).
45. KubeEdge vs. K3S: Kubernetes in edge computing. [EB/OL]. Available online: http://www.sohu.com /a/307671703 683048 (ac-

cessed on 13 April 2019).
46. Madhavapeddy, A.; Scott, D.J. Unikernels: Rise of the Virtual Library Operating System. Queue 2013, 11, 30–44,

doi:10.1145/2557963.2566628.
47. Unikernel.org. Unikernels-rethinking cloud infrastructure [EB/OL]. (2013-03-25). Available online: http://Unikernel.org/ (ac-

cessed on 20 January 2018).
48. Bratterud, A.; Walla, A.-A.; Haugerud, H.; Engelstad, P.E.; Begnum, K. IncludeOS: A Minimal, Resource Efficient Unikernel for

Cloud Services. In Proceedings of the 2015 IEEE 7th International Conference on Cloud Computing Technology and Science
(CloudCom), Vancouver, BC, Canada, 30 November–3 December 2015; pp. 250–257.

49. Kivity, A.; Laor, D.; Costa, G.; Enberg, P.; Har’El, N.; Marti, D.; Zolotarov, V. Osv: optimizing the operating system for virtual
machines. In Proceedings of the 2014 USENIX conference on USENIX Annual Technical Conference, Philadelphia, PA, USA,
17–20 June 2014; pp. 61–72.

50. Martins, J.; Ahmed, M.; Raiciu, C.; Olteanu, V.; Honda, M.; Bifulco, R.; Huici, F. ClickOS and the art of network function virtu-
alization. In Proceedings of the 11th USENIX Conference on Net-worked Systems Design and Implementation USENIX Asso-
ciation, Seattle, WA, USA, 2–4 April 2014.

51. Galois Inc. The Haskell lightweight virtual machine (HaLVM) source archive[EB/OL]. (2017-12-25). Available online: http: //gal-
ois.com/project /HaLVM/ (accessed on 20 January 2018).

52. Erlangonxen.org. Erlang on Xen: At the heart of super-elastic clouds [EB/OL]. (2017-12-25). Available online: http: //erlan-
gonxen.org/ (accessed on 20 January 2018).

53. Ballesteros, F.J. The Clive operating system. Technical report, 4 October 2014.
54. Porter, D.E.; Boyd-Wickizer, S.; Howell, J.; Olinsky, R.; Hunt, G.C. Rethinking the library OS from the top down. ACM SIGPLAN

Not. 2011, 46, 291–304, doi:10.1145/1961296.1950399.
55. Runtime. js community. runtime.js—JavaScript library operating system for the cloud. (2017-12-25). http:/ /runtimejs. org/ (ac-

cessed on 20 January 2018).
56. Kantee, A. Puffs-Pass-to-Userspace framework file system. Asiabsdcon 2007, 29–42.
57. Lankes, S.; Pickartz, S.; Breitbart, J. HermitCore: A Unikernel for Extreme Scale Computing. In Proceedings of the International

Workshop on Runtime & Operating Systems for Supercomputers ACM, Kyoto, Japan, 1 June 2016.
58. Ramirez, J.; Ezenwigbo, O.A.; Karthick, G.; Trestian, R.; Mapp, G. A New Service Management Framework for Vehicular Net-

works. In Proceedings of the 2020 23rd Conference on Innovation in Clouds, Internet and Networks and Workshops (ICIN),
Paris, France, 24–27 February 2020; pp. 162–164.

59. Ezenwigbo, O.A.; Ramirez, J.; Karthick, G.; Mapp, G.; Trestian, R. Exploring the Provision of Reliable Network Storage in Highly
Mobile Environments. In Proceedings of the 2020 13th International Conference on Communications (COMM), Bucharest, Ro-
mania, 18–20 June 2020; pp. 255–260.

60. Sarrigiannis, I.; Contreras, L.M.; Ramantas, K.; Antonopoulos, A.; Verikoukis, C. Fog-Enabled Scalable C-V2X Architecture for
Distributed 5G and Beyond Applications. IEEE Netw. 2020, 34, 120–126, doi:10.1109/mnet.111.2000476.

Processes 2021, 9, 351 18 of 19

61. Zhao, J.; Tiplea, T.; Mortier, R.; Crowcroft, J.; Wang, L. Data Analytics Service Composition and Deployment on IoT Devices. In
Proceedings of the 16th Annual International Conference on Digital Government Research, Delft, The Netherlands, 30 May–3 June 2018;
Association for Computing Machinery (ACM): New York, NY, USA, 2018; pp. 502–504.

62. Cozzolino, V.; Ott, J.; Ding, A.Y.; Mortier, R. ECCO: Edge-Cloud Chaining and Orchestration Framework for Road Context
Assessment. In Proceedings of the 2020 IEEE/ACM Fifth International Conference on Internet-of-Things Design and Implemen-
tation (IoTDI), Sydney, Australia, 21–24 April 2020; pp. 223–230.

63. Vittorio, G.; Ding, A.Y.; Ott, J. FADES: Fine-Grained Edge Offloading with Unikernels. In Proceedings of the Workshop on Hot
Topics in Container Networking and Networked Systems, Los Angeles, CA, USA, 25 August 2017.

64. Valsamas, P.; Skaperas, S.; Mamatas, L. Elastic Content Distribution Based on Unikernels and Change-Point Analysis. European
Wireless 2018. In Proceedings of the 24th European Wireless Conference, Catania, Italy, 2–4 May 2018; pp. 1–7.

65. Behravesh, R.; Coronado, E.; Riggio, R. Performance Evaluation on Virtualization Technologies for NFV Deployment in 5G
Networks. In Proceedings of the 2019 IEEE Conference on Network Softwarization (NetSoft), Paris, France, 24–28 June 2019; pp.
24–29.

66. Filipe, J.B.; Meneses, F.; Rehman, A.U.; Corujo, D.; Aguiar, R.L. A Performance Comparison of Containers and Unikernels for
Reliable 5G Environments. In Proceedings of the 2019 15th International Conference on the Design of Reliable Communication
Networks (DRCN), Coimbra, Portugal, 19–21 March 2019; pp. 99–106.

67. Aggarwal, V.; Thangaraju, B. Performance Analysis of Virtualisation Technologies in NFV and Edge Deployments. In Proceed-
ings of the 2020 IEEE International Conference on Electronics, Computing and Communication Technologies (CONECCT), Ben-
galuru, India, 2–4 July 2020; pp. 1–5.

68. Watada, J.; Roy, A.; Kadikar, R.; Pham, H.; Xu, B. Emerging Trends, Techniques and Open Issues of Containerization: A Review.
IEEE Access 2019, 7, 152443–152472, doi:10.1109/access.2019.2945930.

69. Wang, Q.; Jiao, W.; Wang, P.; Zhang, Y. Digital Twin for Human-Robot Interactive Welding and Welder Behavior Analysis.
IEEE/CAA J. Autom. Sin. 2021, 8, 334–343.

70. Wang, F.-Y.; Wang, X.; Li, L.; Li, L. Steps toward Parallel Intelligence. IEEE/CAA J. Autom. Sin. 2016, 3, 345–348,
doi:10.1109/JAS.2016.7510067.

71. Ghahramani, M.; Qiao, Y.; Zhou, M.; Hagan, A.O.; Sweeney, J. AI-based modeling and data-driven evaluation for smart manu-
facturing processes. IEEE/CAA J. Autom. Sin. 2020, 7, 1026-1037.

72. Mahmud, R.; Toosi, A.N.; Ramamohanarao, K.; Buyya, R. Context-Aware Placement of Industry 4.0 Applications in Fog Com-
puting Environments. IEEE Trans. Ind. Inform. 2019, 16, 7004–7013, doi:10.1109/tii.2019.2952412.

73. Fang, L.; Ge, C.; Zu, G.; Wang, X.; Ding, W.; Xiao, C.; Zhao, L. A Mobile Edge Computing Architecture for Safety in Mining
Industry. In Proceedings of the 2019 IEEE SmartWorld, Ubiquitous Intelligence & Computing, Advanced & Trusted Computing,
Scalable Computing & Communications, Cloud & Big Data Computing, Internet of People and Smart City Innovation (Smart-
World/SCALCOM/UIC/ATC/CBDCom/IOP/SCI), San Francisco, CA, USA, 19–23 August 2019; pp. 1494–1498.

74. Ashjaei, M.; Bengtsson, M. Enhancing smart maintenance management using fog computing technology. In Proceedings of the
2017 IEEE International Conference on Industrial Engineering and Engineering Management (IEEM), Singapore, 10–13 Decem-
ber 2017; pp. 1561–1565.

75. O’Donovan, P.; Gallagher, C.; Bruton, K.; O’Sullivan, D.T. A fog computing industrial cyber-physical system for embedded low-
latency machine learning Industry 4.0 applications. Manuf. Lett. 2018, 15, 139–142, doi:10.1016/j.mfglet.2018.01.005.

76. Zhu, Z.; Han, G.; Jia, G.; Shu, L. Modified DenseNet for Automatic Fabric Defect Detection With Edge Computing for Minimiz-
ing Latency. IEEE Internet Things J. 2020, 7, 9623–9636, doi:10.1109/jiot.2020.2983050.

77. Hussain, R.F.; Salehi, M.A.; Semiari, O. Serverless Edge Computing for Green Oil and Gas Industry. In Proceedings of the 2019
IEEE Green Technologies Conference (GreenTech), Lafayette, LA, USA, 3–6 April 2019; pp. 1–4.

78. Konishi, T.; Nakamichi, T.; Kamikawa, R.; Yamasaki, Y. Spectroscopic Inspection Optimization for Edge Computing in Industry
4.0. In Proceedings of the 2020 22nd International Conference on Transparent Optical Networks (ICTON), Bari, Italy, 19–23 July
2020.

79. Fraga-Lamas, P.; Fernandez-Carames, T.M.; Blanco-Novoa, O.; Vilar-Montesinos, M.A. A Review on Industrial Augmented Re-
ality Systems for the Industry 4.0 Shipyard. IEEE Access 2018, 6, 13358–13375, doi:10.1109/access.2018.2808326.

80. Li, H.; Hu, G.; Li, J.; Zhou, M. Intelligent Fault Diagnosis for Large-Scale Rotating Machines Using Binarized Deep Neural
Networks and Random Forests. IEEE Trans. Autom. Sci. Eng. 2021, doi:10.1109/TASE.2020.3048056, 2021.

81. Chen, S. Collaborative Scheduling Models of Computing Tasks and Lightweight Virtualization Technology for Edge Computing.
Doctoral Dissertation, Macau University of Science and Technology, 2021.

82. Liu, P.; Li, X.; Qu, J.J.; Wang, W.; Zhao, C.; Pichel, W. Oil spill detection with fully polarimetric spill detection with fully polar-
imetric UAVSAR data. J. Mar. Pollut. Bull. 2011, 62, 2611–2618.

83. Fingas, M.; Brown, C.E. Oil Spill Remote Sensing: A Review; Elsevier: Amsterdam, The Netherlands, 2011; pp. 111–169, ISBN
9781856179430

84. Salehi, M.A.; Smith, J.; Maciejewski, A.A.; Siegel, H.J.; Chong, E.K.; Apodaca, J.; Briceno, L.D.; Renner, T.; Shestak, V.; Ladd, J.;
et al. Stochastic-based robust dynamic resource Allocation for inde-pendent tasks in a heterogenous computing system. J. Par-
allel Distrib. Comput. (JPDC) 2016, 97, 96–111.

85. Zhang, P.; Zhou, M. Security and Trust in Blockchains: Architecture, Key Technologies, and Open Issues. IEEE Trans. Comput.
Soc. Syst. 2020, 7, 790–801, doi:10.1109/tcss.2020.2990103.

Processes 2021, 9, 351 19 of 19

86. Weiss GitHub.cf-unik/unik: the Unikernel compilation and deployment platform [EB/OL] (2017-12-25). Available online: https:
//github.com/cf-unik /unik (accessed on 20 January 2018).

87. Huang, Z.; Xu, X.; Zhu, H.; Zhou, M. An Efficient Group Recommendation Model with Multiattention-Based Neural Networks.
IEEE Trans. Neural Networks Learn. Syst. 2020, 31, 4461–4474, doi:10.1109/tnnls.2019.2955567.

88. Liu, H.; Chatterjee, I.; Zhou, M.; Lu, X.S.; Abusorrah, A. Aspect-Based Sentiment Analysis: A Survey of Deep Learning Meth-
ods. IEEE Trans. Comput. Soc. Syst. 2020, 7, 1358–1375.

89. Fortino, G.; Messina, F.; Rosaci, D.; Sarne, G.M.L. ResIoT: An IoT social framework resilient to malicious activities. IEEE/CAA J.
Autom. Sin. 2020, 7, 1263–1278, doi:10.1109/jas.2020.1003330.

90. Luo, X.; Wu, H.; Yuan, H.; Zhou, M. Temporal Pattern-Aware QoS Prediction via Biased Non-Negative Latent Factorization of
Tensors. IEEE Trans. Cybern. 2020, 50, 1798–1809, doi:10.1109/tcyb.2019.2903736.

91. Guo, X.; Zhou, M.; Liu, S.; Qi, L. Lexicographic Multiobjective Scatter Search for the Optimization of Sequence-Dependent Se-
lective Disassembly Subject to Multiresource Constraints. IEEE Trans Cybern. 2020, 50, 3307–3317.

92. Fu, Y.; Zhou, M.; Guo, X.; Qi, L. Scheduling Dual-Objective Stochastic Hybrid Flow Shop with Deteriorating Jobs via Bi-Popu-
lation Evolutionary Algorithm. IEEE Trans. Syst. Man, Cybern. Syst. 2020, 50, 5037–5048, doi:10.1109/tsmc.2019.2907575.

93. Zhao, Z.; Liu, S.; Zhou, M.; Guo, X.; Qi, L. Decomposition Method for New Single-Machine Scheduling Problems from Steel
Production Systems. IEEE Trans. Autom. Sci. Eng. 2019, 17, 1–12, doi:10.1109/tase.2019.2953669.

94. Zhou, M.; Cao, Z.; Wang, Y. Robust fault detection and isolation based on finite-frequency H-/H∞ unknown input observers
and zonotopic threshold analysis. IEEE/CAA J. Autom. Sin. 2019, 6, 750–759.

95. Cao, Z.; Lin, C.; Zhou, M.; Huang, R. Scheduling Semiconductor Testing Facility by Using Cuckoo Search Algorithm with Re-
inforcement Learning and Surrogate Modeling. IEEE Trans. Autom. Sci. Eng. 2019, 16, 825–837.

96. Jin, G.; Deng, M. Operator-based robust nonlinear free vibration control of a flexible plate with unknown input nonlinearity.
IEEE/CAA J. Autom. Sin. 2020, 7, 442-450.

97. Wu, Y.; Deng, M. Experimental study on robust nonlinear forced vibration control for an L-shaped arm with reduced control
inputs. IEEE/ASME Trans. on Mechatronics, 2018, 22, 2186-2195.

Shichao Chen received the M.S. degree in Control Theory and Control Engineering from Beijing Forestry University, Beijing, China,
in 2013. From 2013 to now, he is a research assistant with the State Key Laboratory for Management and Control of Complex Systems,
Institute of Automation, Chinese Academy of Sciences, Beijing, China. He is currently pursuing a Ph.D. degree in Computer Tech-
nology and Application with Faculty of Information Technology from Macau University of Science and Technology, Macau, China.
His main research interests are in Edge Computing and Predictive Maintenance.

MengChu Zhou received his B.S. degree in Control Engineering from Nanjing University of Science and Technology, Nanjing, China
in 1983, M.S. degree in Automatic Control from Beijing Institute of Technology, Beijing, China in 1986, and Ph. D. degree in Computer
and Systems Engineering from Rensselaer Polytechnic Institute, Troy, NY in 1990. He joined New Jersey Institute of Technology
(NJIT), Newark, NJ in 1990, and is now Distinguished Professor in Electrical and Computer Engineering. His research interests are
in Petri nets, intelligent automation, Internet of Things, big data, web services, and intelligent transportation. He has over 900 publi-
cations including 12 books, 600+ journal papers (500+ in IEEE transactions), 28 patents and 29 book-chapters. He is the founding
Editor of IEEE Press Book Series on Systems Science and Engineering, Editor-in-Chief of IEEE/CAA Journal of Automatica Sinica,
and Associate Editor of IEEE Internet of Things Journal, IEEE Transactions on Intelligent Transportation Systems, and IEEE Trans-
actions on Systems, Man, and Cybernetics: Systems. He is a recipient of Humboldt Research Award for US Senior Scientists from
Alexander von Humboldt Foundation, Franklin V. Taylor Memorial Award and the Norbert Wiener Award from IEEE Systems, Man
and Cybernetics Society, Excellence in Research Prize and Medal from NJIT, and Edison Patent Award from the Research & Devel-
opment Council of New Jersey. He is a life member of Chinese Association for Science and Technology-USA and served as its Presi-
dent in 1999. He is a Fellow of IEEE, International Federation of Automatic Control (IFAC), American Association for the Advance-
ment of Science (AAAS), Chinese Association of Automation (CAA) and National Academy of Inventors (NAI).

