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Abstract—Classifying strokes into different categories is an
essential preprocessing step in the automatic document under-
standing process. To tackle this task, it is crucial to integrate
different types of contextual information. Previous methods
which are based on conditional random fields or recurrent
neural networks have some limitations in model capacity
or computational cost. In this paper, we propose a novel
framework based on graph attention networks to solve this
problem, which casts the stroke classification problem into the
node classification problem in a document graph. In the graph,
each node represents a stroke and the edges are built from
temporal and spatial interactions between strokes. Combined
graph convolution with attention mechanisms to dynamically
aggregate features from the neighborhood, our model is very
flexible to control the message passing routine between differ-
ent nodes and therefore has strong capability learning context-
aware features. We perform comparison experiments on the
IAMonDo dataset and experimental results demonstrate the
superiority of our approach.
Keywords— Online handwritten document, stroke classifi-
cation, graph attention networks, structured prediction.

1. Introduction
With the emergence of digital pens, tablets, electronic

whiteboards equipped with pen-based and touch-based
handwriting interfaces in recent years, online handwritten
documents have become more and more popular. To make
the automatic understanding of handwritten documents pos-
sible, it is essential to perform an accurate layout analysis to
the documents first. More specifically, we need to classify
the strokes into different categories, e.g. text, list, tables,
diagrams, formulas and then apply different recognition
engines to them respectively.

However, the task of online stroke classification is chal-
lenging since strokes of different categories can be very
similar. The key for high-accuracy stroke classification is
to exploit the contextual information, such as temporal and
spatial relationship, besides the feature of individual stroke.

In the past, classifying strokes into different categories
is usually considered to be a structured prediction problem
and addressed by various structured prediction methods.
Conditional random fields (CRF) is one of the most popular

Figure 1. Two sample documents from the IAMonDo dataset. The left
one is for text/non-text classification and the right one is for multi-class
classification. Different colors indicate different labels.

methods because of its flexibility in modeling different kinds
of the label dependencies among strokes [1], [2], [11],
[18]. Despite the good performance, CRF based methods
suffer from two drawbacks. First, they usually require a lot
of manual effort and expert knowledge to design efficient
potential functions. Second, their computational cost and
performance are severely affected by the structure of the
probabilistic graph. Although these methods can be accel-
erated by adopting simple graph structures such as trees
or chains [2], [18], or resorting to approximation learning
and inference algorithms [1], it comes at the cost of limited
model capacity and worsen performance.

Another category of methods for online stroke classifica-
tion is based on the recurrent neural networks (RNN). Ben-
efit from the RNN’s strong capacity in modeling temporal
relationship between strokes, these methods achieve impres-
sive performances. Some representative works include [5],
[14]. However, since RNN is originally invented to tackle
sequence problems, it is difficult to extend RNN to naturally
accommodate the spatial relation which is also important for
online stroke classification.

In this paper, we propose a novel method to address this
online stroke classification problem. Essentially, we consider
online stroke classification as a graph node classification
problem and solve it with attention based graph neural
networks(GNN). Specifically, we build one graph for each
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document, in which each node represents a stroke and nodes
are connected by edges according to the temporal and spatial
relationship between strokes. Given the raw features and
the graph, GNN updates the representation of each node by
exploiting the current states of itself and its neighbors. In
addition, due to the fact that different nodes in the neigh-
borhood should have different influences, we also propose
an edge attention mechanism to dynamically control the
message passing routine between adjacent nodes.

Compared with previous methods, our proposal has two
notable advantages. First, because of the graph structure
and the deep architecture, our model enjoys much more
powerful capacity in feature learning and relation learning,
which results in improved classification accuracy over ex-
isting methods. Second, since the graph convolution can
be expressed as a sparse matrix multiplication operation
and support arbitrary graph structures, our model is easy
to extend to integrate different types of contextual informa-
tion without any approximation. We perform experiments
on the IAMonDo dataset and show our model achieves
state-of-the-art performances on the two tasks, text/non-text
classification and multi-class classification. In addition, we
conduct ablation experiments to demonstrate the effect of
different types of context, the edge attention mechanism and
the number of attention layers.

The rest of this paper is organized as follows. In Section
2, we briefly review works that are related to this paper. In
Section 3, we present our model for online stroke classi-
fication. In Section 4, we introduce the training details of
our model. In Section 5, the experiments and results are
presented. Finally, we draw conclusions and discuss future
directions in Section 6.

2. Related Works

Online stroke classification. The task of separating
strokes into different categories in online documents has
been researched for a long period. In the early years, this
task was addressed mainly by extracting local features and
building classifiers on those geometric features, such as [6],
[7], [12]. With the popularization of structured prediction
methods, methods based on Markov random fields or condi-
tional random fields were proposed to capture various types
of label dependencies, such as [1], [2], [18], [20]. Different
works exploited different types of label dependencies and
the temporal and spatial dependencies are the most adopted
two. Moreover, Delaye et al. [1] also introduced some other
types of dependencies that may be helpful to classification,
like intersection, lateral and stroke continuation dependen-
cies. Another path for addressing this problem is based
on recurrent neural networks. Bidirectional long-short term
memory(BLSTM), one of the most powerful variants of
RNN, were employed in [5], [14] to exploit the temporal in-
formation in the online documents. Van et al. [14] extracted
global and local context features and ensembled multiple
BLSTM neural networks, achieving state-of-the-art accuracy
on the text/non-text classification problem on the IAMonDo
dataset.

Graph neural networks. Graph neural networks(GNN)
are connectionist models that can capture the dependen-
cies of graphs via message passing between the nodes of
graphs [19]. In the past, variants of GNN models were
mostly used in the setting of semi-supervised learning [9],
graph classification [10] as the graph structure in these fields
is usually defined by nature. A notable variant of GNN is
graph attention networks (GAT), which was first proposed
in [16]. In this model, except for the graph convolution
operation, it also includes the self-attention mechanism [15]
to evaluate the individual importance of the adjacent nodes
and therefore it can be applied to graph nodes having
different degrees by specifying arbitrary weights to the
neighbors [16].

3. Method Description
In this work, we formulate the online stroke classifica-

tion as a node classification problem in the document graph.
In the following, we first introduce the problem definition of
stroke classification, then describe the pipeline of our model.

3.1. Problem Definition
We are given a set of labeled online documents S =

{(x(i),y(i)), i = 1, · · · , N}, in which each document x(i)

is represented by a sequence of strokes {x(i)
t , t = 1, · · · , Ti}

and each stroke has one associated label y
(i)
t ∈ {0, · · · , L−

1}, where L is the number of classes. Our goal is to learn
a model from the training set S that can predict strokes in
test documents with high accuracy.

3.2. Proposed Model
Figure 2 illustrates the framework of our model. Our

model consists of three modules, including the construction
of the document graph, extraction of node and edge features,
and graph attention networks.

3.2.1. Document graph
In this section, we introduce the definition of the docu-

ment graph used in this work. A document graph is a graph
G(V,E) where each node i ∈ V represents a stroke and
each edge (i, j) ∈ E represents the interaction between a
pair of stroke (i, j).

To build the document graph, we consider two major
types of contextual information, namely temporal context
and spatial context.

Since the online nature of the data permits us to see
the document as a sequence of strokes, the temporal neigh-
borhood captures the interaction between strokes that are
written successively in the document. To exploit this de-
pendency, we define our temporal neighborhood system by
considering every temporally adjacent stroke.

On the other hand, the spatial context is also a vital
source of knowledge as spatially adjacent strokes tend to
have same labels. We define our spatial neighborhood sys-
tem by considering that two strokes xi and xj are spatial
adjacent if their minimal distance d(xi,xj) is below a given
threshold T1. We set the hyper-parameter T1 = 10 same as
in [1].
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Figure 2. An illustration of the training and prediction process for one input document. An input document is first proprocessed to generate node features,
edge features and the document graph, then these components are fed into networks stacking with multiple graph attention layers to learn context-aware
features. During the training, the model is learned by the cross entropy loss. When performing prediction, the class with maximum probability is chosen
for each stroke.

TABLE 1. Node features extracted from stroke xk

# Description

1 Trajectory length of xk

2 Area of the convex hull of xk

3 Duration of the stroke

4 Ratio of the principal axis of xk

5 Rectangularity of the minimum area bounding rectangle of xk

6 Circular variance of points of xk around its centroid

7 Normalized centroid offset along the principal axis

8 Ratio between first-to-last point distance and trajectory length

9 Accumulated curvature

10 Accumulated squared perpendicularity

11 Accumulated signed perpendicularity

12 Width of xk , normalized by the median stroke height in the document

13 Height of xk , normalized by the median stroke height in the document

14 Number of temporal neighbours of xk

15 Number of spatial neighbours of xk

16 Average of the distances from xk to time neighbours

17 Standard deviation of the distances from xk to time neighbours

18 Average of lengths of time neighbours

19 Standard deviation of lengths of time neighbours

20 Average of the distances from xk to space neighbours

21 Standard deviation of the distances from xk to space neighbours

22 Average of lengths of space neighbours

23 Standard deviation of lengths of space neighbours

3.2.2. Node features

For extracting the node features in the graph, we fol-
low the similar procedure in [1], [14], [18], extracting 13
contour-based shape features and 10 context features. The
shape features are extracted from each stroke directly, while
the context features are extracted by considering its interac-
tions with neighboring strokes. All these node features are
listed in Table 1.

3.2.3. Edge features

For evaluating different importance of contextual in-
formation carried by different neighbors, we also extract
19 edge features between strokes that are adjacent in the
graph. These features calculate the distance between pairs of
strokes with different distance metrics and can be regarded
as the indicators to measure similarity between two strokes.
Therefore, it can be used to learn gates for controlling the
message passing routine between nodes, which is beneficial

TABLE 2. Edge features extracted from a pair of stroke xi, xj .

# Description

1 Minimum distance between 2 strokes

2 Minimum distance between the endpoints of 2 strokes

3 Maximum distance between the endpoints of 2 strokes

4 Distance between the centers of the 2 bounding boxes of 2 strokes

5 Horizontal distances between the centroids of 2 strokes

6 Vertical distances between the centroids of 2 strokes

7 Off-stroke distance between 2 strokes

8 Off-stroke distance projected on X and Y axes

9 Temporal distance between 2 strokes

10 Ratio of off-stroke distance to temporal distance

11 Ratio of off-stroke distance on X,Y axes to temporal distance

12 Ratio of area of the largest bounding box of 2 strokes to their union

13 Ratio of widths of the bounding boxes of 2 strokes

14 Ratio of heights of the bounding boxes of 2 strokes

15 Ratio of diagonals of the bounding boxes of 2 strokes

16 Ratio of areas of the bounding boxes of 2 strokes

17 Ratio of lengths of 2 strokes

18 Ratio of durations of 2 strokes

19 Ratio of curvatures of 2 strokes

for nodes to collect useful contextual information. All these
edge features are listed in Table 2.

3.2.4. Graph attention networks
In this section, we present the graph attention layer,

which is stacked to construct the graph attention networks.
The input to each graph attention layer is a set of node

features H = {h1,h2, · · · ,hN},hi ∈ R
C and a set of

edge features F = {fij , (i, j) ∈ E}, fij ∈ R
D, where N

is the number of nodes, E is the set of edges and C, D
are the number of features in each node and each edge,
respectively. The layer outputs a new set of node features
H′ = {h′

1,h
′
2, · · · ,h′

N},h′
i ∈ R

C′
, where C ′ is the number

of features of outputs.
In the layer, the first step is to apply a shared linear

transformation to every node, then perform self-attention on
the nodes by a shared attentional mechanism a : R

C′ ×
R

C′ → R.

sij = a(Whhi,Whhj). (1)

where Wh ∈ R
C′×C is a learnable parameter. The attention

mechanism a used in this work is the additive attention
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which is defined as

a(Whhi,Whhj) = σ(vT (Whhi +Whhj)) (2)

where v ∈ R
C′

is a learnable parameter and σ(·) is leaky
ReLU activation function.

Except for calculating the importance score between
nodes by self-attention mechanisms, we also calculate an-
other attention score using edge features through one layer
neural network.

s′ij = σ(vT
f σ(Wf fij + bf )). (3)

where Wf ∈ R
C′×D,bf ∈ R

C′
,vf ∈ R

C′
are learnable

parameters.
To make coefficients comparable across different nodes,

the scores should be normalized across all choices of j using
the softmax function with temperature β:

αij = softmaxβ(sij + s′ij)

=
exp(β(sij + s′ij))∑

k∈Ni
exp(β(sik + s′ik))

.
(4)

When β = 0, the model reduces to the vanilla graph
convolutional network.

After obtaining the attention coefficients, we can use
them to compute a weighted combination of the neighbor-
hood features, to produce the final output features for every
node.

h′
i = σ

⎛
⎝∑

j∈Ni

αijWhhj

⎞
⎠ . (5)

where Ni is the neighborhood of node i.
Inspired by [16], we also introduce multi-head attention

in our model. Specifically, K independent attention mecha-
nisms execute the transformation in Equation (5) and their
outputs are concatenated.

h′
i = ‖Kk=1σ

⎛
⎝∑

j∈Ni

αk
ijW

k
hhj

⎞
⎠ . (6)

where ‖ represents concatenation.
And in the last layer, the concatenation operation is

replaced by averaging operation and then apply softmax
function:

h′
i = σ

⎛
⎝ 1

K

K∑
k=1

∑
j∈Ni

αk
ijW

k
hhj

⎞
⎠

pi = softmax(Woh
′
i)

(7)

where Wo ∈ R
C′×L is the learnable weight matrix to

transform features to outputs.
Finally, we also employ some standard tricks to stabilize

and accelerate the training procedure, including residual
connection and batch normalization. In this work, all the
hyper-parameters of hidden layers are the same, and the
residual connection is added except the input layer.

h′
i = BatchNorm(hi + Layer(hi)) (8)

4. Network Training
In this section, we provide details about training the

proposed graph attention networks. We implement the graph
attention network using the dgl library 1 and its pytorch
backend. The experiments are run on a GeForce GTX
1080Ti. Using the settings discussed in this section, the
model training requires about 10 minutes for the text/non-
text classification task and 20 minutes for the multi-class
classification task.

4.1. Parameter Initialization
Weight matrix parameters are randomly initialized with

normal samples N (0, σ2), where σ =
√

2
r + c

and r, c are

the number of rows and columns in the matrix [3].

4.2. Loss and Optimization
The loss we use in this work is the standard cross entropy

loss, which is defined as

L(W) = −
N∑
i=1

Ti∑
t=1

logpt[y
(i)
t ] (9)

Parameter optimization is performed with Adam [8] with
batch size 16. We choose the initial learning rate η0 = 0.005
and the learning rate decays according to the validation
accuracy. The decay rate ρ = 0.1 and the number of
patience round r = 10. We use early stopping based on the
performance on the validation set and the best parameter is
chosen by the best accuracy on the validation set.

4.3. Regularization
To mitigate overfitting, the dropout method [13] is ap-

plied in the input of each layer to regularize our model. We
fix dropout rate at 0.2 for all dropout layers.

4.4. Tuning Hyper-Parameters
Table 3 summarizes the chosen hyper-parameters for all

experiments. We tune the hyper-parameters on the develop-
ment sets by random search. To show the robustness of our
model, we try to share as many hyper-parameters as possible
among two tasks except the number of attention layers.

TABLE 3. Hyper-parameters for all experiments.

Hyper-parameter Binary Multi
hidden layer size 32 32
number of heads 8 8

number of heads in output layer 2 2
number of layers 5 10

dropout rate 0.2 0.2
batch size 16 16

initial learning rate 0.005 0.005
decay rate 0.1 0.1

number of patience round 10 10
temperature 0.5 0.5

1. https://github.com/dmlc/dgl
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5. Experiment Results
5.1. IAMonDo Dataset

We conduct experiments on the IAMonDo dataset [6],
a publicly available collection of freely handwritten online
documents. The dataset consists of 1000 documents, mixing
texts, drawing, diagrams, formulas, tables, lists and marking
elements arranged in an unconstrained way. The dataset is
split into five disjoint sets, each containing roughly 200
documents. We follow the traditional data partitioning of
the dataset [6]. Documents from set0 and set1 constitute
the training set, set2 is the validation set, and set3 is the
independent test set. We perform two sets of experiments to
evaluate the performance of our model. In the first set of ex-
periments, strokes are classified into text or non-text, and the
corresponding ground truth labels are derived as suggested
in [4]. In the second set, a more complicated task is consid-
ered to separate strokes into graphic/text/table/list/math five
classes as in [2]. Table 4 presents the statistics of IAMonDo
dataset. To reduce the volatility of the system, we conduct
each experiment 10 times and report the mean accuracy and
standard deviation for each model.

TABLE 4. Statistics of IAMonDo dataset: number of documents, strokes
and strokes per category.

Set Training Validation Test
Docs 403 200 203

Strokes 143348 68725 70927
Text 116801 57821 57959

Non-text 26547 10904 12968
Graphic 37496 15481 17488

Text 79812 39796 40469
Table 13044 6562 6883
List 6337 3474 3115

Math 6659 3412 2972

5.2. Compared with Previous Work
5.2.1. Text/non-text classification

Table 5 illustrates the results of our model for
text/non-text classification, together with seven previous top-
performance systems for comparison. Our model signifi-
cantly outperforms all the single models based on CRF or
BLSTM. Moreover, our model achieves 0.29% improve-
ments on accuracy over the model in [14] which is an
ensemble model of several BLSTM networks. It proves
the effectiveness of graph attention networks to integrate
different context information. Comparing with Delaye [1]
that has the similar concept to explore multiple context
information with CRF, our model is more efficient to exploit
the interaction between neighborhood strokes.

5.2.2. Multi-class classification
Table 6 compares the results of our model for multi-

class classification together with the previous work in [2].
Our model also achieves 1.18% improvements on accuracy
over the model in [2]. In [2], Delaye proposed a hierarchical
CRF framework and use distance learning to construct the
tree CRF structure. It shows that his model based on CRF
could not support the arbitrary graph structure and a massive

TABLE 5. Performance of different methods for text/non-text stroke
classification on the IAMonDo dataset. An ∗ symbol indicates the

method is ensembled by multiple classifiers.

Method Description Accuracy
Indermühle [6] Local classification with SVM 91.30
Weber∗ [17] Multiple classifiers system 97.00

Indermühle [5] BLSTM network 97.01
Delaye [1] CRF with multiple context 97.21
PCC [14] Local context integrated by BLSTM 97.96
Ye [18] Joint training of MLP and CRF 97.96

Van∗ [14] Global and local BLSTM ensembled 98.30
GCN Graph convolutional networks 97.21±0.07

GAT(w/o edge) GAT without edge features 97.87±0.05
GAT(w/o space) GAT without spatial edges 98.45±0.07

GAT Graph attention networks 98.59±0.06

performance decrease occurred when the CRF graph is no
longer the tree. On the contrary, our model can build the
graph with the arbitrary structure, and the increasing number
of edges brings performance improvements.

TABLE 6. Performance of different methods for multi-class stroke
classification on the IAMonDo dataset.

Method Description Accuracy
Delaye [2] Hierarchical CRF with loopy structure 79.22
Delaye [2] Hierarchical CRF with tree structure 93.46

GCN Graph convolutional networks 88.92±0.27
GAT(w/o edge) GAT without edge features 92.28±0.17
GAT(w/o space) GAT without spatial edges 91.94±0.16

GAT Graph attention networks 94.64±0.29

5.3. Ablation Study
To discuss the vital elements in the success of our

proposed model, we conduct an ablation study on three
aspects. Specifically, we have tested the performance of
models without spatial edges, edge attention mechanisms
or calculating attention scores without edge features. In ad-
dition, we also compare the performances between different
numbers of attention layers.

5.3.1. Effect of spatial edges
In Table 5 and Table 6, except for the best model GAT,

we also conduct experiments on three simpler models. All
hyper-parameters remain the same as in Table 3.

GAT(w/o space) is our model without the spatial edges
in the document graph. We can see that the performance
decreases to some extent in both tasks but the decline is
more serious in the multi-class scenario, which shows that
the spatial information is crucial in the more complicated
multi-class classification task and it is beneficial to add this
prior knowledge to the model.

5.3.2. Effect of attention
In this experiment, we discuss the effect of attention

mechanisms used in the model and degrades our model to
two simpler model GCN and GAT(w/o edge).

GCN is the vanilla graph convolutional network model
that aggregates features from the neighborhood by simple
average, which can be instantiated by setting β = 0 in the
equation (5).
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GAT(w/o edge) is the model that calculates attention
coefficients without using edge features, which can be in-
stantiated by discarding s′ij term in the equation (5).

We can see that both the self-attention mechanism oper-
ating on node features and the extra information provided by
edge features contribute a lot to the success of the model.
Without these two modules, the performance of a vanilla
graph convolutional network is far less than satisfactory.

5.3.3. Effect of the number of attention layers
In this experiment, we discuss the effect of the number of

attention layers. Like convolutional layers used in computer
vision or natural language processing, every attention layer
in this model gathers contextual information from the adja-
cent nodes, and more attention layers will learn features with
larger sizes of receptive fields that is helpful for classifying
strokes.

In table 7, we can see that the number of attention layers
is indeed a critical hyperparameter that can significantly in-
fluence the overall performance and the performance boosts
with the progressively increasing number of layers.

TABLE 7. Performance of different number of attention layers.

Layer Binary Layer Multi
1 97.96±0.07 2 89.77±0.20
2 98.38±0.06 4 92.71±0.16
3 98.48±0.06 6 93.72±0.14
4 98.55±0.06 8 94.44±0.21
5 98.59±0.06 10 94.64±0.29

6. Conclusion
In this paper, we present a novel framework based on

graph attention networks for stroke classification in online
written documents. The representation of features is learned
by graph convolution and attention mechanisms in a docu-
ment graph which is built by exploiting different types of
contextual information. We discuss the effects of different
techniques used in the message passing routine, demonstrat-
ing the importance of spatial edges, attention mechanisms
and the usage of edge features. With this model, we achieve
state-of-the-art performances on two stroke classification
tasks of IAMonDo dataset.
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