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a b s t r a c t

This paper proposes a neural network-based model predictive control (MPC) method for robotic
manipulators with model uncertainty and input constraints. In the presented NN-based MPC structure,
two groups of radial basis function neural networks (RBFNNs) are considered for online model
estimation and effective optimization. The first group of RBFNNs is introduced as a predictive model for
the robotic system with online learning strategies for handling the system uncertainty and improving
the model estimation accuracy. The second one is developed for solving the optimization problem. By
taking into account an actor–critic scheme with different weights and the same activation function,
adaptive learning strategies are established for balancing between optimal tracking performance and
predictive system stability. In addition, aiming at guaranteeing the input constraints, a nonquadratic
cost function is adopted for the NN-based MPC. The ultimately uniformly boundedness (UUB) of all
variables is verified through the Lyapunov approach. Simulation studies are conducted to explain the
effectiveness of the proposed method.

© 2020 ISA. Published by Elsevier Ltd. All rights reserved.
1. Introduction

In recent years, the robotic control design has been getting
ustained attention from both industry and academia. Many con-
rol theories, such as neural network control, fuzzy control, slid-
ng mode control and other control methods [1–7] have been
uccessfully applied into robotic systems and related systems,
ndependently or in combination. With the continuous expansion
f robotic applications during the past decades, the optimal con-
rol performance has been receiving more and more attention in
ddition to system stability. Furthermore, the model uncertainty
nd input constraints are also challenges for the control design
f an actual robotic system. It is therefore crucial to design an
ffective control strategy for robotic manipulators, which can bal-
nce between optimal control performance and system stability,
ompensate for the effect of model uncertainty, and satisfy the
nput constraints.

Model predictive control (MPC), also named receding hori-
on control, is a powerful optimal control strategy. MPC has

∗ Corresponding author at: The State Key Laboratory for Management and
ontrol of Complex Systems, Institute of Automation, Chinese Academy of
ciences, Beijing 100190, China.

E-mail address: hong.qiao@ia.ac.cn (H. Qiao).
ttps://doi.org/10.1016/j.isatra.2020.10.009
019-0578/© 2020 ISA. Published by Elsevier Ltd. All rights reserved.
several attractive characteristics, for example, it deals with mul-
tivariable and constrained control problems [8]. Until now it has
been successfully applied to the process industry [9], power elec-
tronics industry [10], smart energy systems [11], motors control
for electric vehicles [12] and robotic systems, especially mobile
robots [13–16].

Two key issues need to be studied for solving robotic control
problems with MPC. One lies in realizing robustness against
model uncertainties, the other lies in effective optimization based
on the predictive model. For the first but challenging issue, many
significant results have been investigated centered on nomi-
nal systems with disturbance. The nominal dynamics are uti-
lized as the predictive model for MPC. For known or partially
known systems, the known dynamics are adopted as the nominal
model [15–20]. The disturbance is handled by robust MPC [16,17],
tube MPC [18,19], min–max MPC [20], etc., or is compensated
by an extra robust controller [21]. In [21], a linear MPC with
an integral sliding mode (ISM) controller is studied for robotic
manipulators. Partially known robotic dynamics are used as a
nominal model, feedback linearization is used to transform the
nonlinear problem into a linear form, and the ISM controller is
used to compensate disturbance and unknown dynamics. In [22],

a path-following MPC strategy based on known dynamics is

https://doi.org/10.1016/j.isatra.2020.10.009
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mailto:hong.qiao@ia.ac.cn
https://doi.org/10.1016/j.isatra.2020.10.009


E. Kang, H. Qiao, J. Gao et al. ISA Transactions 109 (2021) 89–101

p
a
c
n
m
a
f
p
G
m
c
t

M
t
a
M
m
s
b
s
a
N
n
w
i
c
c
a
f
h

f
a
l
(
u
I
p
p
o
m
f
e
b

s
d
f
d
t
t
a
s
a
s

i
u
u
a
t
t

s
i

m

I

roposed for an industrial robot. However, these methods require
clear nominal model, which may not be suitable for a robot with
ompletely unknown dynamics. For unknown systems, neural
etwork (NN) model [23–29], fuzzy model [30], Gaussian process
odel [31], etc. are utilized as nominal dynamics after appropri-
te off-line training. In [30], MPC based on a Takagi–Sugeno (T–S)
uzzy model is adopted for 2-DOF robotic arms. In [31], a Gaussian
rocess MPC scheme is developed for the robotic arm, in which a
aussian process based on off-line data is adopted as a nominal
odel, and an extended Kalman filter-based observer is used to
ompensate residual disturbance. However, these methods do not
hink about model uncertainty online.

Some researchers also focus on combining adaptive NN with
PC. Wang et al. [9] propose a double-layers architecture con-

roller, in which adaptive NN is used for the lower layer to
pproximate the unknown dynamics. But the two-layer-structure
PC is appropriate for the industrial process rather than a robotic
anipulator. Wu et al. [32] develop an adaptive MPC for motor
ystem, a two-layer recursive NN with extended-Kalman-filter-
ased parameter learning is used for speed predictor. But the
tability analysis is not been considered. Chen et al. [33] present
tube-based MPC for nonholonomic mobile robots. An adaptive
N controller with disturbance observer is used for unknown dy-
amics, independently of MPC strategy for kinematic constraints,
hich is unsuitable for robotic manipulators. Farrokhi et al. [34]

ntroduce an adaptive nonlinear MPC for hybrid position/velocity
ontrol of robot manipulators. But off-line training should be
onsidered to avoid irrational control signals at the beginning of
n operation. Therefore, for the first key issue, the MPC strategy
or robotic manipulators needs to be further developed subject to
andle the model uncertainty online.
For the second key issue, several approaches are proposed

or the optimization of MPC. In [15,21,35], linearization models
re developed for nonlinear systems, efficient methods such as
inear quadratic regulator (LQR) and linear matrix inequalities
LMI) are adopted. In [16,17], the event-trigger mechanism is
tilized with MPC for reducing the computational burden of MPC.
n [36,37], intelligent algorithms such as genetic algorithm and
article swarm optimization are used for solving the optimization
roblem of MPC. In [38,39], NN solvers based on neurodynamic
ptimization are proposed for solving MPC. In [23,27], ADP-based
ethods are studied, where critic and actor NN are constructed

or estimating cost function and input signal, respectively. How-
ver, there is little research located in effective optimization
ased on the online estimating predictive model.
According to previous discussions, designing a suitable MPC

trategy for robotic manipulators, which estimates the unknown
ynamics online and balances between the optimal control per-
ormance and system stability, is still an unsolved problem. The
ifficulties lie in estimating the unknown model online, solving
he optimization problem based on the online-updating predic-
ive model and ensuring the stability of the whole system under
bove conditions. In this paper, we develop an NN-based MPC
trategy for robotic manipulators with unknown plant model
nd input constraints. The main contributions of this paper are
ummarized as follows:
(1) An NN-based MPC structure containing two groups of NNs

s proposed for robotic manipulators. The first group of NNs
sed as the predictive model for MPC is established to estimate
nknown robotic dynamics. Online updating laws of NNs’ weights
re proposed without requiring knowledge of the system. Fur-
hermore, it is proved that the estimation error is UUB according
o the Lyapunov theorem.

(2) The second group of NNs, which adopts the actor–critic
cheme with the same activation function but different weights,

s established for solving the optimization problem of MPC. An
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adaptive learning approach based on the Hamiltonian function is
built to guarantee the optimal control performance and predictive
system stability. Meanwhile, the input constraints are guaranteed
by employing a suitable integrand function of input signals in the
cost function of MPC.

(3) The stability of the closed-loop system is proved using the
Lyapunov theorem and mathematical induction (MI). All variables
remain UUB under the developed control strategy.

The rest of this paper is organized as follows. In Section 2,
some preliminaries used later and robotic system dynamics are
introduced. Section 3 illustrates the main results of this paper,
concluding the establishing of NN-based MPC strategy and sta-
bility analysis. The performance of the proposed control strategy
is shown in Section 4 by co-simulation based on CoppeliaSim (V-
REP) and Matlab, and conclusions of this paper are given in the
last section.

2. Preliminaries and problem formulation

2.1. Preliminaries

Lemma 1 ([40] First Mean Value Theorem for Integrals). Let f (x) is
continuous on [a, b], g (x) is integrable and sign-invariant on [a, b].
Then there exists ε ∈ [a, b], such that∫ b

a
f (x) g (x) dx = f (ε)

∫ b

a
g (x) dx (1)

Lemma 2. Let f (x) is continuous on [a, b], then we have∫ b

a
f (x) dx =

N−1∑
i=1

1
2
(f (xi)+ f (xi+1)) (xi+1 − xi)+ ς (2)

where x1 = a, xN = b, ς is the integral error which is bounded,
i.e. there exists ς0 > 0, such that ∥ς∥ ≤ ς0.

Lemma 3 ([41]). Let A ∈ ℜ
n×n be a semi-definite symmetric matrix,

then all the eigenvalues of A are real and nonnegative. ∀x ∈ ℜ
n,

there exists λA∥x∥
2

≤ xTAx ≤ λ̄A∥x∥2, where λA ⩾ 0, λ̄A are the
inimum and maximum eigenvalue of A, respectively, ∥�∥ represents

the standard Euclidean norm.

Lemma 4 ([5,42]). Let Lyapunov function V (x (t)) be a continuous
and positive definite function, with bounded initial value V (x (0)).
f the inequality V̇ (x) ≤ −c1V (x) + c2 holds, where c1 and c2
are positive constants, then V (x (t)) is bounded. Furthermore, the
solution x (t) of the underlying system is uniformly bounded.

2.2. Problem formulation

Consider an n-link robotic manipulator formulated by the
following dynamics [2,21,41]:

M (q) q̈ + C (q, q̇) q̇ + G (q) = τ (3)

where q, q̇ and q̈ ∈ ℜ
n represent the joint position, velocity and

acceleration vectors, respectively. M (q) ∈ ℜ
n×n denotes a sym-

metric positive definite inertia matrix, C (q, q̇) q̇ ∈ ℜ
n represents

the Centripetal and Coriolis force, G (q) ∈ ℜ
n represents the

gravitational force, τ ∈ ℜ
n represents the input torque. Generally

speaking, the input torque of the robot is bounded, which must
be considered while designing the control strategy. In this paper,
the input constraints are expressed by

|τi (t)| ≤ λ, i = 1, 2, . . . , n (4)

Property 1 ([2]). The inertia matrix M (q) is symmetric and positive
definite.
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The control objective is to design a suitable control strategy
hat satisfies the constraints (4), such that the system variable q
an track a given desired trajectory qd (t) = [qd1 (t) , qd2 (t) , . . . ,
qdn (t)]T , while trading off between the tracking performance and
he stability of the closed-loop system.

ssumption 1. The desired trajectory qd is bounded, smooth and
wice differentiable. Therefore, there exist d > 0, d1 > 0, d2 > 0,
uch that ∥qd∥ ≤ d, ∥q̇d∥ ≤ q1, ∥q̈d∥ ≤ d2.

. Main results

Firstly, we define the tracking error as

z1 = qd − q
z2 = α1 − q̇ = ż1 + K1z1

(5)

where α1 = K1z1 + q̇d is an auxiliary variable.
Considering (3) and (5), the tracking error dynamics can be

expressed as

ż1 = −K1z1 + z2
ż2 = f

(
z+

)
+ g (z1, qd) τ

(6)

where z =
[
zT1 , z

T
2

]T represents the tracking error, z+
=

zT1 , z
T
2 , q

T
d , q̇

T
d , q̈

T
d

]T represents the augmented error, g (z1, qd) =

−M−1 (q), f
(
z+

)
= M−1 (q) [C (q, q̇) q̇ + G (q)] + α̇1.

Define the sequence {tk} , k = 0, 1, . . . .. as the solving time
for MPC, in which t0 = 0. The solving interval is expressed as
∆t = tk+1 − tk. Then the basic MPC strategy, for s ∈ [tk, tk + T ),
s introduced as

in
τ

J (z) =

∫ tk+T

tk

Q (z)+ U (τ ) ds + Ψ (z (tk + T )) (7)

.t.

⎧⎪⎪⎨⎪⎪⎩
zj (tk |tk ) = zj (tk), j = 1, 2
ż1 (s) = −K1z1 + z2
ż2 (s) = f

(
z+

)
+ g (z1, qd) τ

|τi| ≤ λ, i = 1, 2, . . . , n

(8)

where T is the prediction horizon, Q (z) and U (τ ) are positive-
efinite functions about tracking error z and input τ , respectively.
he optimization problem (7) will be solved at time instant tk
nder current initial stations zj (tk |tk ) , j = 1, 2. The optimal or

suboptimal torque τ ∗ (t) over t ∈ [tk, tk + T ) is obtained, and the
first portion of τ ∗ (t) is implemented to the robotic system. Then
the optimization problem over t ∈ [tk+1, tk+1 + T ) is revisited at
time instant tk+1 under new initial stations.

In practice, the basic MPC (7) (8) may not be realizable for
robotic manipulators without specific design. Firstly, the accurate
tracking error dynamics (6) might be unattainable since the un-
certainties exist in M−1 (q), C (q, q̇) and G (q). Then the solution
of the nonlinear optimization problem and stability analysis are
difficult for the unknown robotic system. To overcome above
challenges, two groups of NNs are utilized under the proposed
MPC structure: (i) the NN-based estimation model of the robotic
system is established as a predictive model for approximating un-
certain system dynamics online; (ii) actor–critic networks are es-
tablished for solving the nonlinear optimization problem of MPC
based on the predictive model. The stability of the closed-loop
system is ensured at the same time.

3.1. NN-based predictive model

In this section, adaptive NNs are used as the predictive model

to approximate the tracking error dynamics (6). Assume that τ is
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a persistently excited and feasible input which satisfies (4). The
tracking error dynamics can be expressed as

ż1 = −K1z1 + z2
ż2 = W ∗T

f ϕf
(
z+

)
+ W ∗T

g ϕg (z1, qd) τ + ξm
(9)

where ξm = ξf + ξgτ is the estimation error, W ∗T
f ϕf

(
z+

)
+ ξf =

f
(
z+

)
, W ∗T

g ϕg (z1, qd) + ξg = g (z1, qd), ϕf
(
z+

)
, ϕg (z1, qd) are

NN’s activation functions which are selected as Gaussian in this
paper.

Assumption 2 ([2,43]). The optimal NN’s weights W ∗

f , W
∗
g , ac-

tivation functions ϕf
(
z+

)
, ϕg (z1, qd), and approximation errors

ξf , ξg are bounded, i.e. there exist wf 0 > 0, wg0 > 0, ϕf 0 > 0,

ϕg 0 > 0, ξf 0 > 0, ξg0 > 0, such that
∑n

i=1

W ∗

f ,i

 ≤ wf 0,∑n
i=1

W ∗

g,i

 ≤ wg0,
ϕf (

z+
) ≤ ϕf 0,

ϕg (z1, qd) ≤ ϕg0,ξf  ≤ ξf 0,
ξg ≤ ξg0.

Lemma 5. Let Assumption 2 and constraints (4) hold, then the
estimation error ξm is bounded, i.e. there exists ξm0 > 0, such that
∥ξm∥ ≤ ξm0.

In the MPC scheme, the optimization problem is solved at
the time sequence {tk} discretely. Thus the predictive model over
t ∈ [tk, tk+1) can be defined as
˙̄z1 = −K1z̄1 + z̄2 + L∆z̄k1
˙̄z2 = f̄

(
z̄+

)
+ ḡ (z̄1, qd) τ + L∆z̄k2

(10)

where ḡ (z̄1, qd) = Ŵ T
gkϕg (z̄1, qd), f̄

(
z̄+

)
= Ŵ T

fkϕf
(
z̄+

)
, Ŵfk and

Ŵgk are approximations of W ∗

f and W ∗
g at time tk, respectively.

L is a positive constant, ∆z̄kj = zj (tk)− z̄j
(
t−k

)
, j = 1, 2 is the

estimation error of zj at time tk. Define ∆z̄0j ≡ 0.
NN’s weights Ŵfk and Ŵgk in (10) are constants over t ∈

[tk, tk+1) , k = 0, 1, 2, . . .., and are updated at time instant tk+1
through:

Ŵf (k+1),i = Ŵfk,i +∆Ŵfk,i

= Ŵfk,i + αf

[
− (1 +∆t)ΘfkL∆t∆z̄k2,i − kf Ŵfk,i

] (11)

Ŵg(k+1),i = Ŵgk,i +∆Ŵgk,i

= Ŵgk,i + αg

[
− (1 +∆t)ΘgkL∆t∆z̄k2,i − kgŴgk,i

] (12)

where αf > 0, αg > 0 are learning rates, kf > 0, kg > 0
are introduced for improving the robustness, Θgk ≡

1
2

∑N−1
l=1(

ϕg (z̄1l, qdl) τl + ϕg
(
z̄1(l+1), qd(l+1)

)
τl+1

)
∆tl, Θfk ≡

1
2

∑N−1
l=1(

ϕf
(
z̄+

l

)
+ ϕf

(
z̄+

l+1

))
∆tl, in which (�)l = (�) (tl), ∆tl = tl+1 − tl, N

is a finite positive integer, t1 = tk, and tN = tk+1.

Lemma 6. Let Assumption 2 and constraints (4) hold, input τ
satisfies PE condition. Then signals Θfk, Θgk are bounded, i.e. there
exist θf 0 > 0, θg0 > 0, such that

Θfk
 ≤ θf 0,

Θgk
 ≤ θg0. Θfk

and Θgk are persistently existed, too.

According to the characteristic of MPC, the predictive tracking
error z̄j is updated by real value zj at time instant tk+1 through

z̄j
(
t+k+1

)
= zj (tk+1) , j = 1, 2 (13)

Further more, it can be gotten that ∀t ∈ [tk, tk+1), it holds that
∆z̄2(t)T∆z̄2 (t) ⩽ ∆z̄(k+1)T

2 ∆z̄(k+1)
2 .

Define W̃fk = W ∗

f − Ŵfk, W̃gk = W ∗

f − Ŵgk as NN’s weights
[ ¯k ¯k
estimation errors. For t ∈ tk, tk+1), we consider ∆z (t) = ∆z ,
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˜ fk,i (t) = W̃fk,i and W̃gk,i (t) = W̃gk,i. In the following theorem,
he designed adaptive strategies (11) and (12) are shown to
uarantee the boundedness of the predictive estimation error and
N’s weights estimation errors.

heorem 1. Let the predictive model be defined as (10) and
nput signals satisfy constraints (4) and PE condition. Assume that
ssumption 2 and Lemmas 1, 2, 4, 5, 6 hold. NN’s weights Ŵfk and
ˆ gk are updated through (11) and (12) at time instant tk+1, k =

, 1, 2, . . .. The predictive tracking error z̄j is updated by real value
through (13) at time instant tk+1. Then the predictive estimation
error ∆z̄k and NN’s weights estimation errors W̃fk, W̃gk remain UUB,
f it holds that:

i) K1 − 1 > 0

ii) 1 − L2∆t > 0

(iii) 1 − 2 (1 +∆t) L2∆t2 − 3(1 +∆t)2L2∆t2
(
αf θ

2
f 0 + αgθ

2
g0

)
> 0

(iv) kf − 3αf k2f − 3 (1 +∆t) θ2f 0 > 0

(v) kg − 3αgk2g − 3 (1 +∆t) θ2g0 > 0

Proof. Construct a Lyapunov function candidate as

Vmk =
1
2
∆z̄kT1 ∆z̄k1 +

1
2
∆z̄kT2 ∆z̄k2

+

n∑
i=1

1
2αf

W̃ T
fk,iW̃fk,i +

n∑
i=1

1
2αg

W̃ T
gk,iW̃gk,i

=Vmz + Vmf + Vmg

(14)

here Vmz =
1
2∆z̄kT1 ∆z̄k1 +

1
2∆z̄kT2 ∆z̄k2 , Vmf =

∑n
i=1

1
2αf

W̃ T
fk,iW̃fk,i,

mg =
∑n

i=1
1

2αg
W̃ T

gk,iW̃gk,i.
For t ∈ [tk, tk+1), Vmk is a constant obviously. At time instant

k+1, the difference of Vmk can be calculated through

Vmk = ∆Vmz +∆Vmf +∆Vmg (15)

The first term in (15) is given by

∆Vmz =
1
2
∆z̄(k+1)T

1 ∆z̄(k+1)
1 −

1
2
∆z̄kT1 ∆z̄k1

+
1
2
∆z̄(k+1)T

2 ∆z̄(k+1)
2 −

1
2
∆z̄kT2 ∆z̄k2

(16)

n which
1
2
∆z̄(k+1)T

1 ∆z̄(k+1)
1

=

∫ tk+1

tk

∆z̄T1∆ ˙̄z1ds ≤ − (K1 − 1)
∫ tk+1

tk

∆z̄T1∆z̄1ds

+
1
2

∫ tk+1

tk

∆z̄T2∆z̄2ds +
L2

2

∫ tk+1

tk

∆z̄kT1 ∆z̄k1ds

≤
∆t
2
∆z̄(k+1)T

2 ∆z̄(k+1)
2 +

∆tL2

2
∆z̄kT1 ∆z̄k1

(17)

∆z̄(k+1)
2 =z2 (tk+1)− z̄2

(
t−k+1

)
=

∫ tk+1

tk

(
W ∗T

f ϕf
(
z+

)
− Ŵ T

fkϕf
(
z̄+

))
ds

+

∫ tk+1

tk

(
W ∗T

g ϕg (z1, qd) τ − Ŵ T
gkϕg (z̄1, qd) τ

)
ds

+

∫ tk+1

tk

ξmds −

∫ tk+1

tk

L∆z̄k2ds

(18)
92
From Lemmas 1 and 2, we have∫ tk+1

tk

(
W ∗T

f ϕf
(
z+

)
− Ŵ T

fkϕf
(
z̄+

))
ds

=

∫ tk+1

tk

(
W ∗T

f

(
ϕf

(
z+

)
− ϕf

(
z̄+

))
+ W̃ T

fkϕf
(
z̄+

))
ds

=ϖf + W̃ T
fkΘfk

(19)

where ϖf = W ∗T
f

(
ϕf

(
z+

(
εf

))
− ϕf

(
z̄+

(
εf

)))
∆t + ζf , ζf is the

integral error, εf ∈ [tk, tk+1), Θfk is defined earlier. Analogously,∫ tk+1

tk

(
W ∗T

g ϕg (z1, qd) τ − Ŵ T
gkϕg (z̄1, qd) τ

)
ds

=ϖg + W̃ T
gkΘgk

(20)

where ϖg = W ∗T
g

(
ϕg

(
z1

(
εg

)
, qd

(
εg

))
− ϕg

(
z̄1

(
εg

)
, qd

(
εg

)))
τ

(
εg

)
∆t+ζg , ζg is the integral error, εg ∈ [tk, tk+1),Θgk is defined

earlier.∫ tk+1

tk

ξm − L∆z̄k2ds

=ξm
(
εξ

)
∆t − L∆t∆z̄k2 = ϖξ − L∆t∆z̄k2

(21)

where εξ ∈ [tk, tk+1).
Substituting (19)–(21) into (18), we have

∆z̄k+1
2 = ϖ + W̃ T

fkΘfk + W̃ T
gkΘgk − L∆t∆z̄k2 (22)

in which ϖ = ϖf +ϖg +ϖξ .

Lemma 7. Let Lemmas 2, 5, 6, Assumption 2 and constraints (4)
hold, then the signal ϖ is bounded, i.e. there exists ϖ0 > 0, such
that ∥ϖ∥ ≤ ϖ0.

Substituting (17) (22) into (16), it can be gotten

∆Vmz ≤ −
1
2

(
1 − 2 (1 +∆t) L2∆t2

)
∆z̄kT2 ∆z̄k2

−
1
2

(
1 − L2∆t

)
∆z̄kT1 ∆z̄k1 + 2 (1 +∆t) ∥ϖ0∥

2

− (1 +∆t) L∆t∆z̄kT2
(
W̃ T

fkΘfk + W̃ T
gkΘgk

)
+

3 (1 +∆t)
2

θ2f 0

n∑
i=1

W̃fk,i

2

+
3 (1 +∆t)

2
θ2g0

n∑
i=1

W̃gk,i

2

(23)

The second term in (15) is given by

∆Vmf =

n∑
i=1

1
2αf

W̃ T
f (k+1),iW̃f (k+1),i −

1
2αf

W̃ T
fk,iW̃fk,i

=

n∑
i=1

1
2αf

∆Ŵ T
fk,i∆Ŵfk,i −

1
αf

W̃ T
fk,i∆Ŵfk,i

≤
1
2

n∑
i=1

(
kf + 3αf k2f

) W ∗

f ,i

2

−
1
2

n∑
i=1

(
kf − 3αf k2f

) W̃fk,i

2

+
3αf

2
(1 +∆t)2L2∆t2θ2f 0

∆z̄k2
2

+ (1 +∆t)
n∑

W̃ T
fk,iΘfkL∆t∆z̄k2,i

(24)
i=1
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Analogously, the third term in (15) is expressed as

∆Vmg =

n∑
i=1

1
2αg

W̃ T
g(k+1),iW̃g(k+1),i −

1
2αg

W̃ T
gk,iW̃gk,i

≤
1
2

n∑
i=1

(
kg + 3αgk2g

) W ∗

g,i

2

−
1
2

n∑
i=1

(
kg − 3αgk2g

) W̃gk,i

2

+
3αg

2
(1 +∆t)2L2∆t2θ2g0

∆z̄k2
2

+ (1 +∆t)
n∑

i=1

W̃ T
gk,iΘgkL∆t∆z̄k2,i

(25)

Substituting (23)–(25) into (15), and noting that

∆t∆z̄T2kW̃
T
fkΘfk =

n∑
i=1

W̃ T
fk,iΘfkL∆t∆z̄2k,i (26)

∆t∆z̄T2kW̃
T
gkΘgk =

n∑
i=1

W̃ T
gk,iΘgkL∆t∆z̄2k,i (27)

We have

∆Vmk ≤ −
1
2
κ1∆z̄kT1 ∆z̄k1 −

1
2
κ2∆z̄kT2 ∆z̄k2

−

n∑
i=1

κ3

2

W̃fk,i

2
−

n∑
i=1

κ4

2

W̃gk,i

2
+ Cm

≤ − κVmk + Cm

(28)

here κ1 = 1 − L2∆t, κ2 = 1 − 2 (1 +∆t) L2∆t2 − 3(1 +∆t)2L2
∆t2

(
αf θ

2
f 0 + αgθ

2
g0

)
, κ3 = kf − 3αf k2f − 3 (1 +∆t) θ2f 0, κ4 =

kg − 3αgk2g − 3 (1 +∆t) θ2g0, κ = min
(
κ1, κ2, αf κ3, αgκ4

)
, Cm =

2 (1 +∆t) ∥ϖ0∥
2

+
1
2

∑n
i=1

(
kf + 3αf k2f

) W ∗

f ,i

2
+

1
2

∑n
i=1

kg + 3αgk2g
) W ∗

g,i

2.
The parameters fulfill that κ1 > 0, κ2 > 0, κ3 > 0 and κ4 > 0.

According to Lemma 4, the predictive estimation error ∆z̄kj and
NN’s weights errors W̃fk, W̃gk will remain UUB.

It is worth noting that the PE condition of Θfk and Θgk ensures
sufficient signals of the estimation error space to keep Ŵfk and
Ŵgk from converging to zero.

Furthermore, the estimation error ∆z̄k converges asymptot-
ically to the compact set Ω∆z̄ :=

{
∆z̄k ∈ ℜ

2n
|
∆z̄k

 ⩽
√
Z
}
,

here Z = 2
(
V ∗

mk (0)+
Cm
κ

)
. The proof can refer to [41].

Based on the predictive model (10) with adaptive laws (11)
and (12), the MPC strategy (7) (8), for s ∈ [tk, tk + T ), is reformu-
ated as

in
τ̄

J (z̄) =

∫ tk+T

tk

Q (z̄)+ U (τ̄ ) ds + Ψ (z̄ (tk + T )) (29)

.t.

⎧⎪⎪⎨⎪⎪⎩
z̄j (tk |tk ) = zj (tk), j = 1, 2
˙̄z1 (s) = −K1z̄1 + z̄2 + L∆z̄k1
˙̄z2 (s) = f̄

(
z̄+

)
+ ḡ (z̄1, qd) τ + L∆z̄k2

|τ̄i| ≤ λ, i = 1, 2, . . . , n

(30)

where parameters have the same definitions with (7) (8).

3.2. Optimization problem solving for MPC

In this section, we utilize optimal control strategy and Hamil-
[
tonian function to solve (29) subject to (30) for s ∈ tk, tk + T ). ε
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Both optimal tracking performance and stability analysis of the
predictive system are considered.

For t ∈ [tk, tk + T ), the cost function is redefined as

J̄t (z̄) =

∫ tk+T

t
Q (z̄)+ U (τ̄ ) ds + Ψ (z̄ (tk + T )) (31)

where Q (z̄) = z̄T1Q1z̄1 + z̄T2Q2z̄2, Q1 and Q2 ∈ ℜ
n×n are symmetric

positive definite. U (τ̄ ) =
∫ τ̄
0 λβ

−1(v/λ)TRdv, β (�) = tanh (�),
R = diag (r1, . . . , rn) > 0. U (τ̄ ) is defined as an integrand func-
tion for ensuring that the input constraints (4) can be satisfied.
Ψ (z̄ (tk + T )) is the terminal penalty which can be seen as an
estimation of the optimal cost function from time instant tk + T
to infinity.

Assume that the cost function is smooth. Then the optimal cost
function can be expressed as

J̄∗t = W ∗Tϕc (z̄)+ ξc (32)

where ξc is the estimation error, ϕc (z̄) is the NN’s activation
function which is selected as Gaussian in this paper. The terminal
penalty can be defined as Ψ (z̄ (tk + T )) = W ∗Tϕc (z̄ (tk + T ))+ξc .
Then the optimal cost function’s gradient can be expressed as

∇j J̄∗t =
∂ J̄∗t (z̄)
∂ z̄j

=

(
∂ϕc (z̄)
∂ z̄j

)T

W ∗
+
∂ξc

∂ z̄j
= ∇jϕc(z̄)TW ∗

+ ∇jξc, j = 1, 2

(33)

Assumption 3 ([43]). The optimal NN’s weights W ∗, activation
function ϕc (z̄) and its gradients ∇1ϕc (z̄), ∇2ϕc (z̄), estimation
error ξc and its gradients ∇1ξc , ∇2ξc are bounded, i.e. there exist
wc0 > 0, ϕc0 > 0, ϕd1c0 > 0, ϕd2c0 > 0, ξc0 > 0, ξd1c0 > 0, ξd2c0 >
0, such that ∥W ∗∥ ≤ wc0, ∥ϕc (z̄)∥ ≤ ϕc0, ∥∇1ϕc (z̄)∥ ≤ ϕd1c0,
∥∇2ϕc (z̄)∥ ≤ ϕd2c0, ∥ξc∥ ≤ ξc0, ∥∇1ξc∥ ≤ ξd1c0, ∥∇2ξc∥ ≤ ξd2c0.

According to the optimal control theory, the Hamiltonian func-
tion can be expressed as

H̄
(
z̄, τ̄ (z̄) ,∇ J̄∗t

)
= ∇1 J̄∗Tt ˙̄z1 + ∇2 J̄∗Tt ˙̄z2 + Q (z̄)+ U (τ̄ ) (34)

Under the stationarity condition, the optimal control strategy
over t ∈ [tk, tk + T ) can be calculated by

τ̄ ∗ (t) = argmin
τ̄

H̄
(
z̄, τ̄ (z̄) ,∇ J̄∗t

)
= −λ tanh

(
T̄∗

)
(35)

where T̄∗
=

1
λ
R−1ḡT (z̄1, qd)∇2 J̄∗t =

1
λ
R−1ḡT (z̄1, qd)

(
∇2ϕc(z̄)TW ∗

+∇2ξc).
Substituting (35) into U (τ̄ ), we have

U
(
τ̄ ∗

)
=λ

(
tanh−1 (

τ̄ ∗/λ
))T

Rτ̄ ∗

+
1
2
λ2

⌣
R ln

(
1̄ −Ξ 2 (

tanh
(
T̄∗

)))
=λ∇2 J̄∗t

T
ḡ (z̄1, qd) tanh

(
T̄∗

)
− λ2

⌣
R ln

(
cosh

(
T̄∗

))
(36)

here
⌣
R = [r1, . . . , rn] ∈ ℜ

1×n, 1̄ = [1, . . . , 1]T ∈ ℜ
n×1, Ξ 2 (�)

s defined as an operation which squares each element of (�)
everally.
Substituting (35) (36) into (34), the optimal Hamiltonian func-

ion can be expressed as

H̄∗
(
z̄, τ̄ ∗,∇ J̄∗t

)
=∇1 J̄∗t

T ˙̄z1 + ∇2 J̄∗t
T ˙̄z2 + Q (z̄)+ U

(
τ̄ ∗

)
=W ∗T

∇ϕc (z̄) F̄ + Q (z̄)− λ2
⌣
R ln

(
cosh

(
T̄∗

))
+ εHJB

=0

(37)

here F̄ =

[
−K1z̄1 + z̄2 + L∆z̄k1

f̄
(
z̄+

)
+ L∆z̄k2

]
, ∇ϕc (z̄) =

[
∇1ϕc (z̄) ∇2ϕc (z̄)

]
,

= ∇ ξ T (
f̄
(
z̄+

)
+ L∆z̄k

)
+ ∇ ξ T (

−K z̄ + z̄ + L∆z̄k
)
.
HJB 2 c 2 1 c 1 1 2 1
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For remaining optimal tracking performance and stability of
he predictive system, as well as taking advantage of prior knowl-
dge of the predictive model, we design actor–critic networks,
hich have the same activation function but different weights,
o approximate the control strategy (35) and cost function (32).
he critic network is defined as

ˆ̄
t = Ŵ T

c ϕc (z̄) (38)

ith the terminal penalty is expressed as Ψ̂ (z̄ (tk + T )) = Ŵ T
c ϕc

(z̄ (tk + T )). Ŵc is the estimation of W ∗ in the cost function.
The actor network is defined as N̂a = Ŵ T

a ϕc (z̄). The estimation
ontrol strategy can be expressed as

ˆ̄τ (t) = argmin
τ̄

H̄
(
z̄, τ̄ (z̄) ,∇N̂a

)
= −λ tanh

(
ˆ̄T
)

(39)

here ˆ̄T =
1
λ
R−1ḡT (z̄1, qd)∇2ϕc(z̄)T Ŵa. Ŵa is the estimation of

∗ in the control strategy. The estimation errors of actor–critic
etworks can be defined as W̃a = W ∗

− Ŵa, W̃c = W ∗
− Ŵc .

Substituting (38) (39) into (34), the estimation of Hamiltonian
function can be gotten:

ˆ̄H
(
z̄, ˆ̄τ ,∇ˆ̄J t

)
=∇1

ˆ̄J t
T
˙̄z1 + ∇2

ˆ̄J t
T
˙̄z2 + Q (z̄)+ U

(
ˆ̄τ

)
=Ŵ T

c

(
∇ϕc (z̄) F̄ + ∇2ϕc (z̄) ḡ (z̄1, qd) ˆ̄τ

)
+ Q (z̄)

− Ŵ T
a ∇2ϕc (z̄) ḡ (z̄1, qd) ˆ̄τ − λ2

⌣
R ln

(
cosh

(
ˆ̄T
))

(40)

Introducing (37), the estimation error of H̄ can be defined as

eH̄ =
ˆ̄H

(
z̄, ˆ̄τ ,∇ˆ̄J t

)
=

ˆ̄H
(
z̄, ˆ̄τ ,∇ˆ̄J t

)
− H̄∗

(
z̄, τ̄ ∗,∇ J̄∗t

)
= − W̃ T

c w + W̃ T
a ∇2ϕc (z̄) ḡ (z̄1, qd) ˆ̄τ − εHJB

+ λ2
⌣
R

(
ln

(
cosh

(
T̄∗

))
− ln

(
cosh

(
ˆ̄T
))) (41)

here w = ∇ϕc (z̄) F̄ + ∇2ϕc (z̄) ḡ (z̄1, qd) ˆ̄τ .

The nonlinear term
⌣
R

(
ln

(
cosh

(
T̄∗

))
− ln

(
cosh

(
ˆ̄T
)))

in (41)
an be expanded into a Taylor series as

λ2
⌣
R

(
ln

(
cosh

(
T̄∗

))
− ln

(
cosh

(
ˆ̄T
)))

=λ2
⌣
R
∂ ln

(
cosh

(
ˆ̄T
))

∂ T̂

(
T̄∗

−
ˆ̄T
)

+ o
(
ˆ̄T
)

=A∇2ϕc (z̄)T W̃a + εo

(42)

where A = λtanhT
(
ˆ̄T
)
ḡT (z̄1, qd), εo = A∇2ξc+o

(
ˆ̄T
)
, o

(
ˆ̄T
)
is the

high order term. Obviously, the vector A is bounded by Amax > 0,
which means ∥A∥ ≤ Amax.

Assumption 4. The high order term o
(
ˆ̄T
)

is bounded, i.e. there

exists o0 > 0, such that
o(

ˆ̄T
) ≤ o0.

Lemma 8. Let Assumptions 3, 4 hold. Then the error εo is bounded,
i.e. there exists εo0 > 0, such that ∥εo∥ ≤ εo0.

Substituting (42) into (41), we have

eH̄ = −W̃ T
c w + εo − εHJB (43)

For driving the result to converge to the optimal or suboptimal
solution, and guaranteeing the stability of the predictive system,
94
the updating law for Ŵc is developed as:

˙̂W c = −
αc(

1 + wTw
)2 ∂EH̄
∂Ŵc

− 2αcksŴc − αckpŴa

= −
αcw(

1 + wTw
)2 eH̄ − 2αcksŴc − αckpŴa

(44)

where EH̄ =
1
2

eH̄2 is an integral squared error, αc > 0 is the
learning rate, ks > 0, kp > 0 are learning parameters. The first
term of (44) is used to drive the error eH̄ to zero, the other terms
are used to guarantee the stability of the predictive system.

Lemma 9 ([44]). The normalized signal w

(1+wTw)
is bounded. i.e.

there exists wmax ∈ (0, 1), such that
 w

(1+wTw)

 ≤ wmax.

The updating law for Ŵa is designed as
˙̂W a = αakpŴc − 2αakaŴa + αaΥWa z̄2 (45)

where αa > 0 is the learning rate, ka > 0 is the learning parame-
ter, ΥWa = ∇2ϕc (z̄) ḡ (z̄1, qd) R−1diag

(
Ξ 2

(
sech

(
ˆ̄T
)))

ḡT (z̄1, qd).
For the predictive model (10) with cost function (31), based

on the estimation cost function (38) and control strategy (39)
with adaptive laws (44) and (45), the MPC solving algorithm
over s ∈ [tk, tk + T ) can be summarized as Algorithm 1. The
maximum number of iterations NR is adopted to guarantee the
finite computation time for Algorithm 1.

Algorithm 1 MPC solving algorithm

Input:
Ŵck− , Ŵak− : NN’s weights which are gotten from last period;
z (tk): Initial value of the predictive model;
αc , αa, kc , kp, ka: Learning rates and parameters of actor–critic
networks;
∆: Convergence thresholds in actor–critic networks;
NR: Maximum number of iterations

1: Initialize Ŵck, Ŵak by Ŵck− , Ŵak− ;
2: Initialize NR = 1;
3: repeat
4: Initialize z̄ (tk) = z (tk);
5: for t ∈ [tk, tk + T ) do
6: Compute the control input ˆ̄τ (t) via (39);
7: Compute the estimation Hamiltonian function via (40);
8: update Ŵc , Ŵa via (44), (45);
9: update predictive tracking error z̄ via (10);

10: end for
11: nR = nR + 1;
2: until

Ŵc − Ŵck−

 +

Ŵa − Ŵak−

 ≤ ∆ or nR > NR

Return:
Ŵc , Ŵa, ˆ̄τ

For stability analysis, we have the following assumption:

Assumption 5 ([45]). The predictive system with cost function
(31) is asymptotic stability under the optimal control strategy
(35). Define V̄1 =

1
2 z̄

T z̄ as a Lyapunov function, then there exist
positive definite values Π1,Π2 which satisfy
˙̄V ∗

1 = z̄T1 ˙̄z1 + z̄T2
(
f̄
(
z̄+

)
+ L∆z̄2k + ḡ (z̄1, qd) τ̄ ∗

)
≤ −Π1∥z̄1∥2

−Π2∥z̄2∥2
≤ 0

(46)

In the following theorem, the MPC solving algorithm is shown
to guarantee the boundedness of the predictive tracking error z̄
and NN’s weights errors W̃c , W̃a for t ∈ [tk, tk + T ) ,∀k ∈ N.
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heorem 2. Let Assumptions 3–5, Lemma 8 hold. Under the MPC
olving algorithm, the predictive tracking error z̄ and NN’s weights
rrors W̃c , W̃a remain UUB for t ∈ [tk, tk + T ) ,∀k ∈ N, if it holds
hat:

i) e−δ∆tλQ1
+Π1 − 2ξ 2d1c0∥K1∥

2 > 0

(ii) e−δ∆tλQ2
+Π2 −

1
2
λ̄B − 2ξ 2

d1c0
−

1
2
> 0

iii) λMw + ks −
εo0

2
−

kp
2

−
w2

max

2
> 0

iv) ka −
kp
2

− λ̄⌣B > 0

(v) δ > 0

Proof. Construct a Lyapunov function candidate as

V̄ =
1
2
z̄T z̄ + e−δ(t−tk) J̄∗t +

1
2αc

W̃ T
c W̃c +

1
2αa

W̃ T
a W̃a

= V̄1 + V̄2 + V̄3 + V̄4

(47)

The time derivative of V̄ is
˙̄V =

˙̄V 1 +
˙̄V 2 +

˙̄V 3 +
˙̄V 4 (48)

The first term of (48) is given by

˙̄V 1 =z̄T1 ˙̄z1 + z̄T2 ˙̄z2
=z̄T1 ˙̄z1 + z̄T2

(
f̄
(
z̄+

)
+ L∆z̄2k + ḡ (z̄1, qd) τ̄ ∗

)
− z̄T2 ḡ (z̄1, qd) τ̄

∗
+ z̄T2 ḡ (z̄1, qd) ˆ̄τ

(49)

Substituting (35) (39) into the last term of (49), and expand it
into a Taylor series as

− z̄T2 ḡ (z̄1, qd) τ̄
∗
+ z̄T2 ḡ (z̄1, qd) ˆ̄τ

=z̄T2 ḡ (z̄1, qd)
(
λ tanh

(
T̄∗

)
− λ tanh

(
ˆ̄T
))

=z̄T2 B∇2ϕc(z̄)T W̃a + z̄T2 B∇2ξc + z̄T2 ḡ (z̄1, qd) o1
(
ˆ̄T
) (50)

where B = ḡ (z̄1, qd) diag
(
Ξ 2

(
sech

(
ˆ̄T
)))

R−1ḡT (z̄1, qd), o1
(
ˆ̄T
)

is the high order term. According to Theorem 1 and Assumption 4,
signals ḡ (z̄1, qd) and o1

(
ˆ̄T
)
are bounded, i.e. there exist ŵg max >

0, o10 > 0, such that
∑n

i=1 ∥ḡi∥ ≤ ŵg maxϕg0,
o1 (

ˆ̄T
) ≤ o10.

Substituting (46) (50) into (49), we have

˙̄V 1 ≤ −Π1∥z̄1∥2
−

(
Π2 −

1
2
λ̄B −

1
2

)
∥z̄2∥2

+ z̄T2B∇2ϕc(z̄)T W̃a + Cz̄

(51)

here Cz̄ =
1
2 λ̄Bξ

2
d2c0 +

1
2 ŵ

2
g maxϕ

2
g0o

2
10.

The second term of (48) is given by

˙̄V 2 = − δe−δ(t−tk) J̄∗t + e−δ(t−tk) ˙̄J∗t = − δe−δ(t−tk) J̄∗t

+ e−δ(t−tk)
(
∇1 J̄∗t

T ˙̄z1 + ∇2 J̄∗t
T (

f̄
(
z̄+

)
+ L∆z̄2k

))
+ e−δ(t−tk)∇2 J̄∗Tt ḡ (z̄1, qd) ˆ̄τ

(52)

Substituting (37) into (52), we have

˙̄V 2 ≤ − δe−δ(t−tk) J̄∗t − e−δ∆t z̄T1Q1z̄1
− e−δ∆t z̄T2Q2z̄2 + W̃ T

a
⌣
BW̃a + CJ

(53)

where
⌣
B = ∇2ϕc (z̄) B∇2ϕc(z̄)T , which is a bounded semi-definite

symmetric matrix, CJ = λ̄⌣Bw
2
c0 +

(
2λ̄B +

1
2

)
ξ 2d2c0 +

1
2w

2
c0ϕ

2
d2c0 +

ˆ
2
g maxϕ

2
g0o

2
10. Taylor series for nonlinear term of (52) is utilized.
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The third term of (48) is given by

˙̄V 3 = −
1
αc

W̃ T
c

˙̂W c

=W̃ T
c

w(
1 + wTw

)2 (
−W̃ T

c w + εo − εHJB

)
+ 2W̃ T

c ksŴc + W̃ T
c kpŴa

(54)

in which

W̃ T
c

w(
1 + wTw

)2 (
−W̃ T

c w + εo

)
≤ − λMw

W̃c

2
+

εo(
1 + wTw

)2 (
1
2
W̃ T

c W̃c +
1
2
wTw

)
≤ −

(
λMw −

εo0

2

) W̃c

2
+
εo0w

2
max

2

(55)

where Mw=
wwT

(1+wTw)
2 is a bounded semi-definite symmetric ma-

trix since Lemma 9 holds.

− εHJB
W̃ T

c w(
1 + wTw

)2
≤

1(
1 + wTw

)2 (
1
2
ε2HJB +

1
2

(
W̃ T

c w

)2
)

≤εS + 2ξ 2d1c0∥K1∥
2
∥z̄1∥2

+ 2ξ 2d1c0∥z̄2∥
2
+

1
2
w2

max

W̃c

2

(56)

here εS = 2ξ 2d2c0
f̄ (

z̄+
)
+ L∆z̄k2

2
+ 2ξ 2d1c0L

2
∆z̄k1

2. According
to Theorem 1, the signal εS is bounded, i.e. there exists εS0 > 0,
such that ∥εS∥ ⩽ εS0.

2W̃ T
c ksŴc + W̃ T

c kpŴa

≤

(
kp
2

+ ks

)
W ∗TW ∗

−

(
ks −

kp
2

)
W̃ T

c W̃c − W̃ T
c kpW̃a

(57)

Substituting (55)–(57) into (54), we have

˙̄V 3 ≤ − κWc

W̃c

2
+ CWc + 2ξ 2d1c0∥K1∥

2
∥z̄1∥2

+ 2ξ 2d1c0∥z̄2∥
2
− W̃ T

c kpW̃a

(58)

where κWc = λMw + ks −
εo0
2 −

kp
2 −

w2
max
2 , CWc =

εo0w
2
max

2 + εS0 +

ks +
kp
2

)
w2

c0.
The fourth term of (48) is given by

˙̄V 4 = −
1
αa

W̃ T
a

˙̂W a

= −W̃ T
a kpŴc + 2kaW̃ T

a Ŵa − W̃ T
a ΥWa z̄2

⩽ −κ̄Wa

W̃a

2
+ CWa + W̃ T

c kpW̃a − W̃ T
a ΥWa z̄2

(59)

here κ̄Wa = ka −
kp
2 , CWa =

(
kp
2 + ka

)
w2

c0.
Substituting (51) (53) (58) (59) into (48), we have

˙̄V ≤ − κz̄1∥z̄1∥
2
− κz̄2∥z̄2∥

2
− δe−δ(t−tk) J̄∗t − κWc

W̃c

2

− κWa

W̃a

2
+ Cz̄ + CJ + CWa + CWc

≤ − κV̄ V̄ + CV̄

(60)

here κz̄1 = e−δ∆tλQ1
+ Π1 − 2ξ 2d1c0∥K1∥

2, κz̄2 = e−δ∆tλQ2
+

2 −
1
2 λ̄B − 2ξ 2d1c0 −

1
2 , κWc = λMw + ks −

εo0
2 −

kp
2 −

w2
max
2 ,

Wa = κ̄Wa − λ̄⌣B , κV̄ = min
{
2κz̄1 , 2κz̄2, δ, 2αcκWc , 2αcκWa

}
, CV̄ =

+ C + C + C .
z̄ J Wc Wa
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The parameters fulfill that κz̄1 > 0, κz̄2 > 0, δ > 0, κWc > 0
nd κWa > 0. Note that although Π1 and Π2 in κz̄1 and κz̄2 are
ositive definite (from Assumption 5), they cannot be selected
irectly. So the optimal function of MPC J̄∗t is added into (47) for
ntroducing e−δ∆tλQ1

and e−δ∆tλQ2
into κz̄1 and κz̄2 , respectively.

Then conditions κz̄1 > 0 and κz̄2 > 0 can be satisfied by choosing
appropriate Q1 and Q2.

According to Lemma 4, the predictive tracking error z̄ and NN’s
weights errors W̃c , W̃a remain UUB for t ∈ [tk, tk + T ) ,∀k ∈ N.

Next the convergence of Ŵc and Ŵa is explained. It can be seen
that Ŵgk is constant over t ∈ [tk, tk + T ) ,∀k ∈ N. if Ŵgk ̸= 0, the
ignal ΥWa is persistently existed over t ∈ [tk, tk + T ). The last
erm of (45) ensures sufficient signals of the predictive tracking
rror space to keep Ŵa from converging to zero, and the last term
f (44), which connects the critic network and the action network,
eeps Ŵc from converging to zero.
Furthermore, Algorithm 1 solves the optimization problem

f MPC iteratively based on the predictive model (10) for t ∈

tk, tk + T ). During each iteration, the initial value of the pre-
ictive tracking error, which is gotten from the real system, the
pdating laws of Ŵc , Ŵa and the calculation of ˆ̄τ remain the same,
xcept for the initial values of Ŵc , Ŵa, which are gotten from the
revious iteration. Then (60) holds for each iteration. So for each
teration, the closed-loop predictive system is stable with better
erformance comparing with the previous iteration. Therefore,
he following remark can be gotten.

emark 1. Let Assumptions 3–5, Lemma 8 hold. Under the MPC
olving algorithm, the predictive tracking error z̄ and NN’s
eights errors W̃c , W̃a remain UUB. The control strategy ˆ̄τ and
N’s weights Ŵc , Ŵa converge stably to the suboptimal value.

.3. NN-based MPC for robotic manipulators

Based on the predictive model (10) and MPC solving algo-
ithm, the NN-based MPC strategy is proposed in this section.
he suboptimal solution ˆ̄τ over t ∈ [tk, tk + T ) is solved by
lgorithm 1, then it is applied to the robotic manipulator for
∈ [tk, tk+1). At time instant tk+1, the parameters Ŵf (k+1) and

ˆ g(k+1) of the predictive model are updated through (11) and
12), the predictive tracking error z̄

(
t+k+1

)
is updated by real value

(tk+1). After that the optimization problem is revisited at time
nstant tk+1 under new initial stations. The architecture of the
N-based MPC strategy is shown in Fig. 1, and the algorithm is
ummarized in Algorithm 2.

emark 2. Considering the structure of the control input ˆ̄τ in (39),
nd property of negative definite symmetry for g (z1, qd) defined
n (6), the initial value of Ŵgk should satisfy λ̄

Ŵg0ϕg (z1 (0), qd (0))
)

≤ −λ̄
(
M−1 (q (0))

)
. In this initial con-

ition, Ŵgk will converge to the neighborhood of W ∗
g from the

on-zero side, the PE condition of ˆ̄τ and the condition Ŵgk ̸=

,∀k ∈ N can be guaranteed.

The stability of the closed-loop system is discussed now. An
ugmented state, which is defined asψ ≡

[
zT , z̄T , W̃ T

c , W̃
T
a ,∆z̄kT ,∑n

i=1 W̃
T
fk,i,

∑n
i=1 W̃

T
gk,i

]T
, is adopted to combine all variables. In

he following theorem, the NN-based MPC strategy given in Algo-
ithm 2 is shown to guarantee the boundedness of the augmented
tate ψ .

heorem 3. For the robotic manipulator (3) with input constraints
4), let Assumptions 1–5, Lemmas 1–8 and Remark 2 hold. Under the
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Algorithm 2 NN-based MPC strategy for robot tracking control

Input:
Ŵf 0, Ŵg0: Initial NN’s weights of the predictive model;
T : The prediction horizon;
∆t: The solving interval of the optimization problem for the
NN-based MPC;
αf , αg , kf , kg : Learning rates/parameters of NN for the
predictive model;
Initialize q1 (0), q2 (0), k = 0, t0 = 0;

2: Compute z (0) according to (5);
repeat

4: if t = tk then
Solve the MPC problem via Algorithm 1 for suboptimal
control strategy ˆ̄τ ;

6: end if
Compute tk+1 = tk +∆t ;

8: for t ∈ [tk, tk+1) do
Apply ˆ̄τ to the robotic manipulator and observe q, q̇;

10: Compute z (t) according to (5);
end for

12: if t = tk+1 then
Compute the estimation error of tracking error via
∆z̄k+1

j = zj (tk+1)− z̄j
(
t−k+1

)
j = 1, 2 ;

14: Update NN’s weights Ŵf (k+1), Ŵg(k+1) according to (11)
and (12);
Update the predictive tracking error via z̄

(
t+k+1

)
=

z (tk+1);
16: end if

k = k + 1;
18: until the end of control period

NN-based MPC strategy given in Algorithm 2, the augmented state
ψ remains UUB, namely the robot tracking error z, the predictive
tracking error z̄, the estimation error ∆z̄k and NN’s weights errors
W̃fk, W̃gk, W̃c , W̃a remain UUB, if all conditions in Theorems 1 and 2
hold. z, W̃fk, W̃gk, W̃c and W̃a will converge to the compact sets Ωz ,
ΩWf , ΩWg , ΩWc , ΩWa :

Ωz :=

{
z ∈ ℜ

2n
⏐⏐⏐∥z∥ ≤

√
M

}
ΩWf :=

{
W̃fk ∈ ℜ

lf ×n
⏐⏐⏐W̃fk

 ≤
√
2αfM

}
ΩWg :=

{
W̃gk ∈ ℜ

lg×n
⏐⏐⏐W̃gk

 ≤
√
2αgM

}
ΩWc :=

{
W̃c ∈ ℜ

lc×1
⏐⏐⏐W̃c

 ≤
√
2αcM

}
ΩWa :=

{
W̃a ∈ ℜ

lc×1
⏐⏐⏐W̃a

 ≤
√
2αaM

}
where M = 3ZV̄ +

3
2Z, ZV̄ will be defined later.

Proof. Construct a Lyapunov function candidate as

V = Vmk + V̄ + Vz (61)

where Vz =
1
2 z

T z.
From Theorem 1, it can be gotten that the estimation error

∆z̄k and NN’s weights errors W̃fk, W̃gk remain UUB. Vmk satisfies
Vmk (∞) ≤

1
2Z.

Then for the predictive tracking error z̄ and NN’s weights
errors W̃c , W̃a, mathematical induction (MI) is utilized to explain
that they are UUB for the whole control period.

Firstly, for k = 0, t ∈ (t0, t1), Multiplying (60) by eκV̄ t and
integrating the inequality, we have

V̄ (t) ≤ e−κV̄ t V̄ (t0)+
CV̄

−
CV̄ e−κV̄ t (62)
κV̄ κV̄
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At time instant t1, the predictive tracking error z̄ is revised by
eal value through z̄

(
t+1

)
= z (t1). For solving V̄

(
t+1

)
, we have the

following assumption holds:

Assumption 6. The function J̄∗t (z̄) : ℜ
n

→ ℜ
1 is a Lipschitz

continuity mapping, which means

J̄∗t
(
z̄
(
t+1

))
− J̄∗t

(
z̄
(
t−1

))
≤ LJ̄

∆z̄1
 (63)

Considering 1
2 z̄

T
(
t+1

)
z̄
(
t+1

)
=

1
2 z̄

T
(
t−1

)
z̄
(
t−1

)
+

1
2∆z̄1T∆z̄1 +

z̄
(
t−1

)T
∆z̄1, we have

V̄
(
t+1

)
=V̄

(
t−1

)
+

1
2
∆z̄1T∆z̄1 + z̄

(
t−1

)T
∆z̄1

+ e−δ∆tLJ̄
∆z̄1

 (64)

According to Theorems 1 and 2, we can get that ∆z̄k and
z̄
(
t−k

)
are bounded, i.e. there exist σ∆ > 0, σz̄ > 0 such that∆z̄k

 ≤ σ∆,
z̄ (

t−k
) ≤ σz̄ . Introducing (62), (64) becomes

V̄
(
t+1

)
≤ e−κV̄ t1 V̄ (t0)+

CV̄

κV̄
−

CV̄

κV̄
e−κV̄ t1+σ (65)

where σ=
1
2σ

2
∆+

(
e−δ∆tLJ̄+σz̄

)
σ∆.

Secondly, for k = 1, t ∈ (t1, t2), similar to the first step, we
ave

V̄ (t) ≤ e−κV̄ teκV̄ t1 V̄
(
t+1

)
+

CV̄

κV̄
−

CV̄

κV̄
eκV̄ t1e−κV̄ t

≤ e−κV̄ t V̄ (t0)+
CV̄

κV̄
−

CV̄

κV̄
e−κV̄ t + e−κV̄ (t−t1)σ

(66)

V̄
(
t+2

)
≤ e−κV̄ t V̄ (t0)+

CV̄

κV̄
−

CV̄

κV̄
e−κV̄ t2+e−κV̄∆tσ+σ (67)

Then, suppose for t ∈ (tk, tk+1) , k = 1, 2, 3..., following
conditions hold:

V̄ (t) ≤e−κV̄ t V̄ (t0)+
CV̄

κV̄
−

CV̄

κV̄
e−κV̄ t

+ e−κV̄ (t−tk)σ

k−1∑
i=0

e−iκV̄∆t
(68)

V̄
(
t+k+1

)
≤e−κV̄ tk+1 V̄ (t0)+

CV̄

κV̄
−

CV̄

κV̄
e−κV̄ tk+1

+ σ

k∑
e−iκV̄∆t

(69)
i=0
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For t ∈ (tk+1, tk+2), it can be gotten

V̄ (t) ≤e−κV̄ teκV̄ tk+1 V̄
(
t+k+1

)
+

CV̄

κV̄
−

CV̄

κV̄
eκV̄ tk+1e−κV̄ t

≤e−κV̄ t V̄ (t0)+
CV̄

κV̄
−

CV̄

κV̄
e−κV̄ t

+ e−κV̄ (t−tk+1)σ

k∑
i=0

e−iκV̄∆t

(70)

V̄
(
t+k+2

)
≤V̄

(
t−k+2

)
+ σ

≤e−κV̄ tk+2 V̄ (t0)+
CV̄

κV̄
−

CV̄

κV̄
e−κV̄ tk+2 + σ

k+1∑
i=0

e−iκV̄∆t

(71)

It is obvious that ∀t > 0, the following condition holds:

¯ (t) ≤ e−κV̄ t V̄ (t0)+
CV̄

κV̄
−

CV̄

κV̄
e−κV̄ t +

σ

1−e−κV̄∆t (72)

s limk→∞

∑k
i=0 e

−iκV̄∆t
=

1
1−e−κV̄∆t . Then it can be gotten that

¯ (∞) ≤ ZV̄ , where ZV̄ =
CV̄
κV̄

+
σ∗

1−e−κV̄∆t .
About the robot tracking error z, for t ∈ [tk, tk+1) ,∀k ∈ N, we

ave

z =
1
2
(z̄ +∆z̄)T (z̄ +∆z̄) ≤ z̄T z̄ +∆z̄T∆z̄ (73)

where ∆z̄ (t) = z (t)− z̄ (t).
It is worth noting that∆z̄ has the same convergence with∆z̄k,

which means ∆z̄T (∞)∆z̄ (∞) ≤ Z. Then it can be gotten that
Vz (∞) ⩽ 2ZV̄ + Z.

From above analysis, we can conclude that V (∞) ⩽ 3ZV̄ +
3
2Z.

Then Theorem 3 is proved, the augmented state ψ remains UUB
under the proposed NN-based MPC strategy.

4. Simulation studies

To demonstrate the effectiveness of the proposed NN-based
MPC strategy, co-simulation based on CoppeliaSim (V-REP) and
Matlab for a 2-DOF robotic manipulator is given in this sec-
tion. The robotic system is defined by (3) with parameters given
in Appendix. The model of the robotic manipulator established
in CoppeliaSim is shown in Fig. 2. The input constraints are
described as |τi (t)| ⩽ 12, i = 1, 2. The desired trajectory is
defined by qd (t) = [q1d, q2d]T =

[
π
4 cos

(
π
4 t

)
, π2 sin

(
π
4 t

)]T . The
nitial condition of the robotic manipulator is chosen as q (0) =

0,− π
3

]T , q̇ (0) = [0, 0]T . The whole simulation time is chosen as

T = 20 s.
s
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Fig. 2. Model of the robotic manipulator.

Comparative discussions are accomplished with the Lyapunov
unction method (LFM) [2,41], the constrained MPC (CMPC) strat-
gy [8] and the strategy combined MPC and integral sliding mode
ontroller (MPC-ISM) [21]. The algorithms run at a laptop (Intel(R)
ore(TM) i5-8265U @1.60 GHz). The simulation environments
re chosen as CoppeliaSim Edu V4.0.0 rev4 and MATLAB2019b.
imulation details and results are shown as follows.

.1. Simulation description

(a) The Lyapunov function method
The Lyapunov function method is taken into account firstly.

eferring to [2,41], the controller can be designed with a function
(τL) as

(τLi) =

{
λsign (τLi) |τLi| > λ

τLi |τLi| ≤ λ

where τL = −z1 + Kp (z2 + ξ) + Ŵ Tϕ (zL). The parameter of the
auxiliary variable in (5) is defined as K1 = 2. The control gain
matrix is chosen as Kp = diag (5, 0.5). The auxiliary variable ξ is
used for reducing the input constraints effects. The updating law
and corresponding parameters of ξ can refer to [41]. Ŵ Tϕ (zL)
is a neural network which is used for estimating M (q) α̇1 +

C (q, q̇) α1 + G (q). The activation function ϕ (zL) is chosen as
Gaussian with input signal zL =

[
qT , q̇T , αT

1 , α̇
T
1

]
. The adaptive law

of NN is designed as ˙̂W k = Γ

(
ϕ (zL) z2k − σŴk

)
with parameters

Γ = 0.06 and σ = 0.1. The joints angle tracking and control
torques are shown in Figs. 3 and 5(a). Comparative results are
discussed later.

(b) The NN-Based model predictive control
98
In this part, we discuss the simulation under the proposed NN-
Based MPC strategy. Two groups of NNs have been developed
under the proposed MPC structure. In the part of the predic-
tive model, NNs with 64 and 36 hidden-layer-nodes are used
for Ŵfkϕf

(
z̄+

)
and Ŵgkϕg (z̄1, qd), respectively. The centers for

ϕf
(
z̄+

)
and ϕg (z̄1, qd) are chosen in the area of [−1, 1]×[−1, 1]×

[−1, 1]× [−1, 1]× [−1.6, 1.6] × [−1.6, 1.6]× [0]× [0]× [0]× [0]
and [−2, 2]× [−1, 1]× [−1.6, 1.6]× [−1.6, 1.6]. The variance is
set to be 25. Considering that g (z1, qd) is a negative symmetric
definite matrix, its estimation is expressed as Ŵgkϕg (z̄1, qd) =[
Ŵgk,1 Ŵgk,2

Ŵgk,2 Ŵgk,3

]
ϕg (z̄1, qd). The parameter L in (10) is chosen as

L = 0.35. The parameter of the auxiliary variable in (5) is defined
as K1 = 5.

In the part of solving the optimization problem of MPC, pa-
rameters of the cost function are chosen as Q1 = diag (200, 200),
Q2 = diag (5, 5), R = diag

( 1
5 ,

1
2

)
. For ensuring real-time perfor-

mance and control accuracy, the solving interval of the optimiza-
tion problem and the prediction horizon are chosen as ∆t = 0.05
s and T = 0.07 s, respectively. NNs with 81 hidden-layer-nodes
are used for Ŵcϕc (z̄) and Ŵaϕc (z̄). The centers for ϕc (z̄) are cho-
sen in the area of [−2, 0, 2]× [−1, 0, 1]× [−1, 0, 1]× [−1, 0, 1].
The variance is set to be 25, too. The joints angle tracking and
control torques are shown in Figs. 3 and 5(b).

For further illustrating the effectiveness of the proposed con-
trol strategy, we consider the comparison with the constrained
MPC strategy and the strategy combined MPC and integral sliding
mode controller in next parts.

(c) The CMPC strategy
For the CMPC strategy, parameters of the cost function are

chosen as same as the NN-based MPC. Quadratic form z̄TQ z̄
is used for the terminal penalty Ψ (z̄ (tk + T )), in which Q =

diag (Q1,Q2). Parameters of the robotic manipulator are assumed
known imprecisely, for example, there is an error of 0.005 kg in
the masses of link 1 and link 2, and an error of 0.0005 m in the
lengths. The optimization problem is solved by the Gurobi solver.
The joints angle tracking and control torques are shown in Figs. 3
and 5(c).

(d) The MPC-ISM strategy
For the MPC-ISM strategy, the control parameters are the same

as those in [21]. Assumptions about the parameters of the robotic
manipulator are the same as the CMPC strategy. The optimization
problem is solved by the Gurobi solver, too. The joints angle
tracking and control torques are shown in Figs. 3 and 5(d).

4.2. Results and discussion

Comparisons of joints tracking errors with four control strate-
gies are shown in Fig. 4. It can be seen that results with all four
kinds of control schemes are convergent, but the tracking errors
with the Lyapunov function method and CMPC strategy are much
larger than those with the NN-based MPC strategy. Specifically,
(1) for the Lyapunov function method under selected control
parameters, q1 converges slower than the other methods, while
q2 has obvious overshoots. (2) For the CMPC method, there exist
steady-state errors under the influence of model uncertainties. (3)
For the MPC-ISM scheme, both q1 and q2 have a slower initial
response. There also exist chattering phenomenons of q1 and q2
because of the introduction of the ISM controller. (4) For the NN-
based MPC strategy, as adaptive NN is adopted to compensate
for model uncertainties, and predictive control strategy is used to
calculate the optimal control law, the good tracking performance
can be guaranteed.

Furthermore, for CMPC and MPC-ISM schemes, the parameters
M q , C q, q̇ and G q in (3) are used directly for control design.
( ) ( ) ( )
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o the expandability of these methods is worse than the other
wo methods.

In addition, Fig. 5 shows that control torques with all four
inds of control schemes satisfy constraints. But control torques
ith the Lyapunov function method are volatile at the beginning
f the control period. For the MPC-ISM strategy, there exist chat-
ering phenomenons of torques in the whole control period. It
an be gotten from Fig. 5 that control torques with the other two
ethods are more appropriate to the real system.
We have verified the favorable tracking capability and fea-

ible control torques of the proposed NN-based MPC strategy.
ext, its computation burden will be discussed and analyzed.
irstly, in this paper, the discrete updating mode of NNs in the
redictive model can reduce the computation burden of NN up-
ating, comparing with the continuous updating mode of NN in
he Lyapunov function method. Then the prediction horizon is
hosen as T = 1.4∆t to reduce the solving time of optimization
problem and keep control performance at the same time. Fig. 6
shows the calculation time of solving the optimization problem
at time instant tk, which is much smaller than the solving interval
t . Physical simulation results with CoppeliaSim also show that

he whole simulation calculation time for the NN-based MPC
99
Fig. 4. Joints tracking errors with different control strategies.

strategy is not greater than the actual time. These results indi-
cate that the calculation burden is acceptable for the real-time
implementation.

In conclusion, the NN-based MPC strategy for robotic manip-
ulators proposed in this paper can achieve competitive perfor-
mance in handling the unknown dynamics with input constraints.

5. Conclusions

In this paper, an NN-based MPC strategy was developed for
robotic manipulators with unknown dynamics and input con-
straints. The proposed structure contained two groups of NNs.
The first group of NNs was adopted as a predictive model of MPC
for the robotic system. Online learning strategies, which were
based on errors between predictive tracking error and the actual
one, were established to handle the robotic unknown dynamics.
Based on the predictive model, the second group of NNs was
applied to solve the optimization problem of MPC. An actor–
critic scheme with different weights and the same activation
function was adopted, and adaptive learning strategies were es-
tablished for balancing between optimal tracking performance
and predictive system stability. A nonquadratic cost function was
developed for handling the input constraints. According to the
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Fig. 6. Calculation time of solving the optimization problem at time instant tk .

yapunov theorem, it was proved that all variables of the closed-
oop system were UUB under the desired strategy. Simulation
tudies were carried out to illustrate the effectiveness of the
roposed control strategy, comparing with the Lyapunov function
ethod, the CMPC strategy and the MPC-ISM method.
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ppendix

A 2-DOF robotic manipulator defined by (3) is adopted for
emonstrating the effectiveness of the proposed method. The
nertia matrix M (q), Centripetal and Coriolis force C (q, q̇) and
ravitational force G (q) are defined as

(q) =

[
a1 + a2 + 2a3 cos q2 a2 + a3 cos q2

a2 + a3 cos q2 a2

]

(q, q̇) =

[
−a3q̇2 sin q2 −a3 (q̇1 + q̇2) sin q2
a3q̇1 sin q2 0

]
(q) =

[
a4g cos q1 + a5g cos (q1 + q2)

a5g cos (q1 + q2)

]
here a1 = m1l2c1 + m2l21 + I1, a2 = m2l2c2 + I2, a3 = m2l1lc2,
4 = m1lc2+m2l1, a5 = m2lc2. li and mi are the length and mass of
ink i, lci is the distance from joint i−1 to the center of mass of link
, Ii is the moment of inertia of link i about the axis perpendicular
o the plane of link and passing through the center of mass of link
.

The value of parameters refer to [41]. They are given as fol-
ows: m1 = 2.0 kg, m2 = 0.85 kg, l1 = 0.35 m, l2 = 0.31
, lc1 = 0.175 m, lc2 = 0.155 m, I1 = 61.25 × 10−3 kg m2,
= 20.42 × 10−3 kg m2.
2
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