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Abstract—The well-known feature transformation model of
Fisher linear discriminant analysis (FDA) can be decomposed
into an equivalent two-step approach: whitening followed by
principal component analysis (PCA) in the whitened space. By
proving that whitening is the optimal linear transformation to
the Euclidean space in the sense of minimum log-determinant
divergence, we propose a transformation model called class
conditional decorrelation (CCD). The objective of CCD is
to diagonalize the covariance matrices of different classes
simultaneously, which is efficiently optimized using a modified
Jacobi method. CCD is effective to find the common principal
components among multiple classes. After CCD, the variables
become class conditionally uncorrelated, which will benefit
the subsequent classification tasks. Combining CCD with the
nearest class mean (NCM) classification model can significantly
improve the classification accuracy. Experiments on 15 small-
scale datasets and one large-scale dataset (with 3755 classes)
demonstrate the scalability of CCD for different applications.
We also discuss the potential applications of CCD for other
problems such as Gaussian mixture models and classifier
ensemble learning.

Keywords-class conditional decorrelation, simultaneous diag-
onalization, feature transformation.

I. INTRODUCTION

In pattern classification for high-dimensional data, feature

transformation is widely applied as a pre-processing tech-

nique. Feature transformation can reduce the computational

complexity by dimensionality reduction, and also obtain

better generalization performance by reducing irrelevant and

redundant information in data, overcoming the estimation

problem in statistical classifier learning, and revealing the

latent structure of data.

Feature transformation can be divided into linear and

nonlinear methods. A large variety of linear methods, such

as random projection (RP) [1], principal component analysis

(PCA) [20], Fisher linear discriminant analysis (FDA) [15],

independent component analysis (ICA) [19], non-negative

matrix factorization (NMF) [23], and locality preserving

projections (LPP) [17], have been proposed from different

statistical or geometrical viewpoints. The nonlinear methods

include: (i) kernel extension of the linear methods, such as

kernel PCA [33] and kernel FDA [38]; (ii) manifold learning

models such as ISOMAP [36], LLE [32] and Laplacian

eigenmaps [2]; (iii) deep neural networks [18], [34] which

use a deep architecture to learn the nonlinear data mapping.

Fisher linear discriminant analysis (FDA) [15] is one of

the most famous linear supervised algorithms. The principle

of FDA is to minimize the within-class variance as well

as maximize the between-class variance. Under the ho-

moscedastic Gaussian assumption, FDA leads to the optimal

projection axes when the reduced dimensionality is K−1 (K
is the number of classes). However, in many other occasions,

FDA is only a suboptimal model, e.g., many models have

been proposed: (i) to solve the class separation problem

when the reduced dimensionality is much smaller than the

number of classes [27], [35], [3], [40]; (ii) to improve FDA

under the heteroscedastic case [26], [42]; and (iii) to alleviate

the small sample size problem [7], [39].

In this paper, we first decompose FDA into an equivalent

two-step approach: whitening and PCA in the whitened

space. By proving that whitening is the optimal linear trans-

formation to transform the covariance matrices of different

classes to the identity matrices, we further propose a new

model called class conditional decorrelation (CCD). The ob-

jective of CCD is to learn a linear transformation attempting

to diagonalize all the covariance matrices for each class

simultaneously. CCD is more flexible than whitening and

can find the common principal components among multiple

classes [14]. Furthermore, the modified Jacobi method is

used to solve the optimization problem of CCD efficiently.

After CCD transformation, the variables become class

conditionally uncorrelated. This will benefit the following

classification tasks. In this paper, we combine CCD with

the nearest class mean (NCM) classification model to learn

an improved distance metric. The original NCM classifiers

are inferior to other discriminative classifiers, however, with

the help of CCD, the improved NCM classifiers can achieve

comparable performance with other benchmark classifiers

such as the NCM metric learning method [29]. Experiments

on 15 small-scale datasets and one large-scale dataset (with

3, 755 classes) demonstrate that: the structure of latent

common principal components for multiple classes exists

not only in small category problems but also in large

category problems. CCD is effective in finding such structure

and improving the classification performance. Besides the

applications of CCD in this paper, we also extend CCD into

a much more generalized formulation and show the potential

advantages of CCD for other problems such as Gaussian

mixture models and classifier ensemble learning.

The rest of this paper is organized as following: Section II

introduces the decomposition of FDA; Section III proves

that whitening is the optimal linear transformation to the
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Euclidean space; Section IV presents the proposed model of

class conditional decorrelation (CCD); Section V describes

the combination of CCD for nearest class mean (NCM)

classification; Section VI reports the experimental results;

Section VII offers some potential extensions of CCD; and

Section VIII draws the concluding remarks.

II. DECOMPOSITION OF FDA

Let μk ∈ R
d be the mean vector and Σk ∈ R

d×d be the

covariance matrix for class k (k = 1, . . . ,K). The within-

class and between-class scatter matrices are defined as:

Sw =
1

K

K∑
k=1

Σk , (1)

Sb =
1

K

K∑
k=1

(μk − μ0)(μk − μ0)
� , (2)

where μ0 = 1
K

∑K
k=1 μk, and we assume the prior proba-

bilities are equal for all the classes. The objective of FDA

is to learn a transformation matrix W ∈ R
d×d′

to transform

the feature into a low-dimensional space x′ = W�x by

minimizing the within-class variance as well as maximizing

the between-class variance. It is easy to check that the scatter

matrices in the transformed space become W�SwW and

W�SbW . There are many formulations of FDA, and two

typical criteria are given in the following [15]:

max
W

tr
{(

W�SwW
)−1 (

W�SbW
)}

, (3)

max
W

ln
∣∣W�SbW

∣∣− ln
∣∣W�SwW

∣∣ . (4)

The above two criteria are equivalent to a constrained

problem:

max
W∈Rd×d′

tr
(
W�SbW

)
,

s.t. W�SwW = I ,
(5)

where I is the identity matrix. Usually, this model is solved

by a two-step approach. The first step is the whitening.

Definition 1. The whitening transformation matrix is

Wwhiten = PΛ−1/2 ∈ R
d×d , (6)

where P is the eigenvector matrix and Λ is the diagonal
eigenvalue matrix of the within-class scatter matrix: Sw =
PΛP�. The whitening transformation satisfies

W�
whitenSwWwhiten = I . (7)

The whitening transformation is to transform the within-

class scatter matrix into the identity matrix, after that the

Euclidean distance becomes a suitable measurement between

different classes.
Let WFDA = WwhitenW , we can rewrite FDA of (5) as:

max
W∈Rd×d′

tr
(
W�W�

whitenSbWwhitenW
)
,

s.t. W�W = I .
(8)

Hence the second step of FDA is to solve (8). This is exactly

the PCA among W�
whitenμ1, . . . ,W

�
whitenμK . That means

FDA is equivalent to whitening followed by PCA of the

class-means on the whitened space.

III. WHITENING

In this section, we show that, in an information-theoretic

viewpoint [10], whitening is the optimal linear transforma-

tion to the Euclidean space, which implies the advantages

of the two-step approach of FDA.

Theorem 1. The whitening transformation of (6) minimizes
the Log-Determinant divergence between the transformed
covariance W�ΣkW and the identity matrix I .

Proof: The Log-Determinant divergence [11] between

two n× n matrices is defined as:

Dld(X,Y ) = tr(XY −1)− log det(XY −1)− n . (9)

In this paper, we define the objective of whitening (6) as:

min
W∈Rd×d

F =

K∑
k=1

Dld

(
W�ΣkW, I

)

=
K∑

k=1

[
tr(W�ΣkW )− log det(W�ΣkW )− d

]
.

(10)

By setting the derivative of the objective function w.r.t. W
to zero, we get

∂F
∂W

= 2
K∑

k=1

ΣkW − 2KW−� = 0 , (11)

which means SwW −W−� = 0. Insert Sw = PΛP� and

Wwhiten = PΛ−1/2 into it, we get

PΛP�PΛ−1/2 − PΛ1/2 = 0 . (12)

Since P�P = I , this completes the proof.

From Theorem 1, we can conclude that: even when the

covariances Σk, k = 1, . . . ,K are not equal for all the

classes (heteroscedastic), whitening transformation is still

a good model to find the optimal Euclidean space. In the

whitened space, the Euclidean distance becomes a suitable

measurement. Therefore each class can be described by

W�
whitenμk, and the PCA transformation among them (8)

can find the optimal separated subspace for classification.

IV. CLASS CONDITIONAL DECORRELATION

A. Motivation and Definition

The whitening in (10) is to transform Σ1, . . . ,ΣK into the

identity matrix. However, in most cases this is impossible.

Although the within-class scatter matrix Sw is transformed

to the identity matrix in Eq. (7), the covariance matrices of

each class Σ1, . . . ,ΣK are still far from the identity matrix

due to the divergences among them. In light of this, we

consider a relaxed formulation of the whitening. Instead of
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transforming Σ1, . . . ,ΣK into the identity matrix, we would

like to diagonalize them as much as possible:

min
W∈Rd×d

K∑
k=1

∥∥W�ΣkW
∥∥
2,off

,

s.t. W�W = I ,

(13)

where

‖A‖2,off =
∑
i �=j

A2
ij . (14)

The constraint W�W = I is to avoid trivial solutions.

We call this model class conditional decorrelation (CCD),

because we try to diagonalize (or decorrelate) simultaneous-

ly Σ1, . . . ,ΣK , which are the class conditional covariance

matrices for each class. After CCD transformation, the

variables become class conditionally uncorrelated, which can

benefit the subsequent classification tasks.

Lemma 1. For arbitrary A ∈ R
d×d, under any full rank

orthogonal transformation W ∈ R
d×d,W�W = I , we have∥∥W�AW

∥∥2

F
= ‖A‖2F , (15)

where ‖A‖2F =
∑d

i,j=1 A
2
ij .

Because of Lemma 1, by minimizing the sum of the

squared non-diagonal elements, the objective of CCD (13)

will concentrate its energy on the diagonal elements, which

leads to two main advantages. First, CCD is more flexi-

ble than whitening: CCD focuses on diagonalizing all the

covariance matrices simultaneously, while the objective of

whitening is not only diagonalization but further restricts the

transformed matrix to be the identity matrix (10). Second,

CCD can find the common principal components among

multiple classes (known as common PCA [14], [13]). The

goal of PCA is to diagonalize the total scatter matrix of all

the samples. Furthermore, the goal of CCD is to diagonalize

all the class-wise covariance matrices simultaneously. If

there is only one class (K = 1), CCD is reduced to PCA. For

multiple classes, the transformation axes learned by CCD are

the common principal components for all the classes. In the

following section, we will give an illustration of these two

advantages.

B. Illustration of CCD
We use the well-known handwritten digit database M-

NIST [22] to give an intuitive understanding of CCD. First,

the original covariance matrices of the digits are shown in

Figure 11. We can see that all the covariance matrices are

very dense. For each matrix, the percentage of the sum of

the squares of the diagonal elements is defined as:

P (A) =

∑d
i=1 A

2
ii∑d

i,j=1 A
2
ij

. (16)

1For better visualization, the 3D bar images represent the absolute values
of the elements in each covariance matrix.

Because the sum of the squares of all the elements will

not change under any orthogonal transformation (Lemma 1),

P (·) is a good metric to measure the concentration of the

energy on the diagonal elements. We show the P (·) of

each covariance matrix above the image. We can find that

the percentages P (·) are all below 10%, which indicates

the non-diagonal elements are very dense. After whitening,

the covariance matrices are shown in Figure 2. Although

the covariance matrices after whitening are much like the

identity matrices, the non-diagonal elements of them are still

very dense. Furthermore, with class conditional decorrela-

tion (CCD), the covariance matrices of the digits are shown

in Figure 3. We can find that: after CCD transformation,

the covariance matrix of each class becomes very sparse,

i.e., most of the non-diagonal elements become very small.

The percentages P (·) are dramatically increased. Moreover,

the diagonal elements are also sparse, for which the largest

elements are concentrated in the first few diagonal elements,

and the remaining diagonal elements are very small. Since

the largest diagonal elements means the principal compo-

nents of a particular class, this indicates the advantages of

CCD on finding the common principal components among

multiple classes.

C. Optimization

In this section, we dive into solving the optimization

problem of CCD (13). This problem is known as simul-

taneous diagonalization [43] which cannot be solved by the

eigenvalue decomposition algorithm such as whitening (6).

Therefore, we adopt the modified Jacobi method to solve the

CCD problem. The original Jacobi method is very effective

to find the eigenvectors and eigenvalues of a single symmet-

ric matrix [16], and has been successfully used for sparse

high-dimensional covariance matrix estimation [5], [4]. To

deal with multiple symmetric matrices, the modified Jacobi

method [6], [28] can be used efficiently and effectively.

1) Jacobi Rotation: A basic Jacobi plane rotation

R(i, j, θ) ∈ R
d×d (i �= j) is defined as

[R(i, j, θ)]pq =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1, p = q, p �= i, p �= j
cos θ, p = q = i
cos θ, p = q = j
sin θ, p = j, q = i
− sin θ, p = i, q = j
0, otherwise.

(17)

The [·]pq denotes the pq-th element in a matrix. R(i, j, θ) is

an orthogonal rotation in the plane of the two coordinates

i and j with rotation angle θ. Moreover, R(i, j, θ) is a

very sparse matrix with only the diagonal, ij-th and ji-th
elements being non-zero.

The basic Jacobi plane rotation R(i, j, θ) is used sequen-

tially to transform the sum of squares of the off-diagonal

elements of all the covariance matrices to be as low as

possible. By accumulating the Jacobi plane rotations, we
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Figure 1. The covariance matrices of 5 digits. The images of digit 5 to digit 9 are omitted due to the high similarity.

�

Figure 2. The covariance matrices after whitening.

Figure 3. The covariance matrices after class conditional decorrelation (CCD).

can get the final orthogonal transformation matrix of CCD.

The basic steps of the modified Jacobi method [28] involve:

• choose an index pair (i, j) that satisfies 1 ≤ i < j ≤ d.

• calculate the rotation angle θ such that∑K
k=1

∥∥R(i, j, θ)�ΣkR(i, j, θ)
∥∥
2,off

is minimized.

• overwrite Σk with Σnew
k = R(i, j, θ)�Σold

k R(i, j, θ).

With the index pair (i, j) traveling through {1, 2, . . . , d−
1} × {i + 1, i + 2, . . . , d}, the updating is implemented

repeatedly until convergence. In each iteration, the ob-

jective function of (13) is decreased. At last, we get

the CCD matrix as the accumulated Jacobi rotations

W = R(i1, j1, θ1)R(i2, j2, θ2) . . . R(in, jn, θn). Therefore,

the key problem is to learn the rotation angle when fixing

the index pair (i, j).

2) Rotation Angle θ for Fixed i and j: When fixing i and

j, the learning of the rotation angle θ can be formulated as:

min
θ

K∑
k=1

∥∥R(i, j, θ)�ΣkR(i, j, θ)
∥∥
2,off

. (18)

Lemma 2.
∥∥R(i, j, θ)�AR(i, j, θ)

∥∥
2,off

will only be
changed on the ij-th elements w.r.t different θ.

Hence, the problem in (18) is equivalent to

min
θ

K∑
k=1

[
R(i, j, θ)�ΣkR(i, j, θ)

]2
ij

. (19)

Moreover[
R(i, j, θ)�AR(i, j, θ)

]
ij

= (cos2 θ − sin2 θ)Aij + cos θ sin θ(Ajj −Aii) .
(20)

Therefore the rotation angle problem in (19) becomes:

min
θ

cos2 2θD + (1/4) sin2 2θE + sin 2θ cos 2θF

=
D − E/4

2
cos 4θ +

F

2
sin 4θ +

D + E/4

2
.

(21)

Here

D =

K∑
k=1

(Σk
ij)

2 , E =
K∑

k=1

(
Σk

jj − Σk
ii

)2
, (22)

F =
K∑

k=1

Σk
ij

(
Σk

jj − Σk
ii

)
. (23)

We use Σk
ij to denote the ij-th elements in Σk. By some

trigonometric analysis [28], the optimal θ can be computed
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as:

θ =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

π/4, D − E/4 > 0, F = 0
0, D − E/4 ≤ 0, F = 0
(3π/2− φ)/4, D − E/4 ≥ 0, F > 0
(π/2− φ)/4, D − E/4 ≥ 0, F < 0
(π/2− φ)/4, D − E/4 < 0, F < 0
(−π/2− φ)/4, D − E/4 < 0, F > 0

(24)

where

φ = arctan

(
D − E/4

F

)
∈ (−π

2
,
π

2
) . (25)

3) The CCD Algorithm: The Jacobi plane rotation (17)

is used to find the optimal rotation angle θ when fixing

i and j (18). To solve the CCD model in (13), the basic

Jacobi plane rotations are used sequentially to minimize the

sum of squares of the off-diagonal elements. The complete

procedures are shown in Algorithm 1. After we get the

optimal Jacobi plane rotation, all the covariance matrices are

rotated in Eq. (26). The transformations are accumulated in

Eq. (27) to get the final transformation of CCD.

Input: the covariance matrices {Σ1, . . . ,ΣK} ∈ R
d×d

Initial: W = I
Do the following steps repeatedly until convergence:

for i = 1 : d− 1, for j = i+ 1 : d,

get R(i, j, θ) by Eq. (24) and Eq. (17)

Σnew
k = R(i, j, θ)�Σold

k R(i, j, θ), ∀k (26)

W new = W oldR(i, j, θ) (27)

Return: W ∈ R
d×d

Algorithm 1: Class Conditional Decorrelation

Theorem 2. The returned transformation matrix of Algo-
rithm 1 satisfies the orthogonal constraint in (13).

Proof: The output of Algorithm 1 is

W = R(i1, j1, θ1)R(i2, j2, θ2) . . . R(in, jn, θn) . (28)

It is easy to check that each Jacobi plane rotation is

orthogonal:

R(i, j, θ)�R(i, j, θ) = I . (29)

This leads to W�W = I .

Theorem 3. The objective function in (13) is non-increasing
under the updating rules in (26) and (27).

Proof: When fixing i and j, the Jacobi plane rotation

angle is selected to minimize (18). Therefore the objective

function of (13) at the optimal solution of current Jacobi

plane rotation will not be larger than the former step, since

the searching space of (18) covers θ = 0 which reduces

the Jacobi plane rotation to the identity matrix. Therefore,

with accumulated Jacobi plane rotations in (26) and (27),

the objective function in (13) will be non-increasing.
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Figure 4. Convergence analysis.

4) Computational Complexity: In each rotation, the sum

of squares of off-diagonal elements is decreased. When the

calculated rotation angle θ goes to zero, there will be no

more transformations (the Jacobi rotation with θ = 0 is an

identity matrix). This means that the objective function of

CCD becomes invariant to any transformations. We stop the

iterations in Algorithm 1 when the change of the objective

function in (13) is lower than a pre-defined threshold.

The main computational complexity of CCD (as shown

in Algorithm 1) is the outside iteration of the traveling of

index pair. For each fixed index pair i and j, the main

computations are: (i) calculate the Jacobi rotation (17); (ii)

rotate the covariance matrices (26); and (iii) accumulate the

transformation (27). These steps are linear dependent with

the number of classes K. By considering the outside index

traveling steps of i = 1 : d−1, j = i+1 : d in Algorithm 1

as one iteration, we show the average percentage P (·) of

the 10 covariance matrices (see Section IV-B) with respect

to the number of iterations in Figure 4. We can find

that: (i) with one iteration, the percentage is dramatically

increased; and (ii) after three iterations, the algorithm is

nearly converged. This indicates the effectiveness of the

modified Jacobi method in solving the CCD problem.

V. NEAREST CLASS MEAN CLASSIFICATION WITH CCD

In this section, we integrate CCD into the nearest class

mean (NCM) classification models [37], [29]. NCM repre-

sents each classes by their mean feature vector of its sam-

ples, and assigns a new pattern to the class k ∈ {1, . . . ,K}
with the closest mean:

x ∈ class arg
K
min
k=1

d(x, μk) , (30)

μk =
1

Nk

∑
i:yi=k

xi , (31)

where μk is the mean vector for class k, and d(x, μk) is

a distance metric between a pattern x and class mean μk,

and yi is the ground-truth label of pattern xi, and Nk is

the number of training samples in class k. Contrary to the
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k-NN classifier, NCM is much more efficient, because only

the class-wise mean vectors are needed to be estimated and

saved for future prediction. Furthermore, the NCM classifier

is much more efficient and effective in generalizing to new

classes [29] by adding or adjusting the new class mean.

The success of the NCM classifier critically depends on

the used distance metric d(x, μk). The simplest metric is the

Euclidean distance (ED):

NCMED: d(x, μk) = ‖x− μk‖2 . (32)

However, in many situations, the Euclidean distance is not

the optimal measurement.

Given the mean vector μk and covariance matrix Σk

for each class, the optimal Bayes classifier is a quadratic

discriminant function:

d(x, μk) = log |Σk|+ (x− μk)
�Σ−1

k (x− μk) . (33)

For many applications (e.g. large category K or high di-

mensionality d), the computation and storage for the inverse

covariance matrix Σ−1
k are both very expensive due to the

singular problem and Kd(d+ 1)/2 free parameters. There-

fore, derived from the diagonal assumption of covariance

matrices, the weighted distance (WD) is widely used as an

approximation of the original distance:

NCMWD: d(x, μk) = log |diag(Σk)|+
(x− μk)

�diag(Σk)
−1

(x− μk) ,
(34)

where diag(A) is a d× d matrix with i, i-th elements equal

to Ai,i and i, j-th (∀j �= i) elements equal to zero. In

this way, the inverse matrix can be efficiently calculated as

[diag(A)
−1

]i,i = 1
Ai,i

, ∀i and [diag(A)
−1

]i,j = 0, ∀j �= i.
In the singular situation, the zero diagonal elements Ai,i

are replaced with a positive constant (selected via cross-

validation).

A. Using CCD to Improve NCMED and NCMWD

NCMED and NCMWD are only suboptimal models,

however, we can use CCD to improve their performance by

learning a more suitable distance metric d(x, μk). Suppose

the CCD transformation matrix WCCD ∈ R
d×d has already

been learned from the training data, we can define the

multiple dimensional scaling as

δi =
1

K

K∑
k=1

[
W�

CCDΣkWCCD

]
ii
, i = 1, . . . , d . (35)

We use Λ ∈ R
d×d to represent the matrix with Λi,i =√

δi, ∀i and Λi,j = 0, ∀j �= i. For NCMED, the improved

metric is defined as:

CCD-NCMED:

d(x, μk) =
∥∥Λ−1W�

CCD(x− μk)
∥∥2

,
(36)

For NCMWD, the improved metric is defined as

CCD-NCMWD:

d(x, μk) = log
∣∣∣diag(Σ̂k)

∣∣∣+
(x− μk)

�WCCDdiag(Σ̂k)
−1

W�
CCD(x− μk) ,

(37)

where Σ̂k = W�
CCDΣkWCCD. After CCD transformation,

the variables become class conditionally uncorrelated, there-

fore, the classification performance will be improved for

both NCMED and NCMWD. In other words, CCD is used to

learn a much better distance metric for NCM classification

by considering the class conditional correlation information

of different classes simultaneously.

B. Comparison with Other Models

There are also other models attempting to learn a distance

metric for NCM classification.

1) NCMML: Nearest Class Mean Metric Learning: The

recently proposed NCMML [29] model learns a low-rank

Mahalanobis distance metric for NCM:

NCMML: d(x, μk) = ‖W (x− μk)‖2
= (x− μk)

�W�W (x− μk) ,
(38)

where W ∈ R
d′×d (d′ < d) is a dimensionality reduction

matrix and W�W is a low-rank Mahalanobis distance

metric. Using a multi-class logistic regression formulation:

p(k|x) = exp
(− 1

2d(x, μk)
)

∑K
k′=1 exp

(− 1
2d(x, μk′)

) , (39)

the projection matrix W can be learned via maximizing

the log-likelihood of the correct predictions of the training

samples: maxW
∑N

i=1 log p(yi|xi) .
Compared with the original NCMED and NCMWD,

NCMML is more flexible and accurate by learning a Ma-

halanobis distance from the data. However, the covariance

information of different classes are not taken into considera-

tion. Furthermore, the learned Mahalanobis distance matrix

is shared for all classes, which cannot reflect the difference

between the covariance matrices of different classes. By

taking the second-order covariance information into the

learning process, CCD-NCMED and CCD-NCMWD can

learn better distance metrics for NCM classification.

2) LDF: Linear Discriminant Function: The classical

LDF model assumes all the classes sharing the same co-

variance matrix [15]: Σ0 = 1
K

∑K
k=1 Σk, and defines the

distance metric as:

LDF: d(x, μk) = (x− μk)
�Σ−1

0 (x− μk) . (40)

LDF is equivalent to whitening (Section III) followed by

NCMED. For heteroscedastic problems (different classes

have different covariance matrices), LDF is only a subopti-

mal model and can not achieve good performance.
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Table I
INFORMATION OF 15 DATASETS.

#class #feature #sample testing
german.numer 2 24 1000 cv-10

mushrooms 2 112 8124 cv-10
australian 2 14 690 cv-10

breast-cancer 2 10 683 cv-10
heart 2 13 270 cv-10

ionosphere 2 34 351 cv-10
liver-disorders 2 6 345 cv-10

iris 3 4 150 cv-10
svmguide2 3 20 391 cv-10

wine 3 13 178 cv-10
vehicle 4 18 846 cv-10

svmguide4 6 10 612 cv-10
glass 6 9 214 cv-10

segment 7 19 2310 cv-10
vowel 11 10 990 cv-10

3) SVM: Support Vector Machine: SVM is a state-of-

the-art classifier in many domains. Equipped with the large

margin training (hinge loss and regularization) and kernel

tricks, SVM is effective to find the optimal classification

boundaries due to the convex formulation. The performance

of NCMED and NCMWD should be inferior to SVM.

However, with the help of CCD, we will show in the

following sections that the performance of CCD-NCMED

and CCD-NCMWD will become competitive with SVM.

VI. EXPERIMENTS

In this section, we first compare different classification

models on 15 small-scale databases. We also evaluate the

possibility of CCD on simultaneously diagonalizing thou-

sands of covariance matrices.

A. Classification on 15 Databases

We use the datasets collected on the LIBSVM website2 to

evaluate different models. The complete information of dif-

ferent databases are shown in Table I. For the preprocessing

of data, each attribute is linearly scaled to [−1, 1] or [0, 1].
In the SVM training process [8], the cost parameter C was

set as 1 and the γ in RBF kernel was set as 1
num features . For

multi-class problems, the one-versus-one strategy is adopted

for SVM, while the NCM-based classifiers are intrinsically

multi-class models. For each database, we randomly par-

tition the data into two subsets: using 90% of them for

training and the remaining 10% for testing. This “partition-

evaluation” process is repeated 10 times, and we report the

average accuracy and standard deviation for each model.

The comparisons of NCMED, NCMWD, LDF, NCMM-

L, SVM-Linear, SVM-RBF, CCD-NCMED, and CCD-

NCMWD are shown in Table II. We can find that: the

performance of NCMED and NCMWD are very poor when

compared with the SVM classifiers. This is because NCMED

and NCMWD are only generative models which are not

2http://www.csie.ntu.edu.tw/%7Ecjlin/libsvmtools/datasets

optimized to minimize the empirical loss on training data

(such as the discriminative model of SVM). Furthermore,

only the Euclidean distance and weighted distance are

equipped with NCMED and NCMWD, therefore, the rich

discriminative information embedded in the training data

are not fully explored by NCMED and NCMWD. However,

with the help of class conditional decorrelation (CCD),

the improved distance metrics of CCD-NCMED and CCD-

NCMWD can significantly boost the accuracies as shown

in Table II. The performance of CCD-NCMED and CCD-

NCMWD are comparable with SVM classifiers. This is

because CCD can decorrelate the class conditional variables,

and the covariance information of different classes are taken

into consideration simultaneously, which can learn a much

better distance metric for NCM classification.

Compared with other metric learning methods for NCM

classification such as LDF and NCMML, CCD achieves

superior performance. This is because LDF is based on the

homoscedastic assumption which is equivalent to whitening

followed by Euclidean distances, and CCD is more flexible

than the whitening model (see Section IV-A). NCMML

directly learns a low-rank Mahalanobis distance metric for

NCM classification by maximizing the likelihood of data

under a multi-class logistic regression formulation, there-

fore, its performance is comparable with SVM classifiers

as shown in [29]. However, the second-order covariance

information is not taken into consideration for the learning

process of NCMML.

Taking all the comparisons together, we can conclude:

with class conditional decorrelation (CCD), the performance

of NCMED and NCMWD can be significantly improved,

which become very competitive to other classifiers.

B. CCD for Large Scale Application

Previous evaluations are conducted on some small-scale

databases. In this section, we use a large-scale database

to evaluate the possibility of simultaneously diagonalizing

thousands of covariance matrices, and also evaluate the per-

formance of CCD on improving the classification accuracies

for problems with thousands of classes..

The used database is the 3, 755-class handwritten on-

line Chinese character database CASIA-OLHWDB1.1 [24].

Handwritten Chinese character recognition is a challenging

problem due to the large number of classes and handwriting

style variation across individuals [41]. For representing a

character sample, we use a benchmark feature extraction

method [25]: 8-direction histogram feature extraction com-

bined with pseudo 2D bi-moment normalization. The feature

dimensionality is 512. The number of training and testing

samples are 898, 573 and 224, 559 respectively, for which

the statistical significance of evaluations should be sufficient.

The extracted feature data can be downloaded from website3.

3http://www.nlpr.ia.ac.cn/databases/handwriting/Download.html
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Table II
CLASSIFICATION ACCURACIES AND STANDARD DEVIATIONS (%) OF DIFFERENT MODELS ON 15 DATASETS.

NCMED NCMWD LDF NCMML SVM-Linear SVM-RBF CCD-NCMED CCD-NCMWD
german.numer 68.70(3.62) 70.50(4.14) 73.36(2.16) 73.60(3.86) 77.90(2.64) 75.10(3.00) 73.10(3.21) 71.80(3.43)

mushrooms 89.47(0.87) 99.05(0.32) 99.66(0.12) 99.96(0.06) 100.00(0.00) 99.85(0.10) 99.77(0.24) 99.98(0.05)
australian 87.00(2.97) 87.43(3.35) 86.00(4.03) 87.93(2.66) 86.71(2.43) 84.29(3.81) 88.14(3.23) 88.43(5.93)

breast-cancer 96.38(1.96) 95.36(1.91) 96.50(1.56) 96.52(1.83) 95.36(1.50) 96.67(2.37) 97.39(2.72) 96.67(2.27)
heart 80.37(5.53) 80.00(9.49) 84.12(3.55) 84.44(4.88) 82.22(6.72) 85.19(7.20) 82.96(6.81) 81.48(6.05)

ionosphere 69.17(7.23) 85.83(4.62) 89.33(3.71) 92.06(3.94) 86.39(6.61) 95.00(2.55) 86.67(4.68) 93.89(3.15)
liver-disorders 54.86(5.18) 53.43(9.34) 63.10(5.31) 63.14(7.91) 63.71(5.56) 57.71(4.43) 64.57(7.76) 63.43(5.99)

iris 89.33(6.44) 92.00(8.20) 98.82(1.16) 99.33(2.11) 96.00(4.66) 96.67(3.51) 98.00(4.50) 96.00(4.66)
svmguide2 78.78(8.22) 75.61(6.30) 80.30(3.02) 81.95(6.82) 56.10(0.00) 56.10(0.00) 80.00(5.24) 80.49(5.01)

wine 96.84(3.68) 97.37(4.47) 98.56(1.16) 100.00(0.00) 97.37(3.72) 98.95(2.22) 98.42(2.54) 100.00(0.00)
vehicle 43.26(5.50) 46.63(6.31) 79.20(2.15) 79.30(3.37) 78.84(3.79) 71.51(4.43) 76.98(3.98) 80.23(4.78)

svmguide4 20.95(6.34) 44.76(5.39) 48.61(5.21) 49.37(5.37) 29.37(3.76) 21.11(3.18) 50.95(4.39) 51.59(5.46)
glass 48.26(6.94) 41.74(7.16) 61.32(5.32) 60.00(8.15) 63.91(6.50) 60.87(7.67) 65.22(8.45) 56.52(6.80)

segment 84.46(2.93) 80.95(1.90) 92.11(1.23) 92.21(1.44) 94.33(1.25) 91.52(1.75) 90.30(2.16) 91.30(1.70)
vowel 48.28(3.77) 68.69(4.31) 65.41(5.66) 71.81(5.08) 71.72(5.39) 77.68(3.79) 53.54(5.57) 72.32(3.93)
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Figure 5. Effectiveness of CCD on the 3, 755-class problem.

We use different dimensionality reduction methods (ran-

dom projection, PCA, and FDA) to reduce the high-

dimensional data into different subspaces. In each subspace,

the classification accuracies of NCMED and NCMWD are

compared with CCD-NCMED and CCD-NCMWD respec-

tively. Because our goal is to evaluate the effectiveness of

CCD for thousands of classes problem, we did not compare

other methods (NCMML and SVM). The comparison results

are shown in Figure 5. We can find that: for both NCMED

and NCMWD, the classification accuracies can be signifi-

cantly improved when equipped with CCD transformation.

Random projection (RP) [1] is a data-independent model,

while PCA [20] is an unsupervised model. The supervised

class information is ignored by RP and PCA. Contrarily, the

objective of CCD is to decorrelate the covariance matrices of

each class simultaneously, which can learn a more suitable

distance metric. Therefore CCD can improve the accuracies

significantly for RP and PCA. FDA [15] is the most well-

known supervised dimensionality reduction model, which

is equivalent to a two-step approach: whitening followed

by PCA in the whitened space (Section II). However, CCD

can still significantly improve the classification accuracies

in the FDA transformed subspaces as shown in Figure 5.

This is because CCD can decorrelate the variables in each

class, while after whitening the non-diagonal elements of

the covariance matrices are still dense (see Section IV-B).

This indicates the advantages of CCD against whitening.

Altogether, from the analyses above, we can conclude

that: even when the number of classes is as large as 3, 755,

CCD is still effective in improving the classification accura-

cies. This indicates that: (i) the structure of latent common

principal components for multiple classes exists not only in

small category problems but also in large category problems;

and (ii) the modified Jacobi algorithm used in CCD is

efficient and effective to find such structure via simultaneous

diagonalization of even thousands of covariance matrices.

This makes CCD scalable for both small-scale and large-

scale applications.

VII. FURTHER EXTENSIONS

Besides the previous applications of CCD in nearest class

mean (NCM) classification, CCD can be also used for many

other problems in pattern recognition and machine learning.

The Gaussian mixture model (GMM) widely used to

approximate arbitrarily complicated distributions, has been

successfully applied in many applications such as speak-
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(a) (b)

Figure 6. Two structure templates. Sij = 0 for the black area and Sij = 1
for the white area.

er verification [31], object representation [30] and image

classification [9]. However, GMM has many parameters to

estimate which is prone to overfit the training data. A widely

used method to alleviate the overfitting and reduce the com-

putational complexity is to use diagonal covariance matrices

for each mixture component. Therefore the CCD algorithm

can be incorporated into the expectation-maximization (EM)

learning process of GMM to make the diagonal assumption

more reasonable.

We can also extend the CCD (13) into a more generalized

formulation (GCCD) by integrating some structure informa-

tion into the learning process

min
W∈Rd×d

K∑
k=1

∥∥W�ΣkW
∥∥
p,S

, s.t. W�W = I , (41)

where

‖A‖p,S =
d∑

i,j=1

Sij |Aij |p . (42)

The S ∈ {0, 1}d×d is the pre-defined structure template.

For example, in this paper, we use a structure template as

Figure 6(a) to get uncorrelated dimensionalities (see the

definition of ‖A‖2,off in Eq. (14)). We can also use other

templates such as Figure 6(b) to transform the covariance

matrices into block-like forms to get uncorrelated subspaces.

In this way, different classifiers trained in different subspaces

will contain complementary information, and the combina-

tion of them can be used to further boost the classification

accuracy. This is known as classifier ensemble learning [12].

Another benefit of this ensemble is that the number of

parameters can significantly be reduced for the classifiers

which have the number of parameters superlinear dependent

on the dimensionality.

The modified Jacobi method (Algorithm 1) can be used

directly to solve the GCCD problem with p = 2. Because

the Jacobi rotation (17) is an elementary operator which is

easy for incorporating structure information, we only need

to change the traveling of the index in Algorithm 1 from

i = 1 : d− 1, j = i+ 1 : d to Sij = 1, ∀i, j.

We can also consider other values of p, e.g., the L1-norm

of p = 1 which is proven to be less sensitive and more robust

to outliers [21]. However, for p �= 2 the Lemma 2 no longer

holds, hence the modified Jacobi method cannot be used to

solve the p �= 2 problems. Finding efficient algorithms to

solve GCCD with arbitrary p is an interesting topic.

VIII. CONCLUSION

In this paper, motivated from the whitening (Theorem 1)

used in the classical Fisher linear discriminant analysis

(two-step decomposition), we proposed the class conditional

decorrelation (CCD) model for simultaneous diagonaliza-

tion of covariance matrices for all classes. The modified

Jacobi method is adopted to solve the optimization prob-

lem efficiently. After CCD transformation, the variables

become class conditionally uncorrelated which can benefit

the following classification tasks. Combining CCD with the

nearest class mean (NCM) classification model is show to

be competitive with other classifiers. CCD is also shown to

be effective for large scale problems which have thousands

of classes. Besides the presented applications in this paper,

CCD can also be hopefully extended to other applications

such as Gaussian mixture models and classifier ensemble

learning. The nonlinear extension of CCD such as kernel-

ization is also an interesting direction.
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