
Transductive Learning on Adaptive Graphs

Yan-Ming Zhang,† Yu Zhang,‡ Dit-Yan Yeung,‡ Cheng-Lin Liu,† Xinwen Hou†

† National Laboratory of Pattern Recognition,
Institute of Automation, Chinese Academy of Sciences, Beijing 100090, China

{ymzhang, liucl,xwhou} @nlpr.ia.ac.cn
‡Department of Computer Science and Engineering,

Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong
{zhangyu,dyyeung}@cse.ust.hk

Abstract

Graph-based semi-supervised learning methods are
based on some smoothness assumption about the data.
As a discrete approximation of the data manifold, the
graph plays a crucial role in the success of such graph-
based methods. In most existing methods, graph con-
struction makes use of a predefined weighting function
without utilizing label information even when it is avail-
able. In this work, by incorporating label information,
we seek to enhance the performance of graph-based
semi-supervised learning by learning the graph and la-
bel inference simultaneously. In particular, we consider
a particular setting of semi-supervised learning called
transductive learning. Using the LogDet divergence to
define the objective function, we propose an iterative
algorithm to solve the optimization problem which has
closed-form solution in each step. We perform exper-
iments on both synthetic and real data to demonstrate
improvement in the graph and in terms of classification
accuracy.

Introduction

In many machine learning applications, labeled data are
scarce because labeling data is both time-consuming and
expensive. However, unlabeled data are very easy to col-
lect in many applications such as text categorization and im-
age classification. This has motivated machine learning re-
searchers to develop learning methods that can exploit both
labeled and unlabeled data during model learning. Such a
learning paradigm developed over the past decade or so is re-
ferred to as semi-supervised learning (Chapelle, Schölkopf,
and Zien 2006; Zhu 2008).

In this paper, we consider a particular setting of semi-
supervised learning called transductive learning in which the
unlabeled test data are also known and available for use be-
fore model training begins. Specifically, we are given l la-
beled data points (x1, y1), . . . , (xl, yl) and u unlabeled data
points xl+1, . . . ,xl+u, where xi ∈ R

d, 1 ≤ i ≤ l +u, is the
input of a labeled or unlabeled data point and yi ∈ {−1, 1},
1 ≤ i ≤ l, is the class label of a labeled data point. The goal
is to predict the labels of unlabeled data.

Copyright c© 2010, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Among the most popular transductive learning methods
are graph-based methods (Zhu, Ghahramani, and Lafferty
2003; Zhou et al. 2004; Belkin, Niyogi, and Sindhwani
2006).1 They are based on some smoothness assumption
(cluster assumption or manifold assumption) which implies
that data points residing in the same high-density region
should have the same label. By using a graph as a discrete
approximation of the data manifold, graph-based transduc-
tive learning methods learn a classification of the data that
satisfies two criteria. First, it should have low classification
error on the labeled data. Second, it should be smooth with
respect to the graph. We will give a brief review of these
methods in the next section.

As reported by many researchers (Wang and Zhang 2008;
Jebara, Wang, and Chang 2009; Maier, Von Luxburg, and
Hein 2009), graph construction plays a crucial role in the
success of graph-based transductive learning methods. Typ-
ically, to construct a graph, we define neighborhood based
on either the k nearest neighbors (kNN) or the ǫ-ball method
to determine the connectivity of the graph. In general,
the edges are associated with weights determined by some
weighting function. For a comprehensive review of graph
construction methods, readers are referred to (Jebara, Wang,
and Chang 2009). These methods typically have some hy-
perparameters whose values have to be chosen in advance
and fixed throughout the entire learning process. Moreover,
the same hyperparameter value is used for all data points in
the data set. As a result, some undesirable edges and weights
are unavoidable.

Some researchers have proposed methods to alleviate this
problem. For example, given a connectivity graph, Wang
and Zhang (2008) proposed a method to learn the weights of
the edges instead of using a predefined weighting function
to compute the weights. Jebara, Wang, and Chang (2009)
proposed a method for constructing a connectivity graph in
which each node has exactly k edges. They showed that such
graphs give better performance than kNN graphs. Daitch,
Kelner, and Spielman (2009) proposed a method to simulta-
neously learn the connectivity graph and its weights using a
quadratic loss function. However, to the best of our knowl-

1The methods proposed by Belkin, Niyogi, and Sindhwani
(2006) can also give prediction on unseen data and hence are more
general than the other methods.

661

Proceedings of the Twenty-Fourth AAAI Conference on Artificial Intelligence (AAAI-10)

edge, all these methods perform graph construction and la-
bel inference in two separate stages. Moreover, their graph
construction procedures are unsupervised in nature in the
sense that label information is not utilized even when it is
available.

In this work, we seek to enhance the performance of
graph-based transductive learning by using an adaptive
graph that is learned automatically while learning to make
label inference for the nodes corresponding to unlabeled
data. The motivation behind our work is to improve the
graph by incorporating label information from the labeled
data such that the points with the same label become more
similar in the new graph and those with different labels be-
come less similar. Although this does not necessarily make
the new graph a better discrete approximation of the data
manifold, it will likely improve the subsequent classification
accuracy.

Specifically, we propose a novel method, called transduc-
tive learning on adaptive graphs (TLAG), which simultane-
ously constructs the graph and infers the labels of the un-
labeled data points. An iterative algorithm is proposed to
solve the optimization problem. In each iteration, the fol-
lowing two operations are performed. First, based on the
current graph and the predicted values of the data points,
a new graph is learned by incorporating the label informa-
tion. Next, based on the new graph, the predicted values are
updated using an ordinary graph-based tranductive learning
method. Using a positive semidefinite matrix to represent
each graph, we use the LogDet divergence (Bregman 1967)
as a measure of the dissimilarity between two graphs.2 With
this formulation, we can obtain closed-form solutions for
both operations performed in each iteration of the algorithm,
making the algorithm very easy to implement. As we will
see later in the experiments, this iterative algorithm which
learns the graph and label inference simultaneously often
leads to improvement in the graph and in terms of classi-
fication accuracy.

The rest of this paper is organized as follows. In section 2,
we give a brief review of graph-based transductive learning
methods. In section 3, we present the formulation of our
TLAG method and the iterative algorithm for solving the
optimization problem. Some experimental results are pre-
sented in section 4, followed by conclusion of the paper in
section 5.

Notation

We first introduce some symbols and notations that will be
used subsequently in the paper. We use boldface uppercase
letters such as A to denote matrices, boldface lowercase let-
ters such as a to denote vectors, and normal lowercase let-
ters such as a to denote scalars. We use l and u to denote the
numbers of labeled and unlabeled data points, respectively,
and hence n = l+u is the size of the whole data set. Also, I
denotes the identity matrix, Aij refers to the (i, j)th element
of matrix A, det(A) denotes the determinant of A, tr(A)

2The LogDet divergence is a type of matrix divergence which
measures the dissimilarity between two matrices.

denotes the trace of A, and A � 0 means that A is a positive
semidefinite matrix.

A Brief Review of Graph-based Methods

Several existing graph-based transductive learning algo-
rithms can be viewed as solving a quadratic optimization
problem. We adopt the problem formulation in (Wu and
Schölkopf 2007):

min
f∈Rn

fT Lf + (f − y)T C(f − y), (1)

where the vector f = (f1, . . . , fn)T ∈ R
n is the prediction

of labels, y = (y1, . . . , yl, 0, . . . , 0)T ∈ R
n, L ∈ R

n×n

is the regularization matrix, and C ∈ R
n×n is a diagonal

matrix with the ith diagonal element ci set as: ci = αl > 0
for 1 ≤ i ≤ l and ci = αu ≥ 0 for l + 1 ≤ i ≤ l + u, where
αl and αu are two parameters.

The second term of the objective function in (1) uses a
quadratic loss function to measure the fitting error of the pre-
diction f . It constrains f to be close to y. The first term of
the objective function evaluates how smooth the prediction f
is with respect to the data manifold which is represented by
the regularization matrix L. It reflects the prior knowledge
that a good prediction should have low variance along the
data manifold.

A very popular choice for L is the so-called graph Lapla-
cian (Chung 1997) which is defined as

L = D − W, (2)

where W ∈ R
n×n is the adjacency matrix of the graph and

its entries are calculated as

wij = exp
(

−
‖xi − xj‖

2

2σ2

)

, (3)

where σ is the kernel width parameter. The matrix D ∈
R

n×n is diagonal with the ith diagonal element di defined as
di =

∑n
j=1 wij . Another widely used regularization matrix

is the normalized graph Laplacian which is defined as

L = D− 1

2 (D − W)D− 1

2 = I− D− 1

2 WD− 1

2 . (4)

It is easy to show that problem (1) has the following
closed-form solution:

f = (L + C)−1Cy. (5)

Classification can be performed by considering the signs of
the predicted values of the unlabeled data points:

yi = sgn(fi) l + 1 ≤ i ≤ l + u. (6)

Note that problem (1) represents several famous graph-
based transductive learning methods. Gaussian random
field (GRF) (Zhu, Ghahramani, and Lafferty 2003) uses the
graph Laplacian as regularization matrix and sets αl = ∞
and αu = 0. That is, fi must be strictly equal to yi for
1 ≤ i ≤ l and there is no constraint on the unlabeled
data. Laplacian regularized least squares (LapRLS) (Belkin,
Niyogi, and Sindhwani 2006) also uses the graph Laplacian
as regularization matrix and sets αl to a finite number and
αu = 0. This imposes a soft constraint on the labeled data

662

but no constraint on the unlabeled data. Learning with local
and global consistency (LLGC) (Zhou et al. 2004) uses the
normalized graph Laplacian and sets 0 < αl = αu < ∞.
It imposes a soft constraint on the labeled data and also re-
quires the predicted values of the unlabeled data points to be
close to zero.

Our TLAG Method

Objective Function

As discussed above, our approach seeks to learn the graph
and label inference simultaneously. The learning problem
can be formulated as the following optimization problem:

min
f∈Rn,L̃�0

h(f , L̃) = fT L̃f + (f − y)T C(f − y)

+ βD(L̃,L), (7)

where f , y, L and C are the same as those defined in (1), L̃
denotes the (adaptive) graph we want to learn, D(A,B) is a
measure of the dissimilarity between two matrices, and β is a
regularization parameter. The first two terms of the objective
function are similar to those in (1), except that instead of the

original graph Laplacian L we use a learned matrix L̃ to
infer the labels of the data points. The last term constrains
the new graph to be similar to the original graph. We only

require the new graph L̃ to be positive semidefinite, but there
is no guarantee that it is a graph Laplacian. We still call it a

graph in the sense that −L̃ij can be viewed as the weight on
the edge between points i and j.

In particular, we use the LogDet divergence (Bregman
1967; Kulis, Sustik, and Dhillon 2009) as the dissimilarity
measure between two matrices. The LogDet divergence can
be defined as follows:

Dld(A,B) = tr(AB−1) − log det(AB−1) − n. (8)

There are two main reasons for using the LogDet diver-
gence in this work. First, as we will show in the next section,

this measure leads to a closed-form solution for L̃ that natu-
rally meets the positive semidefinite constraint. By employ-
ing the Woodbury identity, the computational requirement

for updating L̃ is rather low.

Second, the LogDet divergence is one type of Bregman
divergence which is defined as:

Dφ(A,B) = φ(A)−φ(B)−tr((▽φ(B))T (A−B)), (9)

where φ : R
n×n → R is a strictly convex, differentiable

function. For the LogDet divergence Dld(A,B), the Burg
entropy of the eigenvalues is used as φ, that is, φ(A) =
∑

i log 1
λi

where λi is an eigenvalue of A. Given matrix

B, to keep Dld(A,B) small, A tends to copy those small
eigenvalues of B because even a small difference in those λi

will result in a big divergence Dφ(A,B). This is a desirable
property for graph learning because we are more concerned
about those eigenvectors corresponding to small eigenval-
ues since they are smooth with respect to the data manifold
(Von Luxburg 2007).

As in LapRLS, we impose a soft constraint on the labeled
data but no constraint on the unlabeled data. Thus, the ob-
jective function can be written as:

h(f , L̃) =
[

fT
l fT

u

]

[

L̃ll L̃T
lu

L̃lu L̃uu

] [

fl
fu

]

+ α‖fl − yl‖
2

+βDld(L̃,L), (10)

where f =

[

fl
fu

]

, fl is the prediction on the labeled data, fu

is the prediction on the unlabeled data, and

[

L̃ll L̃T
lu

L̃lu L̃uu

]

is

the block matrix or partitioned matrix of L̃.

Convexity of h(f , L̃)

In the following, we show that the objective function h(f , L̃)
in (7) is convex with respect to (w.r.t.) f and is also convex

w.r.t. L̃.
Proposition: h(f , L̃) in (7) is convex w.r.t. f .

Proof: Because
∂2h(f ,L̃)
∂f∂fT = 2(L̃ + C) and L̃ � 0,C � 0,

so
∂2h(f ,L̃)
∂f∂fT � 0. �

Proposition: h(f , L̃) in (7) is convex w.r.t. L̃ � 0.

Proof: Let g(L̃) = h(f , L̃), and we have g(L̃) =

tr(L̃ffT) + βtr(L̃L−1) − β log det(L̃) + M where M is

a constant independent of L̃. Obviously, the first two terms

of g(L̃) are convex w.r.t. L̃. One can check the convexity

of − log det(L̃) by checking the convexity of the single-

variable function f(t) = − log det(L̃ + tA). We note

that f(t) = − log det(L̃) − log det(I + tL̃− 1

2 AL̃− 1

2) =

− log det(L̃) −
∑m

i=1 log(1 + tλi) where λi are the eigen-

values of L̃− 1

2 AL̃− 1

2 . Since f(t) is convex for any choice

of L̃ � 0 and A, so − log det(L̃) is convex w.r.t. L̃ � 0.

Thus, g(L̃) is convex. �

Extension for Multi-Class Problems

So far we have only considered binary classification prob-
lems for simplicity of the problem formulation. However,
it is easy to extend TLAG for multi-class classification ap-
plications. For a k-class problem, one can use the one-in-
k representation to represent the labels of the data points

where the label y = (y1, . . . , yk)T ∈ R
k of x is an indicator

vector with yj = 1 if x belongs to the jth class and yj = 0
otherwise. The corresponding optimization problem can be
formulated as:

min
F∈Rn×k,L̃�0

tr(FT
L̃F) + tr((F− Y)T

C(F − Y)) + βD(L̃,L),

where F ∈ R
n×k is the prediction matrix we need to learn

and the label matrix Y ∈ R
n×k is such that the ith row of

Y is the one-in-k representation of the label for point xi if
1 ≤ i ≤ l and otherwise it is a zero vector. After obtaining
the prediction matrix F, we classify each xi to the jth class
if Fij is the largest entry in the ith row of F.

The multi-class objective function corresponding to (10)

663

is:

h(F, L̃) = tr(
[

FT
l FT

u

]

[

L̃ll L̃T
lu

L̃lu L̃uu

] [

Fl

Fu

]

)

+ αtr((Fl − Yl)(Fl − Yl)
T) + βDld(L̃,L),

(11)

where F =

[

Fl

Fu

]

, Fl is the prediction on the labeled data,

Fu is the prediction on the unlabeled data, and Yl is the first
l rows of Y.

Algorithm

We propose an iterative algorithm to minimize the objective
function in (10). First, we initialize f by setting fi = yi

for i = 1, . . . , l and fi = 0 for i = l + 1, . . . , n. Then, in
each iteration, we first fix the prediction f and optimize w.r.t.

the graph L̃, then fix L̃ and optimize w.r.t. f . As we will
show below, both steps have closed-form solutions and so
the algorithm is very easy to implement. Since the value of
the objective function decreases in each step, the algorithm
is guaranteed to converge to a local minimum.

For fixed f We compute the gradient of the objective func-

tion in (10) w.r.t. L̃ and set it to zero:

∂h

∂L̃
= ffT + β(L−1 − L̃−1) = 0. (12)

It follows from the facts that
∂tr(AB)

∂A
= BT and

∂log |det(A)|
∂A

= (A−1)T .
From (12), we get

L̃ =
(1

β
ffT + L−1

)−1
. (13)

Obviously, L̃ is a positive semidefinite matrix. This update
can be understood from the view of graph kernels. Accord-
ing to (Smola and Kondor 2003), the inverse of a graph

Laplacian L−1 is known as a graph kernel. The term ffT

can be viewed as an output kernel which is similar to a target
kernel defined as the outer product of the label vector (Cris-
tianini, Kandola, and Elissee 2001). Thus, the updated ker-

nel L̃−1 is a linear combination of the graph kernel and the

output kernel. Since L̃−1
ij = 1

β
fifj + L−1

ij , compared to the

original graph, the points i and j in the new graph become
more similar if they belong to same class and become less
similar if they belong to different classes.

To accelerate the computation, we apply the Woodbury
identity to (13) to give the following equation which does
not require performing matrix inversion:

L̃ = L −
1

1
β

+ fTLf
Lf(Lf)T . (14)

For fixed L̃ We now compute the gradient of the objective
function w.r.t. f and set it to zero:

∂h

∂fl
= 2(L̃llfl + L̃lufu + α(fl − yl)) = 0 (15)

∂h

∂fu
= 2(L̃uufu + L̃T

lufl) = 0. (16)

Solving these equations, we get:

fl = α(L̃ll + αI − L̃luL̃
−1
uu L̃T

lu)−1yl (17)

fu = −L̃−1
uu L̃T

lufl. (18)

With no surprise, the prediction for unlabeled data in (18)
is very similar to that for the GRF method in which the
prediction is calculated as fu = −L−1

uuLT
luyl.

Extending this algorithm for multi-class problems only
requires very minimal changes. To compute the prediction
matrix F, we simply replace the vector yl in (17) by the

label matrix Yl. To update L̃, one can directly use (13) with
ffT replaced by FFT , or apply the Woodbury identity to
obtain a more efficient equation:

L̃ = L − LF(βI + FTLF)−1(LF)T .

As the size of βI + FT LF is just k × k (k ≪ n), the com-
plexity of the above step is O(kn2) while that of (13) is
O(n3).

Computational Complexity

Assuming that l ≪ u, the computational complexity re-

quired for updating L̃ using (14) is O(n2) while that for
updating f using (17) and (18) is O(u3). Thus, the total
complexity of our algorithm is about O(u3) which is in the
same order as conventional graph-based transductive learn-
ing methods. In practice, the running time of our method is
about T times that of GRF where T is the number of itera-
tions in our algorithm.

Experiments

In this section, we present some experimental results to
demonstrate the effectiveness of TLAG. In all the experi-
ments, we simply fix α to 1, β to 0.01 and stop the algo-
rithm after 30 iterations for the TLAG method as the result
obtained is similar to that obtained by cross-validation.

Graph Learning on Two-Moons Data Set

In this experiment, we show that learning the graph by in-
corporating label information can improve the performance
by making the points with the same label more similar.

The experiment is performed on the two-moons data set in
which each moon corresponds to one class. Given a training
data set, we construct an adjacency matrix W as in (3). The
parameter σ is set to 2−2σ0 where σ0 is the average distance
between points. Then, equation (4) is applied to construct
the normalized graph Laplacian L which is used as the orig-
inal graph.

Based on the original graph L, we run the proposed TLAG

algorithm to learn the new graph L̃. After obtaining L̃, we

treat it as a graph Laplacian by regarding−L̃ij as the weight
between data points i and j for i 6= j. Similarly, in the
original graph, we take −Lij as the weight between data
points i and j.

We first sample 20 data points from each moon and ran-
domly select five of them as labeled points. In Figure 1, sub-
figure (a) shows the data set and (b) and (c) show the original

664

graph L and the learned graph L̃ after removing those edges
whose weights are less than 0.1. We also try another setting
with 40 data points from each moon, of which five are la-
beled points. Subfigures (d)–(f) of Figure 1 show the data

set, the original graph L and the learned graph L̃ after re-
moving those edges whose weights are less than 0.05.3 Note

that those edges with weights −L̃ij < 0 are also removed.
As we can see, due to sparsity of the data points, the upper

moon is broken into two separate components in the origi-
nal graph and hence the similarity between the two com-
ponents is not characterized appropriately. In the language
of random walk (Zhu, Ghahramani, and Lafferty 2003), this
makes it difficult to spread the label information through the
manifold. On the other hand, the two components are con-
nected in the learned graph and hence they are more similar.
In fact, in this new graph, most pairs of labeled data points
belonging to the same class are connected by an edge.

Classification on Real Data Sets

We next perform experiments on seven real data sets and
compare TLAG with several popular graph-based semi-
supervised learning methods and a baseline supervised
learning method.

The data sets are from those in (Chapelle, Schölkopf, and
Zien 2006) and the UCI data sets (Asuncion and Newman
2007). They are from different application areas including
text and image classification. The UCI data sets have been
preprocessed such that each feature has zero mean and unit
standard deviation. A brief description of the data sets is
shown in Table 1.

Table 1: Brief description of the data sets.

Data set Size No. of classes No. of dimensions

Digit1 1500 2 241
USPS 1500 2 241
COIL 1500 6 241
Text 1500 2 11,960
Glass 214 6 10

Ionosphere 351 2 34
Sonar 208 2 60

The experimental setting is as follows. For each data set,
we first randomly split it into the labeled and unlabeled sets.
Then all the algorithms are trained on the whole data set
including the labels of the labeled data. Finally, the clas-
sification accuracy on the unlabeled data is recorded. This
procedure is repeated 10 times and the average accuracy and
standard deviation over these 10 runs are reported.

We compare TLAG with three existing graph-based semi-
supervised learning methods, namely, GRF, LLGC and
LapRLS, as well as support vector machine (SVM) which
serves as a baseline supervised learning method. We ap-
ply 5-fold cross-validation on the labeled data to choose the
hyperparameters for these methods, with the details given
below for each method:

3We use different thresholds because of the use of a fully con-
nected normalized graph Laplacian in which the weight between
two points becomes smaller as the data set becomes larger.

• GRF: (3) is used as the weighting function to construct
the graph, and the hyperparameter σ is chosen from
σ0 · {2−4, 2−3, 2−2, 2−1, 1, 2} where σ0 is the average
distance between two points in the data set.

• LLGC: σ is chosen as above for GRF. Following the set-
ting in (Zhou et al. 2004), the regularization parameter α
is set to 0.99.

• LapRLS: σ is also chosen as above for both GRF and
LLGC. The parameters γA and γI are chosen from
{10−4, 10−2, 1, 102, 104}. The RBF kernel like (3) is also
used as the kernel function with the kernel width parame-
ter σk chosen from σ0 · {2

−4, 2−3, 2−2, 2−1, 1, 2}.

• TLAG: σ is also chosen as above. Normalized graph
Laplacian is used as the original graph L. The regulariza-
tion parameters α and β are set to 1 and 0.01, respectively.

• SVM: The linear kernel is used and the regularization pa-
rameter C is chosen from {10−4, 10−2, 1, 102, 104}.

The classification results for l = 50 are reported in Ta-
ble 2. We can see that TLAG is better than or comparable
with other methods on most of the data sets. We note that
TLAG does not give very good result on the Text data set
when the normalized graph Laplacian is used. When the
un-normalized graph Laplacian is used instead, its result is
comparable to that of GRF.

Conclusion

In this paper, we have proposed a novel graph-based trans-
ductive learning method that not only learns to infer the la-
bels of the unlabeled data points but also learns the graph
simultaneously by incorporating label information. We use
the LogDet divergence to formulate the optimization prob-
lem and propose an iterative algorithm to solve the problem.
An attractive feature of the iterative algorithm is that there
is closed-form solution in each step for updating the graph
or the labels. This frees us from having to use complex op-
timization methods such as semi-definite programming.

In this work, the learned graph is represented by a positive
semidefinite matrix which may lead to negative weights on
some edges. In the future, we will consider the possibility of
learning a graph Laplacian directly. Moreover, we will also
consider various ways to speed up our algorithm.

Acknowledgements

This work is supported by the NSFC Outstanding Youth
Fund (No. 60825301) and the General Research Fund (No.
621407) from the Research Grants Council of the Hong
Kong Special Administrative Region, China.

References

Asuncion, A., and Newman, D. 2007. UCI machine learning repos-
itory.

Belkin, M.; Niyogi, P.; and Sindhwani, V. 2006. Manifold regular-
ization: a geometric framework for learning from labeled and un-
labeled examples. Journal of Machine Learning Research 7:2399–
2434.

665

(a) (b) (c)

(d) (e) (f)

Figure 1: Graph learning: (a) & (d) data set; (b) & (e) original graph L; (c) & (f) learned graph L̃.

Table 2: Results in average classification rate on the test data and standard deviation for 50 labeled points.

Data set SVM GRF LLGC LapRLS TLAG

Digit1 0.8928± 0.0107 0.9620± 0.0116 0.9585± 0.0103 0.9131± 0.0203 0.9641± 0.0120
USPS 0.8277± 0.0366 0.9057± 0.0357 0.9429± 0.0272 0.8799± 0.0219 0.9494± 0.0304
COIL 0.6310± 0.0423 0.7870± 0.0230 0.8295± 0.0337 0.7293± 0.0466 0.8270± 0.0329
Text 0.6742± 0.0520 0.7047± 0.0820 0.6397± 0.0306 0.6729± 0.0690 0.6557± 0.0421
Glass 0.5951± 0.0417 0.5676± 0.0799 0.6067± 0.0698 0.6207± 0.0621 0.6354± 0.0681

Ionosphere 0.8378± 0.0184 0.8475± 0.0358 0.8814± 0.0253 0.8451± 0.0342 0.8864± 0.0303
Sonar 0.7189± 0.0535 0.7494± 0.0483 0.7709± 0.0470 0.7348± 0.0424 0.7816± 0.0279

Bregman, L. 1967. The relaxation method of finding the common
point of convex sets and its application to the solution of problems
in convex programming. USSR Computational Mathematics and
Mathematical Physics 7(3):200–217.

Chapelle, O.; Schölkopf, B.; and Zien, A. 2006. Semi-Supervised
Learning. MIT Press.

Chung, F. 1997. Spectral Graph Theory. American Mathematical
Society.

Cristianini, N.; Kandola, J.; and Elissee, A. 2001. On kernel target
alignment. Advances in Neural Information Processing Systems
14.

Daitch, S.; Kelner, J.; and Spielman, D. 2009. Fitting a graph to
vector data. In Proceedings of the 26th International Conference
on Machine Learning. ACM New York, NY, USA.

Jebara, T.; Wang, J.; and Chang, S. 2009. Graph construction and
b-matching for semi-supervised learning. In International Confer-
ence on Machine Learning.

Kulis, B.; Sustik, M.; and Dhillon, I. 2009. Low-rank kernel learn-
ing with Bregman matrix divergences. Journal of Machine Learn-
ing Research 10:341–376.

Maier, M.; Von Luxburg, U.; and Hein, M. 2009. Influence of

graph construction on graph-based clustering measures. In Ad-
vances in Neural Information Processing Systems 22.

Smola, A., and Kondor, R. 2003. Kernels and regularization on
graphs. In Learning Theory and Kernel Machines: 16th Annual
Conference on Learning Theory and 7th Kernel Workshop, 144.
Springer Verlag.

Von Luxburg, U. 2007. A tutorial on spectral clustering. Statistics
and Computing 17(4):395–416.

Wang, F., and Zhang, C. 2008. Label propagation through linear
neighborhoods. Transactions on Knowledge and Data Engineering
vol.20, no.1,:55–67.

Wu, M., and Schölkopf, B. 2007. Transductive classification via
local learning regularization. In International Conference on Arti-
ficial Intelligence and Statistics, 381–400.

Zhou, D.; Bousquet, O.; Lal, T.; Weston, J.; and Scholkopf, B.
2004. Learning with local and global consistency. In Advances in
Neural Information Processing Systems 16, 321–328.

Zhu, X.; Ghahramani, Z.; and Lafferty, J. 2003. Semi-supervised
learning using Gaussian fields and harmonic functions. In Proceed-
ings of the International Conference on Machine Learning.

Zhu, X. 2008. Semi-supervised learning literature survey. Techni-
cal report, Computer Science, University of Wisconsin-Madison.

666

