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Adaptive-Neural-Network-Based Trajectory
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Abstract—In this article, an adaptive neural network con-
trol scheme is presented for an uncertain wheeled mobile
robot (WMR) with velocity constraints and nonholonomic
constraints. In practice, dynamic parameters of the sys-
tem, which may change in some conditions, are hard to
obtain precisely, and the velocity of the WMR should be
constrained for safety. To deal with the uncertainty of the
robot, adaptive neural networks are used to approximate
unknown robotic dynamics, and the barrier Lyapunov func-
tion is used to guarantee the constraint on velocity. The
tracking error of the closed-loop system is proven to con-
verge to a small neighborhood of zero. Both simulation
studies and practical experiments are provided to illustrate
the effectiveness of the proposed control scheme.

Index Terms—Adaptive neural networks, barrier Lya-
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I. INTRODUCTION

A S AN important branch of mobile robot [1]–[3], the
wheeled mobile robot (WMR) has been deeply investi-

gated and widely applied in many fields, such as service industry,
industry, national defense industry, agriculture, etc. [4]–[6].

The WMR is a typical class of nonholonomic system [7],
[8]. Based on the assumption that wheeled robots do not slip
during movement, which is mathematically equivalent to a set of
nonintegrable first-order differential constraints, nonholonomic
constraints can be intuitively visualized in a situation where
the mobile robot cannot experience lateral translations, and the
velocity in that direction cannot be integrated [9]. In accordance
with Brockett’s theorem [10], nonholonomic systems cannot
be stabilized merely through smooth time-invariant feedback
control laws[11]. Thus, it is generally a challenging task to
develop a proper controller to achieve stabilization and trajectory
tracking of the nonholonomic WMR[12].

In WMR systems, speed of wheels and the maximum angular
velocity are always limited due to safety consideration [13].
If the control strategy is designed without considering these
constraints, the system would perform poorly and even incur
instability[14]. Many efforts have been devoted to the control of
mobile robots with velocity constraints. In [15], a sliding-mode
control (SMC) scheme was proposed to stabilize a mobile robot
while adhering to the physical constraints on its configuration
variables. The design of controller gains was in accordance
with the restrictions on the initial condition domain. In [16], a
physical-limit-constrained minimum velocity norm coordinat-
ing scheme for a wheeled mobile redundant manipulator was
proposed. Such a scheme can not only coordinate the mobile
platform and the manipulator to fulfill the end-effector task with
optimal index, but also consider the physical limits of the robot.
However, in aforecited works, the system is considered with
known parameters, which are almost impossible to be obtained
precisely in practice. For example, it is very difficult to obtain
friction and damping coefficients due to uncertainties of the
pavement, and some system parameters are unknown because
of the absence of detailed specification.

In recent years, the research of neural network (NN)-based
tracking algorithms for the WMR with unknown system pa-
rameters has attracted attention from many scholars. NNs can
approximate nonlinear functions with arbitrary precision under
certain regions [17]–[20] and have been widely used to deal
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with control problems of uncertain nonlinear systems [21]–[25].
Many efforts have been made to solve the tracking problem
of the WMR with unknown system parameters. In [26], an
NN approach for the tracking problem of mobile robots was
proposed. Nonlinear approximation capabilities of NNs have
been used to improve the control performances of classical kine-
matic feedback control schemes. In [27], an adaptive-NN-based
tracking control algorithm was proposed for the WMR system
with full state constraints. If system parameters are chosen
properly, the proposed scheme can guarantee uniform ultimate
boundedness for all signals in the WMR system, and the tracking
error converges to a bounded compact set of zero.

However, only a few papers considered the dynamic WMR
system with velocity constraints for position trajectory tracking
based on NNs. The constraints for velocity need to be considered
in the design of NN adaptive laws and Lyapunov functions,
which will bring more challenges due to the effect of velocity
constraints for NN adaptive laws. In [27], the system was consid-
ered with full state constraints, which come from the limitations
for the forward speed of wheels and steering angular velocity.
While the controller in [27] was designed to track the velocity
trajectory, the decrement of position errors was not considered.
When the initial position error is large, in order to reduce position
errors, the auxiliary input velocity may be greater than constraint
values. The control law in [27] cannot cope with this situation.

In this article, an adaptive-NN-based control scheme is pro-
posed for an uncertain WMR system with nonholonomic con-
straints and velocity constraints. With the proposed method,
the position errors can converge to a small neighborhood of
zero, while the velocity constraints are not violated. The main
contributions of this article are as follows.

1) An adaptive NN control scheme for an uncertain WMR
system is designed to approximate uncertain or time-varying
parameters. As a result, the robustness of the WMR system is
improved effectively.

2) Velocity constraints are not violated with the proposed
control. The barrier Lyapunov function is used to design the
control law to prevent the violation of velocity constraints.

3) The proposed method can cope with the case that the
auxiliary input velocity is greater than constraints.

The rest of this article is organized as follows. Section II
gives preliminaries and dynamics of a WMR system. Controller
designs are given in Sections III and IV. In Section V, the
performance of the proposed control scheme is illustrated by
simulations. Section VI provides experimental results. Finally,
Section VII concludes this article.

II. PRELIMINARIES AND PROBLEM FORMULATION

A. Lemmas and Definitions

Definition 1: The operator ⊗ is defined as

x⊗ y = [x1, x2, ..., xn]
T ⊗ [y1, y2, ..., yn]

T

= [x1y1, x2y2, ..., xnyn]
T ∀x, y ∈ Rn

where x = [x1, x2, ..., xn]
T and y = [y1, y2, ..., yn]

T are vec-
tors.

Definition 2: The function sgn(·) is defined as

sgn(x) =

⎧⎪⎪⎨
⎪⎪⎩
1, x > 0

0, x = 0

−1, x < 0

.

B. Problem Formulation

Considering a three-degree-of-freedom WMR [28], [29]

M(q)q̈ + C(q, q̇)q̇ + F (q̇) = B(q)τ +A(q)λ (1)

where q = [q1, q2, q3]
T = [x, y, θ]T is the position vector, and

M(q) ∈ R3×3 is a symmetric positive-definite inertia matrix
with the form of

M(q) = diag[m,m, I]T (2)

where m is the mass of the WMR, I is the moment of inertia of
the WMR,C(q, q̇) ∈ R3×3 is the centripetal and Coriolis matrix,
B(q) ∈ R3×2 is the input transformation matrix, τ ∈ R2×1 is the
torque input vector, F (q̇) ∈ R3×1 denotes the friction vector,
and A(q)λ ∈ R3×1 is the nonholonomic constraint force.

The nonholonomic constraint of the robot is

ẋ cos(θ) + ẏ sin(θ) = 0. (3)

Nonholonomic constraints can be written asA(q)q̇ = 0.H(q)
is formed by a set of smooth and linearly independent vector
fields spanning the null space of A(q), i.e., HT (q)A(q) = 0.
Then, (1) can be reformed as

q̇ = H(q)v

M1(q)v̇ + C1(q, q̇)v + F1(q, q̇) = B1(q)τ (4)

where M1(q) = HT (q)M(q)H(q), C1(q, q̇) = HT (q)
[M(q)Ḣ(q) + C(q, q̇)H(q)], F1(q, q̇) = HT (q)F (q̇), and
B1(q) = HT (q)B(q).

Choose

H(q) =

[−sin(θ) cos(θ) 0
0 0 1

]T
. (5)

Then, we have

v =
[
v1 v2

]T
=

[
v1 w

]T
(6)

wherev1 andw are the linear and angular velocities, respectively.
For H(q), one has C1 = 0 and M1 = diag[M111,M122]

T =
diag[m, I]T . M1 is a constant diagonal matrix. Velocity con-
straints are |vi| < vu1i, i = 1, 2, and vu1 = [vu11, vu12]

T . Sim-
ilar to [30], the following auxiliary velocity input ensures that
the position tracking errors of q are asymptotically stable:

vc0 =

[
vc01

vc02

]
=

[
v1d cos e3 + k1e1

v2d + k2v1de2 + k3sine3

]
(7)

where k1, k2, and k3 are positive constants with k2 ≥ 1. v1d
and v2d are desired velocity with 0 < v1dmin < v1d < v1dmax <
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vu11. The tracking errors are defined as

e =

⎡
⎢⎣
e1

e2

e3

⎤
⎥⎦
T

=

⎡
⎢⎣
− sin(θ) cos(θ) 0

− cos(θ) − sin(θ) 0

0 0 1

⎤
⎥⎦
T

(qd − q). (8)

The control objective is to design an adaptive NN control
scheme such that the WMR can track the desired position
trajectory while velocity constraints are not violated.

III. MODEL-BASED CONTROL

A. Design of Model-Based Control

We propose the model-based control law as

τ=B−1
1

{
M1

{[
A′

1

A′
2

]
⊗

(
−ρ

[
V11

V12

]
+(v−vc1)⊗ v̇c0

)}
+F1

}
(9)

where ρ is a positive constant and A′
i =

{
1
Ai

, Ai �= 0

0, Ai = 0
, i =

1, 2; A = [A1, A2]
T is defined as

A = v − vc0 +

[
sgn(v1)h1(v1)

vu11 − |v1| ,
sgn(v2)h2(v2)

vu12 − |v2|
]T

(10)

where hi(x), i = 1, 2, are defined as

hi(x) =

{
1, |x| > vu2i

0, others
. (11)

V1 is the value of the Lyapunov function, and V1 = V11 + V12.
The Lyapunov function is chosen as

V1 =
1

2
zT z + f(v) + g(vc0) (12)

where

z = [z1, z2]
T = v − vc0 (13)

f(v) = f1(v) + f2(v) (14)

fi(v) =

{
− ln vu1i−|vi|

vu1i−vu2i
, |vi| > vu2i

0, others
(15)

g(vc0) = −
{
1

2
(vc1 − vc0)

T (vc1 − vc0) + f(vc1)

}
(16)

where vu2 = [vu21, vu22]
T is a positive constant matrix and 0 <

vu2i < vu1i. vc1 is the minimum point of { 1
2z

T z + f(v)} and
is written as

vc1 = [vc11, vc12]
T (17)

vc1i =

⎧⎪⎨
⎪⎩

sgn(vc0i)Cvc1
, |vc0i| > vu2i +

1
vu1i−vu2i

sgn(vc0i)vu2i, vu2i < |vc0i| ≤ vu2i +
1

vu1i−vu2i

vc0i, |vc0i| ≤ vu2i
(18)

for i = 1, 2, where Cvc1
=

|vc0i|+vu1i−
√

(|vc0i|−vu1i)2+4

2 .
V1 is a continuous positive function when the velocity meets

the constraint, because f(v) is continuous, g(vc0) is a continuous

function independently of v, and −g(vc0) equals the minimum
of 1

2z
T z + f(v). For |vi| < vu1i, i = 1, 2, if vi → vu1i, it has

V1 → ∞, so the Lyapunov function (12) can help design con-
troller that can constrain velocities.

Note that barrier Lyapunov functions in other WMR con-
trol methods require that the desired values cannot exceed
constraints. However, in this article, the desired values of the
barrier Lyapunov function are auxiliary velocity input, which
may exceed the constraints when the WMR is far away from
the desired position. Therefore, the Lyapunov function (12)
is designed, which can deal with this situation. Equation (12)
can be divided into three parts: 1

2z
T z is used for decreasing

‖v − vc0‖, f(v) is used to constrain the velocity, and g(vc0) is
used to ensure that the minimum value of V1 is 0.

V1 can be divided into two parts, which correspond to v1 and
v2, as follows:

V1 = V11 + V12 (19)

where

V1i =
1

2
(vi − vc0i)

2 + fi(vi)− 1

2
(vc1i − vc0i)

2 − fi(vc1i).

(20)

B. Stability Analysis of the Model-Based Control Law

Theorem 1: For the system described by (1), with the con-
trol law (9), for initial states satisfying the constraints |vi| <
vu1i, i = 1, 2, the states of the system would not violate the
constraints. When |vc0i| < vu2i, i = 1, 2, velocity error signals
z and position error signals e would converge to zero. The
closed-loop control system is asymptotically stable.

Proof: Differentiating V1 with respect to time yields

V̇1 = zż + f ′(v) + g′(vc0) (21)

where

f ′(v) =
2∑

i=1

{
sgn(vi)

vu1i−|vi| v̇i, |vi| > vu2i

0, others
(22)

g′(vc0) = {−zż − f ′(v)} |v=vc1

= − (vc1 − vc0)
T (v̇c1 − v̇c0)

−
2∑

i=1

{
sgn(vc1i)v̇c1i

vu1i−|vc1i| , |vc1i| > vu2i

0, others
. (23)

In order to simplify (23), classify vc0i into the following three
conditions.

1) If |vc0i| ≤ vu2i, then vc1i = vc0i and (vc1i − vc0i)v̇c1 =
0.

2) If |vu0i| < |vc0i| ≤ vu2i +
1

vu1i−vu2i
, then vc1i is con-

stant and v̇c1 = 0.
3) If |vc0i| > vu2i +

1
vu1i−vu2i

, then vu2i < |vc1i| < vu1i;
then, 1

2 (vi − vc0i) and fi(v) are both smooth at vi = vc1i.
As vc1 is the minimum point of { 1

2z
T z + f(v)}, we have

∂{ 1
2 z

T z+f(v)}
∂vi

|vi=vc1i
= vc1i − vc0i +

sgn(vc1i)
vu1i−|vc1i| = 0.
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Finally, for any vc0i ∈ R, i = 1, 2, we have

(vc1 − vc0)
T v̇c1 +

2∑
i=1

{
sgn(vc1i)v̇c1i

vu1i−|vc1i| , |vc1i| > vu2i

0, others
= 0.

(24)

Then, substituting (24) into (23), we obtain

g′(vc0) = −(vc1 − vc0)
T v̇c0. (25)

Substituting (10), (22), and (25) into (21) yields

V̇1 = AT v̇ − (v − vc1)
T v̇c0. (26)

Dividing V̇1 into two parts corresponding to v1 and v2, we obtain

V̇1 = V̇11 + V̇12 (27)[
V̇11

V̇12

]
= A⊗ v̇ − (v − vc1)⊗ v̇c0. (28)

Substituting (4) and (9) into (28) yields[
V̇11

V̇12

]
= ρ

[
V11

V12

]
. (29)

Substituting (19) and (29) into (27) yields

V̇1 = −ρV1. (30)

According to the above Lyapunov function, we can conclude
that V1 can converge to zero. When |vc0i| < vu2i, i = 1, 2, one
has vc1 = vc0 and V1 = 1

2z
T z. Therefore, z can converge to

zero.
To further prove the convergence of position errors e, we

rewrite the Lyapunov function in [30] as

V2 =
1

2
(e21 + e22) + (1− cose3)/k2 (31)

V̇2 = ė1e1 + ė2e2 + ė3sine3/k2 (32)

where

ė1 = e2v2 − v1 + v1dcose3 (33)

ė2 = −e1v2 + v1dsine3 (34)

ė3 = v2d − v2. (35)

Substituting (33)–(35) into (32) yields

V̇2 = (−v1 + v1dcose3)e1

+ v1dsine3e2 +
(v2d − v2)sine3

k2
. (36)

Substituting (7) and (13) into (36) yields

V̇2 = −k1e
2
1 − z1e1 − k3sine23

k2
− z2sine3

k2
(37)

=−k1

(
e1 +

z1
2k1

)2

− k3
k2

(
sine3+

z2
2k3

)2

+
z21
4k1

+
z22

4k2k3
.

(38)

For the convergence of z, we have that for any ε0 > 0, there
exists Tz; when t > Tz , we have ‖z‖ < ε0. Therefore, when

t > Tz , we have

V̇2 ≤ −k1

(
e1 +

z1
2k1

)2

− k3
k2

(
sine3 +

z2
2k3

)2

+ ε1 (39)

where ε1 =
ε20
4k1

+
ε20

4k2k3
. From (39), we can know that

when |e1| >
√

1
k1
ε1 +

ε0
2k1

or | sin e3| >
√

k2

k3
ε1 +

ε0
2k3

,

V̇2 < 0. Because ε0 can be arbitrary small, we can

choose proper ε0 satisfying
√

k2

k3
ε1 +

ε0
2k3

< π
4 . If

|e3| > 2(
√

k2

k3
ε1 +

ε0
2k3

), then | sin e3| > sin 2(
√

k2

k3
ε1 +

ε0
2k3

) >
√

k2

k3
ε1 +

ε0
2k3

and V̇2 < 0. Therefore, when

‖e‖ > (
√

1
k1
ε1 +

ε0
2k1

) + 2(
√

k2

k3
ε1 +

ε0
2k3

) + l{(
√

1
k1
ε1 +

ε0
2k1

) + 2(
√

k2

k3
ε1 +

ε0
2k3

)}, where l is the minimum value that

satisfies l > 5, 10
lk2v1dmin

< 0.2, k3

2k2l2
< 0.5, k3

k2v1dminl
< 0.1,

1.1v2max
10

lk2v1dmin
+ v1dmax(

1
l +

11v1dmax
lv1dmin

+ k3

5l )
10

lk2v1dmin
< 0.2,

and k3

lk2v1dmin
(1 + 1.1k2v1dmax

10
v1dmin

+ k3

5 ) < 0.2, we have the
following two conditions.

1) If |e1| >
√

1
k1
ε1 +

ε0
2k1

or |e3| > 2(
√

k2

k3
ε1 +

ε0
2k3

), then

V̇2 < 0.

2) If |e1| <
√

1
k1
ε1 +

ε0
2k1

and |e3| < 2(
√

k2

k3
ε1 +

ε0
2k3

), then

|e2| > l{(
√

1
k1
ε1 +

ε0
2k1

) + 2(
√

k2

k3
ε1 +

ε0
2k3

)}, |e2| > lε0
k3

>

l|z2|
k3

, |e2| > l|e1|, and |e2| > l|e3|.
For condition 2, setting the time of |e1| <

√
1
k1
ε1 +

ε0
2k1

and

|e3| < 2(
√

k2

k3
ε1 +

ε0
2k3

) as t0, we obtain |e2(t=t0)| > l|z2|
k3

. Let

T = 10
lk2v1dmin

< 0.2. In order to analyze the mean value of V̇2 for
t0 < t < t0 + T , we need to analyze the variation range of e1,
e2, and e3. From |e2| < l|e1|, |e2| > l|e3|, and (31), we obtain

V2(t=t0) =
1

2
(e21(t=t0) + e22(t=t0)) +

(1− cos e3(t=t0))

k2

<

(
k2 + 1

2k2l2
+

1

2

)
e22(t=t0). (40)

.
For |e2(t=t0)| > 2l

√
k2

k3
ε1, we have V̇2 < ε1 <

k3

4l2k2
e22(t=t0) <

k3

2l2k2
V2(t=t0). In the time between

t0 < t < t0 + T , we have

V2 = V2(t=t0) +

∫ t

t0

V̇2dt. (41)

Substituting V̇2 < k3

2l2k2
V2(t=t0),

k3

2l2k2
< 0.5, T < 0.2, (40),

k2 ≥ 1, and l > 5 into (41), we obtain

V2 < V2(t=t0) +
k3

2l2k2
V2(t=t0)T < 1.1V2(t=t0)

< 1.1

(
k2 + 1

2k2l2
+

1

2

)
e22(t=t0) < 0.594e22(t=t0). (42)

Substituting (42) into (31) yields
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|e2| <
√

2V2 <
√

2× 0.594e22(t=t0) < 1.1|e2(t=t0)| (43)

|e1| <
√

2V2 < 1.1|e2(t=t0)|. (44)

For ė3 = −k2v1de2 − k3 sin e3 + z2, we have

e3 = e3(t=t0) +

∫ t

t0

(−k2v1de2 − k3 sin e3 + z2)dt. (45)

For the term −k3 sin e3 in ė3 that will decrease the absolute
value of e3, we have

|e3| < |e3(t=t0)|+
∫ t

t0

| −k2v1de2 + z2|dt. (46)

Substituting (43), |e2(t=t0)| > l|z2|
k3

, and T < 0.2 into (46), we
obtain

|e3| < |e3(t=t0)|+ k2v1dmaxe2maxT + |z2|T

< |e3(t=t0)|+ 1.1k2v1dmax|e2(t=t0)|T +
k3|e2(t=t0)|

l
T

<
|e2(t=t0)|

l
+

11v1dmax|e2(t=t0)|
lv1dmin

+
k3|e2(t=t0)|

5l
(47)

for

|e2| > |e2(t=t0)| − |ė2|maxT

> |e2(t=t0)| − (|e1|max|v2|max + v1dmax|e3|max)T. (48)

Substituting (47), T = 10
lk2v1dmin

, and 1.1v2max
10

lk2v1dmin
+

v1dmax(
1
l +

11v1dmax
lv1dmin

+ k3

5l )
10

lk2v1dmin
< 0.2 into (48), we obtain

|e2| > |e2(t=t0)| −
{
1.1|e2(t=t0)|v2maxT + v1dmax

(
1

l
|e2(t=t0)|

+
11v1dmax|e2(t=t0)|

lv1dmin
+

k3|e2(t=t0)|
5l

)
T

}

> |e2(t=t0)| − 0.2|e2(t=t0)| = 0.8|e2(t=t0)|. (49)

If e2 > 0, then

ė3 = −k2v1de2 − k3 sin e3 + z2

< −0.8k2v1d|e2(t=t0)|+ k3(| sin e3|+
|e2(t=t0)|

l
). (50)

For k3

k2v1dminl
< 0.1, we have

ė3 < −0.7k2v1dmin|e2(t=t0)|+ k3| sin e3|

< −k2v1dmin

(
0.7|e2(t=t0)| −

k3|e2(t=t0)|
k2v1dminl

(
1

+ 1.1k2v1dmax
10

v1dmin
+

k3
5

))

< −k2v1dmin|e2(t=t0)|(0.7− 0.2) < 0. (51)

Then, for t0 < t < t0 +
3
5T , from (39), we have

V̇2 < ε1. (52)

For t0 + 3
5T < t < t0 + T , we have

e3 < e3(t=t0+
3
5T ) = e3(t=t0) +

∫ t0+
3
5T

t0

ė3

< e3(t=t0) − 0.5k2v1dmin|e2(t=t0)|
3

5

10

lk2v1dmin

< e3(t=t0) −
3

l
|e2(t=t0)| < −2

l
|e2(t=t0)|

< −4

(√
k2
k3

ε1 +
|z2|
2k3

)
. (53)

Similarly, if e2 < 0, for t0 + 3
5T < t < t0 + T , we have

e3 > 4

(√
k2
k3

ε1 +
|z2|
2k3

)
. (54)

Therefore, we have

V̇2 < −k3
k2

(
sine3 +

z2
2k3

)2

+ ε1 < −3ε1 (55)

and ∫ t0+T

t0

V̇2 =

∫ t0+
3
5T

t0

V̇2 +

∫ t0+T

t0+
3
5T

V̇2

<
3

5
Tε1 − 2

5
T3ε1 = −3

5
Tε1. (56)

Therefore, we can obtain that for t0 < t < t0 + T , the mean
value of V̇2 is less than − 3

5ε1 and V̇2 is less than ε1.

Finally, we have that if‖e‖ > (
√

1
k1
ε1 +

ε0
2k1

) + 2(
√

k2

k3
ε1 +

ε0
2k3

) + l{(
√

1
k1
ε1 +

ε0
2k1

) + 2(
√

k2

k3
ε1 +

ε0
2k3

)}, then:

1) If |e1| >
√

1
k1
ε1 +

ε0
2k1

or |e3| > 2(
√

k2

k3
ε1 +

ε0
2k3

), then

V̇2 < 0.

2) If |e1| <
√

1
k1
ε1 +

ε0
2k1

and |e3| < 2(
√

k2

k3
ε1 +

ε0
2k3

), in

the following period of time T , V̇2 < 0 and V̇2 < ε1.
Therefore, e will converge to Ω1 := {e ∈ R3

∣∣‖e‖ <

(
√

1
k1
ε1 +

ε0
2k1

) + 2(
√

k2

k3
ε1 +

ε0
2k3

) + l{(
√

1
k1
ε1 +

ε0
2k1

) +

2(
√

k2

k3
ε1 +

ε0
2k3

)}}. For t → +∞, we have z → 0, ε0 → 0,
and ε1 → 0. Thus, we have e → 0. Therefore, the closed-loop
control system is asymptotically stable.

IV. ADAPTIVE NN CONTROL

A. Design of the Adaptive NN Control Law

We propose the adaptive NN control law as

τ = −ρ1B
−1
1

([
A′

1

A′
2

]
⊗

[
V11

V12

])

+B−1
1

{[
A′

1

A′
2

]
⊗ (v − vc1)⊗ (ŴTS(Z))

}
(57)

where ρ1 is the control gain, ŴTS(Z) is the NN, S(Z) =
[S1(Z), S2(Z)], Si(Z) = [Si1(Z), Si2(Z), ..., Sin(Z)]T , n =
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Fig. 1. Block diagram of the proposed controller.

64 is the basis function of the RBF NN with Z =
[v̇Tc0,

A1

(v1−vc11)
, A2

(v2−vc12)
, vT ]T , and Si(Z) are Gaussian func-

tions. Ŵ = [Ŵ1, Ŵ2] , Ŵi = [Ŵi1, Ŵi2, ..., Ŵin]
T are weights

of the NNs with adaptive laws

˙̂
Wi = −Γi

[
Si(Zi)(vi − vc1i) + σiŴi

]
, i = 1, 2 (58)

where Γ = [Γ1,Γ2]
T is a positive constant gain matrix and σ =

[σ1, σ2]
T is a small constant matrix. NNs ŴTS(Z) are used to

approximate W ∗TS(Z) defined by

W ∗TS(Z) = M1v̇c0 +

[
A1

(v1−vc11)
A2

(v2−vc12)

]
⊗ F1 + ε2 (59)

where ε2 = [ε21, ε22]
T is the approximation error. Fig. 1 demon-

strates the block diagram of the proposed controller.

B. Stability Analysis of the Adaptive NN Control Law

Theorem 2: For the system described by (1), with the control
law (57) and adaptive laws (58), for initial states satisfying the
constraints |vi| < vu1i, i = 1, 2, the states of the system would
not violate the constraints. When |vc0i| < vu2i, i = 1, 2, the
closed-loop control system is semiglobally uniformly ultimately
bounded; the error signals z and e would converge to compact
sets Ω2 and Ω3, respectively, where Ω2 and Ω3 are defined as

Ω2 := {z ∈ R2
∣∣‖z‖ ≤

√
D} (60)

Ω3 :=

{
e ∈ R3

∣∣‖e‖<(√
1

k1
ε4+

ε3
2k1

)
+2

(√
k2
k3

ε4+
ε3
2k3

)

+l

{(√
1

k1
ε4 +

ε3
2k1

)
+ 2

(√
k2
k3

ε4 +
ε3
2k3

)}}

(61)

where D = 4C3

ρ2
, ε3 =

√
D, ε4 =

ε23
4k1

+
ε23

4k2k3
, l is the

minimum value satisfies l > 5, 10
lk2v1dmin

< 0.2, k3

2k2l2
< 0.5,

k3

k2v1dminl
< 0.1, 1.1v2max

10
lk2v1dmin

+ v1dmax(
1
l +

11v1dmax
lv1dmin

+
k3

5l )
10

lk2v1dmin
< 0.2, and k3

lk2v1dmin
(1 + 1.1k2v1dmax

10
v1dmin

+
k3

5 ) < 0.2. C3, ρ2, k1, k2, and k3 are positive constants.
Proof: Considering the following Lyapunov candidate func-

tion:

V3 = V1 +
1

2

2∑
i=1

M−1
1iiΓ

−1
i W̃T

i W̃i (62)

where W̃i = Ŵi −W ∗
i are weight errors.

Differentiating (62) with respect to time yields

V̇3 = V̇1 +

2∑
i=1

M−1
1iiΓ

−1
i W̃T

i
˙̃Wi. (63)

V3 can be divided into two parts corresponding to v1 and v2,
respectively:

V3 = V31 + V32. (64)

Then, (63) becomes

V̇3 = V̇31 + V̇32 (65)[
V̇31

V̇32

]
=

[
V̇11

V̇12

]
+

[
M−1

111Γ
−1
1 W̃T

1
˙̃W1

M−1
122Γ

−1
2 W̃T

2
˙̃W2

]
(66)

= A⊗ v̇ − (v − vc1)⊗ v̇c0 +M−1
1

[
Γ−1
1 W̃T

1
˙̃W1

Γ−1
2 W̃T

2
˙̃W2

]
.

(67)

Substituting (4) and W̃i = Ŵi −W ∗
i into (67) yields[

V̇31

V̇32

]
= A⊗ (M−1

1 (B1τ − F1))

− (v − vc1)⊗ v̇c0 +M−1
1

[
Γ−1
1 W̃T

1
˙̂
W1

Γ−1
2 W̃T

2
˙̂
W2

]
. (68)

Using control law (57) and W̃i = Ŵi −W ∗
i , we have[

V̇31

V̇32

]
= −ρ1M

−1
1

[
V11

V12

]
+M−1

1

[
Γ−1
1 W̃T

1
˙̂
W1

Γ−1
2 W̃T

2
˙̂
W2

]

+M−1
1

{
(v − vc1)⊗ (W ∗ + W̃ )TS(Z)

}
−A⊗ (M−1

1 F1)− (v − vc1)⊗ v̇c0. (69)

Since M−1
1 is a diagonal positive-definite matrix, one has[

V̇31

V̇32

]
= −ρ1M

−1
1

[
V11

V12

]
+M−1

1

[
Γ−1
1 W̃T

1
˙̂
W1

Γ−1
2 W̃T

2
˙̂
W2

]

+M−1
1

{
(v − vc1)⊗ (W̃TS(Z) + ε2)

}
. (70)

Substituting (58) into (70) and using W̃i = Ŵi −W ∗
i , we obtain[

V̇31

V̇32

]
= −ρ1M

−1
1

[
V11

V12

]
−M−1

1

[
σ1W̃

T
1 Ŵ1

σ2W̃
T
2 Ŵ2

]

+M−1
1 {(v − vc1)⊗ ε2} (71)

≤ −ρ1M
−1
1

[
V11

V12

]
+

1

2
M−1

1

[‖v1 − vc11‖2
‖v2 − vc12‖2

]

+
1

2
M−1

1

[‖ε21‖2
‖ε22‖2

]
−M−1

1

[
σ1W̃

T
1 (W̃1 +W ∗

1 )

σ2W̃
T
2 (W̃2 +W ∗

2 )

]
(72)

≤ −ρ1M
−1
1

[
V11

V12

]
+

1

2
M−1

1

[‖v1 − vc11‖2
‖v2 − vc12‖2

]
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− 1

2
M−1

1

⎡
⎣σ1

∥∥∥W̃1

∥∥∥2

σ2

∥∥∥W̃2

∥∥∥2

⎤
⎦+

1

2
M−1

1

[
σ1 ‖W ∗

1‖2
σ2 ‖W ∗

2‖2
]

+
1

2
M−1

1

[‖ε21‖2
‖ε22‖2

]
. (73)

In order to compare V1i and 1
2 (vi − vc1i)

2, i = 1, 2, partially
differentiating V1i with respect to vi, we have

∂V1i

∂vi
= Ai (74)

∂2V1i

∂v2i
= 1 +

hi(vi)

(vu11 − |v1|)2 ≥ 1. (75)

Partially differentiating (vi−vc1i)
2

2 with respect to vi yields

∂{ 1
2 (vi − vc1i)

2}
∂vi

= vi − vc1i (76)

∂2{ 1
2 (vi − vc1i)

2}
∂v2i

= 1. (77)

For

V1i|v=vc1i
=

1

2
(vi − vc1i)

2|v=vc1i
= 0 (78)

∂V1i

∂vi
|v=vc1i

=
∂{ 1

2 (vi − vc1i)
2}

∂vi
= 0 (79)

and

∂2V1i

∂v2i
≥ ∂2{ 1

2 (vi − vc1i)
2}

∂v2i
> 0 (80)

we can obtain

V1i ≥ 1

2
(vi − vc1i)

2. (81)

Then, from (65), (73), and (81), we can obtain[
V̇31

V̇32

]
≤ −(ρ1 − 1)M−1

1

[
V11

V12

]
+

1

2
M−1

1

[‖ε21‖2
‖ε22‖2

]
(82)

− 1

2

⎡
⎣M−1

111σ1

∥∥∥W̃1

∥∥∥2

M−1
122σ2

∥∥∥W̃2

∥∥∥2

⎤
⎦+

1

2

[
M−1

111σ1 ‖W ∗
1‖2

M−1
122σ2 ‖W ∗

2‖2
]

(83)

≤ −ρ2

[
V31

V32

]
+

[
C1

C2

]
(84)

and

V̇3 ≤ −ρ2V3 + C3 (85)

where

ρ2 = min

(
(ρ1 − 1)λmin(M

−1
1 ), min

i=1,2
(σiΓi)

)
(86)

Ci =
1

2
M−1

1ii ‖ε2i‖2 +
1

2
M−1

1iiσi ‖W ∗
i ‖2 , i = 1, 2 (87)

C3 = C1 + C2. (88)

Fig. 2. Coordinate of the WMR system.

According to the above Lyapunov function, we can conclude
that V3 can converge to an arbitrarily small value by increasing
ρ2. If the auxiliary input velocity vc0 is large, or even greater
than constraints, i.e., |vc01| > vu11 or |vc02| > vu12, the pro-
posed method can limit the velocity to satisfy the constraints
for safety, which is more important than stable tracking. If
|vc0i| < vu2i, i = 1, 2, we have vc1 = vc0 and 1

2 (v − vc0)
T (v −

vc0) < V3. For V3 can converge to be less than arbitrarily
small value by increasing ρ2, we know that z can converge
to arbitrarily small values, i.e. for any ε3 > 0 and initial state

vi(0) < vu2i, i = 1, 2, choose
√

4C3

ρ2
= ε3, there exits T > 0,

when t > T and |vc0i| < vu2i, i = 1, 2, we have ‖v − vc0‖ <
ε3, z1 < ε3, and z2 < ε3. According to the analysis in model-
based control, it can be directly obtained that e will con-

verge to Ω3 := {e ∈ R3
∣∣‖e‖ < (

√
1
k1
ε4 +

ε3
2k1

) + 2(
√

k2

k3
ε4 +

ε3
2k3

) + l{(
√

1
k1
ε4 +

ε3
2k1

) + 2(
√

k2

k3
ε4 +

ε3
2k3

)}}, which can ar-

bitrary be small by suitable choice ofk1,k2, andk3. According to
[31], the closed-loop control system is semiglobally uniformly
ultimately bounded.

V. SIMULATIONS

Considering a two-wheeled mobile robot shown in Fig. 2,
simulations are carried out to demonstrate the effectiveness of
the proposed method. The desired trajectories are given as xd =
2 sin(0.1t), yd = 2− 2 cos(0.1t), and θd = 0.1t− π

2 where
t ∈ [0, tf ] and tf = 80 s. q(0) = [−0.5,−0.5,−0.7]T , q̇(0) =
[0, 0, 0]T , r = 100 mm, l = 250 mm, and M = diag[m,m, Ip].
In the beginning, m = 50 kg, Ip = 5.4 kg·m2, and friction coef-
ficient μ = 0.08. The parameter of model-based control is equal
to the model. We consider that the control torques of the robot
are under external disturbances composed of the Gaussian noise
with the power of 0 dBW. In order to better simulate the situation
that system parameters change in the process of working, we
change the system parameters to m = 65 kg, Ip = 7 kg·m2, and
μ = 0.15 at t > 40.

Simulation studies for proportional–integral–derivative (PID)
control, adaptive SMC [32], model-based control (MB), and
adaptive NN control (NN) are carried out in this article.
The control parameters are chosen as k1 = 10, k2 = 5, and
k3 = 4. For PID control, the parameters are chosen as Kp =
diag[210, 1.1] and Kd = diag[0.64, 0.08]. For SMC, the param-
eters are the same as those in [32]. For model-based control,
the parameters are chosen as ρ = [15, 57.6]T , vu1 = [1, 1.5]T ,
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TABLE I
ISE VALUES OF CONTROL BY PID, SMC, MB, AND NN

and vu2 = [0.8, 1.3]T . For NN control, the parameters are cho-
sen as ρ1 = [1350, 21.6]T , σ = [0.0001, 0.0001]T , and Γ =
[20 000, 800]T . vu1 = [1, 1.5]T and vu2 = [0.8, 1.3]T . There are
64 nodes for each Si(Z) with centers chosen in the area of
[−1, 1]× [−1, 1]× [−1, 1]× [−1, 1]× [−1, 1]× [−1, 1].

The performance measure information system evaluation
(ISE) [33] is

J(ISE) =
Ns∑
k=1

‖q(k)− qd(k)‖2Tstep

where ‖q(k)− qd(k)‖ =
√
(q(k)− qd(k))T (q(k)− qd(k)),

Tstep denotes step time, and Ns is the length of simulation trail.
The results of simulation are shown in Fig. 3 and Table I(a).

Fig. 3(a) shows the trajectory, Fig. 3(b) shows values of Lya-
punov functions, Fig. 3(c) and (d) shows the linear velocity
and angular velocity, and Fig. 3(e)–(h) shows errors of tracking,
where d is the distance between the current position and the de-
sired position. The ISE values of the four control algorithms are
reported in Table I(a). From Fig. 3(b), it can be observed that the
values of Lyapunov functions are decreasing under the proposed
control laws; the change trends of values of Lyapunov functions
conform to theoretical analysis. Note that V3 is unavailable,
so in NN control, only V1 is illustrated. From Fig. 3(e)–(h)
and Table I(a), it can be observed that all the four kinds of
control schemes can track the desired trajectory under external
disturbance; the error signals converge to a small neighborhood
of zero. However, from Fig. 3(c) and (d) and Table I, we can
observe the following.

1) The PID control cannot limit the velocity, which may
cause safety problem. When t > 40, the performance
of PID control becomes poor because of the change of
system parameters.

2) For the adaptive SMC, tracking errors reduce with the
learning of parameters. When system parameters change
at t = 40, the adaptive SMC can guarantee the track-
ing performance with the learning for new parameters.
However, the adaptive SMC cannot limit the velocity;
the velocity exceeds the limit at the beginning of the
simulation.

3) The model-based control can limit velocities to satisfy
the constraints and can track the desired trajectory very
well if the parameters are accurate. However, when the
parameters of the system change at t = 40, the tracking
performance reduces greatly.

4) For the NN control, the velocity can also be limited
within the constraints. The tracking errors reduce with
the learning of NNs. When system parameters change

Fig. 3. Simulation results of the closed-loop system. (a) Trajectory. (b)
Lyapunov function values. (c) Linear velocity v1. (d) Angular velocities
w. (e) q1 − qd1. (f) q2 − qd2. (g) θ − θd. (h) d. (i) τ1. (j) τ2. (k) ‖W1‖. (l)
‖W2‖.
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Fig. 4. (a) WMR system. (b) Snapshots of the trajectory tracking.

at t = 40, the NNs can learn new parameters, and the
tracking performance can be guaranteed.

The input torque of two wheels is given in Fig. 3(i) and (j);
it can be observed that the control torque is small enough to be
implementable in practice by using motors. The norm of NN
weights is given in Fig. 3(k) and (l).

The calculation time of 10 000 times for PID control, adaptive
SMC, model-based control, and NN control are 0.4056, 2.0662,
0.3875, and 1.4294 s, respectively, with the MATLAB written
simulation program running at a computer equipped with CPU:
Intel(R) Core(TM) i5-3210M @2.50 GHz. For all the four kinds
of control, the calculation time is short enough that will not affect
the tracking performance of the WMR.

VI. PRACTICAL EXPERIMENT

In order to test the performance of the developed control
method, a WMR, which is shown in Fig. 4(a), is employed in
practical experiments. The WMR has a mass of about 80 kg and
a size of 80 cm (length) × 50 cm (width) × 45 cm (height). It
is equipped with two driving wheels with servo motors working
at torque mode and four passive universal wheels at corners for
balance purpose. Driving wheels are mounted in the middle of
the WMR’s long side. In order to build the map by simultaneous
localization and mapping (SLAM), a laser radar with 20-m
measurement distance and ±5 cm location error is mounted on
the front of the robot. The sampling time of the system is 100 ms.

The results of practical experiment are shown in Figs. 4(b) and
Fig. 5 and Table I(b). Fig. 4(b) shows snapshots of the practical
experiment. Fig. 5(a) shows the trajectory, Fig. 5(b) shows the
values of Lyapunov functions, Fig. 5(c) and (d) shows the linear
velocity and the angular velocity, respectively. Fig. 5(e)–(h)
shows tracking errors, where d is the distance between the
current position and the desired position. The ISE values of
the four control algorithms are reported in Table I(b). From
Fig. 5(b), it can be observed that the overall trends of values of
Lyapunov functions are decreasing under the proposed control
laws, which conform to the theoretical analysis. As shown in
Fig. 5(a) and (e)–(h), the four kinds of control methods can
track the desired trajectory. However, from Fig. 5(c)–(h) and
Table I(b), the following can be observed.

1) For the PID control, without constraints for velocity,
the position error reduces fastest at the beginning with
velocity exceeding the limit; this is dangerous in practice.

2) For the adaptive SMC, with the learning for system pa-
rameters, tracking errors converge to small values close

Fig. 5. Experimental results of the closed-loop system. (a) Trajectory.
(b) Lyapunov function values. (c) Linear velocity v1. (d) Angular veloci-
ties w. (e) x− xd. (f) y − yd. (g) θ − θd. (h) d. (i) τ1. (j) τ2. (k) ‖W1‖. (l)
‖W2‖.
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to zero. However, this method cannot limit the velocity,
and the velocity exceeds the limit at the beginning of the
experiment.

3) For the model-based control, the velocity is limited to sat-
isfy the constraints. However, system parameters cannot
be obtained accurately, so there remain tracking errors
greater than NN control.

4) For the NN control, the velocity is also limited within
constraints. With the learning of NN weights, tracking
errors converge to small values close to zero, and the
velocity constraint is guaranteed. The control torque of
two wheels is given in Fig. 5(i) and (j). The norm of NN
weights is given in Fig. 5(k) and (l).

For the four kinds of control methods, the overshoot of PID
control and adaptive SMC is larger than that of both model-based
control and NN control. From Fig. 5(c), (d), and (h), it can be
observed that PID control and adaptive SMC can eliminate d
fast, but they need large velocity, which violates the constraints
and may cause harm.

VII. CONCLUSION

In this article, an adaptive NN control scheme was presented
for an uncertain nonholonomic WMR with velocity constraints.
With the proposed method, the velocity was constrained within
the predefined constraints, and the tracking error converged
to a small neighborhood of zero. Both simulation studies and
practical experiments illustrated that the proposed control can
track the desired trajectory with good tracking performance.
In the future, we will investigate the problem with finite-time
convergence.
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