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Abstract—In this paper, we propose an efficient and robust
algorithm for graph-based transductive classification. After
approximating a graph with a spanning tree, we develop a
linear-time algorithm to label the tree such that the cut size of
the tree is minimized. This significantly improves typical graph-
based methods, which either have a cubic time complexity (for a
dense graph) or O(kn2) (for a sparse graph with k denoting the
node degree). Furthermore, our method shows great robustness
to the graph construction both theoretically and empirically;
this overcomes another big problem of traditional graph-based
methods. In addition to its good scalability and robustness, the
proposed algorithm demonstrates high accuracy. In particular,
on a graph with 400, 000 nodes (in which 10, 000 nodes are
labeled) and 10, 455, 545 edges, our algorithm achieves the
highest accuracy of 99.6% but takes less than 10 seconds to
label all the unlabeled data.

Keywords-graph-based semi-supervised learning; transduc-
tive learning; graph mining;

I. INTRODUCTION

In many machine learning applications, labeled data are
scarce because labeling data is both time-consuming and
expensive. However, unlabeled data are very easy to col-
lect in many applications such as text categorization and
image classification. This has motivated machine learning
researchers to develop learning methods that can exploit both
labeled and unlabeled data during model learning. Such a
learning paradigm developed over the past decade is referred
to as semi-supervised learning [7].

In this paper, we consider a particular setting of
semi-supervised learning called transductive learning in
which the unlabeled test data are also available before
model training. Specifically, we are given l labeled data
points (x1, y1), . . . , (xl, yl) and u unlabeled data points
xl+1, . . . ,xl+u, where xi, 1 ≤ i ≤ l + u, is the input of
a data point and yi ∈ {1, . . . ,K}, 1 ≤ i ≤ l, indicates the
class of the labeled data point xi. The goal is to predict the
labels of unlabeled data by utilizing the information from
both the labeled and unlabeled data.

Among the most popular transductive learning methods
are graph-based methods [25, 24, 1]. Graph-based methods
are appealing because: (1) graph provides a powerful tool to
describe the similarity between data; (2) for many important
applications, like social network, genomic data, web pages
etc., problems directly present themselves as graphs.

Despite of these advantages, graph-based methods suffer
from two main drawbacks[18]. (1) They are not scalable.
Typical graph-based methods usually have a cubic time
complexity because of the calculation of the inverse of
graph Laplacian. Although the complexity can be reduced
to O(kn2) (k is the node degree) when the graph is sparse,
it is still not applicable to large-scale problems. (2) Their
performance is very sensitive to the graph construction. For
the most popular kNN graph or ε-graph, a small change in
k or ε would make a big difference in accuracy [21, 14].
Thus, one has to carefully tune these parameters in practice,
which is however very difficult because of the scarcity of
labeled data.

To overcome these problems, in this paper, motivated by
the fact that most real-world graphs are sparse, we propose
to firstly approximate the graph with a spanning tree, and
then label the tree in a way such that the overall cut size is
minimized. For a given spanning tree, our labeling algorithm
has a linear time and space complexity with respect to the
data size which makes our method a perfect choice for large
scale problems.

We use a minimum spanning tree (MST) to approximate
a graph. In addition to its simplicity, MST is very robust to
the graph. For a connected ε-graph with the RBF weighting
function, we can formally prove that the structure of MST
is invariant to the increase of ε. We also observe the same
property empirically for the kNN graph. This property in
turn makes the performance of our method very robust to
the graph hyperparameter. Although there are some works
that use a tree to approximate a graph, their motivation is to
design fast semi-supervised learning algorithm. To our best
knowledge, this is the first work to extensively explore the
robustness property of tree-based semi-supervised learning
methods.

We have performed detailed experiments to confirm the
advantage of the proposed method in both scalability and
robustness. In term of accuracy, empirical results shows
that our method gives good approximations to traditional
graph-based methods, while is consistently better than other
scalable graph-based methods.

The rest of this paper is organized as follows. In the next
section, we introduce the related work. In Section III, we
then present our major work including the notations, the
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model definition, the detailed algorithm, and the relationship
with a previous model. After that, in Section IV, we intro-
duce how to perform transductive classification using our
proposed method. In Section V, we provide experimental
results to validate the advantages of our method. Finally, we
set out the conclusion in Section VI.

II. RELATED WORK

Recently, Herbster et al. [12] proposed to approximate
a graph using a spanning tree, and designed an algorithm
to calculate the inverse of the tree’s Laplacian in O(n2)
time. Then the perceptron algorithm was performed on this
Laplacian kernel matrix to predict all unlabeled data. By
calculating one column of the Laplacian kernel for each trial,
their algorithm takes O(ln) time and O(n) space, where n
is the number of the data points.

Herbster and Lever [11] considered the online graph
prediction problem. They proposed to approximate a general
graph with a path graph, and use the nearest neighbor
classifier to predict on the path graph. They gave cumulative
mistake bounds of their algorithms which show improve-
ments over Laplacian-based methods when the graph has a
large diameter. Cesa-Bianchi et al. [6] extended the work of
[11] from the un-weighted graph to the weighted one, and
shown the cumulative errors of their algorithm is bounded
in terms of the cut size of a random spanning tree. The
cost of their algorithm is O(n) in both time and space
requirement. However, these two methods approximated the
original graph by exploiting a path graph, which is basically
a naive tree structure, i.e., a line, and hence too simple
and inflexible to generate good performance for practical
problems. Experimental results later presented in Section V
also validate this point.

Cesa-Bianchi et al. [5] characterized the number of mis-
takes necessary and sufficient for sequentially predicting a
given tree, and built an algorithm to achieve this number by
minimizing the cut size of the tree. Their method uses the
space linear in n, and the running time is min{K,nf}K +
n logDT for online learning where K is the cut size of the
labeled tree T, DT is the diameter of T, nf is the number
of nodes in T with the degree bigger than 2. However, for
transductive learning, the running time is O(n2). We will
discuss the difference between this work and our method in
more details in the next section.

Another family of scalable graph-based semi-supervised
learning methods are based on subsampling a small subset
from the whole data set. These prototypes are used to build
both the prediction function and the adjacency matrix. Meth-
ods differ from each other in the approaches to construct the
adjacency matrix. Delalleau et al. [10] built the matrix by
directly setting wij = 0 if neither i nor j is a prototype.
Zhang et al. [23] approximated the adjacency matrix by the
Nyström method, and Liu et al. [16] approximated it by a
two-step transition probability matrix. The running time of

all these prototype-based methods are O(m2n), where m
is the number of prototypes. However, these methods need
to use feature vectors of data and are hence incapable of
handling problems where only graphs are available.

For sparse graph, Spielman and Teng [20] presented a
randomized algorithm to solve diagonally dominant linear
systems. It can be used to solve Gaussian random fields
[25]’s optimization problem in n logO(1) n log 1

ε
time.

III. PREDICTING A TREE: MINIMUM TREE CUT

ALGORITHM

In this section, we present the main work in this paper.
We first present notations used throughout the paper and
then introduce our work in details.

A. Notations

We use G to denote a graph, T to denote a tree, while
E(G) and E(T ) denote the edge set of graph G and tree T
respectively. For a tree, ↑ (i) denotes the parent of node i,
↓ (i) denotes the set of i’s children, and ↓∗ (i) denotes the
set of nodes in the subtree rooted at i. |S| is the size of set S.
A cut is an edge connecting two nodes that have different
labels. Given a labeling f ∈ {1, . . . ,K}n of a graph G,
where K is the number of classes, the cut size of f on G
is the sum of weights of all cuts, which can be denoted as∑

(i,j)∈E(G)wijI{fi �= fj}.

B. Objective Function

Blum et al. [3, 4] first proposed to predict the graph with
the labeling which minimizes the cut size of the graph, and
meanwhile is consistent with all the labeled data. However,
for multi-class discrete variables, this optimization problem
is NP-hard. Thus, Zhu et al. [25] binarized the problem
via a standard one-vs-all scheme, and solved it in the
continuous space. Their method is still too expensive to
solve large scale problems. Inspired by [12] and [5], we
first approximate the graph by a spanning tree, then solve
the cut size minimization problem directly on the discrete
label set. Formally, the objective function of our method can
be formulated as follows:

min
f

∑
(i,j)∈E(T )

wijI{fi �= fj} (1)

s.t. fi = yi i = 1, . . . , l

f ∈ {1, . . . ,K}n,

where E(T ) is the edge set of the tree T , K is the number of
classes, and wij describes the weight for edge (i, j). As we
will show in the next subsection, by exploiting the special
structure of tree, the above problem can be exactly solved
in linear time by a dynamic programming algorithm.

As pointed out by [3, 15], mincut problems may have mul-
tiple solutions in theory. But in practice, pairwise distances
of high-dimensional data points are usually different from
each other, which results in different edge weights given by
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Figure 1. An illustration of lb-tree and sc-tree. In this partially labeled
tree, black nodes denote labeled data, and blank nodes are unlabeled. The
subtrees in solid lines are lb-trees, and the subtrees in dash lines are sc-trees.

wij = exp{−|xi − xj |2/σ2}. When weights of edges are
different, it is very unlikely to have multiple solutions. This
phenomenon has actually been observed in our experiments.

C. Minimum Tree Cut Algorithm (MTC)

Before detailing the algorithm, we first define some con-
cepts which will be used extensively in our method. The first
one, called label-bordered tree (lb-tree), is firstly introduced
in [5]. Formally, given a partially labeled tree T , an lb-tree
is any maximal subtree of T whose leaves are all labeled
and no internal node is labeled. The second concept is called
single-color tree (sc-tree). Given all the lb-trees, an sc-tree
is defined as any maximum subtree sharing one and only
one common node with one single lb-tree. Moreover, we
call the common node as the connecting node. Obviously,
different sc-trees have no common nodes. Furthermore, we
say an unlabeled node is internal if it is in a certain lb-tree,
otherwise it is external. See Figure 1 for an example.

Our method proceeds as follows. First, we split a partially
labeled tree T into lb-subtrees and sc-subtrees. Then, we use
the proposed MTC algorithm to label each lb-tree. Finally,
we label all the nodes in one sc-tree with its connecting
node’s label, which motivates the name of the sc-tree.

To split a partially labeled tree, we first classify unlabeled
nodes into internal and external categories. This can be done
by a post-order visit of the tree from any labeled node. An
unlabeled node is internal, if and only if it has at least one
child which is internal or labeled. Otherwise, it is external.
After that, the tree splitting can be done by calling the split(r)
function in Algorithm 1. For succinctness, we briefly list the
algorithm without specific explanation. Since the algorithm
visits each edge at most once, the computational cost of
Algorithm 1 is O(n).

In the following, we design a novel method to label an lb-
tree. This is one major contribution of our work. Given an lb-
tree T , we predict its unlabeled nodes in such a way that the
cut size of T is minimized. The core of our minimum tree cut

Function: split internal(i)
begin

children ← ∅;
for each j ∈↓ (i) do

if j is an external node then
output {i, ↓∗ (j)} as a sc-tree;

else if j is a labeled node then
push(j);
children ← children

⋃
{j};

else
children ← children

⋃
split internal(j);

return: children
⋃
{i};

Function: split labeled(i)
begin

for each j ∈↓ (i) do
if j is an external node then

output {i, ↓∗ (j)} as a sc-tree;
else if j is a labeled node then

push(j);
output {i, j} as an lb-tree;

else
children ← split internal(j);
output {i, children} as an lb-tree;

Function: split(r) //r must be a labeled node
begin

stack← ∅;
push(r);
while stack �= ∅ do

j ← pop();
split labeled(j);

Algorithm 1: Tree splitting algorithm

(MTC) algorithm is to compute the function cutsize(i, k)
which is defined as the minimum cut size of the subtree
rooted at node i when i is labeled as k. Because of the
special structure of tree, this value can be calculated directly
by the cutsize values of node i’s children. Specifically, for
an unlabeled node i in an lb-tree, we have

cutsize(i, k) (2)

=
∑

j∈↓(i)

min{cutsize(j, k),min{cutsize(j, k̃) +wij : k̃ �= k}}.

For leaf nodes, recall that the leaves of an lb-tree are all
labeled. We define the cutsize value of a leaf i as

cutsize(i, k) =

{
0, k = yi
∞, k �= yi

. (3)

Thus, the cutsize values of nodes in the lb-tree can be
computed from bottom to top by (2) and (3). To store all
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cutsize values for an lb-tree, a table of size | ↓∗ (r)|×K is
needed. Since computing cutsize(i, k) needs | ↓ (i)|×K op-
erations, filling the whole table needs

∑
i

∑
k | ↓ (i)|× K =

| ↓∗ (r)| × K2 operations. Therefore, the algorithm needs
O(Kn) space and O(K2n) operations to compute all lb-
trees’s cutsize values. When K is big, we could use the
one-vs-all scheme to binarize the problem. As solving each
binary classification problem needs O(n) operations, the
total computational cost is reduced to O(Kn).

Once the cutsize values of the root r are determined,
by definition min{cutsize(r, k) : k = 1, . . . ,K} is the
minimum cut size of the lb-tree. We can then predict each
unlabeled node to achieve this minimum cut size. This is
done by a traversal from top to bottom. For the root node
r, we predict it by

k∗(r) = argmin
k
{cutsize(r, k)}.

For any other unlabeled node i, suppose we have predicted
its parent’s label as k∗(↑ (i)). We predict i as k∗(i) which
is calculated by

k∗(i) =

⎧⎨
⎩

k∗(↑ (i)) if cutsize(i, k∗(↑ (i)))

≤ cutsize(i, k̃(i)) + wi↑(i)

k̃(i) otherwise,

where k̃(i) = argmink{cutsize(i, k) : k �= k∗(↑ (i))} .
Since the prediction for each node requires K comparisons,
the computational cost for predicting all lb-trees is O(Kn).

Now, we formally prove that the proposed method exactly
solves the optimization problem (1).

Theorem 1. The MTC method introduced in the subsection
III-C optimizes the problem (1) exactly.

Proof: We denote the optimal value of the problem (1)
as mincut(T,y). It is the minimum cut size on a tree T
with respect to the given labels y on that tree. Because of
the special structure of tree, we have,

mincut(T,y) =
∑

Ti∈sc−tree(T )

mincut(Ti,yi)

+
∑

Ti∈lb−tree(T )

mincut(Ti,yi)

≥
∑

Ti∈lb−tree(T )

mincut(Ti,yi),

where sc − tree(T ) and lb − tree(T ) are the sets of the
sc-trees and the set of the lb-trees of T . On the other
hand, suppose the solution given by the MTC method is
f ∈ {1, . . . ,K}n. By construction, f induces no cut on
any sc-tree, and achieves the minimum cut size on each
lb-tree. Thus, the cut size of f on the whole T is exactly∑

Ti∈lb−tree(T ) mincut(Ti,yi). This completes our proof.

To conclude this part, we emphasis that, since each step
of the MTC method (tree-splitting, cutsize-computing and
labeling) has a time and space cost of O(n), the overall
complexity of our method is O(n).

D. Insensitiveness to Graph Construction

In this section, we prove the property that the structure of
MST is insensitive to the ε-graph theoretically. Hence, the
proposed algorithm is very robust to the parameter in graph
construction, making it very desirable for practical problems.

Proposition 1. Suppose S = {x1, . . . ,xn : xi ∈ R
d} is a

set of data points, and G and G′ are two connected graphs
built on S by the ε-ball method with ε and ε′, and the RBF
weighting function wij = exp{−

‖xi−xj‖
2

σ2 }. For each edge
eij , let its cost πij =

1
wij

. If T and T ′ are minimum spanning
trees of G and G′ respectively, then E(T ) = E(T ′).

Proof: To prove this proposition, we first recall
Kruskal’s minimum spanning tree algorithm which proceeds
as follow. It first sorts all the edges into an increasing order
by their costs; then the next lightest edge producing no cycle
is repeatedly added.

Without loss of generality, we assume ε < ε′. Then, we
have: (1) E(G) ⊆ E(G′); (2) for ∀e ∈ E(G) and ∀e′ ∈
E(G′) \ E(G), πe < πe′ . Thus, edges which are in E(G′)
but not in E(G) are behind the edges in E(G) in the sorted
edge sequence of G′. Therefore, the procedures of Kruskal’s
algorithm for G and G′ are the same which implies E(T ) =
E(T ′).

When the graph is constructed by kNN, we observe the
same property in experiments, although we cannot formally
prove it. This property makes MST very robust to the
graph hyperparameter, and in turn makes the performance
of our method very robust to the graph hyperparameter.
Experimental results in Section V will further validate this
desirable advantage.

E. Relationship with Cesa-Bianchi et al. [5]’s Method

The idea of minimizing the cut size of a partially labeled
tree was first used by Cesa-Bianchi et al. [5] in the online
graph prediction setting. Roughly speaking, to predict an
unlabeled node i in some lb-tree, their method proceeds by
performing a post order traversal of the lb-tree from node i.
When backtracking to node j after all the children of j have
been visited, j is assigned a temporary label given by the
majority vote among the temporary or labels of its children.
This method can merely guarantee the node i’s predicted
label minimizes the cut size of T, while the other temporary
labels of unlabeled data do not necessarily minimize the cut
size. Therefore, to correctly predict each unlabeled node, a
traversal of the lb-tree from each unlabeled node should be
made; this leads to the running time as O(n2).

Instead of propagating the temporary labels from bottom
to top, our method propagates the minimum cut size which
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enables us to label the whole lb-tree effectively in just two
traversals.

In addition, our method has the important advantage of
being able to handle weighted graphs with more than two
classes, while Cesa-Bianchi et al. [5]’s method can only
handle un-weighted graphs with two classes.

IV. TRANSDUCTIVE CLASSIFICATION WITH MTC

To apply the MTC algorithm to the general transductive
classification problem, one has to construct a graph G from
the data set, and then generates a spanning tree T from
G followed by running MTC on T . In case that the graph
is not connected, we can run the MTC algorithm on each
connected component respectively. As suggested by [12], to
further boost the performance, one can use ensembles of
trees. Specifically, one can generate many spanning trees,
run MTC on each tree, then use the majority vote method
to predict unlabeled nodes. In the following, we will discuss
different methods for graph construction and spanning tree
generation.

A. Tree Construction Methods

Minimum Spanning Tree (MST). MST is a spanning
tree that minimizes the total cost. In our setting, the cost of
an edge (i, j) is defined as πij = 1

wij
, thus, MST of G is

the spanning tree that solves the problem

min{
∑

(i,j)∈E(T )

πij : T ∈ T (G)}, (4)

where T (G) is the set of spanning trees of graph G.
According to [12], this problem is equivalent to

max{
∑

(i,j)∈E(T )

wij : T ∈ T (G)}. (5)

The above objective function is very intuitive, and formally
it says MST best approximates the original graph in term of
the trace norm of graph Laplacian. MST can be generated by
Kruskal’s algorithm in O(|E| log n) time. For sparse graphs,
like kNN graphs, it can be sped up to O(n logn).

Shortest Path Tree (SPT). SPT is a spanning tree that
the distance between a selected node and all other nodes is
minimal. Herbster et al. [12] used this tree to approximately
solve the problem of,

min{tr(T+ −G+) : T ∈ T (G)}, (6)

where tr(A) denotes the trace of matrix A, and A+ denotes
the Moore-Penrose pseudoinverse of A. SPT can be gener-
ated by Dijkstra’s algorithm. With a binary heap, its running
time is O((|E| + n) logn). For sparse graphs, it requires
O(n log n) time.

Random Spanning Tree (RST). RST is a spanning tree
taken with the probability proportional to the product of its
edge weights. Cesa-Bianchi et al. [6] proposed to use this
tree to ensure a worst case bound of their algorithm. Another

advantage of RST is that for many graphs, the RST tree can
be generated in O(n) time.

B. Graph Construction Methods

Many researchers have shown practically and theoretically
that the graph plays a crucial role for the success of graph-
based transductive methods [21, 17]. The most popular
graph construction methods include kNN graph and ε-graph.
However, a direct implementation of both types of graphs
need O(dn2) time where d is the data dimension. There are
lots of work for efficient graph construction. For example,
Chen et al. [8] computed an approximating kNN graph
via the divide and conquer method. Plaku and Kavraki
[19] developed parallel algorithms to construct graph. Other
techniques to speed up the graph construction include the
KD-tree [2] and locality sensitive hashing [13]. However,
compared to the complexity of spanning tree generation and
the MTC algorithm, graph construction still dominates the
time of graph-based transductive classification. Note that
many methods have been recently proposed to construct
graph to better describe the data relationship [14, 9, 22].
However, the high computational cost of these methods
prevents them from large scale applications.

V. EXPERIMENTS

In this section, we evaluate our method by performing
extensive experiments on real-world data sets. We compare
our method with two tree-based transductive methods: the
graph perceptron algorithm (GPA) [12] and the weighted
tree algorithm (WTA) [6], and one classical full graph-based
method, Gaussian Random Fields (GRF) [25]. We also use
1NN and SVM as baseline methods.

For all graph-based methods, following many works in the
literature, we exploit the kNN method to construct graph and
the RBF function wij = exp{−‖xi − xj‖2/σ2

0} to weight
the edges, where σ2

0 is set to
∑

(i,j)∈E ‖xi − xj‖2/|E|.
For tree-based methods, we fix k to 100, because they are
insensitive to this parameter (as validated theoretically in
Section III-D and empirically in the next subsection). For
GRF, we manually choose k such that the test error is
minimized.

As reported by [12] and [6], the performance of MST is
always the best among different tree construction methods.
We also observed similar results in our experiments. Hence,
we only report the classification results of different methods
on MST.

A. Small Data Sets

In this subsection, to show the effectiveness of the pro-
posed MTC algorithm, we run experiments on two small size
data sets1: (1) COIL20 data set. This is an image data set
which contains 20 objects. The images of each object were
taken 5 degrees apart and each object has 72 images. The

1http://www.zjucadcg.cn/dengcai/Data/MLData.html
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size of each image is 32×32 pixels, with 256 grey levels per
pixel; (2) USPS data set. It contains 7, 291+2, 007 = 9, 298
handwritten digit images of size 16 × 16. Note that, for
small data sets, all the graph based methods can perform
the learning very efficiently. We hence focus on examining
the classification accuracy of different methods here and
leave the efficiency evaluations on two large-scale data sets
in Section V-B.

1) Classification Accuracy: For each data set, we ran-
domly select l data points as labeled data such that they
contain at least one sample from each class, and leave all the
other data as unlabeled. Then we perform various learning
methods on this partially labeled data set, and record the
classification accuracy on the unlabeled data. To control
the variance of results, we repeat the procedure 10 times
for different training/testing splits, and report the average
classification accuracy in Figure 2.

As observed from the results, the following conclusions
can be made. (1) Among all methods of approximating
graph by tree, our proposed MTC method achieves the
best classification accuracy in all cases. (2) MTC gives a
very good approximation to the full graph-based method
GRF, and is even better than GRF on the COIL20 data set.
This can be explained by the fact that real-world graphs
are usually sparse. (3) Transductive methods overwhelm the
supervised methods (i.e., the RBF-SVM and 1NN) when the
number of labeled data is limited, while this effect becomes
less obvious as the number increases.

2) Robustness to Graph Construction: One major prob-
lem of graph-based transductive learning is that their per-
formance is very sensitive to the graph construction. For the
kNN graph or ε-graph, a small perturbation in k or ε and
σ2 will result in big changes in accuracy. In this section, we
validate the theory that using the minimum spanning tree to
approximate a graph can solve this problem effectively.

In this experiment, we fix l = 200 for COIL20 and
l = 400 for USPS and construct kNN graphs or ε-graphs for
different k or ε and σ2. We then perform GRF and MTC
on the resulting graphs. Specifically, for kNN graphs, we
vary k in the set {21, 22, 23, 24, 25, 26} with σ2 = σ2

0 , and
vary σ2 in the set σ2

0 ∗ {2
−3, 2−2, 2−1, 20, 21, 22, 23} with

k = 4. Similarly, for ε-graphs, we draw the accuracy curves
respectively by varying ε with a fixed σ. The curves of
varying σ with a fixed ε demonstrated very similar trend
with those of kNN graphs and we hence do not draw them
for succinctness.

Figure 3 shows the average classification accuracy over 10
random splits. As we can see, the performance of MTC is
almost invariant to the variance of k, σ2, ε. In fact, this effect
is due to the robustness of MST with respect to variance of
k, ε, and σ2, which we have analyzed in Section III-D. This
property helps MST to filter out noisy edges, which however
may severely hurt the performance of GRF.

B. Large Data Sets

We conduct a series of experiments on two large scale
data sets in this section. We will first report results on the
MNIST data2 and then a Web-spam Data Set3. All methods
are performed on an HP server with a 2.27 GHz Xeon 4
Core CPU, and 16 GB RAM.

1) MNIST Data Set: The MNIST data set contains
60, 000 + 10, 000 = 70, 000 handwritten digit images.
The size of each image is 28 × 28 pixels, with 256 grey
levels per pixel. Our experiment proceeds as follows. First,
we randomly select n data points from 70, 000 images,
and construct graph on these data. Then 400 nodes are
randomly selected as labeled data, and different algorithms
are performed to predict unlabeled nodes. To observe the
effect of unlabeled data, we vary n from 10, 000 to 70, 000,
and report the average classification accuracy over 10 times
training/testing splits and running time in Figure 4. The
reported time includes time for generating MST and labeling
the spanning tree. The time for graph construction is not
included.

Several observations are highlighted as follows. (1) Simi-
lar to the results in COIL and USPS, MTC gives a good ap-
proximation to GRF, and achieves the best accuracy among
all the tree-based methods. (2) Unlabeled data indeed help
the classification. In general, as the number of unlabeled data
increases, the accuracy increases correspondingly. (3) While
the performance of MTC and WTA improves consistently,
the accuracy of GPA decreases when the size of unlabeled
data is very huge. This is due to the effect of overfitting. For
GPA, we are training a linear classifier in a feature space
of 70, 000 dimensions with 400 training samples. This also
leads to the same problem. In comparison, the tree-based
methods MTC and WTA exploit a much simpler structure
and hence demonstrate very robust performance. (4) From
Figure 4(b), our proposed linear-time MTC shows very good
scalability as the size of training samples increases. The
WTA algorithm is also very fast due to its linear complexity.
However, as WTA basically adopts a too simple tree, i.e.,
a path graph, to approximate the graph. This makes its
performance usually worse than our proposed MTC method.

2) Web-spam Data Set: We also apply our method to
the 2007 web-spam challenge developed by the University
of Paris VI. It contains 400, 000 web pages. A web-page
is connected to another web-page if there is at least one
hyperlink from the former to the latter. Thus, the links are
directed. Following [12], we discard directional information
and assign a weight of 1 to unidirectional links and of
2 to the bidirectional links. This results in a graph with
400, 000 nodes and 10, 455, 545 edges. Additional tf-idf
feature vectors of the web-pages’ content are provided for
each web-page, but we have discarded this information.

2http://yann.lecun.com/exdb/mnist/
3http://webspam.lip6.fr/wiki/pmwiki.php
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Figure 2. Average classification accuracy for different labeled data size: (a) COIL20 data set; (b) USPS data set.

There are about 80% of non-spam web-pages and 20% of
spam ones. Following the published data set, we use 10%
of labeled web-page for training and 90% for testing.

Experimental results are shown in Table I. Due to the same
experimental setup, the results except MTC and WTA are
directly copied from [12]. For ensemble GPA, 21 minimum
spanning trees are used, and predictions are made by major-
ity voting. Witshel et al., Filoce et al., Benczur et al. are three
methods that participated the 2007 web-spam challenge.
We did not report the result of GRF as it is intractable
to run GRF on this large data set. GPA takes about 30

minutes to train a single kernel perceptron. In comparison,
our proposed MTC takes less than 10 seconds to complete
the classification. Similarly, WTA is also very fast and
finishes the learning also within 10 seconds. However, the
classification accuracy of WTA is 99.0, which is significantly
lower than that of MTC. This once again demonstrates the
advantages of our proposed method. The reported times
include the time of generating MST and labeling the tree,
but do not include the time of loading graph from disk.
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Figure 3. Robustness of GRF and MTC to kNN graphs and ε-graph: (a),(b) average classification accuracy for different k on COIL and USPS; (c),(d)
average classification accuracy for different σ2 on COIL and USPS; (e),(f) average classification accuracy for different ε on COIL and USPS.
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Figure 4. Experimental results on MNIST for different data size: (a) average classification accuracy; (b) running time.

VI. CONCLUSION

In this paper, we proposed a fast graph-based trans-
ductive classification method. Inspired by the sparsity of
the real world graphs, we first exploited a spanning tree
to approximate the graph. Based on minimization of the
cut size, we then developed a highly robust and efficient
learning algorithm to label the tree. Our algorithm has a
linear complexity in terms of both time and space. This is
significantly distinctive with typical graph-based methods,
which either have a cubic time complexity (for a dense
graph) or a quadratic complexity (for a sparse graph). We

evaluated our proposed method on four real world data
sets (including two large-scale sets). Experimental results
showed that our proposed method can usually be superior to
other competitive approaches in terms of both classification
accuracy and learning efficiency. Future work includes the
parallel application of multiple MTC’s for different lb-trees.
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Table I
CLASSIFICATION ACCURACY ON WEB-SPAM DATA SET.

MTC WTA single GPA ensemble GPA Witshel et al. Filoce et al. Benczur et al.
99.6 99.0 97.6 99.1 99.5 99.4 94.2
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