
Hybrid Page Segmentation with Efficient Whitespace
Rectangles Extraction and Grouping

Kai Chen, Fei Yin, Cheng-Lin Liu
National Laboratory of Pattern Recognition (NLPR)

Institute of Automation of Chinese Academy of Sciences
95 Zhongguancun East Road, Beijing 100190, P.R. China

Email: {kchen, fyin, liucl}@nlpr.ia.ac.cn

Abstract—Page segmentation is still a challenging problem due
to the large variety of document layouts. Methods examining both
foreground and background regions are among the most effective
to solve this problem. However, their performance is influenced
by the implementation of two key steps: the extraction and
selection of background regions, and the grouping of background
regions into separators. This paper proposes an efficient hybrid
method for page segmentation. The method extracts whitespace
rectangles based on connected component analysis, and filters
whitespace rectangles progressively incorporating foreground and
background information such that the remaining rectangles are
likely to form column separators. Experimental results on the
ICDAR2009 page segmentation competition test set demonstrate
the effectiveness and superiority of the proposed method.

Keywords—Page segmentation, whitespace rectangles extrac-
tion, whitespace rectangles grouping.

I. INTRODUCTION

Document image understanding systems find wide applica-
tions in document conversion and information retrieval. Page
segmentation occupies an important position in those systems.
The correctness of segmenting page into blocks greatly affects
the overall recognition performance. After text lines identifi-
cation and reading order determination, the text line images
are fed to an OCR engine to derive the output text.

Many methods of page segmentation have been reported in
the literature. They can be categorized into foreground analy-
sis, background analysis and hybrid ones from the viewpoint
of objects to be analyzed.

Foreground analysis methods collect black pixels to form
document components (connected components, words, text
lines and so on) recursively. The representatives of this cat-
egory include Docstrum [1], Minimal Spanning Tree [2] and
Document Representation [3]. Background analysis methods
use straight or curved lines of white pixels to segment the
page. Sometimes regions of white pixels are used. These
methods include X-Y Cut [4], Maximal Empty Rectangles [5],
Whitespace Thinning [6] and Voronoi Diagram [7]. Hybrid
methods analyze both foreground and background regions.
Pavlidis and Zhou [8] introduced a method which identifies
column gaps and group them into column separators after hor-
izontal smearing of black pixels. They target documents with
some constraints. The Jouve method submitted to ICDAR2011
Layout Analysis Competition [9] first extracts connected com-
ponents and group them into words. Whitespace rectangles
aligned at the end of words are then aggregated into separators.

In this method, the number of whitespace rectangles is large
and how to group them is not specified in the brief description.

Hybrid methods overcome the error accumulation from
low-level components by foreground analysis and the under-
segmentation of background analysis due to its ignorance of
foreground components homogeneity. However, it is not trivial
to extract proper background regions and to group them into
separators accurately. There is not a feasible general approach
to achieve this goal.

This paper proposes a hybrid page segmentation method
that extracts proper whitespace rectangles based on connected
component (CC) analysis, and filters whitespace rectangles
progressively incorporating foreground and background infor-
mation, such that the remaining rectangles can be grouped
into column separators using simple rules. The effectiveness
of the method was demonstrated on the ICDAR2009 page
segmentation competition test set.

II. HYBRID SEGMENTATION METHOD

The proposed page segmentation method is based on
whitespace rectangles extraction and grouping. It consists of
three major steps: whitespace rectangles extraction, filtering
and grouping. The block diagram of our method is shown
in Fig. 1. First the foreground CCs are extracted and linked
into chains according to their horizontal adjacency relationship.
Whitespace rectangles are extracted from the gap between
horizontally adjacent CCs, and are progressively filtered ac-
cording to the comparison of rectangle width and adjacency
relationship with text lines. The remaining rectangles are
grouped into separators, and non-viable separators are filtered
out heuristically. Large CCs are then merged with text lines.
Last, text blocks are formed by grouping text lines and ordered.

For illustrating the steps subsequently, we define vertical
overlap and horizontal overlap as shown in Fig. 2. Two
components are vertically overlapping if their vertical spans
overlap. They are horizontally overlapping if their horizontal
spans overlap.

A. Whitespace rectangles extraction

A column separator has CCs on both left and right sides.
Therefore, we extract all the whitespace rectangles between
horizontally adjacent CCs as candidates, which are then filtered
progressively.

Connected component (CC) extraction

CC chains identification
Whitespace rectangles generation

Narrow whitespace rectangles removal

Within-column whitespace
rectangle chains removal

Isolated whitespace rectangles removal

Binary image

Large CCs

Text lines

Merging large CCs to text lines

Large text lines identification

Text blocks identification
Reading order determination

Page layout

Over-segmentation
of text lines

Text lines and
large text lines

Fig. 1. Block diagram of the proposed algorithm.

(a) (b)

Fig. 2. Examples of vertically overlapping components (a) and horizontally
overlapping components (b).

We use a linear-time algorithm [10] to extract CCs and
store the coordinates (x min, x max, y min, y max) of
the bounding boxes of the CCs. A CC may constitute large
titles or graphics if its long side is greater than one tenth of
the long side of the page. We call such a CC a large one and
put it aside to be processed later.

To facilitate whitespace rectangles filtering, we link the
CCs into horizontal chains considering that the CCs in a text
line are mostly horizontally aligned (vertically overlapping).
To do this, we find the right nearest neighbor (RNN) for each
CC. A CC and its RNN overlap vertically (Fig. 3), and are

Fig. 3. Examples of CCs and their RNNs.

linked into the same chain. To find RNNs of all the CCs

straightforwardly requires O(N2) computation. This can be
reduced substantially by first sorting all the CCs in ascending
order of their y min. Then for each CC C, we compare it with
the subsequent CCs. Once C encounters a CC S that does not
vertically overlap with C, the CCs after S cannot be RNN of
C because they do not overlap with C vertically. After linking
every CC to its RNN, the CC with no left neighbor becomes
the start of a chain, which ends at a CC that has no RNN.
The link path from a start CC to an end forms a CC chain.
The length of a CC chain is defined as the span from the left
bound of the start CC to the right bound of the end CC. After
all CC chains are identified (Fig 6(a)), whitespace rectangles
are generated between every CC and its RNN inside each CC
chain (Fig 6(b)).

B. Whitespace rectangles filtering

A CC chain may contain both within-column and between-
column rectangles (Fig. 4). Most within-column rectangles can

Fig. 4. Between-column and within-column whitespace rectangles.

be eliminated based on heuristics that they usually have small
width or have no vertical neighbors.

For each CC chain, we estimate the number of between-
column rectangles N based on the chain width and only retain
the N widest rectangles, because between-column rectangles
are wider than within-column ones. There is hardly a document
that has more than eight columns. Therefore, N of a chain with
a length of L is defined as

N = max(1, 8 ∗ L/page width). (1)

N is set at least one to handle situations when a chain has only
one between-column rectangle and no within-column ones.
As is shown in Fig. 6(c), rectangles of smaller width are
removed. An over-segmentation of text lines are acquired by
linking horizontally adjacent CCs which have no rectangles in
between.

A rectangle can also be eliminated if it is surrounded by
text lines and isolated from other rectangles. Obviously, such
a rectangle cannot be between-column. Positive and negative
examples are both shown in Fig. 5. Therefore, more rectangles

Fig. 5. Rectangle R1 is surrounded by text lines T1, T2, T3 and T6. R2
is surrounded by T1, T3, T4 and T7. Therefore, R1 and R2 are isolated
rectangles. R3 and R4 are not isolated by text lines.

are removed as shown in Fig. 6(d). By doing this, the over-
segmentation of text lines is lessened with the linking of more
horizontally adjacent CCs.

(a)

(b)

(c)

(d)

(e)

Fig. 6. (a) CC chains; (b) Whitespace rectangles; (c) Retaining N widest
rectangles in each chain; (d) Removal of isolated rectangles; (e) Over-
segmentation of text lines.

C. Whitespace rectangles grouping

We analyze the remaining rectangles in groups, which are
vertical rectangle chains formed by linking vertically adjacent
rectangles (Fig. 8(a)).

Up to now most within-column whitespace rectangles have
been removed and their adjacent CCs have been linked into
text lines. Out of all the rectangles in a text line, the one with
the largest width defines the maximum gap of the text line. It
is highly probable that a rectangle causes over-segmentation
if it is not wider than the maximum gap of its horizontally
adjacent text lines. Such a rectangle is labelled as a within-
column candidate. Examples are shown in Fig. 7. Vertical
rectangle chains containing only within-column candidates
are eliminated (Fig. 8(b)). Following the removal of such
rectangles, their adjacent text lines are merged and maximum
gaps are updated.

A within-column rectangle will not be labelled as a candi-

Fig. 7. Examples of a maximum gap and within-column candidates.

date in the above process if its adjacent text lines on left and
right sides both have only one word. Obviously, the maximum
gaps of both text lines are narrower than the within-column
rectangle. However, text lines of one word were all acquired
at the step of removing rectangles of smaller width in the
whitespace rectangles filtering section and since then they
never change. Therefore, we also label a rectangle as a within-
column candidate if it has two one-word adjacent text lines
which were acquired at that step. Along with the within-
column candidates labelled by comparing with maximum gaps,
we repeat the process of removing within-column candidate
chains once again. Although a between-column rectangle may
also have two adjacent text lines of one word, it is very unlikely
that a between-column rectangle chain consists of all this kind
of between-column rectangles.

After removing the vertical rectangle chains of all within-
column candidates, in each of the remaining chains, we check
the top and bottom rectangle to see whether they are within-
column candidates or not. A within-column candidate at the
top or bottom of a chain is probably a real within-column one
adjacent to a real column separator. Hence, such candidate
rectangles are also removed. With more adjacent CCs being
linked after removing within-column rectangles, we get text
lines which barely have over-segmentation (Fig. 8(c)).

(a)

(b)

(c)

Fig. 8. (a) Whitespace rectangle chains; (b) Removal of within-column
rectangle candidate chains; (c) Text lines after removing within-column
rectangle chains.

D. Processing of large connected components

Large connected components (CCs) postponed to this stage
are classified into text CCs and non-text CCs. The large
CCs which contain text lines are treated as graphics and are
eliminated. Large CCs forming long horizontal or vertical
straight lines are also eliminated.

The remaining large CCs are treated as text CCs to be
merged with detected text lines or form new text lines. A large
CC will be merged into its horizontally adjacent text line if the
gap between them is not wider than the maximum gap of the
text line, and the height of the CC is not greater than twice the
text line height. The remaining large CCs are linked to form
new text lines in a way similar to linking normal CCs except
that the maximum number of between-column rectangles is
reduced to four. During the linking, if the enclosing box of
two large CCs contain a detected text line, they are treated as
graphics and are removed. Large text lines with no more than
two CCs are also removed.

E. Text blocks identification

Text blocks are identified by linking vertically adjacent text
lines considering that the text lines in a block are vertically
aligned (horizontally overlapping). To do this, we find the
below nearest neighbors (BNNs) for each text line. A trick
similar to the one used to find RNNs of CCs is also used
here. First we sort the text lines in ascending order of their
y min. Then for each text line T , we compare it with the
subsequent text lines. When T first encounters a text line A
and A overlaps horizontally with T , then A is a BNN of T .
Subsequent text lines need to overlap vertically with A to be a
BNN of T . Therefore the process of finding BNNs of T can be
terminated when a subsequent text line S does not vertically
overlap with A. This is illustrated in Fig. 9, where a rectangle
denotes a text line.

Fig. 9. The order of the text lines is T , A, B, C, S, D after sorting them
according to y min. T finds A first as a BNN. B and C overlap vertically
with A, and so, are the BNNs of T . D and S do not overlap vertically with
A, and so, cannot be BNNs of T .

To ensure there is only one text line at a certain vertical
position of a text block, text lines are linked into chains
sequentially. After the closure of the previous chain, the first
text line of the remaining ones is used as the start of a new
chain, which is enlarged by adding BNN of the previous
member until it adds a text line which has no BNN or has more
than one BNN. If a text line to be added is the BNN of more
than one text line, the enlargement of the chain is terminated
before the addition. New chains are generated continually until
there are no text lines left. The members of a text line chain
are grouped to form a text block, as exemplified in Fig. 10.

At last, the reading order of text blocks is determined using
the method in [11] which considers the geometric relationship
between blocks to determine the partial order and finally
extends to global order.

Fig. 10. Text line chains and text blocks.

III. EXPERIMENTAL RESULTS

The evaluation of page segmentation performance is diffi-
cult because the correspondence between detected text blocks
and ground-truth is complicated. The ICDAR page segmenta-
tion competitions [9] [12] provide an evaluation methodology
which has been used successfully to compare the entrants of
the competitions. The methodology combines different types
of segmentation errors (split, merge, miss, false detection,
misclassification and reading order) using adjustable weights
accounting for different application scenarios. The details
can be found in [12] and [13]. Using the methodology, we
evaluated the performance of our method on the test set
of ICDAR2009 competition and compare with the published
results of the competition. The test set contains 55 document
images of various layouts. The results for different scenarios
are shown in Fig. 11, Fig. 12 and Fig. 13, respectively.

Fig. 11. Results using the segmentation-scenario evaluation profile.

The evaluation mechanism gives different comparison re-
sults depending on the evaluation scenarios related to real
world applications. In some applications, all types of regions
are of interest. While some other applications only concern text
regions. The segmentation scenario takes segmentation success
rate for all types of regions into account. The OCR scenario
considers segmentation success rate of all types of regions
and labelling success rate of text regions. Our algorithm is
inferior to the best system of the competition when evaluated
in segmentation and OCR scenarios which consider all types
of regions, because we focus only on text regions and the other
regions are removed. The Fraunhofer system outperforms our
method in the first two scenarios largely because 29 out of
55 documents in the test set contain large graphics regions.
The text scenario favors our method because it only considers

Fig. 12. Results using the OCR-scenario evaluation profile.

Fig. 13. Results using the text-scenario evaluation profile.

segmentation and labelling success rate of text regions. In
this scenario, our method gives the best performance. Fig.
14 shows the segmentation result of our method compared
with the ground-truth, where our method detects text regions
correctly but ignores graphics and does not split text regions
into paragraphs.

IV. CONCLUSION

We proposed an efficient hybrid page segmentation method
based on whitespace analysis. Based on connected compo-
nent analysis, whitespace rectangles are extracted and filtered
progressively incorporating both foreground and background
information. Experimental results on the ICDAR2009 page
segmentation competition dataset demonstrate the superiority
of our method in respect of text recognition. Future improve-
ments are to reduce artificial parameters and refine the splitting
of text regions into paragraphs.

ACKNOWLEDGMENT

The author would like to thank Apostolos Antonocopoulos
for providing document image data and the evaluation results

(a) (b)

Fig. 14. Document image ground truth (a) and segmentation result (b).

of our method. This work is supported in part by the Na-
tional Basic Research Program of China (973 Program) Grant
2012CB316302, the National Natural Science Foundation of
China (NSFC) grants 61175021 and 61273269.

REFERENCES

[1] L. O’Gorman, The document spectrum for page layout analysis, IEEE
Trans. Pattern Analysis and Machine Intelligence, vol. 15, no. 11, pp.
1162-1173, 1993.

[2] A. Simon, J. Pret, A. Johnson, A fast algorithm for bottom-up document
layout analysis, IEEE Trans. Pattern Analysis and Machine Intelligence,
vol. 19, no. 3, pp. 273-276, 1997.

[3] A. Jain, B. Yu, Document representation and its application to page
decomposition, IEEE Trans. Pattern Analysis and Machine Intelligence,
vol. 20, no. 3, pp. 294-308, 1998.

[4] G. Nagy, S. Seth, Hierarchical representation of optically scanned doc-
uments, Proc. 7th ICPR, pp. 347-349, 1984.

[5] T.M. Breuel, Two geometric algorithms for layout analysis, Document
Analysis Systems, pp. 188-199, Aug 2002.

[6] K. Kise, O. Yanagida, S. Takamatsu, Page segmentation based on
thinning of background, Proc. 13th ICPR, pp. 788-792, 1996.

[7] K. Kise, A. Sato, M. Iwata, Segmentation of page images using the area
voronoi diagram, Computer Vision and Image Understanding, vol. 70,
no. 3, pp. 370-382, June 1998.

[8] T. Pavlidis, J. Zhou, Page segmentation and classification, CVGIP:
Graphical Models and Image Processing, vol. 54, pp. 484-496, 1992.

[9] A. Antonacopoulos, C. Clausner, C. Papadopoulos, S. Pletschacher,
Historical document layout analysis competition, Proc. 11th ICDAR, pp.
1516-1520, 2011.

[10] F. Chang, C.-J. Chen, C.-J. Lu, A linear-time component-labeling
algorithm using contour tracing technique, Computer Vision and Image
Understanding, vol. 93, pp. 206-220, 2004.

[11] T.M. Breuel, High performance document layout analysis, Proc. Sym-
posium on Document Image Understanding Technology, April 2003.

[12] A. Antonacopoulos, S. Pletschacher, D. Bridson, C. Papadopoulos,
ICDAR2009 page segmentation competition, Proc. 10th ICDAR, pp.
1370-1374, 2009.

[13] C. Clausner, S. Pletschacher A. Antonacopoulos, Scenario driven in-
depth performance evaluation of document layout analysis methods,
Proc. 11th ICDAR, pp. 1516-1520, 2011.

