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This paper proposes a neural network-based model predictive control (MPC) method for robotic
manipulators with model uncertainty and input constraints. In the presented NN-based MPC structure,
two groups of radial basis function neural networks (RBFNNs) are considered for online model
estimation and effective optimization. The first group of RBFNNs is introduced as a predictive model for
the robotic system with online learning strategies for handling the system uncertainty and improving
the model estimation accuracy. The second one is developed for solving the optimization problem. By
taking into account an actor-critic scheme with different weights and the same activation function,
adaptive learning strategies are established for balancing between optimal tracking performance and
predictive system stability. In addition, aiming at guaranteeing the input constraints, a nonquadratic
cost function is adopted for the NN-based MPC. The ultimately uniformly boundedness (UUB) of all
variables is verified through the Lyapunov approach. Simulation studies are conducted to explain the
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effectiveness of the proposed method.
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1. Introduction

In recent years, the robotic control design has been getting
sustained attention from both industry and academia. Many con-
trol theories, such as neural network control, fuzzy control, slid-
ing mode control and other control methods [1-7] have been
successfully applied into robotic systems and related systems,
independently or in combination. With the continuous expansion
of robotic applications during the past decades, the optimal con-
trol performance has been receiving more and more attention in
addition to system stability. Furthermore, the model uncertainty
and input constraints are also challenges for the control design
of an actual robotic system. It is therefore crucial to design an
effective control strategy for robotic manipulators, which can bal-
ance between optimal control performance and system stability,
compensate for the effect of model uncertainty, and satisfy the
input constraints.

Model predictive control (MPC), also named receding hori-
zon control, is a powerful optimal control strategy. MPC has
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several attractive characteristics, for example, it deals with mul-
tivariable and constrained control problems [8]. Until now it has
been successfully applied to the process industry [9], power elec-
tronics industry [10], smart energy systems [11], motors control
for electric vehicles [12] and robotic systems, especially mobile
robots [13-16].

Two key issues need to be studied for solving robotic control
problems with MPC. One lies in realizing robustness against
model uncertainties, the other lies in effective optimization based
on the predictive model. For the first but challenging issue, many
significant results have been investigated centered on nomi-
nal systems with disturbance. The nominal dynamics are uti-
lized as the predictive model for MPC. For known or partially
known systems, the known dynamics are adopted as the nominal
model [ 15-20]. The disturbance is handled by robust MPC [16,17],
tube MPC [18,19], min-max MPC [20], etc., or is compensated
by an extra robust controller [21]. In [21], a linear MPC with
an integral sliding mode (ISM) controller is studied for robotic
manipulators. Partially known robotic dynamics are used as a
nominal model, feedback linearization is used to transform the
nonlinear problem into a linear form, and the ISM controller is
used to compensate disturbance and unknown dynamics. In [22],
a path-following MPC strategy based on known dynamics is
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proposed for an industrial robot. However, these methods require
a clear nominal model, which may not be suitable for a robot with
completely unknown dynamics. For unknown systems, neural
network (NN) model [23-29], fuzzy model [30], Gaussian process
model [31], etc. are utilized as nominal dynamics after appropri-
ate off-line training. In [30], MPC based on a Takagi-Sugeno (T-S)
fuzzy model is adopted for 2-DOF robotic arms. In [31], a Gaussian
process MPC scheme is developed for the robotic arm, in which a
Gaussian process based on off-line data is adopted as a nominal
model, and an extended Kalman filter-based observer is used to
compensate residual disturbance. However, these methods do not
think about model uncertainty online.

Some researchers also focus on combining adaptive NN with
MPC. Wang et al. [9] propose a double-layers architecture con-
troller, in which adaptive NN is used for the lower layer to
approximate the unknown dynamics. But the two-layer-structure
MPC is appropriate for the industrial process rather than a robotic
manipulator. Wu et al. [32] develop an adaptive MPC for motor
system, a two-layer recursive NN with extended-Kalman-filter-
based parameter learning is used for speed predictor. But the
stability analysis is not been considered. Chen et al. [33] present
a tube-based MPC for nonholonomic mobile robots. An adaptive
NN controller with disturbance observer is used for unknown dy-
namics, independently of MPC strategy for kinematic constraints,
which is unsuitable for robotic manipulators. Farrokhi et al. [34]
introduce an adaptive nonlinear MPC for hybrid position/velocity
control of robot manipulators. But off-line training should be
considered to avoid irrational control signals at the beginning of
an operation. Therefore, for the first key issue, the MPC strategy
for robotic manipulators needs to be further developed subject to
handle the model uncertainty online.

For the second key issue, several approaches are proposed
for the optimization of MPC. In [15,21,35], linearization models
are developed for nonlinear systems, efficient methods such as
linear quadratic regulator (LQR) and linear matrix inequalities
(LMI) are adopted. In [16,17], the event-trigger mechanism is
utilized with MPC for reducing the computational burden of MPC.
In [36,37], intelligent algorithms such as genetic algorithm and
particle swarm optimization are used for solving the optimization
problem of MPC. In [38,39], NN solvers based on neurodynamic
optimization are proposed for solving MPC. In [23,27], ADP-based
methods are studied, where critic and actor NN are constructed
for estimating cost function and input signal, respectively. How-
ever, there is little research located in effective optimization
based on the online estimating predictive model.

According to previous discussions, designing a suitable MPC
strategy for robotic manipulators, which estimates the unknown
dynamics online and balances between the optimal control per-
formance and system stability, is still an unsolved problem. The
difficulties lie in estimating the unknown model online, solving
the optimization problem based on the online-updating predic-
tive model and ensuring the stability of the whole system under
above conditions. In this paper, we develop an NN-based MPC
strategy for robotic manipulators with unknown plant model
and input constraints. The main contributions of this paper are
summarized as follows:

(1) An NN-based MPC structure containing two groups of NNs
is proposed for robotic manipulators. The first group of NNs
used as the predictive model for MPC is established to estimate
unknown robotic dynamics. Online updating laws of NNs’ weights
are proposed without requiring knowledge of the system. Fur-
thermore, it is proved that the estimation error is UUB according
to the Lyapunov theorem.

(2) The second group of NNs, which adopts the actor-critic
scheme with the same activation function but different weights,
is established for solving the optimization problem of MPC. An
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adaptive learning approach based on the Hamiltonian function is
built to guarantee the optimal control performance and predictive
system stability. Meanwhile, the input constraints are guaranteed
by employing a suitable integrand function of input signals in the
cost function of MPC.

(3) The stability of the closed-loop system is proved using the
Lyapunov theorem and mathematical induction (MI). All variables
remain UUB under the developed control strategy.

The rest of this paper is organized as follows. In Section 2,
some preliminaries used later and robotic system dynamics are
introduced. Section 3 illustrates the main results of this paper,
concluding the establishing of NN-based MPC strategy and sta-
bility analysis. The performance of the proposed control strategy
is shown in Section 4 by co-simulation based on CoppeliaSim (V-
REP) and Matlab, and conclusions of this paper are given in the
last section.

2. Preliminaries and problem formulation
2.1. Preliminaries

Lemma 1 ([40] First Mean Value Theorem for Integrals). Let f (x) is
continuous on [a, b], g (x) is integrable and sign-invariant on [a, b].
Then there exists ¢ € [a, b], such that

b b
/f(X)g(X)dX=f(8)/ g (x) dx (1)

Lemma 2. Let f (x) is continuous on [a, b], then we have

N-1

b
/f(x)dx=

1
D5 00+ ®ien)) Gigr — %) + ¢ 2)
i=1
where x; = a,xy = b, ¢ is the integral error which is bounded,
i.e. there exists ¢o > 0, such that ||<| < <o.

Lemma 3 ([41]). Let A € R"*" be a semi-definite symmetric matrix,
then all the eigenvalues of A are real and nonnegative. Vx € R",
there exists A,||IX||> < xTAx < Aal|x||%, where A, > 0, A4 are the
minimum and maximum eigenvalue of A, respectively, ||.|| represents
the standard Euclidean norm.

Lemma 4 ([5,42]). Let Lyapunov function V (x (t)) be a continuous
and positive definite function, with bounded initial value V (x (0)).
If the inequality V (x) < —c1V (x) + ¢, holds, where ¢; and c,
are positive constants, then V (x (t)) is bounded. Furthermore, the
solution x (t) of the underlying system is uniformly bounded.

2.2. Problem formulation

Consider an n-link robotic manipulator formulated by the
following dynamics [2,21,41]:

M@G+C@.9q+G@ =t (3)

where ¢, g and § € R" represent the joint position, velocity and
acceleration vectors, respectively. M (qg) € R"™*" denotes a sym-
metric positive definite inertia matrix, C (q, q) ¢ € R" represents
the Centripetal and Coriolis force, G(q) € 9R" represents the
gravitational force, T € R" represents the input torque. Generally
speaking, the input torque of the robot is bounded, which must
be considered while designing the control strategy. In this paper,
the input constraints are expressed by

[t (@) <A, i=1,2,...,n (4)

Property 1 ([2]). The inertia matrix M (q) is symmetric and positive
definite.
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The control objective is to design a suitable control strategy
that satisfies the constraints (4), such that the system variable g
can track a given desired trajectory qq (t) = [qq1 (t) , a2 (t) ,
gan ()17, while trading off between the tracking performance and
the stability of the closed-loop system.

Assumption 1. The desired trajectory g4 is bounded, smooth and
twice differentiable. Therefore, there exist d > 0, d; > 0, d; > 0,
such that ||qqll < d, 1gall < q1, [Gull < da.

3. Main results

Firstly, we define the tracking error as

Z1=4q4d — ¢
= —q=2+Kz

(5)

where oy = Kyz; + g is an auxiliary variable.
Considering (3) and (5), the tracking error dynamics can be
expressed as

z1=—-Kiz1 + 2o

6
L=f(")+g@.q)T 6)

where z [2,2]]" represents the tracking error, z*
[21.23.4}.45. ag]T represents the augmented error, g (z1, qq)
~M~'(@.f(z") =M (@[C Q. G+ GC @] +6n.

Define the sequence {t;},k = 0, 1,..... as the solving time
for MPC, in which t, = 0. The solving interval is expressed as
At = ty+1 — ti. Then the basic MPC strategy, for s € [ty, ty + T),
is introduced as

ty+T
min J (z) :/ Q@+ U()ds+ V¥ (z(ty+T)) (7)
T t
Zi(telty) =2z (), j=1,2
21(8) = —Kiz1 + 2,
. 8
st ) =f(z")+g@.q)t (8)

|l <Ai=1,2,...,n

where T is the prediction horizon, Q (z) and U (t) are positive-
definite functions about tracking error z and input 7, respectively.
The optimization problem (7) will be solved at time instant t;
under current initial stations z; (t |t,) ,j = 1, 2. The optimal or
suboptimal torque t* (t) over t € [t, ty + T) is obtained, and the
first portion of 7* (t) is implemented to the robotic system. Then
the optimization problem over t € [ty 1, tyr1 + T) is revisited at
time instant t,,1 under new initial stations.

In practice, the basic MPC (7) (8) may not be realizable for
robotic manipulators without specific design. Firstly, the accurate
tracking error dynamics (6) might be unattainable since the un-
certainties exist in M~ (q), C (q, ) and G (q). Then the solution
of the nonlinear optimization problem and stability analysis are
difficult for the unknown robotic system. To overcome above
challenges, two groups of NNs are utilized under the proposed
MPC structure: (i) the NN-based estimation model of the robotic
system is established as a predictive model for approximating un-
certain system dynamics online; (ii) actor-critic networks are es-
tablished for solving the nonlinear optimization problem of MPC
based on the predictive model. The stability of the closed-loop
system is ensured at the same time.

3.1. NN-based predictive model

In this section, adaptive NNs are used as the predictive model
to approximate the tracking error dynamics (6). Assume that t is
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a persistently excited and feasible input which satisfies (4). The
tracking error dynamics can be expressed as

z1=-Kiz1 + 2z
= WiTgr (%) + W, g (21, 40) T + &
where &, = & + &7 is the estimation error, Wf*T<pf (Z5) +& =

F (@), Wog (21, q0) + & = g(21.90), ¢5 (27), 95 (21, qa) are
NN'’s activation functions which are selected as Gaussian in this

paper.

(9)

Assumption 2 ([2,43]). The optimal NN’'s weights Wf, W*

tivation functions gy (z), ¢ (21, qa), and approximation errors
&, & are bounded, i.e. there exist wro > 0, wgo > 0, ¢r, > 0,

9e0 > 0. &0 > 0, &0 > 0, such that Y i, [|W/ || < wyo,
p- ”W*: @5 (Z+)|| < o, ||ng (21,Qd)||

g,‘” = Wgo, <
&) < &o. & < &eo.

Pg0,

Lemma 5. Let Assumption 2 and constraints (4) hold, then the
estimation error &, is bounded, i.e. there exists £n,9 > 0, such that

[Emll < &mo-

In the MPC scheme, the optimization problem is solved at
the time sequence {t;} discretely. Thus the predictive model over
t € [tk, trr1) can be defined as
Z1=-Kiz1 +2, + LA%’{

.z 10
2z=f(2+)+§(21,qd)r+mz" (10)

where g (Z1.qa) = W}y (Z1.40), F (27) = Whey (z*), Wy and
ng are approximations of Wy and Wy at time t;, respectively.
L is a positive constant, AZf =z (t) —Z(t;),j=1,2 is the
estimation error of z; at time t. Define Aijp =0.

NN’s weights Wfk and ng in (10) are constants over t €
[tk, ter1) , k = 0,1,2,...., and are updated at time instant tyq

through:
Wf(k+1),i = Wﬂq + AWfk,i an
= Wi+ o [~ (1+ A0 OpLACAZE, — kWi |
Weer1).i = Weri + AWgii
(12)

= ng’j + g [— (1 —+ Af) @gkLAfAfg‘i — kgng,i]

where o > 0, @y > O are learning rates, kf > 0, k >0

are introduced for improving the robustness, Oy = 2 f’ ]1
(vg @i qa) T + 95 (Zrasn)s Qo) Ta) A, O = 5 i
(¢r (7)) + ¢ (7)) Ati, in which () = () (&), Aty =ty — 6, N

is a finite positive integer, t; = ty, and ty = ty41.

Lemma 6. Let Assumption 2 and constraints (4) hold, input t
satisfies PE condition. Then signals Og, Oy, are bounded, i.e. there
exist g > 0, 050 > 0, such that |Op|| < 6o, |Ogk| < bg0. On
and Oy are persistently existed, too.

According to the characteristic of MPC, the predictive tracking
error Z; is updated by real value z; at time instant tx1; through

zj (t];:_l) =Zj(tl€+1)7j: 1,2 (]3)
Further more, it can be gotten that Vt € [ty, t41), it holds that
A7) Az (1) < AT AZIHD,
Define Wp, = Wi — W, ng =Wy — ng as NN’s weights
estimation errors. For t € [ty, ty41), we consider AZ¥ (t) = AZK,
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Wﬂ“(t) = Wfk, and ng, (t) = gk, In the following theorem,
the designed adaptive strategies (11) and (12) are shown to
guarantee the boundedness of the predictive estimation error and
NN’s weights estimation errors.

Theorem 1. Let the predictive model be defined as (10) and
input signals satisfy constraints (4) and PE condition. Assume that
Assumption 2 and Lemmas 1, 2, 4, 5, 6 hold. NN’s weights Wfk and
ng are updated through (11) and (12) at time instant ty,q1,k =
0, 1,2,.... The predictive tracking error z; is updated by real value
through (13) at time instant ty,1. Then the predictive estimation
error Az* and NN's weights estimation errors Wp, Wy, remain UUB,
if it holds that:

()Ki—1>0

(i) 1 —*At > 0

(iii) 1= 2 (1 + At L2 At* — 3(1 + A’ LP A? (067, + ag6z) > 0
(iv) ky — 3k — 3 (1+ A0 67 > 0

(v) kg — 3agk; —3 (14 A1) 67, > 0

Proof. Construct a Lyapunov function candidate as

1 5 - 1 o .-
Vink ziAszAzf + iAngAlg
n

1 14
b e W i+ 3 W i e
i=1 i=1

=V, + me + Vmg
where Vi, = 3AZT AZE + JAZT AZE, Viy = YL 5= Wi Wa,

i=1 20tf
_ n 1 T W
Vg = Zi:l Ewgk,iwgk,i-
For t € [ty, ty+1), Vmk iS @ constant obviously. At time instant
ty+1, the difference of Vy, can be calculated through

AV = AV + AV + AV (15)
The first term in (15) is given by

1 _ _ 1 _7 -
Avmz =*AZ(’(+1)TAZ§’C+1) _ EAZFAZf

) (16)
+ Az("“)TAz(k“) 2A2§TA2§
in which
1 _ _
EAzng»l)TAzikJr])
[N . b1
:f AZT AZyds < — (Ky — 1)/ AZT AZyds
tk
1 1 B B L2 tet1 ~ —k ( 17)
+ = / AZy AZpds + — / AZV AZKds
2 J, 2
At i} AtL? o
57A251(+1)TAZ£’<+1) + = AZKT AZ

=(k+1 = —
AV =25 (tip1) — 22 (t34)

tk .
_ ][‘ k+1 (Wf*Tfﬂf (Z+) _ Wji‘pf (2-.+)) ds
k

Gt 1 . )
+ / (Wg*ng (z1,90) T — Wnggﬂg (z1, qa) ‘C) ds

tk

Gt 1 Cie1
+/ Emds — / LAZXds

tk t

92

ISA Transactions 109 (2021) 89-101

From Lemmas 1 and 2, we have

liet1 R 3
[ (w7 )~ o ()
k

- /tw (WFT (¢ (1) — o (7)) + Wley (2+)) ds (19)

=wf + Wj%@fk

where @y = W;T (¢f (27 (¢r)) — o5 (2" (er))) At + &, & is the
integral error, & € [ty, tkt1), O is defined earlier. Analogously,

tk+1 R )
/ (W;Tﬁl)g (217 qd) T — W‘g];(og (Zl, Qd) T) dS
fk (20)

=wg + W, ng

gk

where @, = W;T (¢g (21 (52) » aa (25)) — 92 (21 (5¢) - 4a (£2)))
T (&5) At+g, £ is the integral error, &g € [ty fir1), Og is defined
earlier.

Ciet1 v
Em — LAZyds
/rk ; ’ 2D

=tm (e¢) At — LALAZ = w — LAtAZL

where &¢ € [k, tit1)-
Substituting (19)-(21) into (18), we have

AZT = + Wi Op + Wy Og — LALAZS (22)
in which o = oy + @ + ;.
Lemma 7. Let Lemmas 2, 5, 6, Assumption 2 and constraints (4)

hold, then the signal @ is bounded, i.e. there exists wy > 0, such
that ||w || < wy.

Substituting (17) (22) into (16), it can be gotten
1
AVpy < — > (1-2(1+ At [*A%) AZYT AZy
1
-3 (1= 12At) AZT AZ{ + 2 (1 + Av) [|wo |

— (1+ AD LALAZYT (Wfi@ﬂ + W30

3(1+At)
+ = ZZ” i

(23)

3(1+At)
L OZHngH

The second term in (15) is given by

n

1 - . 1 - -

T T
AVps =Yy wa(kqtl),iwf(kvq),i - Ewﬂc,iwﬂf»i

i=1

zziAVA\/TAVAV LN

A ZOlf fk,i fki o fk,i fk,i

n

1
<23 (g + 300id) [ P
i=1 (24)

1w N
— 5 Z (kf — 30lfk}%) HWﬂ“H
i=1

+ 32ﬁ(1 + AL A6} | A2
n

+ (1+ At) Y Wy, OplAtAZ,
i=1
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Analogously, the third term in (15) is expressed as

n

1 . 1
AVpg = ; EWg(kH).in(kH),i - Ewgk,iwgk,f

Z (kg + 30gk2) | W; ||

n

2
A 25
— 5 Z (kg — 30tgk§) HngJH ( )
i=1
[07
+ —g(l + A2 AC6% | A2
+ (14 At Z Wy, OgLALAZ,
i=1
Substituting (23)-(25) into (15), and noting that
n
LAtAzszWﬂz(‘)ﬂc = Z Wj;;,i@ﬂJ-AtAiZk,i (26)
i=1
LAtAZy W O = Z Wy iOgl At AZyy (27)
i=1
We have
1 _ 1 kT .
AV < — ilflAZkTAZQ< - EICzAZ%TAzg
(28)

Kq || .~ 2
] e

i=1

e

S_Kvmk+cm

where k1 =1 —L?At, ko =1-2(1+ At) ?At? —3(1 + At)?12
AL (s 0f) + ag0)), k3 = Ky — 3af1<f - 3(1+ 406}, ks =
kg — 3agk? — 3 (1 —|—At) 200 & = min (i1, k2, apk3, agka), Cn =
. 112
2014 A0 lwol® + 1Y0, (kf +30k) W7 72
2
(kg + 3ogkg) Wy "
The parameters fulfill that x; > 0, k3 > 0, k3 > 0 and x4 > O.
According to Lemma 4, the predictive estimation error Ai}‘ and
NN's weights errors Wy, Wy will remain UUB.

It is worth noting that the PE condition of ®g and g ensures
sufficient signals of the estimation error space to keep Wfk and
ng from converging to zero.

Furthermore, the estimation error Az converges asymptot-
ically to the compact set $2,; {aZk e w2 | AZ¥| < vz},
where Z = 2 (V% (0) + <). The proof can refer to [41].

Based on the predictive model (10) with adaptive laws (11)
and (12), the MPC strategy (7) (8), for s € [ty, ty + T), is reformu-
lated as

te+T
minJ (z) = / Q@) +U@ds+ V¥ (z(ty+T)) (29)
t 179
Zj (ti lte) = zj (te),j = 1,2
Z1(8) = —Kiz1 + 2, + LA2’1‘
M50 =F () + 8 @ran T + 1Az G0

1T <Ai=1,2,...,n

where parameters have the same definitions with (7) (8).
3.2. Optimization problem solving for MPC

In this section, we utilize optimal control strategy and Hamil-
tonian function to solve (29) subject to (30) for s € [ty, tx + T).
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Both optimal tracking performance and stability analysis of the
predictive system are considered.
For t € [ty, ty + T), the cost function is redefined as

_ te+T
Jt(f)Z/ Q@O+U@ds+¥ Z({t+T)) (31)
t

where Q (2) = zl Q11 +22TQ222, Q; and Q; € R™" are symmetric
positive definite. U (7) = [; AB~'(v/A)'Rdv, B(.) = tanh(.),
R = diag (r1, ..., ;) > 0. U (7) is defined as an integrand func-
tion for ensuring that the input constraints (4) can be satisfied.
¥ (z (ty + T)) is the terminal penalty which can be seen as an
estimation of the optimal cost function from time instant t; + T
to infinity.

Assume that the cost function is smooth. Then the optimal cost
function can be expressed as

JE=wTe @ +é& (32)
where &, is the estimation error, ¢, (z) is the NN’s activation
function which is selected as Gaussian in this paper. The terminal
penalty can be defined as ¥ (Z (ty + T)) = W* ¢ (Z (t; + T))+E&e.
Then the optimal cost function’s gradient can be expressed as
. e dpc @\ 3
v = e @) _ (39 @) w05
0z; 0z

0z
= Vjpc Q) W* + Vig.,j= 1,2

(33)

Assumption 3 ([43]). The optimal NN’s weights W*, activation
function ¢, (z) and its gradients Vi¢. (z), Vo, (z), estimation
error & and its gradients V&, V,&, are bounded, i.e. there exist

weo > 0, 9o > 0, @arco > 0, Pazco > 0, §co > 0, Egrco > 0, Eazco >
0, such that [[W*| < weo, lloc @I < ¢co. Vige @I = @aico,

V20 DI < @azco, IEcll < &co, IVaéell < &arco, V2Eell < Eaaco-

According to the optimal control theory, the Hamiltonian func-
tion can be expressed as

H(Z7@, V) =V 2+ V7% +Q@) +U (@) (34)

Under the stationarity condition, the optimal control strategy

over t € [t, ty + T) can be calculated by
T* (t) = arg m_inI:I (2, T(2),VJ{) = —Atanh (T*) (35)

where T* = g7 (z1,qq) Vz][ =
+V2&0).

Substituting (35) into U (7), we have
U (z*) =A(tanh™" (z*/1))' Rz

+ 7R (i - & (tanh (7))

g" @1, q0) (Vape @)W

(36)
Tl = = T
=AVaJ;" & (Z1, q¢) tanh (T*)
— A’Rln (cosh (T*))
where R = [ry,...,1n] € R 1 =[1,...,1]T € ®x1, 22()

is defined as an operation which squares each element of (.)
severally.

Substituting (35) (36) into (34), the optimal Hamiltonian func-
tion can be expressed as

H* (z, 7%, V)
=V 21+ Vi)' + Q@) + U (T7)
=W*Vo. (2) F +Q (2) — A*RIn (cosh (T*)) + eupp
=0

(37)

—KiZy+ 2o + LA . 7 7
flf}) e Zl] Ve @) = [Vige @) Vage ()]

eup = Vabe! ([ (2%) +LAZ) + Vi (—KiZi + 2 + LAZY).

where F = [
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For remaining optimal tracking performance and stability of
the predictive system, as well as taking advantage of prior knowl-
edge of the predictive model, we design actor-critic networks,
which have the same activation function but different weights,
to approximate the control strategy (35) and cost function (32).
The critic network is defined as

Jo=Wo @
with the terminal penalty is expressed as UEZ(t+T)) = WCT Oc
(z (ty + T)). W, is the estimation of W* in the cost function.

The actor network is defined as ﬁa = WaT @¢ (2). The estimation
control strategy can be expressed as

(38)

2 (0 = argminfi (2, (@), vﬂza) — —) tanh (T) (39)

where T = 1R1g7 (Z1, qu) V29c (2) W, W, is the estimation of
W* in the control strategy. The estimation errors of actor-critic
networks can be defined as W, = W* Wa, W, = W* W

Substituting (38) (39) into (34), the estimation of Hamiltonian
function can be gotten:

i (2450,
2T, 2T, ~
=ViJ, 21+ Vi, 22+Q@ +U (£)
=W (Vo @ F + Vape D8 G100 %) +Q B
— W'V (2)§ (Z1,494) T — A*RIn (cosh (”T"))

Introducing (37), the estimation error of H can be defined as

ej =H (2, z, V]_[>
—H (z £.v], ) — iz, V)
== Ww+ W, Vapc @) (21,40) T — epp
+ A%R (ln (cosh (T*)) — In (cosh (%)))
where w = Vo, 2)F + Vag: 2) & (21, qa) 7.

The nonlinear term R (ln (cosh (T*)) — In <cosh (%))) in (41)
can be expanded into a Taylor series as

A2R (ln (cosh (T:)) =In (COSh (T)))
RO 65 )

aT
where A = Atanh’ (T ( )g (Z1, qa), €0 = AV2E.+0 ( ) (2) is the

=AV ¢, (E)T Wa + &
high order term. Obviously, the vector A is bounded by Apq > 0,
which means ||A|| < Amax.

(41)

. (42)

Assumption 4. The high order term o ( is bounded, i.e. there

exists og > 0, such that Ho (T) H < 0p.

Lemma 8. Let Assumptions 3, 4 hold. Then the error ¢, is bounded,
i.e. there exists g,0 > 0, such that ||&,|| < &q0.

Substituting (42) into (41), we have
(43)

For driving the result to converge to the optimal or suboptimal
solution, and guaranteeing the stability of the predictive system,

AT
eq :_ch+50_8H]B
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the updating law for W is developed as:

A o dEg N
We=—— T acksWe — ack,We
(1 + wTw) W,
o ) ) (44)
=2 e~ 2ack W, — ack, W,
(1 + wTw)

where E; = %He;, ||2 is an integral squared error, o, > 0 is the
learning rate, ks > 0, k, > 0 are learning parameters. The first
term of (44) is used to drive the error e; to zero, the other terms
are used to guarantee the stability of the predictive system.

Lemma 9 ([44]). The normalized signal is bounded. i.e.

(+wTw) T

there exists wmax € (0, 1), such that H m < Wmax-

The updating law for Wa is designed as

Wa = ogakpwc — Zotakawa + aqYw, 22 (45)

where o > 0 is the learning rate, k, > 0 is the learning parame-
ter, Yw, = Va¢c ()& (21, qo) R™'diag (52 (sech (T) ) ) &" 1. qu).

For the predictive model (10) with cost function (31), based
on the estimation cost function (38) and control strategy (39)
with adaptive laws (44) and (45), the MPC solving algorithm
over s € [t,ty+T) can be summarized as Algorithm 1. The
maximum number of iterations Ny is adopted to guarantee the
finite computation time for Algorithm 1.

Algorithm 1 MPC solving algorithm

Input:
VAVC,F, VAVa,r: NN'’s weights which are gotten from last period;
Z (t): Initial value of the predictive model;
Qc, O, ke, kp, kq: Learning rates and parameters of actor—critic
networks;
A: Convergence thresholds in actor-critic networks;
Ng: Maximum number of iterations

1: Initialize ch, Wak by ch—, Wak-;

2: Initialize Ny = 1;

3: repeat

4: Initialize z (t,) = z (t);

5. fort e[t ty+T)do

6: Compute the control input z (t) via (39);

7: Compute the estimation Hamiltonian function via (40);
8: update WC, Wa via (44), (45);

9: update predictive tracking error z via (10);
10 end for
11: ng+ 1
12: untll H W, — Cki H + ”Wa - Wa,r ‘ < Aorng > Ng
Return:

We, Wo, T

For stability analysis, we have the following assumption:

Assumption 5 ([45]). The predictive system with cost function
(31) is asymptotic stability under the optimal control strategy
(35). Define V; = %2Tf as a Lyapunov function, then there exist
positive definite values ITq, IT, which satisfy

Vi=2z1+2 (f (Z7) + LAZy + & (21, qa) T)
< —IL|z:||* = | z2|1* <

In the following theorem, the MPC solving algorithm is shown
to guarantee the boundedness of the predictive tracking error z
and NN’s weights errors W,, W, for t € [t, ty + T), Vk € N.

(46)
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Theorem 2. Let Assumptions 3-5, Lemma 8 hold. Under the MPC
solving algorithm, the predictive tracking error Z and NN's weights
errors W, W, remain UUB for t € [ty, ty + T), Vk € N, if it holds
that:

(i) e kg, + Ty — 2&], oK1 > > 0

1- 1

(ii) e >4 Ao, + Ty — EAB —282 — 3> 0
€00 kp wrznax
iii) A ks— — — ———72>0
(i) by, k=57 =5 == >

k -
(iV)kg— L —25 >0

2 B
(v)é>0

Proof. Construct a Lyapunov function candidate as

o1 1 1
V=_7"z4eCWrF 4 —WIW, + —WIW,
2 20, 2aq

(47)
=Vi+Vy+ V34V

The time derivative of V is
V=V, +Vy+V3+V,
The first term of (48) is given by
=271+ 225
=211 +2) (f (%) + LAZw + & (21, q0) T¥)
— 58 (21,40 T+ 58 (21,90 T
Substituting (35) (39) into the last term of (49), and expand it
into a Taylor series as

(49)

2@, q) T+ 28 (71,40 T
=218 (1. a0 (3 tanh (") — & tanh (7))
=72 BV,0.(2)' W, + Z)BV2£. + 208 (21, qu) 04 <T>
where B = g (21, qa) diag (:’72 (sech (%))) R7'g" (21, qa), 01 (%)

is the high order term. According to Theorem 1 and Assumption 4,
signals g (z1, q4) and o4 (T) are bounded, i.e. there exist Wg max >

o ()] <o

(50)

0, 010 > 0, such that Z?;] ”gl” = ﬁ)gmax‘ngy
Substituting (46) (50) into (49), we have

- B 1- 1 _
Vi< — Iz - (172 — —Ap — 5) 12 11?

2 (51)
+ ZIBV20.2) W, + G
where G = ApE2,, + %ﬁ)émaxfp‘gOO%O‘
The second term of (48) is given by
Vo = — se -] 4 efa(tftk)jt*: — §e -t
+ e (VT + Vol (F () + 14z ) (52)
+ e TWYTE (21, q0) T
Substituting (37) into (52), we have
‘7 < _ Sedt—tx _ p=8At5T( 5
2 < Je Z, Q121 (53)

e 04210z, + WIBW, + G

where B = V,¢. (2) BV, ()T, which is a bounded sem1 deﬁmte
symmetrlc matrix, G; = Azw?) + (2 + 1) Edeo + 3WoPhe0 +

w7 max(pgoow Taylor series for nonlinear term of (52) is utilized.
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The third term of (48) is given by

3 1 ~ A
Vy=— —WW,
Qc
T [ o T
=W, ——— (—WC w+ & — SH]B) (54)
(] + wTw)
+ 2W kW, + Wk, W,
in which
T w o
W (e
(1 + wTw)
<_a WH2+78” <1v”va + Ly ) (55)
== A, c c ww
(1+ wTw)2 2 2

2
2 €00 Wiax

&
== (o =) o] +

wu,rT
1+wTw
trix since Lemma 9 holds.
W w
2
(1 + wTw)

- 1 (1 2 L 2)
=g (b 3(6)
(1+wrw)* \27 7 217

- - 1
<es + 26510 I 212111 + 26100122117 + S wina

where M,,= 5 is a bounded semi-definite symmetric ma-

— EHJB

(56)

2

- ) ) .
where g5 = 2£2,|f (z*) + LAZE|” + 2£2,,L?| AZY||". According
to Theorem 1, the signal es is bounded, i.e. there exists egg > 0,
such that ||ss]|| < éso.

QW] kW, + Wk, W,

K ks 57
< <% + ks> wTw* — (ks - 5) WIW, — Wk, W, (7)
Substituting (55)-(57) into (54), we have
. 2 )
Vs = — s | We |+ G + 282 I 1212112 58)

+ 282 0122117 — Wk, W,

2
where KW =My, T ks W, = goolgmax T oego +
k + cO

The fourth term of (48) is given by

= —W/ Ik, W, + 2k, W W, — W Ty, 2 (59)

) - - - B
< —kw, |Wa| + Cw, + W kW, — W Ty, 2,

_ k k
where kw, = ks — £, Cw, = (£ + ko ) w,.

Substituting (51) (53) (58) (59) into (48), we have
2

S 12 5 12 1
V < =iz |11 — «z, |12zl

W,

_ 56—5(f—fk)jt* — Kw,

~ 12
— Kw, Wa + Cz + C] + CWu =+ CWc (60)

S—K\’,\_/-}-C(,

where iz, = e*h, + ITy — 2E3, oK% ez, =

- 2
My — 3hp — 2639 — MR S e
Kw, = Kw, — Ag, ky = min {2/(21, 2K22, 38, 20ckw,, ZOtCKWa}
C2+CJ+CWC+CWH

—sAt
e Ag, +

1
3 Kwe = Ay
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The parameters fulfill that xz;, > 0, «xz, > 0,6 > 0, ky, > 0
and «w, > 0. Note that although /7, and IT, in kz, and «;z, are
positive definite (from Assumption 5), they cannot be selected
directly. So the optimal function of MPC J; is added into (47) for
introducing e~°#‘A, and e™*4'1, into «z, and ;,, respectively.
Then conditions «z, > 0 and «z, > 0 can be satisfied by choosing
appropriate Q; and Q.

According to Lemma 4, the predictive tracking error Z and NN’s
weights errors W,, W, remain UUB for t € [ty, ty +T),Vk € N.

Next the convergence of Wc and Wa is explained. It can be seen
that Wy is constant over t € [t, ty +T), Vk € N. if Wy, # 0, the
signal Yy, is persistently existed over t € [t, ty + T). The last
term of (45) ensures sufficient signals of the predictive tracking
error space to keep W, from converging to zero, and the last term
of (44), which connects the critic network and the action network,
keeps WC from converging to zero.

Furthermore, Algorithm 1 solves the optimization problem
of MPC iteratively based on the predictive model (10) for t €
[tk tx + T). During each iteration, the initial value of the pre-
dictive tracking error, which is gotten from the real system, the
updating laws of W, W, and the calculation of 7 remain the same,
except for the initial values of W,, W,, which are gotten from the
previous iteration. Then (60) holds for each iteration. So for each
iteration, the closed-loop predictive system is stable with better
performance comparing with the previous iteration. Therefore,
the following remark can be gotten.

Remark 1. Let Assumptions 3-5, Lemma 8 hold. Under the MPC
solving algorithm, the predictive tracking error z and NN's
weights errors W, W, remain UUB. The control strategy t and
NN'’s weights W,, W, converge stably to the suboptimal value.

3.3. NN-based MPC for robotic manipulators

Based on the predictive model (10) and MPC solving algo-
rithm, the NN-based MPC strategy is proposed in this section.
The suboptimal solution T over t € [t ty+ T) is solved by
Algorithm 1, then it is applied to the robotic manipulator for
t € [tk, tiyq). At time instant fi,q, the parameters W41y and
Wg(k+1) of the predictive model are updated through (11) and
(12), the predictive tracking error z (thrH) is updated by real value
Z (ty1). After that the optimization problem is revisited at time
instant t,,1; under new initial stations. The architecture of the
NN-based MPC strategy is shown in Fig. 1, and the algorithm is
summarized in Algorithm 2.

Remark 2. Considering the structure of the control input T in (39),
and property of negative definite symmetry for g (z1, q4) defined
in (6), the initial value of W, should satisfy A
(ngﬁg (21 (0), qa (0))) < —A(M~'(q(0))). In this initial con-
dition, ng will converge to the neighborhood of Wy from the
non-zero side, the PE condition of 7 and the condition ng #*
0, Vk € N can be guaranteed.

The stability of the closed-loop system is discussed now. An
augmented state, which is defined as y = [zT, T, WL W, Az,

- AT
i Wi 2iis WgTM] , is adopted to combine all variables. In

the following theorem, the NN-based MPC strategy given in Algo-
rithm 2 is shown to guarantee the boundedness of the augmented
state .

Theorem 3. For the robotic manipulator (3) with input constraints
(4), let Assumptions 1-5, Lemmas 1-8 and Remark 2 hold. Under the
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Algorithm 2 NN-based MPC strategy for robot tracking control

Input:
Wfo, Wgo: Initial NN’s weights of the predictive model;
T: The prediction horizon;
At: The solving interval of the optimization problem for the
NN-based MPC;
of, o4, k, kg: Learning rates/parameters of NN for the
predictive model;
Initialize g4 (0), g2 (0), k =0, to = 0;
2: Compute z (0) according to (5);
repeat
4: if t = t; then
Solve the MPC problem via Algorithm 1 for suboptimal
control strategy T
6: end if
Compute ty1q =ty + Ay
8: fort € [ty, tyy1) do
Apply T to the robotic manipulator and observe g, q;

10: Compute z (t) according to (5);
end for
12:  if t =ty 1 then
Compute the estimation error of tracking error via
A =z () =2 () J=1.2;
14: Update NN’s weights Wf(k+1), Wg(,<+1) according to (11)
and (12);
Update the predictive tracking error via Z(tf,) =
Z (te+1)5
16:  end if
k=k+1;

18: until the end of control period

NN-based MPC strategy given in Algorithm 2, the augmented state
Y remains UUB, namely the robot tracking error z, the predictive
tracking error Z, the estimation error AZ¥ and NN’s weights errors
Wi, Wi, W, Wa remam UUB, if all conditions in Theorems 1 and 2

hold. z, Wy, W, W, and W, will converge to the compact sets £2,,
Qw;, 2wy, 2w, Lw,:

2. = |z €9 |l1zll = VM |

-QWf = {Wfk € S)%’fx” ‘Wﬂ H < ,/Z(XfM]

Qu, = { o € e ‘WkH V2agM |

.= i et [ < v |

o =[50 ] - 5
where M = 3Zy + Z Zy; will be defined later.

Proof. Construct a Lyapunov function candidate as

V=Vu+V+V, (61)

where V, = iz Tz

From Theorem 1, it can be_gotten that the estimation error
AZz* and NN's weights errors Wy, Wy, remain UUB. Vy satisfies

Vink (OO) = ;Z

Then for the predictive tracking error z and NN's weights
errors W,, W,, mathematical induction (MI) is utilized to explain
that they are UUB for the whole control period.

Firstly, for k = 0, t € (to, t;), Multiplying (60) by 7' and
integrating the inequality, we have
V(1) < eV (to) + GG
Ky Ky

(62)
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Fig. 1. Architecture of the NN-based model predictive tracking control.

At time instant t;, the predictive tracking error Z is revised by
real value through Z (t;") = z (ty). For solving V (t;"), we have the
following assumption holds:

Assumption 6. The function J; (Z) : %" — %!

continuity mapping, which means

JEE)) -JE () <] az
Considering 12" (t])z (¢7) =327 (t7) z (¢7) + 34z'TAZ' +

T o1

Z(t;) Az', we have

is a Lipschitz

(63)

V(e) =7 (i) + 5427 2" 4 2(t) 42" o4
iy

According to Theorems 1 and 2, we can get that Az* and

Z (t, ) are bounded, i.e. there exist 0, > 0, 0; > 0 such that

| AZ¥|| < o4, |Z ()| < oz Introducing (62), (64) becomes

v (++ —kit1yy CV Cl7 —kit

V(tf) eV (to) + — — e V4o (65)
Ky Ky

where cr:%of\—i— (e*MtL]-+og) OA.
Secondly, for k = 1, t € (t1, t3), similar to the first step, we
have

‘_/ (t) =< e_KVteKth‘_/ (t?’) —+ g — &e’(vtl e—K‘;-t
T (66)
_ C- C_
< e*KVfV (tO) + v leﬂ(‘;t + ei,(‘f/([,n)o_
a Ky Ky
=, + Kt C\'/ C"/ ket o At
V(t)f@ VV(to)-i———fe v pe Al o (67)
2 - -
Ky Ky
Then, suppose for t € (t, tyr1),k = 1,2, 3..., following
conditions hold:
Y - C; Gy
V(t) <e” 'V (ty) + - — —Le it
Ky Ky
k—1 (68)
4+ et g Z e ik At
i=0
Y - C; Gy
V(t5 ) <e vtk (tg) + L — Vot
(t1) = (to) pelae
(69)

k
+ 0o E e*il(“/ At
i=0
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For t € (tyy1, tey2), it can be gotten

- et ety = G G .. .
vV (t) Se Kvl‘evalH,]V (t,;:,]) + v _ le)(vf]H;Ie Kvl‘
Ky Ky

- Cy Cy
< 7K‘7tv t v _ v —kyt
<e (o)+K‘7 Kve (70)
k
+ eiKV(tfthrl)O- Z e*iKQAt
i=0
4 (tktrz) =V (t/;rz) t+o
C- C- k+1
<e V2V (t) + WV VoKt 4 o Zefil("/At
KV KV i=0
(71)
It is obvious that Vt > 0, the following condition holds:
_ _ C- C-
V(t) < eV (to) + L — et T (72)
ky Ky 1—e™"v

as limy o Y X e vat = lem Then it can be gotten that
LA -

*

v (00) < Zy, where Zj = P -
v ,

About the robot tracking error z, for t € [ty, ty+1), Yk € N, we

have

1 _ T - . _r- I
V, = 5(2 +ADT G+ AZ) <72+ AZTAZ (73)
where Az (t) =z (t) — Z (t).

It is worth noting that AZ has the same convergence with Az,
which means AZT (00) AZ (00) < Z. Then it can be gotten that
V; (00) < 2Zj + Z.

From above analysis, we can conclude that V (0c0) < 3Zj; + %Z.
Then Theorem 3 is proved, the augmented state i remains UUB
under the proposed NN-based MPC strategy.

4. Simulation studies

To demonstrate the effectiveness of the proposed NN-based
MPC strategy, co-simulation based on CoppeliaSim (V-REP) and
Matlab for a 2-DOF robotic manipulator is given in this sec-
tion. The robotic system is defined by (3) with parameters given
in Appendix. The model of the robotic manipulator established
in CoppeliaSim is shown in Fig. 2. The input constraints are
described as |7; (t)] < 12,i = 1,2. The desired trajectory is
defined by qq (t) = [q14, G2a]" = [% cos (%t), Z sin (%t)]T. The
initial condition of the robotic manipulator is chosen as q (0) =
[0, —%]T, G (0) = [0, 0]". The whole simulation time is chosen as

T; =20 s.
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V

X

(a) Coordinate of the robotic manipulator.

(b) Model of the robotic manipulator in CoppeliaSim.

Fig. 2. Model of the robotic manipulator.

Comparative discussions are accomplished with the Lyapunov
function method (LFM) [2,41], the constrained MPC (CMPC) strat-
egy [8] and the strategy combined MPC and integral sliding mode
controller (MPC-ISM) [21]. The algorithms run at a laptop (Intel(R)
Core(TM) i5-8265U @1.60 GHz). The simulation environments
are chosen as CoppeliaSim Edu V4.0.0 rev4 and MATLAB2019b.
Simulation details and results are shown as follows.

4.1. Simulation description

(a) The Lyapunov function method

The Lyapunov function method is taken into account firstly.
Referring to [2,41], the controller can be designed with a function
S (1) as

S (1) = {Asign () il > A

Ty Il < A
where 1p = —z1 + K, (2 + &) + WT(/J (z1). The parameter of the
auxiliary variable in (5) is defined as K; = 2. The control gain
matrix is chosen as K, = diag (5, 0.5). The auxiliary variable £ is
used for reducing the input constraints effects. The updating law
and corresponding parameters of & can refer to [41]. W ¢ (z;)
is a neural network which is used for estimating M (q) &; +
C(q,q) a1 + G(q). The activation function ¢ (z;) is chosen as
Gaussian with input signal z, = [¢", ¢", @], &] |. The adaptive law

of NN is designed as Wk =T (¢ (z) 22k — oWk with parameters

I' = 0.06 and o0 = 0.1. The joints angle tracking and control
torques are shown in Figs. 3 and 5(a). Comparative results are
discussed later.

(b) The NN-Based model predictive control
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In this part, we discuss the simulation under the proposed NN-
Based MPC strategy. Two groups of NNs have been developed
under the proposed MPC structure. In the part of the predic-
tive model, NNs with 64 and 36 hidden-layer-nodes are used
for Wiy (z) and Wy (Z1, qa), respectively. The centers for

¢r (z7) and gg (Z1, qq) are chosen in the area of [—1, 1]x[—1, 1]x
[—1,1]x[—1,1] x[—1.6, 1.6] x[—1.6, 1.6] x [0] x [0] x [0] x [0]
and [-2,2] x[—1, 1] x [-1.6, 1.6] x [—1.6, 1.6]. The variance is
set to be 25. Considering that g (2, q4) is a negative symmetric
definite nlatrix, its estimation is expressed as Wg@g (Z1, 1) =
|:Vng,1 Wek.2
ng,2 ng,3

L = 0.35. The parameter of the auxiliary variable in (5) is defined
as K; = 5.

In the part of solving the optimization problem of MPC, pa-
rameters of the cost function are chosen as Q; = diag (200, 200),
Q = diag (5,5), R = diag (%, 1). For ensuring real-time perfor-
mance and control accuracy, the solving interval of the optimiza-
tion problem and the prediction horizon are chosen as At = 0.05
sand T = 0.07 s, respectively. NNs with 81 hidden-layer-nodes
are used for W,¢. (z) and Wg¢, (z). The centers for ¢, (z) are cho-
sen in the area of [-2,0,2] x[—1,0,1] x [—-1,0, 1] x [—1, 0, 1].
The variance is set to be 25, too. The joints angle tracking and
control torques are shown in Figs. 3 and 5(b).

For further illustrating the effectiveness of the proposed con-
trol strategy, we consider the comparison with the constrained
MPC strategy and the strategy combined MPC and integral sliding
mode controller in next parts.

(c) The CMPC strategy

For the CMPC strategy, parameters of the cost function are
chosen as same as the NN-based MPC. Quadratic form z'Qz
is used for the terminal penalty ¥ (z (t; + T)), in which Q =
diag (Q1, Q2). Parameters of the robotic manipulator are assumed
known imprecisely, for example, there is an error of 0.005 kg in
the masses of link 1 and link 2, and an error of 0.0005 m in the
lengths. The optimization problem is solved by the Gurobi solver.
The joints angle tracking and control torques are shown in Figs. 3
and 5(c).

(d) The MPC-ISM strategy

For the MPC-ISM strategy, the control parameters are the same
as those in [21]. Assumptions about the parameters of the robotic
manipulator are the same as the CMPC strategy. The optimization
problem is solved by the Gurobi solver, too. The joints angle
tracking and control torques are shown in Figs. 3 and 5(d).

¢g (Z1, qq). The parameter L in (10) is chosen as

4.2. Results and discussion

Comparisons of joints tracking errors with four control strate-
gies are shown in Fig. 4. It can be seen that results with all four
kinds of control schemes are convergent, but the tracking errors
with the Lyapunov function method and CMPC strategy are much
larger than those with the NN-based MPC strategy. Specifically,
(1) for the Lyapunov function method under selected control
parameters, q; converges slower than the other methods, while
q> has obvious overshoots. (2) For the CMPC method, there exist
steady-state errors under the influence of model uncertainties. (3)
For the MPC-ISM scheme, both q; and g, have a slower initial
response. There also exist chattering phenomenons of q; and ¢,
because of the introduction of the ISM controller. (4) For the NN-
based MPC strategy, as adaptive NN is adopted to compensate
for model uncertainties, and predictive control strategy is used to
calculate the optimal control law, the good tracking performance
can be guaranteed.

Furthermore, for CMPC and MPC-ISM schemes, the parameters
M (q), C (g, @) and G (q) in (3) are used directly for control design.
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Fig. 3. Joints tracking with different control strategies.

So the expandability of these methods is worse than the other
two methods.

In addition, Fig. 5 shows that control torques with all four
kinds of control schemes satisfy constraints. But control torques
with the Lyapunov function method are volatile at the beginning
of the control period. For the MPC-ISM strategy, there exist chat-
tering phenomenons of torques in the whole control period. It
can be gotten from Fig. 5 that control torques with the other two
methods are more appropriate to the real system.

We have verified the favorable tracking capability and fea-
sible control torques of the proposed NN-based MPC strategy.
Next, its computation burden will be discussed and analyzed.
Firstly, in this paper, the discrete updating mode of NNs in the
predictive model can reduce the computation burden of NN up-
dating, comparing with the continuous updating mode of NN in
the Lyapunov function method. Then the prediction horizon is
chosen as T = 1.4At to reduce the solving time of optimization
problem and keep control performance at the same time. Fig. 6
shows the calculation time of solving the optimization problem
at time instant ty, which is much smaller than the solving interval
At. Physical simulation results with CoppeliaSim also show that
the whole simulation calculation time for the NN-based MPC
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Fig. 4. Joints tracking errors with different control strategies.

strategy is not greater than the actual time. These results indi-
cate that the calculation burden is acceptable for the real-time
implementation.

In conclusion, the NN-based MPC strategy for robotic manip-
ulators proposed in this paper can achieve competitive perfor-
mance in handling the unknown dynamics with input constraints.

5. Conclusions

In this paper, an NN-based MPC strategy was developed for
robotic manipulators with unknown dynamics and input con-
straints. The proposed structure contained two groups of NNs.
The first group of NNs was adopted as a predictive model of MPC
for the robotic system. Online learning strategies, which were
based on errors between predictive tracking error and the actual
one, were established to handle the robotic unknown dynamics.
Based on the predictive model, the second group of NNs was
applied to solve the optimization problem of MPC. An actor-
critic scheme with different weights and the same activation
function was adopted, and adaptive learning strategies were es-
tablished for balancing between optimal tracking performance
and predictive system stability. A nonquadratic cost function was
developed for handling the input constraints. According to the
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time(sec)

Fig. 6. Calculation time of solving the optimization problem at time instant t.

Lyapunov theorem, it was proved that all variables of the closed-
loop system were UUB under the desired strategy. Simulation
studies were carried out to illustrate the effectiveness of the
proposed control strategy, comparing with the Lyapunov function
method, the CMPC strategy and the MPC-ISM method.
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Appendix

A 2-DOF robotic manipulator defined by (3) is adopted for
demonstrating the effectiveness of the proposed method. The
inertia matrix M (q), Centripetal and Coriolis force C (q, q) and
gravitational force G (q) are defined as

M@z[

a; +az; +2a3cosq; a; + ascosq;
a; + as cosq a)

.. | —a3qzsing;
C@q.q= [ 34 Sin g

—a3 (41 + §2) singy
0
G(q) = | &0 + asg cos (g1 + ¢2)
asg cos (g1 + q2)

where a = mllgl + m21% + 11, a = mzlzz + 12, as = m211152,
aq = mlly+myly, as = myle,. I; and m; are the length and mass of
link i, ; is the distance from joint i—1 to the center of mass of link
i, I; is the moment of inertia of link i about the axis perpendicular
to the plane of link and passing through the center of mass of link
i.

The value of parameters refer to [41]. They are given as fol-
lows: m; = 2.0 kg, my = 0.85kg, ; = 035 m, , = 0.31
m, g = 0.175m, I, = 0.155 m, I; = 61.25 x 1073 kg m?,
I, =20.42 x 1073 kg m?.
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