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Abstract—Modified quadratic discriminant function (MQD-
F) is a state-of-the-art classifier for handwriting recognition.
However, the big gap between accuracies on training and
testing sets indicates that MQDF has a good capability to
fit training data but the generalization performance is not
promising. To solve this problem, we propose a new mod-
el called locally smoothed modified quadratic discriminant
function (LSMQDF) by smoothing the covariance matrix of
each class with its nearest neighbor classes. LSMQDF can be
viewed as a regularization to avoid over-fitting. The covariance
matrix estimated by local smoothing is more accurate and
robust. LSMQDF can be also viewed as an extension of the
global smoothing method, namely regularized discriminant
analysis (RDA). Experiments on both offline and online Chinese
handwriting databases demonstrate that: with local smoothing,
the accuracy on training set is decreased (over-fitting avoided),
and the accuracy on testing set is improved significantly and
consistently (generalization improved).

I. INTRODUCTION

The modified quadratic discriminant function (MQDF) [1]

has been applied prevalently and successfully in handwritten

Chinese character recognition [2] [3] over the past 25 years.

However, the large number of free parameters of MQDF

usually lead to over-fitting of the training data. To solve this

problem, this paper proposes a local smoothing technique

as a regularization to obtain a more robust and accurate

estimation of the covariance matrix. The local smoothing

can alleviate the over-fitting problem and improve the gen-

eralization performance of MQDF.

A. Quadratic Discriminant Function (QDF)

In Bayes decision theory, the quadratic discriminant

function (QDF) is derived from the assumption of class-

conditional Gaussian distribution

p(x|i) = exp
[− 1

2 (x− μi)
�Σ−1

i (x− μi)
]

(2π)
d
2 |Σi| 12

, (1)

where μi ∈ R
d and Σi ∈ R

d×d are the mean vector

and covariance matrix of class i respectively. Considering

a M -class classification problem, a pattern x is classified

into the class of maximum a posterior (MAP) probability

x ∈ argmaxMi=1 p(i|x) = p(i)p(x|i)
p(x) , where p(i) is the

prior probability and p(x) is the mixture density function.

When assuming equal prior probabilities, the MAP decision

rule becomes x ∈ argmax p(x|i) which is equivalent to

x ∈ argmin− log p(x|i). Therefore QDF is defined as:

fQDF(x, i) = (x− μi)
�Σ−1

i (x− μi) + log |Σi| , (2)

which is actually a distance metric between x and class i:

x ∈ class arg
M
min
i=1

fQDF(x, i) . (3)

The performance of QDF is highly dependent on the

computation of the inverse matrix Σ−1
i . The covariance

matrix Σi is usually singular and under-estimated due to

the estimation errors and the sensitivity of the estimation

to small sample size. Therefore QDF can not achieve high

accuracy in real applications. To achieve an accurate and

robust estimation of Σ−1
i , many improvements have been

proposed, among which the modified quadratic discriminant

function (MQDF) [1] is the most effective one for large

category Chinese handwriting recognition.

B. Modified Quadratic Discriminant Function (MQDF)

By utilizing eigen-decomposition algorithms, the covari-

ance matrix can be diagonalized as Σi = ΦiΛiΦ
�
i , where

Λi = diag[λi1, · · · , λid] with λij ∈ R
+, j = 1, · · · , d

being the eigenvalues (ordered in decreasing order) of

Σi, and Φi = [φi1, · · · , φid] with φij ∈ R
d, j =

1, · · · , d being the ordered eigenvectors. Inserting the

eigen-decomposed covariance matrix into QDF, we get

fQDF(x, i) =
∑d

j=1
1

λij
[φ�ij(x− μi)]

2 +
∑d

j=1 log λij . The

minor eigenvalues are usually prone to be underestimated

due to small sample size, therefore MQDF [1] replaces the

minor eigenvalues (λij , j > k) with a constant δi to stabilize

the generalization performance

fMQDF(x, i) =
k∑

j=1

(
1

λij
− 1

δi

)[
φ�ij(x− μi)

]2

+
1

δi
||x− μi||2 +

k∑
j=1

log λij + (d− k) log δi,

(4)

where k denotes the number of principal axes. The above

derivations utilize the properties of Φ�i Φi = I and ||x −
μi||2 =

∑d
j=1[φ

�
ij(x − μi)]

2. Compared with QDF, MQDF

involves only the principal eigenvectors and eigenvalues,
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therefore, both the storage of parameters and the compu-

tational complexity are reduced. More importantly, high-

er classification accuracy can be obtained by setting the

minor eigenvalues to be a class-independent constant as

δ1 = δ2 = · · · = δM = α 1
Md

∑M
i=1

∑d
j=1 λij and using

cross-validation to select α from [0, 1] on the training data.

Although MQDF is a state-of-the-art classifier for Chinese

handwriting recognition, many improvements have been

proposed in the past 25 years. We first give a summariza-

tion of the improvements on MQDF in Section II. After

that, the motivation and definition of the newly proposed

locally smoothed MQDF are described in Section III. The

experimental results on both offline and online Chinese

handwriting datasets are presented in Section IV, and the

concluding remarks are drawn in Section V.

II. RELATED WORKS

Many improvements have been proposed for MQDF from

different aspects, such as discriminative training, memory

reduction, instance selection and generation, ensemble learn-

ing, and discriminative feature extraction.

Because MQDF is a generative model, Liu et al. [2]

proposed to use the minimum classification error (MCE) [4]

criterion for discriminative training of MQDF. After that,

the sample separation margin criterion [5] and perceptron

criterion [6] were also adopted for this purpose. The re-

training of MQDF based on instance importance weight-

ing [7], instance selection [8] and virtual instance generation

(mirror image) [9] can be also viewed as some kinds of

discriminative training. Discriminative training of MQDF

can directly optimize the classification boundaries, therefore,

high classification accuracy can be achieved especially when

the size of training data is large.

The memory requirement of MQDF is usually very large

(e.g. 120MB for a 3,755-class and 160-dimension problem).

To reduce the memory requirement of MQDF, Long and

Jin [10] proposed to use the vector quantization and split

quantization techniques to compress the parameters (mean-

s, eigenvectors and eigenvalues) of MQDF. Modeling the

inverse covariance matrices by the expansion of some tied

basis matrices was proposed by Wang and Huo [11]. The

precision constrained Gaussian model was combined with

the minimum classification error (MCE) training criterion

to simultaneously compress the parameters and improve

the accuracy [12]. With parameter compression, the high

accuracy MQDF classifier can be embedded into some hand-

held devices such as mobile phones and tablet computers.

There are also many other improvements of MQD-

F derived from different viewpoints. The kernel MQDF

was proposed by Yang and Jin [13] to extend MQDF

from original feature space to kernel space (implicit high-

dimensional space). The ensemble learning methods such as

cascade classifier training [14], boosting [15] and pairwise

discrimination [16] were adopted to improve the accuracy

of MQDF. The graphical lasso method was used to estimate

a sparse inverse covariance matrix Σ−1
i for QDF [17]. The

normalization of the determinant of the covariance matrix

was shown to achieve better classification accuracy [18]. The

asymmetric Mahalanobis distance [19] can be viewed as an

extension of the symmetric Gaussian distribution. Combin-

ing MQDF with the discriminative feature extraction [20]

can further improve the performance.

III. LOCALLY SMOOTHED MQDF

Although MQDF is a generative model, it has a very high

accuracy on training set (over 99%). However, the accuracy

on testing set is much lower (around 89% and 93% for

offline and online Chinese handwriting recognition). This

indicates that MQDF has a good capability to fit training

data but the generalization performance is not promising.1

The covariance matrix estimated by maximum likelihood

(ML) is usually under-estimated due to small sample size,

and the large number of free parameters gives MQDF a

strong memory of training samples (over-fitting). To improve

the generalization performance of MQDF, we propose a new

model of locally smoothed modified quadratic discriminant

function (LSMQDF) by smoothing the covariance matrix of

each class with its nearest neighbor classes. In the following

sections, we first give a description of the ML estimation,

and then present the details of LSMQDF. After that, we

compare LSMQDF with a global smoothing method.

A. Class-wise ML Estimation
Given a training dataset {xi

j ∈ R
d} (i = 1, · · · ,M and

j = 1, · · · , ni), where ni is the number of training samples

in class i, and M is the number of classes. Let xi
j denotes

the j-th training sample from class i. The function of the

negative log-likelihood of the data from class i w.r.t. the

mean μ and the covariance matrix Σ can be defined as:

NLL(μ,Σ, i) = −
ni∑
j=1

log p(xi
j |i)

∝
ni∑
j=1

(xi
j − μ)�Σ−1(xi

j − μ) + ni log |Σ| .
(5)

The maximum likelihood (ML) estimation of μi and Σi

is conducted class-by-class (i = 1, · · · ,M ) as:

{μi,Σi} = argmin
μ,Σ

NLL(μ,Σ, i) . (6)

By solving this convex optimization problem, the ML esti-

mation is:

μi =
1

ni

ni∑
j=1

xi
j , (7)

Σi =
1

ni

ni∑
j=1

(xi
j − μi)(x

i
j − μi)

� . (8)

1This explains why discriminative training of MQDF can only improve
the testing accuracy slightly.
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B. Locally Smoothed MQDF
The class-wise ML estimation is proven to be sensitive

to small sample size (small ni), and the estimation error in

covariance matrix (8) is more serious than the estimation

error in mean vector (7). To achieve a robust estimation, we

propose a local smoothing method:

Σ̃i = argmin
Σ

(1− β) NLL(μi,Σ, i) +

β
1

K

∑
j∈KNN(i)

NLL(μj ,Σ, j) ,
(9)

where KNN(i) denotes the K nearest neighbors of class

i from the remaining classes (defined by the Euclidean

distance between the class means). The first term of (9) is the

ML estimation and the second term is a local smoothing of

the covariance matrix with the nearest neighbor classes. The

β ∈ [0, 1] is a tradeoff parameter. Because the estimation of

the class-mean is accurate enough, μi is fixed as the ML

estimation (7). The new covariance matrix Σ̃i is estimated

to maximize the likelihood of not only class i but also the

neighboring classes. Therefore, both the samples from class

i and the neighboring classes are used simultaneously to

achieve a robust estimation. This is based on the assumption

that the covariance matrices of neighboring classes are close

to each other, which is satisfied in handwriting recognition,

because similar characters usually have the same types of

distortion (variation).
The optimization problem of (9) is also a convex problem

which has a closed-form solution:

Σ̃i =

(1− β)niΣi + β 1
K

∑
j∈KNN(i)

njΣj

(1− β)ni + β 1
K

∑
j∈KNN(i)

nj

, (10)

where Σi is the ML estimation (8). From this definition, we

can find that Σ̃i is a smoothing of Σi with the neighboring

classes Σj : j ∈ KNN(i). Therefore, Σ̃i should be more

accurate than Σi especially when ni is small. By using

μi (7) and Σ̃i (10) to train the MQDF classifier (Section I-B),

much better generalization performance can be achieved, and

we denote this method as LSMQDF. With local smoothing,

some discriminative information of the training data is lost,

but the new covariance matrix Σ̃i will be more robust.

Therefore, although the accuracy on training set is decreased

(over-fitting avoided), the accuracy on testing set will be

improved (generalization improved).

C. Local Smoothing V.S. Global Smoothing
LSMQDF can be viewed as an extension of the global

smoothing method, namely regularized discriminant analy-

sis (RDA) [21], which constrains the range of parameter

values by interpolating the class covariance matrix with the

common covariance matrix Σ0 and the identity matrix I:

Σ̂i = (1− γ)[(1− β)Σi + βΣ0] + γδ2i I, (11)

where Σ0 = (
∑M

i=1 niΣi)/(
∑M

i=1 ni), δ
2
i = 1

d tr(Σi), and

0 ≤ β, γ ≤ 1. With appropriate values of β and γ
empirically selected, RDA can improve the generalization

performance, and some special cases are included: (i) o-

riginal QDF: β = γ = 0; (ii) linear discriminant function

(LDF): γ = 0, β = 1; and (iii) Euclidean distance: γ = 1.

Improvements can be achieved when using μi (7) and

Σ̂i (11) to train the MQDF classifier (Section I-B), and we

still denote this method as RDA for simplification.

RDA is a global smoothing method, while LSMQDF is

a local smoothing method. When the number of classes

is large, global smoothing can not achieve any improve-

ment, while local smoothing is still effective to improve

the accuracy. This is because we can not assume all the

covariance matrices to be close to each other, and contrarily,

the neighboring classes are more likely to have the same

covariance matrices. The superior performance of LSMQDF

is also verified by experiments in the following sections.

IV. EXPERIMENTS

We evaluated the performance of LSMQDF on two 3,755-

class Chinese handwriting databases [22]: the offline hand-

writing database CASIA-HWDB1.1 and the online hand-

writing database CASIA-OLHWDB1.1. Both of them con-

tain handwritten Chinese characters from 300 writers (240

for training and 60 for testing). Each writer has about 3,755

characters (one for each class). The extracted feature data

can be downloaded from our website.2

A. LSMQDF for Offline Handwriting Recognition

For representing an offline character sample, we extract

features from gray-scale character images (back-ground e-

liminated) using the normalization-cooperated gradient fea-

ture (NCGF) method [23]. The original feature dimension-

ality is 512 which is further reduced to 160 by Fisher linear

discriminant analysis (FDA).

For the LSMQDF method, we set K = 10 and β = 0.5
for (10). Sensitive analysis of these parameters will be shown

in the following sections. For the RDA method (11), we have

Σ0 = I (the common covariance matrix is I in the FDA

transformed subspace), and now the RDA can be simplified

as Σ̂i = (1−γ)Σi+γδ2i I and we report the best performance

of RDA on testing set by searching γ from 0 to 1.

The accuracies of MQDF, RDA and LSMQDF on both

training set and testing set with various numbers of principal

eigenvectors are shown in Figure 1(a). We can find that:

(i) with either global smoothing (RDA) or local smoothing

(LSMQDF), the training accuracy is decreased (over-fitting

avoided), and the testing accuracy is improved (generaliza-

tion improved); (ii) LSMQDF outperforms RDA consistently

and significantly on the testing set; and (iii) compared with

the baseline MQDF, LSMQDF is effective to improve the

2http://www.nlpr.ia.ac.cn/databases/handwriting/Download.html
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Figure 1. (a) Different models for offline handwriting recognition; (b) MQDF v.s. LSMQDF on different dimensions; (c) MQDF v.s. LSMQDF with
different number of training samples; (d) LSMQDF with different numbers of K in (10); (e) LSMQDF with different values of β in (10); (f) Different
models for online handwriting recognition.

testing accuracy, e.g., from 89.53% to 90.27% when the

number of principal eigenvectors is 50.

B. Varying Dimensionality

By using FDA to reduce the dimensionality from 512 to

different subspaces, we compare the performance of MQDF

and LSMQDF (K = 10 and β = 0.5 for (10) and the number

of principal eigenvectors is 50). The results are shown in

Figure 1(b). When the dimensionality is small, the difference

between MQDF and LSMQDF is not significant, but with

the increasing of dimensionality, the difference becomes

larger and larger. This is because the curse of dimensionality,

i.e., in the high-dimensional space, the training data are not

sufficient to get an accurate parameter estimation, and in

this case, smoothing is an important tool for improving the

generalization performance.

C. Varying the Size of Training Data

We also compare the performance of MQDF and

LSMQDF with different number of training samples. In this

case, we fix the dimensionality as 160, use K = 10, β = 0.5
for (10), and set the number of principal eigenvectors as

50. The results are shown in Figure 1(c). We can find that:

LSMQDF can improve the testing accuracy consistently and

significantly, especially when the number of training samples

is small (e.g. the accuracy is improved from 84.79% to

86.80% when there are only 60 training samples per class).

D. On Selection of K
In this section, we evaluate the performance of LSMQDF

by varying the number of nearest neighbors K in (10).

Other parameters are fixed as the same of Section IV-C.

The results are shown in Figure 1(d). When K = 3, the

testing accuracy of LSMQDF is already higher than MQDF,

and with the increasing of K, the performance is further

improved. When 10 ≤ K ≤ 30, the accuracy is nearly

not changed. Therefore, the performance of LSMQDF is not

sensitive to the selection of K.

E. On Selection of β
We also evaluate the performance of LSMQDF by varying

the values of the tradeoff parameter β in (10). Other param-

eters are fixed as the same of Section IV-C. The results

are shown in Figure 1(e). When β = 0.1, the accuracy of

LSMQDF is higher than MQDF, because the information of

neighboring classes is incorporated into the estimation of the

covariance matrix. With the increasing of β, the performance

is further improved. However, when β > 0.5, the accuracy is

decreased due to the over-smoothing. Therefore, in practice,

we should pay attention to the value of β, and β = 0.5 is

shown to be a good choice in our experiments.

F. LSMQDF for Online Handwriting Recognition
In this section, we use LSMQDF for online handwriting

recognition. For representing an online character sample,

11



we use a benchmark feature extraction method [24]: 8-

direction histogram feature extraction combined with pseudo

2D bi-moment normalization (P2DBMN). We also add the

direction values of off-strokes (pen lifts) to real strokes with

a weight of 0.5 [25]. The settings of different parameters

are the same as Section IV-A.

The results are shown in Figure 1(f). Although MQDF

can achieve much higher testing accuracy for online data

(compared with offline data), LSMQDF is still effective

in improving the generalization performance, e.g., from

93.22% to 93.70% when the number of principal eigen-

vectors is 50. The local smoothing of LSMQDF again

outperforms the global smoothing method of RDA.

V. CONCLUSION

To improve the generalization performance of MQDF,

we proposed a locally smoothed modified quadratic dis-

criminant function (LSMQDF) by smoothing the covariance

matrix of each class with its neighboring classes. The idea of

local smoothing is simple and effective. In the future, we will

explore the local smoothing from the theoretical viewpoint

such as Bayesian learning [26]. Using the parameters of

LSMQDF as initialization for discriminative training [2],

and combining LSMQDF with improved dimensionality

reduction methods [27] can further improve the accuracy.
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