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a b s t r a c t 

Stroke classification and text line grouping are important tasks in online handwritten document seg- 

mentation. In the past, the two tasks were usually performed using different models which are trained 

independently and perform sequentially. This cannot optimize the integration of contextual information 

and the system may suffer from error accumulation in stroke classification. In this paper, we propose a 

method for joint text/non-text stroke classification and text line grouping in online handwritten docu- 

ments using attention based graph neural network. In our framework, the stroke classification and text 

line grouping problems are formulated as node classification and node clustering problems in a rela- 

tional graph, which is constructed based on the temporal and spatial relationship between strokes. We 

propose a new graph network architecture, called edge pooling attention network (EPAT) to efficiently ag- 

gregate information between the features of neighboring nodes and edges. The proposed model is trained 

by multi-task learning with cross entropy loss for node classification and distance metric loss for node 

clustering. In experiments on two online handwritten document datasets IAMOnDo and Kondate, the pro- 

posed method is demonstrated effective, yielding superior performance in both stroke classification and 

text line grouping. 

© 2021 Elsevier Ltd. All rights reserved. 
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. Introduction 

Pen-based interfaces such as smart phones, tablets and elec- 

ronic whiteboards have enabled the generation of various het- 

rogeneous contents such as text, drawing and table forms freely 

n a large writing area. Such freely handwritten ink documents 

ring new challenges to automatic analysis and recognition. A pri- 

ary goal of document analysis is to group strokes into different 

tructural objects (drawings, math formulas, text lines, etc.), among 

hich text lines are the most salient structure and the carrier of 

emantic contents [1] . 

In previous works, the stroke classification problem and text 

ine grouping problem in ink documents were usually considered 

s two separate tasks. For stroke classification, many structured 

rediction based methods were proposed to exploit temporal and 

patial contextual information [2–6] . For text line grouping, op- 

imization based methods [1,7–9] and distance metric learning 

ased methods [10] were proposed. The interaction between stroke 
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lassification and text line grouping problems was only considered 

n Zhou et al. [1] , where temporal and spatial merge procedures 

ere proposed to correct the errors produced in stroke classifica- 

ion. However, the stroke classification model and text line group- 

ng model used there were based on different methods and learned 

ndependently. In this way, the exploitation of contextual informa- 

ion in two tasks is not optimized, and the system may suffer from 

rror accumulation in stroke classification. 

In this paper, we propose a unified framework to address the 

troke classification and text line grouping problems simultane- 

usly, so as to couple the two tasks and minimize the errors 

y maximizing the usage of involved features. We consider each 

troke in an ink document as a node in a relational graph and the 

elationship between strokes is modeled in edges. On the graph, 

he stroke classification problem and text line grouping problem 

an be formulated as node classification problem and node cluster- 

ng problem, respectively, and can be modeled jointly and solved 

imultaneously. Specifically, we build a relational graph for each 

ocument based on the temporal and spatial relationship between 

trokes. Unary and pairwise geometric features are extracted as 

he raw node features and edge features, which are fed into the 

roposed edge pooling attention network (EPAT) model to obtain 

he distributed node and edge features. The probability of strokes 
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elonging to each class and the distance between strokes are 

redicted by different fully connected layers. The EPAT is trained 

nd-to-end using multi-task learning strategy, where the node 

lassification task is trained by the cross entropy loss and the 

ext line grouping task is trained by an improved version of the 

istance metric learning loss used in Delaye and Lee [10] . In exper- 

ments on two public datasets of online handwritten documents, 

AMOnDo and Kondate, the proposed method is demonstrated 

o promise both stroke classification and text line grouping, and 

utperform state-of-the-art methods. 

The main contributions of this work are summarized as follows: 

1. We present a unified framework to address stroke classifica- 

tion and text line grouping jointly using graph neural networks 

(GNNs). The stroke classification and text line grouping prob- 

lems are formulated as node classification and node clustering 

problems in the same relational graph. 

2. We propose a new graph network architecture, edge pooling at- 

tention network (EPAT) , to effectively aggregate information be- 

tween neighboring node features and edge features. In this new 

architecture, edge features are leveraged to control the aggre- 

gation of node features with attention mechanism and updated 

by a newly designed edge pooling module to capture the de- 

pendency between adjacent edges. 

3. Using the proposed framework, we achieve state-of-the-art per- 

formance in both stroke classification and text line grouping on 

two public datasets. We provide results of comprehensive eval- 

uation metrics and conduct multiple ablation experiments to 

demonstrate the key design of our model. 

The rest of the paper is organized as follows. Section 2 reviews 

elated works in online stroke classification, text line grouping 

nd GNN. Section 3 describes the details of the proposed method. 

ection 4 presents experimental results, and Section 5 draws con- 

luding remarks. 

. Related work 

.1. Stroke classification 

The grouping of strokes into different categories in online doc- 

ments is a fundamental step in document analysis. These meth- 

ds can be divided into two categories, isolated classification and 

ontextual classification, according to whether contextual infor- 

ation are used or not. For brevity, we only review the contex- 

ual classification methods that most related to our work. Bishop 

t al. [11] first proposed to use a hidden Markov model (HMM) 

ith neural networks for modeling the interactions between tem- 

orally successive strokes. Ye et al. [5] improved this model by re- 

lacing the HMM framework with conditional random field (CRF) 

nd jointly learning all the parameters. Phan et al. [4] proposed an 

pproach based on bidirectional long short term memory (BLSTM) 

nd achieved the highest accuracy among the temporal context 

ased methods. Zhou et al. [2] first proposed to use Markov ran- 

om field (MRF) to exploit the spatial context. Delaye et al. [3] ex- 

ended the contextual system and proposed to exploit temporal, 

patial, intersecting, lateral and stroke continuation relation under 

he CRF framework. Ye et al. [6,12] proposed to use attention based 

raph neural networks enhanced with edge features to model the 

emporal and spatial contexts, which achieved state-of-the-art per- 

ormance on the IAMOnDo dataset [13] . 

.2. Text line grouping 

Segmentation of text lines from online documents has received 

 lot of attention. Projection-based methods [14,15] were proposed 

o estimate the inter-line distance and group text lines based on 
2 
he inter-line distance. Methods based on global optimization were 

roposed to overcome the dependence on inter-line distance esti- 

ation. Shilman et al. [7] proposed to use dynamic programming 

o over-segment the stroke sequence with a cost function reflect- 

ng the confidence that a given set of strokes belong to one word, 

nd the text lines are grouped by merging pairs of stroke clusters 

n successive steps. Ye et al. [8] used gradient decent to minimize a 

lobal cost function integrating the likelihood of the resulting lines 

nd the consistency of their configuration after initial segmenta- 

ion obtained by dynamic programming. Zhou et al. [1] proposed 

o use string level minimum classification error (MCE) criterion to 

earn the parameters in stroke merging. Their system involves mul- 

iple steps (block grouping, pre-segmentation, temporal merge and 

patial merge) for text line grouping and can correct merging er- 

ors caused by stroke classification errors, and achieved state-of- 

he-art performance on the Kondate dataset [16] . 

Grouping strokes or structure elements into text lines can be 

ased on distance metric learning. In offline handwritten doc- 

ment segmentation, Yin et al. [17] proposed a metric learn- 

ng method aimed to minimize the inter-line distance and max- 

mize the intra-line distance. The distance learning problem was 

ormulated as a convex optimization program to learn the dis- 

ance metric between connected components that are adjacent 

patially, and text line grouping was accomplished by minimum 

panning tree (MST) clustering on the graph of connected com- 

onents. Distance metric learning was also used in natural scene 

ext detection [18,19] for grouping characters into text lines. Delaye 

t al. [10] transferred the idea in Yin et al. [18] to online hand-

ritten documents and proposed the distance learning method to 

roup strokes into text lines by single linkage agglomerative clus- 

ering algorithm. Their method can extend from text line grouping 

o general symbol segmentation. 

.3. Graph neural network 

Graph neural network (GNN) is a kind of machine learn- 

ng model which applies neural networks in graph. Some net- 

orks [20,21] based on recurrent update are not efficient for large 

cale learning. In recent years, the convolution operation has been 

opularly adopted in GNNs, following the great success of convolu- 

ional neural network (CNN) in deep learning. Bruna et al. [22] first 

roposed the spectral convolutional neural network (SCNN) to 

pply convolution in the graph from the spectral view. Deffer- 

and et al. [23] improved the method in Bruna et al. [22] by 

pplying Chebyshev polynomials to approximate the filters. Kipf 

t al. [24] proposed the graph convolutional networks (GCN) using 

nly first order expansion of Chebyshev polynomials and normal- 

zing the adjacency matrix in the layer. The convolution operation 

erived in Kipf and Welling [24] from spectral view is similar to 

he convolution derived from the spatial view [25,26] and it can 

e seen as the bridge between spectral and spatial view. 

To better capture different influences brought by different 

eighbor nodes, Velickovic et al. [27] adopt the self attention 

echanism [28] into graph learning and proposed the graph atten- 

ion network (GAT). The introduction of self attention mechanism 

n GAT integrates the node feature information for aggregating 

eighborhood nodes and improves the performance of node clas- 

ification tasks. For exploiting discrete edge features, Schlichtkrull 

t al. [29] proposed to learn one weight matrix per edge type 

n the graph convolution procedure, and Busbridge et al. [30] ex- 

ended the idea to graph attention networks. For exploiting contin- 

ous edge features, Gong et al. [31] proposed a unified framework 

o update the node features and edge features simultaneously in 

ne layer and used doubly stochastic normalization technique to 

ontrol the norm of the edge features and stabilize the training 

rocess. 



J.-Y. Ye, Y.-M. Zhang, Q. Yang et al. Pattern Recognition 114 (2021) 107859 

Fig. 1. An illustration of the training and prediction process of EPAT for stroke classification and text line grouping. 
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. Proposed method 

In this work, we formulate the stroke classification and text line 

rouping problem as node classification problem and node cluster- 

ng problem, respectively, with learned edge weights in the graph. 

n the following, we first introduce the definition of stroke classifi- 

ation and text line grouping problems, then describe the pipeline 

f our model. 

.1. Problem definition 

An online handwritten document consists of a set of strokes, 

ach stroke as a sequence of pen-down samples points. A set of 

abeled online documents S are provided as the training set, in 

hich each document x (i ) is formed by a sequence of strokes 

 x (i ) 
t , t = 1 , . . . , T i } and each stroke has one associated label y (i ) 

t ∈
 0 , 1 } . Besides, text lines in the i th document are denoted as L (i ) =
 l (i ) 

j 
, j = 1 , . . . , m i } , where l (i ) 

j 
is the index collection for the jth text

ine and m i is the number of annotated text lines. The goal is to 

earn a model from the training set S that can predict stroke labels 

nd group text lines in test documents. 

.2. Framework 

Fig. 1 illustrates the framework of our model, which consists 

f three modules: construction of the relational graph, extraction 

f node and edge features, and edge pooling attention network 

EPAT). An input document is first preprocessed to generate node 

eatures, edge features and the relational graph, then these compo- 

ents are fed into EPAT to learn context-aware node and edge fea- 

ures for stroke classification and text line grouping. During train- 

ng, the model is learned by minimizing the cross entropy loss and 

istance metric loss. When performing prediction, the class with 

aximum probability is chosen for each stroke for stroke classifi- 

ation. Text lines are grouped on predicted text strokes according 

o learned distances. 

.2.1. Graph construction 

In this work, an online handwritten document (a set of strokes) 

s represented as a relational graph G (V, E) , where each node 

 ∈ V represents a stroke and each edge (i, j) ∈ E represents the 
3 
nteraction between a pair of stroke (i, j) . We follow the simi- 

ar procedure to construct the relational graph as in our previous 

ork [12] but improve in several aspects. Specifically, three differ- 

nt construction methods are considered in this work. 

Temporal edges. The temporal relationship between strokes is 

he most important relationship in the online documents [4,5] so 

t is natural to build edges between strokes in the successive writ- 

ng order. Specifically, the temporal edges are all pairs of strokes 

i, i + 1) . . . (i, i + k t ) , where k t is the hyperparameter chosen by

he validation. 

Radius-based spatial edges. The effect of spatial relationship be- 

ween strokes is also shown to be beneficial in stroke classifica- 

ion [2,3,6,12] and text line grouping [1] . In this part the spatial 

dges are added to the graph according to the minimum distance 

etween strokes. If the minimum distance of two strokes u and v is 
ess than a threshold k r , the edge (u, v ) is added to the graph. The

hreshold k r is chosen with the following heuristic manner. First 

he minimum distance of each stroke to the nearest stroke in the 

ame text line is calculated in the every text line in the training 

et, then median distance d median of these distances is computed 

nd the threshold k r is set to 2 d median . 

K-nearest spatial edges. In ink documents, the large variability 

f stroke size and between-stroke distance can make the graph 

ased on radius-based spatial edges miss some informative edges. 

e thus consider the k -nearest spatial edges as alternative way of 

raph consruction. Specifically, the nearest k s spatial neighbors of 

ach node will be added as spatial neighbors in the graph. The hy- 

erparameter k s is chosen by checking how many k -nearest spatial 

eighbors are sufficient to achieve high coverage rate of temporal 

eighbors (say, ≥ 98%) in the training set. 

Last, a unified graph is constructed by unifying the three types 

f edges in one graph. In addition, self loop edges are added to the 

raph as self node features are important for aggregation in the 

essage passing procedure of GNN. 

.2.2. Feature extraction 

Each node and each edge of the relational graph are associated 

ith some features describing their geometric properties. Geomet- 

ic and local context features of each stroke are extracted as node 

eatures, and pairwise geometric features of pairs of strokes are ex- 

racted as edge features. 
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Fig. 2. An illustration of the computation procedure of the edge pooling attention 

(EPAT) layer. 
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Node features. 13 contour-based shape features and 10 local con- 

ext features are extracted as node features following the similar 

rocedure in Delaye and Liu [3] , Van Phan and Nakagawa [4] , Ye

t al. [12] . The shape features are extracted from each stroke di- 

ectly, while the context features are extracted by considering its 

nteractions with neighboring strokes. Table A.8 lists all the node 

eatures. 

Edge features. 33 pairwise stroke features are extracted as 

dge features in the graph for estimating the similarity between 

air of strokes. These features are collected from the previous 

orks [3,4,10] for stroke classification or text line grouping task 

n the ink document. Some features are also made symmetric be- 

ween (u, v ) and (v , u ) pairs with the min-max trick as the rela-

ion between pairs of strokes should be the same. These features 

an be regarded as the indicators to measure similarity between 

wo strokes with various distance metrics. Therefore, it is suitable 

o use these features to learn gates to control the feature aggre- 

ation procedure in the stroke classification task and learn appro- 

riate distance for text line grouping. Table A.9 lists all the edge 

eatures ( Fig. 2 ). 

In the last step of feature extraction, power transform and Z- 

core normalization are applied to both the unary and pairwise 

eatures to standardize the feature values into the same scale as 

n Ye et al. [12] . 

.2.3. Edge pooling attention network 

The basic building block of the proposed edge pooling atten- 

ion network is edge pooling attention layer . The proposed layer 

n this paper is an extension to the architecture in our previous 

ork [12] . In this work, we propose the edge pooling technique in 

he edge update procedure for directly aggregating information be- 

ween edges that share the same vertex, which is specifically de- 

igned for text line grouping task. The motivation behind that is 

hether a pair of strokes should be merged into same text line not 

nly depends on the geometric relationship between them, but is 

lso affected by the geometric relationship of strokes that are ad- 

acent to them. 

The edge pooling attention layer includes two steps to update the 

nput node features and edge features. For completeness, we briefly 

eview the node update procedure as in Ye et al. [12] and then 

ntroduce the new edge update procedure integrated with the edge 

ooling technique. The input to each edge pooling attention layer 

s a set of node features H = { h i , i ∈ V } , h i ∈ R 

C and a set of edge

eatures F = { f i j , (i, j) ∈ E} , f i j ∈ R 

D , where V is the set of nodes,
4 
is the set of edges. The output of layer are new sets of node 

eatures H 

′ = { h 

′ 
i 
, i ∈ V } , h 

′ 
i 
∈ R 

C ′ and edge features F ′ = { f ′ 
i j 
, (i, j) ∈

} , f ′ 
i j 

∈ R 

D ′ . 
Node feature update. In the node update procedure, two types 

f attention mechanisms are applied to aggregate information be- 

ween neighborhood nodes. The first one is the self attention 

echanism [27,28] . A shared linear transformation is applied to ev- 

ry node by an attention mechanism a : R 

C ′ × R 

C ′ → R to compute 

he node attention score: 

s i j = a (W h h i , W h h j ) , 

 (W h h i , W h h j ) = σ (v T (W h h i + W h h j )) , (1) 

here W h ∈ R 

C ×C ′ , v ∈ R 

C ′ are learnable parameters. σ (·) is leaky 

eLU activation function [32] . 

The second one is the edge attention mechanism that exploits 

he pairwise geometric features to learn the attention score, which 

s computed by 

 

′ 
i j = σ (v T f σ (W f f i j + b f )) , (2) 

here W f ∈ R 

C ′ ×D , b f ∈ R 

C ′ , v f ∈ R 

C ′ are learnable parameters. 

Two types of attention score are then summed to calculate the 

nal attention score and normalized across the edges with tem- 

erature β . Then the output node features are computed as the 

eighted combination of the neighborhood node features with the 

ttention scores: 

i j = 

exp (β(s i j + s ′ 
i j 
)) ∑ 

k ∈N i exp (β(s ik + s ′ 
ik 
)) 

, 

h 

′ 
i = σ

( ∑ 

j∈N i 
αi j W h h j 

) 

, (3) 

here N i is the neighborhood of node i . 

At last, the standard technique multi-head attention is also em- 

loyed, which can be expressed as 

 

′ 
i = ‖ 

K 
k =1 σ

( ∑ 

j∈N i 
αk 

i j W 

k 
h h j 

) 

, (4) 

here ‖ represents concatenation. 

Edge feature update. After the update of the node features with 

eature aggregation of neighborhood nodes, we also like to update 

he edge features so as to contain enough information to decide 

hether two strokes should be merged. The information consid- 

red in this paper are from three views. First it should contain the 

nformation of itself: 

 

e 
i j = σ (W edge f i j ) . (5) 

Second, the node feature should be included to update the 

dge feature as the node feature should contain the information 

f stroke type (text/non-text). Knowing this information is likely 

elpful for deciding whether two strokes should be merged as it is 

nvalid to link a text stroke and a non-text stroke: 

 

n 
i j = σ (W node [ h 

′ 
i || h 

′ 
j ]) . (6) 

Third, since the global information about the whole text line 

lays an important role in the text line grouping [1] and some- 

imes the pairwise geometric features are not sufficient to decide 

he merge of two strokes, it is beneficial to have a module for edge 

eatures to communicate directly with adjacent edge features. So 

e propose to use two common pooling techniques to first pool 

he edge features to the nodes and update the edge features with 

he pooling features: 

t max 
i = maxpool (i, j) ∈ E { f i j } , 
t ave 

i = avepool (i, j) ∈ E { f i j } , 
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max 
i j = σ (W max [ t 

max 
i || t max 

j ]) , 

r ave 
i j = σ (W a v e [ t 

ave 
i || t ave 

j ]) . (7) 

At last, another fully connected layer is used to project the con- 

atenation of these features to the output features: 

 

′ 
i j = σ (W reduce [ r 

e 
i j || r n i j || r max 

i j || r ave 
i j ]) . (8)

Some standard techniques including residual connection and 

atch normalization are also employed to stabilize and acceler- 

te the training procedure. We set the same hyperparameters in 

ll layers to the same to reduce the complexity of hyperparame- 

er tuning. Because of that, the residual connection can be added 

xcept the first layer: 

 

′ 
i = BatchNorm (h i + NodeUpdate (h i )) , 

 

′ 
i j = BatchNorm (f i j + EdgeUpdate (f i j , h 

′ 
i , h 

′ 
j )) . (9) 

After the design of appropriate layer for learning context-aware 

eatures, the next step is to design an appropriate architecture that 

an tackle with two tasks simultaneously. There are various archi- 

ectures proposed to deal with the multi-task learning in recent 

ears, like the MoE model [33] and MMoE model proposed in Ma 

t al. [34] . But in this work, we choose the traditional share-bottom 

odel [35] as the multi-task learning framework as it is simple to 

mplement and achieves the satisfactory performance. Specifically, 

 number of bottom layers are shared, then the features output by 

he last shared layer are fed into two different branches to get the 

ifferent node and edge features for stroke classification and text 

ine grouping, which can be expressed as 

 share , F share = φshare (H raw 

, F raw 

) , 

H cls , F cls = φcls (H share , F share ) , 

H seg , F seg = φseg (H share , F share ) , 

p i = softmax (W cls h 

cls 
i + b cls ) , ∀ i ∈ V 

d(u, v ) = W seg f 
seg 
i j 

+ b seg , ∀ (u, v ) ∈ E (10) 

here H raw 

and F raw 

are raw node and edge features, 

share , φcls , φseg are three different branches which is stacked 

ith EPAT layers. The output { p i | i ∈ V } and { d(u, v ) | (u, v ) ∈ E}
re the correspodoning node probability for stroke classification 

nd edge weights for text line grouping. 

.3. Inference 

In the inference process, first the node probability of each 

troke { p i | i ∈ V } and distances { d(u, v ) | (u, v ) ∈ E} are output ac-

ording to (10) . The prediction of stroke classification is obtained 

y choosing the class with maximum probability of each stroke. 

hen the subgraph containing only text strokes are selected to 

roup into text lines according to distances. Algorithm 1 summa- 

izes the inference process. 
lgorithm 1 Inference process. 

nput: Document sample S = { H raw 

, F raw 

, G } ; 
utput: Predicted stroke labels ˆ y = { ̂  y i | i ∈ V } and text lines ˆ L = 

{ ̂ l j , j = 1 , . . . , ˆ m } ; 
1: Compute { p i | i ∈ V } and { d(u, v ) | (u, v ) ∈ E} according to (10); 

2: ˆ y = { ̂  y i = arg max p i | i ∈ V } ; 
3: Select the subgraph G 

′ = (V G ′ , E G ′ ) with V G ′ = { v | ˆ y v = 1 } and 

E G ′ = { (u, v ) | u ∈ V G ′ , v ∈ V G ′ } .Initialize ˆ L = { ̂ l j = { j} | j ∈ V G ′ } ; 
4: for (u, v ) ∈ E G ′ do 

5: if d(u, v ) ≤ 0 then 

6: ˆ l u ← ̂

 l u ∪ ̂

 l v ; 

7: ˆ L ← ̂

 L \ ˆ l v ; 

8: return 

ˆ y and 

ˆ L ; 
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.4. Network training 

For training the EPAT, the loss functions and and training algo- 

ithm are introduced as follows. 

.4.1. Loss functions 

For stroke classification, the loss function is the standard cross 

ntropy loss. Given the output probability p ∈ R 

T i ×2 and the ground 

ruth label y ∈ { 0 , 1 } T i of one document, 

oss node (θ ) = − 1 

T 

T ∑ 

t=1 

2 ∑ 

j=1 

δ(y t = j ) log p t ( j ; θ ) . (11) 

For text line grouping, a modified version of distance learn- 

ng method in Delaye and Lee [10] is used. Given the anno- 

ated text line L = { l j , j = 1 , . . . , m } of one document and distances

 d(u, v ; θ ) , (u, v ) ∈ E} output by the model, the edge with maxi-

um distance within the same text line and the edge with min- 

mum distance between different text lines can be found, which 

an be expressed as 

 = 

{
(u, v ) = arg max 

(u, v ) ∈ E,u ∈ l j , v ∈ l j 
d(u, v ; θ ) 

}m 

j=1 

, 

C = 

{
(u, v ) = arg min 

(u, v ) ∈ E,u ∈ l j , v ∈ l k ,k � = j 
d(u, v ; θ ) 

}m 

j=1 

. (12) 

Both M and C contain m links. Assuming that the clusters 

atch with the ground truth segmentation, a reasonable objective 

s to maximize the distance for links in C to encourage cluster sep- 

rability, and to minimize the distance for links in M to encourage 

luster compactness. This goal can be achieved by optimizing the 

ollowing logistic loss of distances: 

oss edge (θ ) = − 1 

m 

( ∑ 

(u, v ) ∈C 
J C u, v (θ ) + 

∑ 

(u, v ) ∈M 

J M 

u, v (θ ) 

) 

, (13) 

here 

 

C 
u, v (θ ) = log (s (−d(u, v ; θ ))) , 

 

M 

u, v (θ ) = log (1 − s (−d(u, v ; θ ))) , (14) 

nd s (·) is the sigmoid function 

 (x ) = 1 / (1 + exp (−x )) . (15) 

The above loss is applied in the situation that only text strokes 

re grouped into text lines. It ignores the situation that at least one 

ndpoint of edge is a non-text stroke. Here we simply extend the 

oss to deal with the non-text case: if one end of edge u is the text

troke and the another end of edge v is the non-text stroke, the 

on-text stroke v is interpreted as the “text stroke in the different 

ext line” and update the corresponding link in C; if both ends of 

n edge are non-text strokes, this edge is thrown away as the text 

ine grouping problem is undefined with non-text strokes. We refer 

o this modification as “non-text (NT) loss” and its effect will be 

nalyzed in the ablation experiment. For clarity, the computation 

f M and C is summarized as Algorithm 2 . 

The final loss is the sum of these two losses: 

oss (θ ) = Loss node (θ ) + Loss edge (θ ) . (16) 

Hard sample mining. The distance learning loss stated above can 

e seen as a kind of hard mining technique for selecting hard sam- 

les to distinguish text lines in one document. As there are dif- 

erent performance needs in downstream tasks, e.g. high recall or 

recision, we also employ a simple hard sample mining technique 

or optimizing specific metric. For simplicity, the text line recall 

ate is chosen as the metric for evaluating the difficulty. The range 
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Algorithm 2 Computation of critical links. 

Input: Distances { d(u, v ) | (u, v ) ∈ E} ; 
Annotated text lines L = { l j } ; 
Ground truth stroke labels y ; 

Output: Critical links M and C; 

1: Initialize M = {} , C = {} ; 
2: for (u, v ) ∈ E do 

3: if (u, v ) from the same text line l j then 

4: if M j = ∅ or d (u, v ) > d (M j ) then 

5: Update M j with (u, v ) ; 
6: else if (u, v ) from different text lines l j and l k then 

7: if C j = ∅ or d (u, v ) < d (C j ) then 

8: Update C j with (u, v ) ; 
9: if C k = ∅ or d (u, v ) < d (C k ) then 

10: Update C k with (u, v ) ; 
11: else if y u = 0 or y v = 0 then 

12: if y u = 0 and v from text line l j then 

13: if C j = ∅ or d (u, v ) < d (C j ) then 

14: Update C j with (u, v ) ; 
15: if y v = 0 and u from text line l j then 

16: if C j = ∅ or d (u, v ) < d (C j ) then 

17: Update C j with (u, v ) ; 
18: return M and C; 
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l  
f recall rate lies in [0 , 1] and the higher recall rate means the

etter performance. In the training process, given a mini batch of 

amples B, we first compute the text line recall rate of each docu- 

ent { z (i ) | i = 1 , . . . , | B |} , then the weight of each sample can be

omputed by 

 

(i ) = 

1 − z (i ) ∑ | B | 
j=1 

1 − z ( j) 
, i = 1 , . . . , | B | (17) 

The overall training process is summarized in Algorithm 3 . 

lgorithm 3 Training process. 

nput: Samples D 

(i ) = { H 

(i ) 
raw 

, F (i ) 
raw 

, G 

(i ) } , i = 1 , . . . , N; 

Ground truth stroke labels y (i ) , i = 1 , . . . , N; 

Annotated text lines L (i ) = { l (i ) 
j 

} , i = 1 , . . . , N; 

utput: Learned model parameter θ ∗; 

1: Randomly initialize θ
2: repeat 

3: Sample a mini-batch B = { D 

(i ) , y (i ) , L (i ) } , i = 1 , . . . , | B | 
4: for i = 1 to | B | do 

5: Compute p 

(i ) and { d (i ) (u, v ) | (u, v ) ∈ G 

(i ) } according to

(10); 

6: Compute Loss (i ) 
node 

with p 

(i ) and y (i ) according to (11); 

7: Compute critical links M 

(i ) and C (i ) according to Algo- 

rithm 2; 

8: Compute Loss (i ) 
edge 

with M 

(i ) and C (i ) according to (13); 

9: Compute the predicted text lines ˆ B (i ) with Algorithm 1; 

0: Compute the specific performance metric z (i ) with 

ˆ B (i ) 

and B (i ) ; 

11: Compute the sample weight { w 

(i ) | i = 1 , . . . , | B |} according

to (17); 

2: Compute the mini-batch loss as 

Loss batch (θ ) = 

1 

| B | 
| B | ∑ 

i =1 

Loss (i ) 
node 

(θ ) + 

| B | ∑ 

i =1 

w 

(i ) Loss (i ) 
edge 

(θ ) (18) 

3: Compute the gradient of Loss batch and update θ ; 

14: until limit on the number of training iterations is reached. 

t

6 
.4.2. Training details 

We implement the training algorithm with the DGL li- 

rary [36] and its PyTorch backend [37] . 

The weight matrix parameters are initialized with normal sam- 

les N (0 , σ 2 ) , where σ = 

√ 

2 
r + c and r, c are the number of rows

nd columns in the matrix [38] . 

The training procedure is optimized with Adam optimizer [39] . 

he initial learning rate η0 is chosen as 0.005 and the learning rate 

s adjusted with the cosine decay [40] . The early stopping strat- 

gy is used to select the best model based on the performance 

n the validation set. The text line recall rate metric is chosen as 

he indicator of performance. The stochastic weight average tech- 

ique [41] is also used to balance the stroke classification and text 

ine grouping tasks. 

. Experiments 

To evaluate the performance of the proposed method, we con- 

ucted experiments on two public datasets of online handwritten 

ocuments: IAMOnDo [13] and Kondate [16] . For each dataset, we 

erform two sets of experiments. The first set is to predict the text 

ines given the ground truth stroke labels, which is denoted as Per- 

ectWD setting in Zhou et al. [1] and the second set is to predict

he stroke labels and text lines given the input document, which is 

enoted as CrudeWD setting in Zhou et al. [1] . 

.1. Datasets 

IAMOnDo. The IAMOnDo dataset [13] is a publicly available 

ollection of freely handwritten English online documents. The 

ataset consists of 10 0 0 documents, mixing texts, drawing, dia- 

rams, formulas, tables, lists and marking elements arranged in 

n unconstrained way. We follow the traditional data partitioning 

f the dataset [13] . Documents from set0 and set1 constitute the 

raining set, set2 is the validation set, and set3 is the test set. The 

orresponding ground truth labels are derived as suggested in In- 

ermühle [42] . 

Kondate. The Kondate dataset [16] is a collection of online hand- 

ritten Japanese documents. The dataset contains the documents 

ritten by 67 writers, 41 pages per writer covering the stroke 

ypes of text, formula, figure, ruled line and editing mask. We fol- 

ow a similar partitioning of the dataset as in Zhou et al. [1] , where

056 pages are used for training, 820 pages for validation, 861 

ages for testing. 

Both datasets have the formula stroke type and the formula 

ype contains both characters and non-characters. There is no an- 

otation of text line in the formula in both datasets and we follow 

he similar processing method as [1] to exclude those strokes in 

he text line grouping task. 

.2. Evaluation metrics 

For text/non-text classification, the accuracy is used as the eval- 

ation metric, which is defined as: 

ccuracy = 

∑ N 
i =1 

∑ T i 
t=1 

δ( ̂  y it = y it ) ∑ N 
i =1 T i 

, (19) 

here N is the number of documents, T i is the number of strokes 

n the i th document. ˆ y it and y it are the corresponding prediction 

nd ground truth. 

For evaluating the performance of text line grouping, we fol- 

ow the similar procedure as in Zhou et al. [1] . First, some defini-

ions are introduced for metrics computation. A one-to-one match 
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o

s

t

s a match between a result line and a ground-truth line that con- 

ain identical strokes. A g_one-to-many match is a match between 

 ground truth line and two or more result lines that their union 

quals the ground truth line. Similarly, a d_one-to-many match is 

 match between a predicted line and two or more ground truth 

ines that their union equals the predicted line. misses are those 

ext lines in the ground truth that do not match with any pre- 

icted lines, i.e. the intersection between the ground truth line 

nd any predicted line is empty. false-alarms are those predicted 

ines that do not match any ground truth lines. A g_segmentation 

rror is produced if there exists at least one predicted text line, 

uch that the intersection of the ground truth line is a nonempty 

roper subset of the ground truth line. A d_segmentation error is 

roduced if there exists at least one ground truth line, such that 

he intersection of the predicted line is a nonempty proper sub- 

et of the predicted line. A g_merge error is produced if there ex- 

sts at least one predicted line with some strokes belonging to the 

round truth line cannot have g_one-to-many match . A d_merge er- 

or is produced if there exists at least one ground truth line, such 

hat some strokes of the predicted line belong to the ground truth 

ine and some do not. 

After definitions of the matches and errors, various met- 

ics for evaluating text line grouping performance can be de- 

ned. Let one2one, g_one2many, d_many2one, misses, false_alarms, 

_segmentation, d_segmentation, g_merge, d_merge denote the 

ounts of the corresponding matches and errors, M gt is the number 

f ground truth text lines, and M pred is the number of predicted 

ext lines. In the following, the performance metrics are defined: 

Segmentation recall rate (SR) 

R = 

one 2 one 

M gt 
. (20) 

Detection rate (DR) 

R = 

one 2 one 

M gt 
+ 

g _ one 2 many 

M gt 
. (21) 

Missed detection rate (MDR) 

DR = 

misses 

M gt 
. (22) 

Recognition accuracy (RA) 

A = 

one 2 one 

M pred 

+ 

d _ many 2 one 

M pred 

. (23) 

False-alarm rate (FAR) 

 AR = 

fal se _ al arms 

M pred 

. (24) 

Entity detection metric (EDM) 

DM = 

2 · DR · RA 

DR + RA 

. (25) 

Edit cost index (ECI) 

CI = 1 − 2 · one 2 one 

M gt + M pred 

. (26) 

Edit distance rate (EDR) 

DR = 

d _ segmentation + d _ merge 

M gt 
. (27) 

Segmentation error rate (SER) 

ER = 

2 · g _ segmentation · d _ segmentation 

M pred · g _ segmentation + M gt · d _ segmentation 

. (28) 

Merge error rate (MER) 

ER = 

2 · g _ merge · d _ merge 

M pred · g _ merge + M gt · d _ merge 
. (29) 
d

7 
.3. Results and discussions 

In this section, the results of the proposed method are pre- 

ented. First we compare our method with some previous rep- 

esentative methods, then we discuss the effects of different de- 

igns in our method by ablation experiments. For comparing with 

ther methods, the default settings (hyperparameters) of the pro- 

osed method are summarized in Table A.10 . The graphs are con- 

ructed with temporal edges and radius-based spatial edges. We 

ill show in ablation experiments that these settings are reason- 

ble to achieve good performance. 

When comparing with other methods, as the variance of ac- 

uracies was not reported in the previous work, we use the z- 

est [43] as the statistical test method. Specifically, denote the met- 

ic of two systems by p 1 and p 2 ( p 1 < p 2 ) and take the null hy-

othesis that two metrics p 1 and p 2 do not differ significantly, 

he distribution of variable p 2 − p 1 can be approximated as nor- 

al with zero mean and variance σ 2 = 2 p(1 − p) /n, where p is 

he average of p 1 and p 2 and n is the number of test samples. The

ariable z = (p 2 − p 1 ) /σ has a standard normal distribution. When 

he value of | z| > 1 . 96 , the null hypothesis can be rejected with

onfidence higher than 0.95. 

.3.1. Compared with previous methods 

The results of PerfectWD and CrudeWD on two datasets are 

hown in Tables 1–4 . In the PerfectWD setting of IAMOnDo dataset, 

e compare our result with that in Delaye and Lee [10] , where 

ecall rate (SR) 0.9188 and tolerant recall rate (TSR, same as the 

etection rate in our paper) 0.9555 were reported. Our work uses 

he similar metric distance learning framework as in Delaye and 

ee [10] , but we consider the interaction between edge features 

nd learn the distributed edge representations using deep GNN. 

esides, our inference process uses only edges in the temporal- 

patial relational graph, while all pairs of edges (a complete graph) 

ere used in Delaye and Lee [10] . The recall rate and detection 

ate of our system are 0.9380 and 0.9613, outperforming the re- 

ults of [10] by 1.92% and 0.58% with z-value 3.58 and 1.40. This 

mplies that our method performs better on the recall rate with 

igh level of significance( | z| > 1 . 96 ) and comparably on the detec-

ion rate ( | z| < 1 . 96 ). This work is the first to report results for the

rudeWD setting on the IAMOnDo dataset. The recall rate, detec- 

ion rate, EDM and EDR are 0.9034, 0.9131, 0.9077 and 0.0618, re- 

pectively. 

In the PerfectWD setting on the Kondate dataset, we compare 

ur method with the method in Zhou et al. [1] , using the metrics 

DM and EDR. Our method yields EDM 0.9594 and EDR 0.0489, 

utperforming the results of [1] by 0.03% and 1.80% with z -value 

.07 and 4.09, respectively. This implies that our method performs 

etter on the EDR with high level of significance( | z| > 1 . 96 ) and

omparably on the EDM ( | z| < 1 . 96 ). In the CrudeWD setting on

he Kondate dataset, we also compare with the method in Zhou 

t al. [1] . The EDM, EDR and stroke classification accuracy of our 

ethod are 0.9247, 0.0634 and 0.9971, outperforming the results 

f [1] by 2.55%, 4.80% and 0.30%, with z-value 4.93, 9.31 and 15.29, 

espectively. This implies that our method performs better on EDM, 

DR and stroke classification accuracy with high level of signifi- 

ance ( | z| > 1 . 96 ). 

.3.2. Ablation experiments 

We also conducted ablation experiments to evaluate the effects 

f different settings. Particularly, we evaluate the options of con- 

truction of relational graph, the loss functions, the edge pooling 

echnique, and the number of EPAT layers. 

Construction of relational graph. We perform detailed analysis in 

ifferent ways of relational graph construction on the IAMOnDo 
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Table 1 

Text line grouping results for PerfectWD on the IAMOnDo dataset. Bold face indicates the best performance among different 

methods. 

Method SR DR MDR RA FAR EDM ECI EDR SER MER 

Delaye et al. [10] 0.9188 0.9555 – – – – – – – –

w/o hard mine 0.9304 0.9529 0.0000 0.9769 0.0000 0.9647 0.0736 0.0803 0.0358 0.0278 

w/o edge pool 0.9248 0.9520 0.0000 0.9667 0.0000 0.9593 0.0890 0.1104 0.0478 0.0287 

EPAT 0.9380 0.9613 0.0000 0.9814 0.0000 0.9712 0.0675 0.0758 0.0355 0.0230 

Table 2 

Text line grouping results for CrudeWD on the IAMOnDo dataset. The last column shows stroke classification accuracy. Bold face indicates 

the best performance among different methods. 

Method SR DR MDR RA FAR EDM ECI EDR SER MER acc 

Delaye et al. [3] – – – – – – – – – – 0.9721 

Ye et al. [5] – – – – – – – – – – 0.9796 

Phan et al. [5] – – – – – – – – – – 0.9830 

w/o hard mine 0.8978 0.9172 0.0255 0.9014 0.0635 0.9092 0.1230 0.0851 0.0394 0.0328 0.9856 

w/o NT loss 0.8794 0.8928 0.0309 0.9025 0.0498 0.8977 0.1254 0.0838 0.0325 0.0475 0.9840 

w/o edge pool 0.8816 0.9071 0.0302 0.8855 0.0753 0.8962 0.1481 0.1091 0.0459 0.0359 0.9853 

EPAT 0.9034 0.9131 0.0300 0.9024 0.0597 0.9077 0.1077 0.0618 0.0235 0.0352 0.9860 

Table 3 

Text line grouping results for PerfectWD on the Kondate dataset. Bold face indicates the best performance among different methods. 

Method SR DR MDR RA FAR EDM ECI EDR SER MER 

Pre-segmentation [1] – 0.8024 0.0000 0.8891 0.0012 0.8435 0.1702 0.1219 0.0277 0.1160 

Temporal segmentation [1] – 0.9547 0.0000 0.9494 0.0011 0.9520 0.0656 0.0870 0.0424 0.0246 

Spatial merge [1] – 0.9573 0.0000 0.9609 0.0010 0.9591 0.0530 0.0669 0.0298 0.0265 

w/o hard mine 0.9290 0.9453 0.0000 0.9709 0.0000 0.9579 0.0604 0.0531 0.0218 0.0353 

w/o edge pool 0.9191 0.9333 0.0000 0.9661 0.0000 0.9494 0.0588 0.0584 0.0202 0.0405 

EPAT 0.9340 0.9467 0.0000 0.9725 0.0000 0.9594 0.0552 0.0489 0.0175 0.0334 

Table 4 

Text line grouping results for CrudeWD on the Kondate dataset. The last column shows stroke classification accuracy. Bold face indicates the best 

performance among different methods. 

Method SR DR MDR RA FAR EDM ECI EDR SER MER acc 

Pre-segmentation [1] – 0.6611 0.0050 0.5752 0.0466 0.6152 0.3944 0.4710 0.2275 0.1082 –

Temporal segmentation [1] – 0.7760 0.0075 0.6563 0.0258 0.7111 0.2987 0.4102 0.2304 0.0413 –

Temporal merge [1] – 0.9052 0.0072 0.8822 0.0279 0.8936 0.1195 0.1271 0.0563 0.0537 –

Spatial merge [1] – 0.9047 0.0072 0.8939 0.0242 0.8992 0.1097 0.1114 0.0450 0.0582 0.9941 

w/o hard mine 0.8861 0.8912 0.0163 0.9311 0.0183 0.9107 0.0938 0.0719 0.0270 0.0507 0.9962 

w/o NT loss 0.8838 0.8906 0.0232 0.9289 0.0158 0.9093 0.0941 0.0726 0.0285 0.0488 0.9950 

w/o edge pool 0.8660 0.8753 0.0183 0.9301 0.0135 0.9019 0.1093 0.0864 0.0312 0.0619 0.9965 

EPAT 0.9102 0.9183 0.0133 0.9312 0.0183 0.9247 0.0834 0.0634 0.0262 0.0357 0.9971 
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ataset. Since the results of PerfectWD and CrudeWD show sim- 

lar tendency for different hyperparameter settings, to save space, 

e only show the results of CrudeWD in Table 5 . 

First, graphs with different number of temporal edges k t (EPAT 

time)) are compared. The results in Table 5 show that the best 

erformance of most metrics is achieved by EPAT (time, k t = 2 ) on

he IAMOnDo dataset. When the number of time neighbors is in- 

reased further, the performance is not improved, because adding 

oo many time neighbors also introduces noise edges. 

Then graphs with spatial edges of different radius and k-nearest 

arameters are compared. Since our cluster algorithm relies on the 

dges of relational graph, we can see that graphs of EPAT (radius 

pace) with small k r (5,10,20) do not perform well for text line seg- 

entation as some strokes in one line are not connected. Only the 

PAT (radius space, k r = 40 ) model performs competitively, but it 

s much slower because of large number of edges. Nevertheless, 

ombining temporal edges and radius spatial edges of moderate 

ize ( k r = 10 , 20 ) leads to superior performance. The performance

f the default setting ( k t = 2 , k r = 20 ) is nearly the best. We can

ee that graph construction with k-nearest spatial edges only does 

ot perform well, combining temporal edges and k-nearest sptial 

dges performs better, but not so well as combining radius and k- 

earest sptial edges. Finally, combining all the three types of edges 
8 
temporal, radius and k-nearest edges) performs comparably well 

s the default setting (temporal k t = 2 , radius spatial k r = 20 ). This

erifies that the default setting is reasonable and competitive. 

After determining the graph construcion parameters, the vari- 

nts of the configurations of the proposed method are summarized 

n Table 6 . 

Variants of loss function. We evaluate the effect of the hard sam- 

le mining technique and non-text loss introduced in Section 3.4.1 . 

o evaluate the effect of the hard sample mining technique, the re- 

all rate is chosen to measure the difficulty of document segmen- 

ation. From Tables 1–4 , it is shown that the recall rate of EPAT 

odel has a consistent improvement compared to the model w/o 

ard sample mining in both PerfectWD and CrudeWD settings on 

AMOnDo and Kondate datasets. This verifies that the hard sample 

ining technique can boost specific metric effectively. 

Another important design of loss function is to consider the 

on-text strokes in the computation of critical links. As non-texts 

troke cannot be linked to any text stroke to form text line, it is 

eneficial to increase the distance between them. The results in 

ables 2 and 4 show that the recall rate, detection rate, EDM and 

DR of the model w/o non-text (NT) loss have consistent drops 

ompared to the EPAT model. 
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Table 5 

Ablation study of different construction of relational graph for CrudeWD on the IAMOnDo dataset. ‘ ∗ ’ indicates the ‘EPAT’ model in Table 2 . 

Method SR DR MDR RA FAR EDM ECI EDR SER MER acc 

EPAT (time, k t = 1 ) 0.8660 0.8896 0.0386 0.9057 0.0436 0.8976 0.1407 0.1065 0.0520 0.0386 0.9855 

EPAT (time, k t = 2 ) 0.8701 0.8844 0.0372 0.9110 0.0331 0.8975 0.1255 0.0894 0.0397 0.0465 0.9853 

EPAT (time, k t = 3 ) 0.8662 0.8781 0.0380 0.8988 0.0478 0.8884 0.1318 0.0832 0.0328 0.0503 0.9845 

EPAT (radius space, k r = 5 ) 0.2351 0.9468 0.0210 0.9468 0.0273 0.9468 0.9346 5.7932 0.8263 0.0019 0.9773 

EPAT (radius space, k r = 10 ) 0.4944 0.9412 0.0292 0.9521 0.0323 0.9466 0.7494 2.3589 0.5846 0.0069 0.9812 

EPAT (radius space, k r = 20 ) 0.6392 0.9170 0.0244 0.9238 0.0392 0.9204 0.5520 1.1396 0.3996 0.0209 0.9837 

EPAT (radius space, k r = 40 ) 0.8896 0.9116 0.0197 0.8615 0.1005 0.8858 0.1495 0.0946 0.0405 0.0382 0.9806 

EPAT (time + radius space, k t = 1 , k r = 5 ) 0.8740 0.9120 0.0341 0.9162 0.0491 0.9141 0.1471 0.1271 0.0650 0.0305 0.9849 

EPAT (time + radius space, k t = 1 , k r = 10 ) 0.8984 0.9192 0.0229 0.9017 0.0589 0.9104 0.1229 0.0903 0.0426 0.0320 0.9851 

EPAT (time + radius space, k t = 1 , k r = 20 ) 0.8987 0.9086 0.0231 0.8942 0.0620 0.9013 0.1152 0.0728 0.0310 0.0392 0.9843 

EPAT (time + radius space, k t = 2 , k r = 5 ) 0.8917 0.9058 0.0248 0.8926 0.0695 0.8992 0.1273 0.0780 0.0323 0.0397 0.9850 

EPAT (time + radius space, k t = 2 , k r = 10 ) 0.9032 0.9180 0.0255 0.8952 0.0688 0.9064 0.1169 0.0715 0.0306 0.0325 0.9856 

EPAT (time + radius space, k t = 2 , k r = 20 ) 0.9034 0.9131 0.0300 0.9024 0.0597 0.9077 0.1077 0.0618 0.0235 0.0352 0.9860 

EPAT (k-nearest space, k s = 5 ) 0.7772 0.9058 0.0311 0.9052 0.0550 0.9055 0.3087 0.4062 0.1951 0.0307 0.9835 

EPAT (k-nearest space, k s = 10 ) 0.8792 0.9123 0.0303 0.8682 0.0614 0.8897 0.1880 0.2193 0.0757 0.0309 0.9834 

EPAT (k-nearest space, k s = 20 ) 0.8892 0.9049 0.0264 0.8536 0.0795 0.8785 0.1829 0.1977 0.0502 0.0361 0.9798 

EPAT (time + k-nearest space, k t = 1 , k s = 20 ) 0.8935 0.9151 0.0279 0.8713 0.0592 0.8927 0.2055 0.2848 0.0608 0.0290 0.9835 

EPAT (time + k-nearest space, k t = 2 , k s = 20 ) 0.8922 0.9205 0.0177 0.8203 0.1389 0.8756 0.2277 0.2867 0.0671 0.0358 0.9786 

EPAT (radius + k-nearest space, k r = 10 , k s = 10 ) 0.8881 0.9164 0.0292 0.8827 0.0803 0.8992 0.1480 0.1117 0.0519 0.0303 0.9821 

EPAT (radius + k-nearest space, k r = 20 , k s = 10 ) 0.8907 0.9164 0.0255 0.8894 0.0742 0.9027 0.1387 0.1003 0.0493 0.0307 0.9821 

EPAT (radius + k-nearest space, k r = 10 , k s = 20 ) 0.8948 0.9205 0.0326 0.9127 0.0578 0.9166 0.2097 0.2995 0.0654 0.0244 0.9817 

EPAT (radius + k-nearest space, k r = 20 , k s = 20 ) 0.9019 0.9129 0.0240 0.7920 0.0737 0.8482 0.1741 0.2001 0.0517 0.0301 0.9805 

EPAT (time + radius + k-nearest space, k t = 1 , k r = 10 , k s = 20 ) 0.9000 0.9090 0.0236 0.8838 0.0795 0.8963 0.1192 0.0624 0.0224 0.0371 0.9830 

EPAT (time + radius + k-nearest space, k t = 2 , k r = 10 , k s = 20 ) 0.9036 0.9118 0.0229 0.8755 0.0850 0.8933 0.1206 0.0646 0.0233 0.0376 0.9838 

Table 6 

Methods and its associated modules. ‘time’ denotes temporal edges. ‘radius space’ denotes 

radius-based spatial edges. ‘ k -nearest space’ denotes k -nearest spatial edges. ‘HM’ denotes 

hard mining. ‘NT’ denotes non-text loss. ‘EP’ denotes edge pooling technique. 

Method Time Radius space k -nearest space HM NT EP 

EPAT (time) � � � � 

EPAT (radius space) � � � � 

EPAT (k-nearest space) � � � � 

w/o hard mine � � � � 

w/o non-text loss � � � � 

w/o edge pool � � � � 

EPAT � � � � � 
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Fig. 3. The performance of different layers in the PerfectWD setting of IAMOnDo 

dataset. The EDR metric is transformed to 1 - EDR for plot convenience. 

Table 7 

The number of parameters and inference speed on 

different datasets. 

Dataset Parameters speed (s/doc) 

IAMOnDo-Perfect 0.79 M 0.018 

IAMOnDo-Crude 0.79 M 0.029 

Kondate-Perfect 0.79 M 0.012 

Kondate-Crude 0.79 M 0.015 
Edge pooling technique. The motivation of introducing the edge 

ooling technique is to enhance the aggregation between edge 

eatures as the text line grouping task needs a broad repetitive 

eld to decide whether two strokes should be merged. The re- 

ults in Tables 1 –4 show that the edge pooling technique is very 

owerful to boost the system performance in nearly all met- 

ics. This is because edge pooling can effectively capture the de- 

endency between adjacent edge features and the aggregation 

f adjacent edge features is beneficial to the text line grouping 

ask. 

Number of EPAT layers. We perform experiments with differ- 

nt number of EPAT layers in the graph network. The results in 

ig. 3 show that the recall rate, DR, EDM and 1-EDR are consis- 

ently increasing before 5 layers and become flat or oscillating after 

hat. This implies the increase of layers will boost the performance 

hen the number of layers is small but may have little effect when 

here are enough layers. 

.4. Complexity 

We implemented the experiments on a computer with Intel(R) 

ore(TM) i7-6800K CPU(3.40 GHz) and GeForce GTX1080Ti. Table 7 

resents the number of parameters and test speed on different 

atasets. Enhanced with the modern GPU computation device, 

he inference speed of our model is about 0.01s on the Kondate 

ataset, which is much faster than 0.60s reported in Zhou et al. 

1] . 
9 
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Fig. 4. Examples from IAMOnDo dataset (top two rows) and Kondate dataset (bottom row). The first column shows the ground truth stroke labels and text lines of doc- 

uments. The second column shows the predicted results by the model w/o edge pool. The third column shows the predicted results by the EPAT model. Text strokes are 

shown in blue, non-text strokes are shown in red. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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Section 3.2.1 . 
.5. Qualitative analysis 

Fig. 4 presents some examples of stroke classification and text 

ine grouping results from IAMOnDo and Kondate datasets. The 

hree columns show the ground truth, the results of the model w/o 

dge pool and the EPAT model, respectively. We can see that com- 

ared to the model w/o edge pool, the EPAT model generates fewer 

rrors of text line segmentation. Particularly, in the third example, 

he document has both horizontal and vertical text lines, and some 

on-text strokes overlap with text strokes, yet the EPAT model still 

lassify them correctly. 

. Conclusion 

In this paper, we propose a novel framework to perform 

troke classification and text line grouping problems simultane- 

usly in online handwritten documents using edge pooling at- 

ention network (EPAT). The stroke classification and text line 

rouping problems are formulated as node classification and node 

lustering in a relational graph, respectively. The edge pooling 

ttention layer in the network can effectively aggregate infor- 

ation between adjacent node and edge features. The EPAT is 

rained jointly in multi-task learning using cross entropy loss 

or stroke classification and distance metric loss for text line 

rouping, respectively. Experimental results show that the joint 

ramework promise both stroke classification and text line group- 

ng, and has achieved state-of-the-art performance on public 

atasets. 

In the future, there are several potential directions that can be 

xplored. In view of features, to extract features directly from the 

aw stroke trajectory by GNN may further boost the system perfor- 
10 
ance. In view of applications, the proposed EPAT framework can 

e applied to offline documents, and can detect and group multi- 

ype objects in documents. 

eclaration of Competing Interest 

The authors declare that they have no known competing finan- 

ial interests or personal relationships that could have appeared to 

nfluence the work reported in this paper. 

cknowledgments 

This work has been supported by the National Key Research 

nd Development Program Grant 2018YFB10 050 0 0 , the National 

atural Science Foundation of China (NSFC) grants 61773376 and 

1721004 . 

ppendix A 

1. Stroke features 

This section summarizes the node features and edge features 

sed in our model. 

2. Hyperparameters 

This section summarizes the hyperparameters used in 

ur model. For all EPAT layers, the hyperparameter of each 

ayer( C ′ , D 

′ , K) are kept the same. Parameters k r and k s are cal-

ulated based on statistics of training dataset, as illustrated in 

https://doi.org/10.13039/501100012166
https://doi.org/10.13039/501100001809
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Table A.8 

Node features extracted from stroke x k . 

# Description 

1 Trajectory length of x k 
2 Area of the convex hull of x k 
3 Duration of the stroke 

4 Ratio of the principal axis of x k 
5 Rectangularity of the minimum area bounding rectangle of x k 
6 Circular variance of points of x k around its centroid 

7 Normalized centroid offset along the principal axis 

8 Ratio between first-to-last point distance and trajectory length 

9 Accumulated curvature 

10 Accumulated squared perpendicularity 

11 Accumulated signed perpendicularity 

12 Width of x k , normalized by the median stroke height in the document 

13 Height of x k , normalized by the median stroke height in the document 

14 Number of temporal neighbours of x k 
15 Number of spatial neighbours of x k 
16 Average of the distances from x k to time neighbours 

17 Standard deviation of the distances from x k to time neighbours 

18 Average of lengths of time neighbours 

19 Standard deviation of lengths of time neighbours 

20 Average of the distances from x k to space neighbours 

21 Standard deviation of the distances from x k to space neighbours 

22 Average of lengths of space neighbours 

23 Standard deviation of lengths of space neighbours 

Table A.9 

Edge features extracted from a pair of stroke x i , x j . 

# Description 

1 Minimum distance between 2 strokes 

2 Minimum distance between endpoints of strokes 

3 Maximum distance between endpoints of strokes 

4 Distance between the centers of the 2 bounding boxes of 2 strokes 

5 Horizontal distances between centroids of strokes 

6 Vertical distances between centroids of strokes 

7 Off-stroke distance between 2 strokes 

8 Off-stroke distance projected on X and Y axes 

9 Temporal distance between 2 strokes 

10 Left endpoints of bounding boxes between strokes 

11 Right endpoints of bounding boxes between strokes 

12 Top endpoints of bounding boxes between strokes 

13 Bottom endpoints of bounding boxes between strokes 

14-15 min/max of ratio of off-stroke distance to temporal distance 

16-17 min/max of ratio of off-stroke distance on X, Y axes to temporal distance 

18-19 min/max of ratio of area of the largest bounding box of 2 strokes to their union 

20-21 min/max of ratio of widths of the bounding boxes of 2 strokes 

22-23 min/max of ratio of heights of the bounding boxes of 2 strokes 

24-25 min/max of ratio of diagonals of the bounding boxes of 2 strokes 

26-27 min/max of ratio of areas of the bounding boxes of 2 strokes 

28-29 min/max of ratio of lengths of 2 strokes 

30-31 min/max of ratio of duration of 2 strokes 

32-33 min/max of ratio of curvatures of 2 strokes 

Table A.10 

Hyperparameters for all experiments. 

Hyperparameter IAMOnDo-Perfect IAMOnDo-Crude Kondate-Perfect Kondate-Crude 

number of time neighbors ( k t ) 2 2 3 3 

radius-based spatial threshold ( k r ) 10 20 20 20 

number of k-nearest spatial neighbors ( k s ) 10 10 12 12 

number of node output features ( C) 16 16 16 16 

number of edge output features ( D ′ ) 64 64 64 64 

number of attention heads ( K) 8 8 8 8 

number of EPAT layers 10 10 10 10 

batch size 16 16 16 16 

number of training epochs 75 200 150 200 

initial learning rate 0.005 0.005 0.005 0.005 

temperature ( β) 0.5 0.5 0.5 0.5 

11 
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