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Three-dimensional object reconstruction technology has a wide range of applications such as augment
reality, virtual reality, industrial manufacturing and intelligent robotics. Although deep learning-based
3D object reconstruction technology has developed rapidly in recent years, there remain important prob-
lems to be solved. One of them is that the resolution of reconstructed 3D models is hard to improve
because of the limitation of memory and computational efficiency when deployed on resource-limited
devices. In this paper, we propose 3D-RVP to reconstruct a complete and accurate 3D geometry from a
single depth view, where R, V and P represent Reconstruction, Voxel and Point, respectively. It is a novel
two-stage method that combines a 3D encoder-decoder network with a point prediction network. In the
first stage, we propose a 3D encoder-decoder network with residual learning to output coarse prediction
results. In the second stage, we propose an iterative subdivision algorithm to predict the labels of adap-
tively selected points. The proposed method can output high-resolution 3D models by increasing a small
number of parameters. Experiments are conducted on widely used benchmarks of a ShapeNet dataset in
which four categories of models are selected to test the performance of neural networks. Experimental
results show that our proposed method outperforms the state-of-the-arts, and achieves about 2:7%
improvement in terms of the intersection-over-union metric.

� 2020 Elsevier B.V. All rights reserved.
1. Introduction

Three-dimensional (3D) object reconstruction is an important
problem in computer vision and computer graphics. Reconstruct-
ing the complete and accurate 3D geometry of an object plays an
important role in such fields as augment reality (AR), virtual reality
(VR) [36], industrial manufacturing [31,47] and intelligent robotics
[45,55,44]. Reconstructed 3D models can be used in AR or VR sce-
nes directly. In industrial manufacturing, the popularity of 3D
printing provides the possibility for personalized customization,
in which obtaining 3D models is the first-step work. In intelligent
robotics, 3D reconstruction can be used to model a surrounding
environment, so as to achieve robot grasping and obstacle
avoidance.

Nowadays, laser scanning equipment is used to acquire high-
precision 3D models. However, the cost is unaffordable because
of the expensive equipments and burdensome manpower. Struc-
ture from motion (SfM) [25,8,57] is a classical 3D reconstruction
algorithm that estimates a 3D structure from multiple 2D images,
and it can output sparse point clouds. Based on the images and
sparse reconstruction results from SfM, dense surface reconstruc-
tion can be performed by using a multi-view stereo (MVS) algo-
rithm. Sun et al. [41] propose an effective method for 3D urban
scene reconstruction from high resolution oblique aerial images,
and it can achieve large-scale scene reconstruction with high pre-
cision. However, this kind of method is difficult to process images
that lack of texture information. In addition, the images need to
cover all the surface of 3D models, and the occlusion problem
remains to be solved. Learning has long been an important
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technique and applied in many fields [11,26,3,12,18,20,35]. In
recent years, deep learning-based 3D reconstruction algorithms
have emerged. Deep neural networks can learn the shape of 3D
models from a large number of samples, and reconstruct a com-
plete 3D shape from a single image or multi-view images.

In deep learning-based 3D reconstruction methods, a single
image, multi-view images, and depth images may act as input,
and a complete 3D shape acts as the ground truth output of a deep
neural network. Voxel is widely used to represent a generated 3D
shape. It is short for a volume element, and a geometric 3D shape
is represented as a probability distribution of binary variables on a
3D voxel grid [54]. Based on this representation, classical convolu-
tional neural network (CNN) that widely used for 2D images pro-
cessing [16,37,14] can be adopted directly. After a single image
or multi-view images are preprocessed [39], researchers usually
use a 2D CNN to extract their global features, and then use a 3D
deconvolutional neural network (DCNN) to predict the most likely
3D shape from the global features. Depth images save the distance
from the depth camera to the object, and reflect the geometry
shape of 3D model surface. When depth images act as the input
of deep neural networks [50], researchers usually convert depth
image to voxel grid, use 3D CNN to extract global features, and
then use 3D DCNN to predict the most likely 3D shape. In voxel-
based 3D reconstruction methods, because the parameters of 3D
CNN are much more than 2D CNN, 3D neural networks take up
muchmore memory than 2D neural networks. Considering compu-
tational efficiency and memory, the design of neural network is
limited and the resolution of generated 3D models is hard to
improve.

We aim to reconstruct a complete 3D shape with fine-grained
details and high resolution from a single depth view. Our work is
motivated by PointRend that outputs crisp object boundaries in
an image segmentation task [22]. Similarly, if we obtain the low-
resolution output from a neural network and interpolate it to
improve the resolution, the interior of the objects is accurate and
the boundary is coarse. In this paper, we propose 3D-RVP as a sim-
ple yet effective model to reconstruct a complete and accurate 3D
geometry from a single depth view. It is a two-stage method. First,
we convert a depth image into voxel grid, and feed it into an
encoder-decoder network. The network is used to encode voxel
grid into a latent vector, and then decode it back to the most likely
full 3D shape. The output has a resolution of 64� 64� 64, and the
value of each voxel represents the probability it being occupied.
The probability close to 0.5 indicates that the uncertainty is high.
Second, we sample points from the uniform distribution, and select
those with high uncertainty. We use an interpolation algorithm to
extract point-wise features of these selected points from features
maps of the encoder-decoder network, and use a point head to pre-
dict the probability that these points are occupied. When doing
inference, we iteratively predict the occupation of voxels in the
boundaries. By combining a 3D encoder-decoder network with a
point prediction network, we can improve the resolution to a
higher level with high precision and low cost.

This work intends to make the following contributions:

1) It proposes a 3D encoder-decoder network with residual
learning for reconstructing a complete 3D model from a sin-
gle depth view. By adding a residual structure to the encoder
and decoder, the network is easy to optimize; and

2) It proposes a point prediction network to achieve high-
resolution prediction results. The proposedmethod alleviates
the burden of memory, as well as achieves high accuracy.

In addition, this work conducts extensive experiments, and
proves that the proposed method outperforms the state-of-the-
arts and has a great generalization ability.
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The rest of the paper is organized as follows. In Section 2, we
briefly review the literature of deep learning-based 3D reconstruc-
tion methods, including voxel-based methods and point-based
methods. In Section 3, we introduce the proposed 3D-RVP consist-
ing of two components: an encoder-decoder network and a point
prediction network. In Section 4, we perform two experiments,
and the results prove the effectiveness of our proposed method.
Finally, we conclude this paper and give future work in Section 5.
2. Related work

According to different representations of generated 3D models,
3D reconstruction methods can be divided into voxel, point and
mesh-based methods. With the popularity of deep neural net-
works, voxel-based and point-based representations are widely
adopted. In this section, we review deep learning-based 3D recon-
struction methods based on these two representations.
2.1. Voxel-based methods

Voxel-based methods use voxel grid to represent the geometry
of 3D objects. Wu et al. [54] propose to uses a probability distribu-
tion of binary variables on a 3D voxel grid to represent the geomet-
ric 3D shape. Given a voxel grid converted from the depth map of
an object, shape completion is realized by using convolutional
deep belief network. 3D recurrent reconstruction neural network
(3D-R2N2) [6] reconstructs a complete 3D shape from multiple
images. In this method, 2D-CNNs are first used to extract features
from images, and then 3D long short-term memory (LSTM)
networks are used to aggregate these features to obtain a global
feature vector. Finally, 3D-DCNN is used to decode the feature
vector into voxel grid. Generative adversarial networks (GANs)
are widely used for 3D object reconstruction [50,49]. By combining
a 3D encoder-decoder and a conditional adversarial network, an
accurate 3D shape can be inferred from a single depth view.
Semantic scene completion networks are proposed based on this
representation [40,46]. Because of the large cost of obtaining
large-scale supervised data, many methods of weakly supervised
learning and unsupervised learning have been proposed
[32,48,56,23].

Because of the limitation of their computational efficiency and
memory, the resolution of 3D models is hard to improve. To
achieve high-resolution results, 3D-EPN [9] correlates coarse pre-
diction results with 3D geometry from a shape database and uses
a patch-based 3D shape synthesis method. Han et al. [13] propose
a local geometry refinement network for 3D shape completion.
Considering the sparsity of 3D data, Riegler et al. propose OctNet
[33]. It uses a hybrid structure of grid and unbalanced octrees to
represent 3D models. This method can focus memory allocation
and computation to the relevant dense regions, and can achieve
high resolution. Based on this representation, a hierarchical surface
prediction (HSP) framework that hierarchically predicts small
blocks of voxels from coarse to fine is proposed [2]. Tatarchenko
et al. [42] propose octree generating networks (OGN), which uses
an octree representation to generate volumetric 3D outputs. How-
ever, the octree-based methods need a complex data structure to
implement, which limits its development.

In voxel-based methods, CNN is widely used. Recently, some
advancement of classical CNN has been shown. He et al. [16] pro-
pose ResNet to make deeper neural networks easier to optimize by
adding an identity function. DenseNet [17] makes further improve-
ment by introducing direct connections from any layer to all sub-
sequent layers to further improve the information flow among
layers. Chen et al. propose NeuralODE [5], which combines deep
learning with an ODE solver. Compared with classical CNN, it has
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advantages in memory efficiency, adaptive computation, scalable
and invertible normalizing flows and continuous time-series
models.

2.2. Point-based methods

Point-based methods generate point cloud directly. Point cloud
is continuous in space; as a result, there is less information miss-
ing. Moreover, point cloud only saves the information of 3D object
surface, which reduces the data redundancy. PointNet [29] is a
pioneering study to use neural networks to process point cloud
directly. It uses several shared multi-layer perceptrons (MLPs) to
extract point-wise features, and then uses a symmetric function
to aggregate all points’ features to obtain global features. However,
because each point learns the features independently, the PointNet
network cannot capture neighborhood information of points.
PointNet++ [30] extracts local features in multiple scales, and
obtains deep features by using a multi-layer network structure.
Recently, many neural networks based on point cloud have been
designed [53,24,38], and used for 3D shape classification, 3D object
detection and 3D segmentation [27,28,43].

Achlioptas et al. [1] propose the first generative model for 3D
point clouds. Their approach consists of an AutoEncoder, which
has an encoder following the design of PointNet, and a decoder that
uses three fully connected layers to generate point cloud. Fan et al.
[10] propose a point set generation network for 3D object recon-
struction from a single image. It uses a fully-connected branch
and a deconvolution branch to predict the point cloud. FoldingNet
[51] introduces a folding-based decoder architecture. PCN [52]
adopts an encoder-decoder network for 3D point cloud completion.
The decoder combines the advantages of the fully-connected deco-
der and the folding-based decoder. PFNet [19] uses a multi-
resolution encoder (MRE) and a point pyramid decoder (PPD) to
realize point cloud completion. It only outputs the missing part
of the point cloud instead of the whole object.
3. Proposed methodology

In this section, we introduce our proposed method for 3D recon-
struction. In Fig. 1, we show the complete architecture of 3D-RVP.
We describe its encoder-decoder network, and then its point pre-
diction network.

3.1. Encoder-decoder network

We propose a 3D encoder-decoder network with residual learn-
ing as backbone. Voxel grid is used to represent a 3D shape, and it
is defined as a probability distribution of binary variables [54]. By
scanning a 3D model from a view angle, we can obtain a depth
Fig. 1. Overview archit
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image and its corresponding complete 3D shape. We convert depth
images into voxel grid, and feed it to a neural network. At the out-
put of the neural network, we can obtain coarse prediction results.
The input voxel grid and output coarse prediction results all have
the resolution of 64� 64� 64. As shown in Fig. 1, the encoder-
decoder network consists of an encoder and a decoder. The encoder
extracts features of voxel grid to get latent representation and the
decoder predicts the most likely full 3D shape. The network adopts
the design of U-Net [34,7], which concatenates the encoder and
decoder to obtain a more accurate 3D shape.

The detailed architecture of the encoder-decoder network is
shown in Fig. 2. The left part represents an encoder, and the right
part a decoder. Each block represents one layer of neural networks.
For the items in each block, the operation is in the left, and the out-
put shape of feature maps after the operation is in the right. Taking
‘‘3� 3� 3, conv, 64 64� 64� 64� 64” as an example, the kernel
size of the 3D convolutional layer is ‘‘3� 3� 3”, ‘‘conv” represents
convolutional operation, and the number of output channels is
‘‘64”. After convolution, the output shape is ‘‘64� 64� 64� 64”.

The encoder has 18 layers. Input voxel grid is with the shape of
‘‘64� 64� 64� 1”, the first layer converts the number of channels
to 64 by a convolution operation. The next 16 layers are a residual
network with a total of four blocks, and each of blocks is marked in
a different color. In each block, the number of channels is doubled,
and the resolution of feature maps reduce by half to increase the
receptive field. The last layer is a fully-connected layer with
2,000 nodes. The decoder also has 18 layers. The first fully-
connected layer converts a latent vector of 2,000 dimensions to
that of 32,768 dimensions. The next 16 layers are a residual net-
work. A deconvolution operation is used to increase the resolution
of feature maps. The last layer predicts the complete 3D shape by a
convolution operation. A sigmoid function is used as activation in
the last layer, while a rectified linear unit (ReLU) function is
adopted in remaining layers. The encoder and the decoder are con-
nected by a ‘‘concat” operation. The ‘‘concat” is short for concate-
nation, and the number of output feature maps’ channels is the
sum of those of two inputs after the operation. In the encoder,
the feature maps have a small receptive field. As a result, it con-
tains more local information. While in the decoder, the feature
maps have a large receptive field, and it contains more global infor-
mation. By concatenating the encoder and decoder, more fine-
grained features can be added to the output.

We add a residual structure to the encoder-decoder network.
When the neural networks deepen, more deep features can be
extracted and the accuracy can be improved. However, deeper neu-
ral networks are more difficult to optimize, known as a degrada-
tion problem. Following the method in [16], we adopt residual
learning to each block of the encoder and decoder to make the net-
work easy to optimize. As shown in Fig. 2, each residual block has
two short cut connections. The output is calculated as
ecture of 3D-RVP.



Fig. 2. Detailed architecture of the encoder-decoder network.

M. Zhao, G. Xiong, M. Zhou et al. Neurocomputing 430 (2021) 94–103
y ¼ F x; Wif gð Þ þWsx; ð1Þ

where y is the output of a residual structure. x is the input of the
residual structure. F x; Wif gð Þ represents multiple convolution lay-
ers, and Wi represents its parameters. Ws is a linear projection to
match the dimensions.
3.2. Point prediction network

In the interior of a generated 3D model, there is nearly no differ-
ence between the values of voxels and those of their neighbours.
While at the boundary, the values of adjacent voxels vary greatly.
Given the coarse prediction results, if we obtain higher resolution
by interpolation directly, the interior of the 3D model is accurate
and the boundary is coarse. A point prediction network selects
points from the boundaries of coarse 3D models, and predicts the
labels of these selected points. By combining coarse prediction
results with the labels of these selected points, a more accurate
3D model with high resolution can be obtained. The point predic-
tion network accepts feature maps f 2 RH�W�L�C from the encoder-
decoder network, and outputs the prediction of probability that

voxels are occupied p 2 RH0�W 0�L0 . In this experiment, the H = W =
L = 64, and the H0 =W 0 = L0 = 256. The point prediction network con-
sists of three parts: a point selection strategy, a point-wise feature
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extraction module and a point head. The detailed introduction is
given next.

The point selection strategy aims at selecting points with high
uncertainty. In coarse prediction results, the value of each voxel
represents the probability it is occupied. The probability of points
is closer to 0.5, their uncertainty is higher. Thus, the uncertainty
can be calculated as

V
�
¼ 1� jVp � 0:5j; ð2Þ

where j � j represents an absolute value. Vp is the prediction proba-

bility that a voxel is occupied, and V
�
represents its uncertainty. We

use a different point selection strategy in training and inference.
During inference, inspired by adaptive subdivision in computer
graphics, we adopt an iterative method. Firstly, we interpolate the
coarse prediction results to double the resolution. Then, we set a
threshold c, and select voxels which uncertainty larger than c. In
the experiment, we set c to be 0.9. Finally, we calculate the center
coordinates of selected voxels in the normalized coordinate system.
These center coordinates are saved as selected points. After predict-
ing the labels of these points, we repeat the above operation until
the resolution meets the requirements.

This iterative method is not suitable for optimization using a
back-propagation algorithm. Therefore, a non-iterative strategy
based on random sampling is adopted during training. Our purpose



M. Zhao, G. Xiong, M. Zhou et al. Neurocomputing 430 (2021) 94–103
is to sample M points with large uncertainty. Firstly, in order to
cover the entire 3D shape, we sample kM candidate points
k > 1ð Þ from a uniform distribution. Then, we calculate the uncer-
tainties of these sampled points by trilinearly interpolating the
coarse prediction values, and select bM points (b 2 0;1ð �) with lar-
gest uncertainties. Finally, we sample the remaining 1� bð ÞM
points from a uniform distribution. In the experiment, we set M
to be 6400. The larger the value of k, the selection points is more
inclined to the region with greater uncertainty. We set k to be
50, and b to be 0.75.

The point-wise feature extraction module extracts features for
selected points from input feature maps. It combines two kinds
of features: fine-grained and coarse features. The former contain
more local information, and can resolve details. The latter contain
more global information. Because a point is a real-value 3D coordi-
nate, we compute a feature vector by trilinear interpolation on the
feature maps. In the experiment, we extract the former from the
output of the first layer and first residual module in the encoder,
each of which has 64 channels. We extract the latter from the out-
put of last two residual modules in decoder, which have 64 and 20
channels, respectively. The concatenation of these two features
with 212 channels results in the point-wise features.

Point head is responsible for predicting labels of selected points
given their point-wise features. In the experiment, an MLP is used.
It shares parameters across different points. The MLP network has
four layers. Its first layer has 212 nodes, and the last one has 1
node. Two hidden layers have 100, 50 nodes respectively. ReLU is
used as an activation function in the network, except that sigmoid
is used in the last layer to limit the output to the range (0, 1).

3.3. Loss function

The loss function consists of two parts: an encoder-decoder loss
and a point loss. For the former, we use an improved cross-entropy
loss function, aiming at solving the problem of unbalanced cate-
gory labels in voxel grid. It adds a penalty parameter to punish
more the situation that voxel with the value of 1 being recognized
as 0. It is defined as

l1 ¼ � 1
N

XN

i¼1

ay�i log yi þ 1� að Þ 1� y�i
� �

log 1� yið Þ� �
; ð3Þ

where l1 is the loss for voxel grid. i is the index of a voxel, and N is
the number of voxels in the voxel grid. yi is the prediction probabil-
ity that the ith voxel is occupied, and y�i is the corresponding ground
truth. The value of yi falls into 0;1ð Þ, and the value of y�i is 0 or 1. a is
a penalty parameter. If a is lager, more voxels are predicted to be
occupied with greater probability. If it is too small, the probability
of most voxels being occupied is lower than 0.5. We search for its
proper value in the experiment and set it to be 0.85. For each voxel,
we calculate a loss, and the loss for voxel grid is the mean of all
voxels.

Point loss is only calculated on the selected M points. We use a
cross-entropy loss function

l2 ¼ � 1
M

XM

i¼1

a~zi log zi þ 1� að Þ 1� ~zið Þ log 1� zið Þ½ �; ð4Þ

where i is the index of selected points. zi is the prediction probabil-
ity that the ith point is occupied, and ~zi is the corresponding esti-
mated label. Note that ~zi can be obtained by the nearest
interpolation from the ground truth which has a resolution of
256� 256� 256. For each point, we calculate a loss. The loss for
all points in voxel grid is the mean of all points. The loss for the
entire model is

loss ¼ l1 þ kl2; ð5Þ
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where parameter k is used to balance l1 and l2. It is set to be 0.1 in
the experiment. Both the encoder-decoder network and the point
prediction network are jointly trained. The parameters of the neural
networks are updated dynamically by using a back-propagation
algorithm.
4. Experiments

In this section, we introduce the acquisition and preprocessing
of a dataset. Then we show the implementation details of the net-
work and the metrics that evaluate the quality of 3D reconstruc-
tion. Finally, we show the results of our proposed method.
4.1. Dataset

The training of a neural network needs a single depth view and
its corresponding complete 3D model. We use the dataset provided
in [49], which is generated from the ShapeNet database [4]. Shape-
Net is a richly-annotated, large-scale 3D CAD models repository. It
has more than 3,000,000 models, and 220,000 models of which are
classified into 3,135 categories.

The training dataset is generated from four categories: bench,
chair, couch, and table. For each category, 213 CAD models are ran-
domly selected from ShapeNet. For each model, 5 different viewing
angles are sampled from uniform distribution for each of roll, pitch
and yaw space, and total 125 different viewing angles are obtained.
Blender, the open source software, is used for rendering and vox-
elization from the 125 viewing angles to obtain 2.5D depth images
and the corresponding voxel grid. There are 26,625 training pairs
for each 3D object category.

The testing dataset is generated from four same categories as
the training dataset. For each category, 37 CAD models are ran-
domly selected from ShapeNet, and two groups of testing samples
are generated. One group is scanned from 125 different viewing
angles, which is the same as the training dataset. It is thus denoted
as a same viewing angles testing dataset, called SV for short. Each
category has 4,625 pairs of samples. The other group is scanned
from 216 different viewing angles, which are sampled from 6 dif-
ferent viewing angles for each of roll, pitch and yaw space. This
group of the testing dataset is denoted as cross viewing angles test-
ing dataset, called CV for short. Each category has 7,992 pairs of
samples.
4.2. Experimental setup

The experiment is conducted on a workstation with an Intel
Xeon E5-2630v4 CPU and a Titan V Graphics Processing Unit. We
use the Pytorch framework and Adam optimizer [21]. We do two
experiments to verify the performance of the proposed neural net-
works. The first experiment is per-category training, and the sec-
ond one is multi-category training. The initial learning rate is set
to be 0.001. For per-category training, the learning rate is multi-
plied by 0.7 in the 16th, 24th, 32th, and 40th epochs, respectively.
For multi-category training, the learning rate is multiplied by 0.7 in
the 4th, 6th, 8th, and 10th epochs, respectively. Batch back propa-
gation algorithm is used in the experiment, The batch size is set to
be 6.
4.3. Metrics

We use two metrics to evaluate the quality of 3D reconstruc-
tion. The first metric is intersection-over-union (IoU). It is widely
used in object detection. For 3D reconstruction, it is defined as
the size of the intersection divided by the size of the union of the
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prediction model and the ground truth. For a single voxel grid, it
can be calculated as

IoU ¼
P

i I yi > hð Þ � I y�i
� �� �

P
i I I yi > hð Þ þ I y�i

� �� �� � ; ð6Þ

where I xð Þ is a function that equals 1 if x is greater than or equal to
1, and otherwise 0. i is the index of a voxel, yi is the prediction value
of the ith voxel, and y�i is the corresponding ground truth. h is the
threshold. In the experiment, it is set to be 0.5. If the prediction
value is greater than 0.5, the output value is set to be 1, and other-
wise 0. The value of IoU ranges from 0 to 1. The larger the value, the
better the 3D reconstruction quality.

The second metric is standard cross-entropy (CE) loss. It is also
used as loss function for training the neural networks in this exper-
iment. For a single voxel grid, it can be calculated as

CE ¼ � 1
N

X
i

y�i log yi þ 1� y�i
� �

log 1� yið Þ� �
; ð7Þ

where the meanings of i; yi and y�i are the same as those in IoU. N
represents the number of voxels in a voxel grid. In this experiment,
the resolution is 256� 256� 256, and thus N = 2563.
4.4. Competing methods

We compare our proposed 3D-RVP with four other deep learn-
ing based methods to verify its effectiveness. The results of the first
four methods are from [49]. For fair comparison, the output models
of competing methods are interpolated to achieve a resolution of
256� 256� 256.

(1) 3D-EPN [9] combines volumetric deep neural networks with
3D shape synthesis to complete partial 3D shapes. A low-
resolution distance field is first predicted, and then high res-
olution details are generated from this coarse prediction.
Following the comparison method of [49], we only focus
on the performance of their neural network.

(2) Varley et al. [44] propose to complete 3D shape for robotic
grasp (called 3D-RG for short). 3D convolutional layers are
used to map a 2.5D shape to a latent vector, and fully-
connected layers are used to obtain the complete 3D shape.
The resolution of output is 40� 40� 40.

(3) Han et al. [13] propose a new deep learning architecture for
high-resolution shape completion (called 3D-HSC for short).
This architecture first uses a global structure inference net-
work to infer a global structure, and then uses a local geom-
etry refinement network to produce a high-resolution,
complete surface. The resolution of output is
256� 256� 256.

(4) 3D-RecGAN++ [49] uses generative adversarial networks to
reconstruct a complete 3D structure of a given object from
a single arbitrary depth view. The generator adopts an
encoder-decoder structure, and learns a correlation between
partial and complete 3D structures. The discriminator aims
to distinguish whether the estimated 3D shapes are plausi-
ble or not, which enables the output of 3D-RecGAN++ to
be more robust and confident.

(5) We propose a 3D encoder-decoder network with residual
learning. The encoder-decoder network consists of an enco-
der and a decoder, and it is the backbone of our proposed
3D-RVP. In the experiment, we compare the results to verify
the effectiveness of our encoder-decoder network and point
prediction network.
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4.5. Results

In the first experiment, we train the neural networks on each
category of a training dataset, respectively, including bench, chair,
couch and table. All samples of the training dataset are scanned
from 125 different viewing angles. In order to verify the generaliza-
tion ability of neural networks, we select two groups of the testing
dataset. The first group is SV, and Table 1 shows the corresponding
IoU and CE loss results. In the following tables, we denote an
encoder-decoder network as EDnet for short. It can be observed
that our proposed 3D-RVP outperforms competing methods in all
categories for IoU and 3 categories for CE loss. Compared with
the state-of-the-art methods, 3D-RVP improves IoU by about
2:3% on average and reduces CE loss by about 1:7% on average.
It proves the effectiveness of our proposed method.

Our purpose is to reconstruct a complete 3D shape from a single
depth view scanned from any viewing angles. In the second group,
we test the neural networks on CV. Different from the training
dataset, all samples of the testing dataset are scanned from 216 dif-
ferent viewing angles. Table 2 shows the IoU and CE loss results. It
can be observed that 3D-RVP outperforms 3D-RecGAN++ in 3 cat-
egories for IoU and 3 categories for CE loss. It also outperforms the
encoder-decoder network in all categories for both IoU and CE loss.
Specifically, it improves IoU by about 3:6% on average over 3D-
RecGAN++, and improves it by about 2:3% on average over the
encoder-decoder network. It proves that both our proposed
encoder-decoder network and point prediction network have great
generalization ability.

In the second experiment, we train the neural networks on a
multi-category training dataset, including bench, chair, couch and
table. All samples of the training dataset are scanned from 125 dif-
ferent viewing angles. Two groups of the testing dataset are used to
test the performance of the neural networks.

(1) We test the multi-category IoU and CE loss on SV. The neural
networks are tested on each category of bench, chair, couch and
table respectively. The results of IoU and CE are shown in Table 3.
It can be observed that the performance of the encoder-decoder
network is comparable with that of 3D-RecGAN++. Compared with
3D-RecGAN++, 3D-RVP improves IoU by about 2:1% on average
and reduces CE loss by about 4:3% on average.

Fig. 3 shows the visualizations of multi-category reconstruction
on SV. From top to bottom, the figures show depth image, coarse
prediction, fine-grained prediction and ground truth. Coarse pre-
diction is the result of trilinear interpolation of the output of the
encoder-decoder network to resolution 256� 256� 256. Fine-
grained prediction is the output of 3D-RVP. We can see that the
encoder-decoder network can learn a complete 3D shape, while
the boundaries of the generated models are coarse. The point pre-
diction network can classify voxels over-smoothed by interpola-
tion correctly, and as a result, the output of 3D-RVP has fine-
grained details at the boundaries.

(2) We test the multi-category IoU and CE loss on CV. The neural
networks are tested on each category of bench, chair, couch and
table respectively. The results of IoU and CE are shown in Table 4.
Compared with 3D-RecGAN++, 3D-RVP improves IoU by about
2:8% and reduces CE loss by about 5:3% on average. It further ver-
ifies the performance of our proposed method. Note that the
obtained IoU for the couch category is higher than that obtained
by per-category training. This proves that the features learned by
the neural networks from other categories can supplement the fea-
tures of the couch category effectively.

Fig. 4 shows the visualizations of multi-category reconstruction
on CV. From top to bottom, the figures show depth image, coarse
prediction, fine-grained prediction and ground truth. Similarly,
3D-RVP can output fine-grained results than the encoder-decoder



Table 1
Per-Category IoU and CE loss with same viewing angles.

Methods IoU CE

Bench Chair Couch Table Bench Chair Couch Table

3D-EPN[9] 0.423 0.488 0.631 0.508 0.087 0.105 0.144 0.101
3D-RG[44] 0.227 0.317 0.544 0.233 0.111 0.157 0.195 0.191
3D-HSC [13] 0.441 0.426 0.446 0.499 0.045 0.081 0.165 0.058
3D-RecGAN++ [49] 0.580 0.647 0.753 0.679 0.034 0.060 0.066 0.040
EDnet (ours) 0.577 0.654 0.750 0.663 0.033 0.062 0.069 0.042
3D-RVP (ours) 0.598 0.668 0.760 0.696 0.032 0.060 0.067 0.039

Table 2
Per-Category IoU and CE loss with cross viewing angles.

Methods IoU CE

Bench Chair Couch Table Bench Chair Couch Table

3D-EPN[9] 0.408 0.446 0.572 0.482 0.086 0.112 0.163 0.103
3D-RG[44] 0.185 0.278 0.475 0.187 0.108 0.171 0.210 0.186
3D-HSC [13] 0.439 0.426 0.455 0.482 0.047 0.090 0.163 0.060
3D-RecGAN++ [49] 0.531 0.594 0.646 0.618 0.041 0.074 0.111 0.053
EDnet (ours) 0.537 0.611 0.639 0.631 0.038 0.076 0.140 0.049
3D-RVP (ours) 0.554 0.621 0.643 0.656 0.037 0.074 0.138 0.047

Table 3
Multi-Category IoU and CE loss with same viewing angles.

Methods IoU CE

Bench Chair Couch Table Bench Chair Couch Table

3D-EPN[9] 0.428 0.484 0.634 0.506 0.087 0.107 0.138 0.102
3D-RG[44] 0.234 0.317 0.543 0.236 0.103 0.132 0.197 0.170
3D-HSC [13] 0.425 0.454 0.440 0.470 0.045 0.087 0.172 0.065
3D-RecGAN++ [49] 0.581 0.640 0.745 0.667 0.030 0.051 0.063 0.039
EDnet (ours) 0.580 0.642 0.745 0.663 0.030 0.052 0.064 0.038
3D-RVP (ours) 0.596 0.655 0.750 0.687 0.029 0.050 0.062 0.035

Fig. 3. Qualitative results of multiple category reconstruction on testing datasets with same viewing angles. From top to bottom, the figures show depth image, coarse
prediction, fine-grained prediction and ground truth.

Table 4
Multi-Category IoU and CE loss with cross viewing angles.

Methods IoU CE

Bench Chair Couch Table Bench Chair Couch Table

3D-EPN[9] 0.415 0.452 0.531 0.477 0.091 0.115 0.147 0.111
3D-RG[44] 0.201 0.283 0.480 0.199 0.105 0.143 0.207 0.174
3D-HSC [13] 0.429 0.444 0.447 0.474 0.045 0.089 0.172 0.063
3D-RecGAN++ [49] 0.540 0.594 0.643 0.621 0.038 0.061 0.091 0.048
EDnet (ours) 0.532 0.606 0.657 0.625 0.037 0.060 0.095 0.045
3D-RVP (ours) 0.545 0.617 0.661 0.643 0.035 0.058 0.093 0.043
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Fig. 4. Qualitative results of multiple category reconstruction on testing datasets with cross viewing angles. From top to bottom, the figures show depth image, coarse
prediction, fine-grained prediction and ground truth.
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network. It proves that our proposed method has great generaliza-
tion ability.

4.6. Computational complexity analysis

Compared with 3D-RecGAN++, 3D-RVP uses about 8.3% more
parameters. Specifically, the total number of parameters for 3D-
RecGAN++ is 167.1 million. That for 3D-RVP is 181.0 million,
among which the parameters of point prediction network are
0.02 million. The reason is that the encoder-decoder network is
deepened to improve the accuracy and we add a point prediction
network to 3D-RVP. Time complexity is critical for evaluating the
performance of a method [15]. The time complexity of 3D-RVP is

O g1

Pl1
i¼1A

3
i � B3

i � Ci�1 � Ci þ g2

Pl2
i¼1Di�1 � Di þ g3M

Pl3
i¼1Ei�1 � Ei

� �
,

where l1 represents the number of convolutional layers, Ai is the
size of the output feature maps of the ith convolutional layer, Bi

is the size of a convolution kernel, and Ci is the number of output
channels of this layer. l2 is the number of fully-connected layers in
an encoder-decoder network, and Di is the number of output nodes
of the ith fully-connected layer in that network.M is the number of
sampled points in a voxel grid, l3 is the depth of the MLP network
in a point prediction network, and Ei is the number of output nodes
of the ith fully-connected layer in that network. We add constants
g1; g2 and g3 to denote the complexity of back propagation and
number of iterations. In the experiment, l1 ¼ 34; l2 ¼ 2 and
l3 ¼ 3. The advantages of 3D-RVP lie in two aspects: 1) it outputs
a finer boundary than the encoder-decoder network by increasing
8.3% more parameters; and 2) it allows one to reconstruct com-
plete 3D models at any desired resolution, while keeping the
model memory footprint constant.
5. Conclusion

In this paper, we propose a novel method to reconstruct a com-
plete 3D shape from a single depth view. We first use a 3D
encoder-decoder network with residual learning to obtain coarse
prediction results. By adding residual learning, our proposed net-
work becomes easy to optimize. Given the coarse prediction
results, we use a point prediction network to select points with
high uncertainty, and then use a shared MLP network to predict
the labels of these points. By combining coarse prediction results
with the labels of these selected points, we obtain fine-grained
results with much higher resolution. The proposed method can
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reach higher resolution by increasing a small portion of parame-
ters. Experimental results show that our proposed method can out-
perform the state-of-the-arts.

IoU can be decreased if the depth image provides less informa-
tion about the complete 3D shape, and the depth image can also be
affected by illumination. As future work, we plan to consider the
extreme situations, for example, when object surface is perpendic-
ular to the camera, and objects are under different illumination.
We plan to design a more powerful model for 3D object recon-
struction. DenseNet may be a good alternative. We plan to explore
ways to combine NeuralODE with our method. Also, because a sin-
gle depth image contains very little information about a 3D shape,
we attempt to use multiple images from different angles to recon-
struct a complete 3D shape, and extend our proposed method to
more experimental datasets. Because point cloud is continuous in
3D space and contains less redundant information, we can also
explore point-based 3D reconstruction methods.
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