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Abstract—Discriminative feature extraction (DFE) is an effec-
tive linear dimensionality reduction method for pattern recogni-
tion. It improves the recognition performance via optimizing sub-
space projection axes and classifier parameters simultaneously.
In this paper, we propose a nonlinear extension of DFE, called
discriminative quadratic feature extraction (DQFE), for which
feature vectors are firstly mapped to a high-dimensional nonlinear
space and then projected to a low-dimensional subspace learned
by DFE. The nonlinear mapping is obtained by adding quadratic
(correlation or covariance) features computed directly on the
original gradient feature maps with different region partition.
In this way, both the structural information of the image and
the correlation information of features are used to generate
a nonlinear high-dimensional feature mapping (thousands of
dimensions). Experimental results demonstrated that DQFE can
improve the accuracy for different classifiers in handwritten
Chinese character recognition.

I. INTRODUCTION

Handwritten Chinese character recognition (HCCR) has
been intensively studied. Traditional methods involve a flow
of shape normalization, feature extraction, dimensionality re-
duction and classifier building. Shape normalization is to
normalize the character image into a standard size and reduce
the within-class shape variance. Gradient direction features
have been proven effective for HCCR. For dimensionality
reduction, Fisher linear discriminant analysis (FDA) [1] is a
popular method which learns a linear subspace to maximize
between-class variance and minimize within-class variance,
while discriminative feature extraction (DFE) [2] [3] optimizes
the subspace axes and classifier parameters simultaneously by
minimizing the empirical loss in supervised learning. DFE
is superior to FDA because it enhances the separability be-
tween confusion classes in the learned subspace while FDA
tends to mix them [4]. Concerning classifier building, the
modified quadratic discriminant function (MQDF) [5] and its
discriminative learning version, namely discriminative learning
quadratic discriminant function (DLQDF) [6], once yielded the
state-of-the-art performance.

Deep neural network (DNN) is getting popular in recent
years because of its record-breaking performances on many
vision applications. Unlike traditional pattern classification
methods, DNN operates on raw image pixels directly, and
learns feature extraction, dimensionality reduction and clas-
sifier parameters at the same time in a supervised manner [7].
In spite of its superior performance, its time complexity is very
high in both training and testing process.

We notice that the performance of nearest prototype classi-
fier (NPC) [8] is far behind that of MQDF and DLQDF, and we

conjecture that the reason lies in the complexity of classifiers:
MQDF and DLQDF are quadratic models while NPC is linear
(the class separation boundaries are hyperplanes). Therefore,
nonlinear information is important for improving NPC. On the
other hand, although DFE is effective for both NPC and MQDF
as shown in [9], the subspace learned by DFE is a linear
one, and hence, the performance is limited when the data are
not linearly separable. To improve the performance of NPC
and DFE, in this paper, we introduce nonlinear information
into them for better feature extraction and classifier training.
Specifically, a nonlinear feature extraction method is proposed
through a nonlinear dimensionality promotion followed by
a linear dimensionality reduction. In the dimensionality pro-
motion procedure, quadratic information of original features
is integrated to map the original feature vector to a high-
dimensional nonlinear space. In the dimensionality reduction
procedure, DFE is used to map it back to a low-dimensional
space. Because of the use of quadratic information during DFE
training, we call this model discriminative quadratic feature
extraction (DQFE). DQFE is effective because of the integrated
quadratic information as well as supervised class information.
In the experiments of HCCR on a public dataset, compared
with DFE, DQFE improves the test accuracy of NPC by about
2.5%. For MQDF and DLQDF classifiers, the improvements
are also significant, both by about 1%. To further improve
the test accuracy, we adopt the method of sample distortion
for training set expansion. With expanded training set, the test
accuracies of NPC, MQDF and DLQDF are further improved
by 1.23%, 0.89% and 0.92%, respectively.

The rest of this paper is organized as follows. Section 2
reviews the DFE method; Section 3 details the proposed DQFE
method; Section 4 briefly introduces the sample distortion
method for training set expansion; Section 5 presents the
experimental results and Section 6 concludes this paper.

II. DISCRIMINATIVE FEATURE EXTRACTION

Discriminative feature extraction (DFE) [2] [3] is a linear
dimensionality reduction method. It optimizes the subspace
projection axes to minimize the classification error on the
training set. As classification error is measured by a classifier
in the reduced subspace, the training process of DFE is usually
combined with that of a classifier. For example, the DFE
combined with NPC is shown to be efficient and effective for
HCCR [3] [9]. In NPC, each class is represented with one or
several prototypes, and classification is done through nearest
prototype search. Supervised prototype learning by Learning
vector quantization (LVQ) [10] is effective to improve the
performance of NPC. Using DFE for subspace learning and

2014 22nd International Conference on Pattern Recognition

1051-4651/14 $31.00 © 2014 IEEE

DOI 10.1109/ICPR.2014.51

244



LVQ for NPC learning, we denote this method as DFE+LVQ
classifier.

The training process of DFE+LVQ is based on the mini-
mum classification error (MCE) [11] criterion. It can also be
trained under the conditional log-likelihood loss [8] or other
similar criteria. For defining the loss function, we first define
the misclassification measure. For a D-dimensional training
sample x, the misclassification measure is:

h(x) = dE(φ
Tx,mc)− dE(φ

Tx,mr), (1)

where mc and mr are the prototypes of the genuine class
and the closest rival class of x in the reduced subspace with
dimensionality d. φ represents the dimensionality reduction
matrix, and dE(φ

Tx,mc) is the square Euclidean distance
from φTx to the genuine prototype in the d-dimensional
reduced subspace. We can see that h(x) > 0 signifies misclas-
sification. Therefore, −h(x) can be viewed as a discriminant
function for a binary classification between the genuine class
and the closest rival class, then the posterior probability of
x belonging to genuine class can be approximated using a
sigmoid function of −h(x):

P (c|x) = σ(ξ[−h(x)]) = 1

1 + eξh(x)
, (2)

and the conditional log-likelihood loss is defined as

l(x) = −logP (c|x). (3)

To constrain the excessive deviation of parameters from the
maximum likelihood estimation, a regularization term is usu-
ally added, and the final loss function is

l′(x) = l(x) + αdE(φ
Tx,mc). (4)

Therefore, the empirical loss on the training set is

L =
1

N

N∑

n=1

[l(xn) + αdE(φ
Txn,mc)]. (5)

For training the NPC (LVQ alone) or DFE+LVQ, the empirical
loss is minimized iteratively on a training sample set by
stochastic or mini-batch gradient. FDA and sample means
are used for initialization of subspace axes and prototypes,
respectively.

III. DISCRIMINATIVE QUADRATIC FEATURE EXTRACTION

In order to integrate quadratic information into DFE, we
use a two-step scheme — quadratic dimensionality promotion
followed by DFE linear dimensionality reduction. The block
diagram of the proposed DQFE method is shown in Fig. 1. The
input of DQFE is the feature vector extracted for representing
a character image. At the first step, quadratic features are
generated from the original feature vector (i.e. the histogram
of gradient direction features); then, a new feature vector
concatenating original features and quadratic features is fed
into DFE for linear dimensionality reduction. Although DFE
is a linear model, due to the quadratic features used, the
whole process of DQFE is nonlinear (quadratic), which can
extract much more discriminative features for the subsequent
classification tasks. In the following subsections, we will first
introduce the feature representation method, and then details
the process of quadratic features generation.

Fig. 1. The block diagram of DQFE.

Fig. 2. The Sobel masks.

Fig. 3. Decomposition of gradient into components in two neighbouring
standard directions.

A. Feature Representation
For feature representation, we use gradient direction his-

togram (GDH) features [12]. Before feature extraction, char-
acter images are normalized to standard size. We use a pseudo
two-dimensional normalization method called line density pro-
jection interpolation (LDPI) [13], which is a simplified version
of pseudo two-dimensional nonlinear normalization [14] in the
spirit of stroke density equalization. After normalization, local
GDHs are extracted on the normalized character images by
zoning. The feature extraction procedure comprises three steps:
First, gradients are computed for every pixel of the normalized
image using the Sobel masks as illustrated in Fig. 2; Second,
L standard directions are specified, and all the gradients are
decomposed into components in the two neighboring standard
directions (Fig. 3); Third, the normalized image is partitioned
into zn × zn uniform zones, and in each zone, the decom-
posed gradients are summed by Gaussian blurring. Thus, a
L-dimensional GDH is obtained for representing each zone,
and the total dimensionality of the extracted feature vector is
zn× zn× L.

In this paper, we use normalized-cooperated gradient fea-
ture extraction (NCGF) [12] which combines the procedure of
normalization and GDH feature extraction. By this method,
the normalized image is not generated, instead, gradients are
computed on the original image, and mapped to direction
planes of normalized size. The GDHs are computed from the
direction planes by zoning and Gaussian blurring.

B. Quadratic Features Generation
As mentioned above, in the GDH feature representation,

each image is partitioned into zn × zn zones, and each zone
is represented by a L-dimensional GDH. If we consider each
GDH as a feature point extracted from its corresponding image
zone, then all these extracted feature points constitute a GDH
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feature map containing zn× zn feature points. The quadratic
features we obtained are generated from this feature map.
Specifically, they are quadratic terms of GDH features. For
a feature point xk = (xk

1 , x
k
2 , ..., x

k
L) in the GDH feature map,

quadratic terms like {xk
i ·xk

j |1 ≤ i ≤ j ≤ L} can be used. But
there will be too many quadratic features if all of them are
used, and they are not stable. Therefore, we turn to use their
averages among a region of the feature map, and we call them
the correlation features and denote them as CorrR, where R is
the region in which they are computed. The process of GDH
feature map generation and quadratic features generation is
shown in Fig. 4: the original image is first normalized and
partitioned into zones, and in each zone, a GDH feature point
is extracted. After that, the obtained feature map is partitioned
into regions, and in every region, the quadratic features are
generated.

Besides the correlation feature, we also use another type of
quadratic feature named region covariance [15], and denote it
as CovR. Region covariance is a powerful region descriptor
and has bee applied successfully in object detection and
recognition. It is defined as the covariance matrix of feature
points in a region. The formulas of correlation features and
covariance features are as follows:

CorrR =
1

NR

NR∑

i=1

xi(xi)T , (6)

CovR =
1

NR

NR∑

i=1

(xi −mR)(x
i −mR)

T , (7)

where R is the region upon which we compute the quadratic
features, NR is the number of feature points in region R, xi

is the descriptor (L-dimensional vector of GDH) of a feature
point in region R, mR is the mean vector of all feature points in
region R. The results of these two formulas are two symmetric
matrices, so the number of unique features in a region is L×
(L+1)/2. In our implementation, in order to let the quadratic
features be at the same scale as the GDH features, we use their
signed square roots. The difference between (6) and (7) is that
(7) is a mean-shifted quadratic term while (6) is not. We will
compare their performance in latter experiments.

Now we have described how to generate quadratic features
in a region of the GDH feature map, the next issue is how to
partition the feature map in order to get regions. In order to
generate quadratic features using regions of different scales,
the feature map is partitioned in multiple levels from level 1
to level 4. On level l, the feature map is equally partitioned
into l × l blocks, and one or several blocks are combined to
form a region on which we will compute quadratic features.
When the size zn of the feature map is not a multiple of l,
some neighboring blocks are overlapped. The parameter zn
we used in our experiments is 16. There are four types of
regions according to the way of combination, namely small

TABLE I. NUMBERS OF FOUR TYPES OF REGIONS IN EACH PARTITION

LEVEL.

level small strip center border sum
1 1 0 0 0 1

2 4 4 0 0 8

3 9 6 0 0 15

4 16 8 1 1 26

sum 30 18 1 1 50

Fig. 4. The process of GDH feature extraction and quadratic features
generation. In the feature map, every feature point is represented by a dot
which is a L-dimensional GDH vector.

Fig. 5. Illustration of the partition of the feature map in level 4 and four types
of regions. From top to bottom, left to right, are the partition of the feature
map, the small region, the strip region, the center region and the border region.

regions, strip regions, center regions and border regions. Small
regions consist of only one block of the feature map, hence
there are l× l small regions in level l. Strip regions consist of
blocks in a row or a column, so there are 2 × l strip regions
in level l. Center regions consist of the blocks in the central
area of the feature map, and border regions consist of the
blocks at the boundary of the feature map. Here we use center
region and border region only in level 4, therefore there is
only one center region and one border region. Table I shows
the numbers of regions in different partition levels. Fig. 5
illustrates the partitions of the feature map and four types of
regions (represented by black blocks) in level 4.

After the processes of GDH feature extraction (III-A) and
quadratic feature generation (III-B), these two types of features
are concatenated to build the final feature vector, and the DFE
is further used to reduce the features into a low-dimensional
subspace for classification (Fig. 1).

IV. TRAINING SET EXPANSION

HCCR is difficult because of two challenges, the first one
is the large character set, i.e., the number of frequently used
characters amounts to several thousands, and there are many
similar characters which are hard to be discriminated; second,
the shape variability within the same class is huge due to
different writing styles and writing instruments. Therefore, to
build a robust recognizer, we need a very large training set
containing samples of many different styles for every class.
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Fig. 6. Effects of different distortion models acted on a checkerboard image.

But in practice, to collect and label a big data set is difficult. In
popular HCCR data sets, the number of samples for each class
is several hundreds, which is much smaller than the number of
classes. In order to alleviate this problem, sample synthesis is
used by many researchers as a way of training set expansion.
In this paper, we synthesize samples by distorting real ones.

We use three categories of distortion functions, namely
geometric transform, local resizing [16] and elastic distortion
[17]. For geometric transform, we adopt models proposed in
[18]. These are rotation, shearing (slant transform), perspec-
tive transform and shrink transform. Among these geometric
transforms, shearing can be done in horizontal and vertical
directions, while perspective transform and shrink transform
can be done in horizontal, vertical, left diagonal and right
diagonal directions. Taking direction into consideration, there
are eleven geometric distortion functions. Local resizing is
a one-dimensional coordinate transform used to adjust the
relative ratio of the left/right, top/bottom or center/side parts.
Readers can refer to [16] for details. There are two one-
dimensional local resizing functions, namely w1 and w2, both
of which can be done in horizontal and vertical directions.
So combining the function type with direction, there are four
local resizing distortion functions. Elastic distortion is a locally
random distortion which simulates stroke distortion caused
by hand muscle trembling during the writing process. In
total, there are 16 distortion functions in the three categories.
Fig. 6 illustrates the effects of different distortion functions
on a checkerboard image. In the top row are the original
checkerboard image, the results of rotation, horizontal shearing
and perspective transform in horizontal direction; in the bottom
row are the results of shrink transform in horizontal direction,
local resizing function w1 in horizontal direction, local resizing
function w2 on horizontal direction and elastic distortion.

We adopted two schemes of distortion, the first one is using
one randomly selected distortion function for each synthesis,
the second one is using a combined distortion of shearing
and local resizing in both horizontal and vertical directions
[16]. We call these two distortion schemes the single model
and the combined model respectively. During each synthesis
process, the parameters of all distortion functions are randomly
generated. Fig. 7 and Fig. 8 show some synthesized samples
generated by the single model and the combined model,
respectively. The first images in Fig. 7 and Fig. 8 are original
images, and the rest are distorted images.

V. EXPERIMENTAL RESULTS

We used the CASIA-HWDB1.1 dataset [19] collected by
the Institute of Automation of Chinese Academy of Sciences
(CASIA) for experiments. The CASIA-HWDB1.1 dataset con-
tains off-line handwritten Chinese character samples of 3,755

Fig. 7. Samples generated by randomly selected single distortion models.

Fig. 8. Samples generated by the combined distortion model of shearing and
local resizing.

classes (GB2312-80 level-1 set) written by 300 writers. It is
partitioned into a standard training set of 240 writers and a
test set of 60 writers. There are totally 897,758 samples in the
training set, and 223,991 samples in the test set.

The training process and testing process are illustrated
in Fig. 9. In the training process, samples are firstly passed
to NCGF feature extractor to extract GDH features; then
quadratic features are generated from the obtained GDH
feature maps, and the final feature vectors are composed of
GDH features and quadratic features; After that, DFE+LVQ
classifier is trained, and the transform basis and NPC are
obtained; Finally, the transform basis is used for dimensionality
reduction, and MQDF as well as DLQDF are trained in the
reduced space. During testing, the GDH feature extraction
and quadratic features generation are the same as in training;
after that, samples are dimensionality-reduced using stored
transform basis, and classifier parameters are loaded for clas-
sification.

During GDH feature extraction, the number of standard
direction L is set to be 12. Two GDH feature maps of different
sizes are generated for each sample. Their sizes are 8 × 8
and 16× 16 respectively. The first feature map is used as our
GDH features, and the second one is only used for quadratic
features generation. The reason of using bigger feature map for
quadratic features generation is that the computed quadratic
features are more stable if using more feature points in each
region. Therefore, there are 8× 8× 12 = 768 GDH features,
and 50 × 12 × 13/2 = 3900 quadratic features if all the 50
regions are used.

In the dimensionality reduction procedure, besides DFE,
we also use FDA for comparison. When using FDA, the
transform basis is learned prior to LVQ training.

We conducted four experiments to evaluate different issues.
The first experiment demonstrates the effect of quadratic fea-
tures and the proposed DQFE method. The second experiment
investigates the influence of the size of GDH feature map on
the generated quadratic features. The third experiment investi-
gates the influence of the number of regions used in quadratic
features generation. The last experiment shows that training
sample expansion with synthesized samples is promising.

For experimental efficiency, we implemented all the train-
ing and testing processes on our graphic processing units
(GPU) server which contains four NVIDIA Tesla C2075 GPU
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Fig. 9. Flowchart of the training and testing process.

TABLE II. EFFECTS OF QUADRATIC FEATURES UNDER DIFFERENT

COMBINATIONS OF DIMENSIONALITY REDUCTION METHODS AND

CLASSIFIERS.

Features FDA DFE
LVQ MQDF DLQDF LVQ MQDF DLQDF

GDH 85.43 89.70 89.95 87.66 91.14 91.33

GDH+Corr 87.76 89.64 89.85 90.18 92.13 92.31

GDH+Cov 87.47 89.20 89.49 89.15 91.73 91.91

computing cards, and the programming language we used is
NVIDIA’s computing united device architecture (CUDA) [20].
This implementation is extended from our previous work [21]
which implemented a parallelized training process of DLQDF
with GPU.

A. Effects of Quadratic Features and DQFE
In this experiment, 12-dimensional GDH features and

quadratic features extracted from all the 50 regions are used,
hence the feature dimensionality is 768 + 3900 = 4668.
The dimensionality of reduced subspace is 160. The hyper-
parameters of classifiers are set as follows: for LVQ, one
prototype for each class is used; for MQDF and DLQDF, the
number of principal eigenvectors is set to 50, and the minor
eigenvalues are set to be class-independent, empirically as the
average over all eigenvalues of all classes. No distorted sam-
ples were used in training. Table II shows the test accuracies
of different combinations of dimensionality reduction methods
and classifiers. The third row, fourth row and last row show the
results of using GDH features only, using correlation features
with GDH features and using covariance features with GDH
features, respectively.

We can see that the performance is significantly improved
when adding correlation features or covariance features par-
ticularly when using DFE for dimensionality reduction, and
correlation features are more effective. When using DFE for
dimensionality reduction, with correlation features, the test
accuracy of LVQ is improved by 2.52%, and that of MQDF
and DLQDF is also improved by about 1%. This indicates that
the quadratic subspace learned by DQFE is more effective than
the linear one of DFE. Whereas with FDA, quadratic features
are only effective for LVQ classifier. This is because FDA
cannot exploit the discriminative information in the nonlinear
space for classification adequately. The improvement of LVQ
classifier with FDA is due to the linear surface of classification,
which benefits from the nonlinear features though linearly
reduced by FDA. In contrast, MQDF and DLQDF are non-
linear classifiers which already utilize the quadratic features
in classification.

TABLE III. TEST ACCURACIES WHEN USING CORRELATION FEATURES

GENERATED FROM DIFFERENT-SIZED GDH FEATURE MAPS.

zn FDA DFE
LVQ MQDF DLQDF LVQ MQDF DLQDF

8 87.31 88.94 89.09 89.94 91.78 91.90

12 87.72 89.52 89.67 90.17 92.09 92.18

16 87.76 89.64 89.85 90.18 92.13 92.31

TABLE IV. TEST ACCURACIES WITH DIFFERENT REGION NUMBERS

FOR QUADRATIC FEATURES GENERATION.

level #region FDA DFE
LVQ MQDF DLQDF LVQ MQDF DLQDF

1 1 86.01 89.93 90.17 87.97 91.27 91.47

1-2 9 86.72 89.63 89.83 88.74 91.54 91.71

1-3 24 87.37 89.64 89.90 89.52 91.83 92.01

1-4 50 87.76 89.65 89.87 90.18 92.12 92.31

B. Influence of Feature Map Size
As mentioned above, two GDH feature maps of different

sizes are generated. One is used as GDH features, and the
other is used only for quadratic features generation. In this
experiment, we study the influence of the size of the latter
feature map on the generated quadratic features. The influ-
ence is measured by test accuracy. The features used in this
experiment are the same as in section V-A, except for the
different feature map sizes of the second feature maps. So the
dimensionality of the feature vector is still 4668. We only use
correlation features as quadratic features from here on as they
lead to better results. Table III shows test accuracies of varying
feature map sizes. We can see that with larger feature map size,
the test accuracies are improved.

C. Influence of Region Number
To test the influence of the number of regions on quadratic

features generation, this experiment uses different partition
levels for feature maps. Table IV shows the results. The first
column represents the partition levels used. 1 means only
regions of level 1 are used, 1 − 2 means regions of level 1
and level 2 are used, and so on. The second column represents
the total number of regions used. The total number of regions
in different partition levels has been illustrated in Table I in
section III-B. From the results, we can see that with more
regions, the performance is improved.

D. Effect of Training Set Expansion
To further improve the performance, we use sample syn-

thesis method mentioned in section IV to generate training
samples. We adopt two distortion schemes, namely the single
distortion model and the combined distortion model, as men-
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TABLE V. EFFECT OF TRAINING SET EXPANSION WITHOUT USING

CORRELATION FEATURES.

redDim FDA DFE
LVQ MQDF DLQDF LVQ MQDF DLQDF

160 86.62 90.38 90.92 88.47 91.44 91.76

200 86.75 90.64 91.16 88.65 91.66 91.98

250 86.70 90.82 91.46 88.77 91.80 92.18

300 86.60 90.82 91.53 88.77 91.83 92.24

400 86.27 90.59 91.41 88.78 91.77 92.20

TABLE VI. EFFECT OF TRAINING SET EXPANSION WITH

CORRELATION FEATURES.

redDim FDA DFE
LVQ MQDF DLQDF LVQ MQDF DLQDF

160 88.81 89.97 90.53 91.11 92.69 92.95

200 89.16 90.40 90.94 91.25 92.81 93.08

250 89.37 90.68 91.29 91.32 92.85 93.18

300 89.46 90.81 91.46 91.36 92.83 93.20

400 89.47 90.89 91.56 91.41 92.75 93.16

tioned before. With each scheme, we generate 10 samples from
each real training sample with randomly generated parameters.
We observed that the single distortion model is more effective
for DFE training while the combined distortion model is more
effective for MQDF and DLQDF training. This is possibly
because MQDF and DLQDF are complex models compared
to DFE+LVQ, thus samples with bigger shape variability are
beneficial for their fitting. As DFE is trained with LVQ simul-
taneously, in the following experiments, FDA+LVQ classifier
is also trained with training set expanded with the single
distortion model, and MQDF and DLQDF are trained with
training set expanded with the combined distortion model. We
have tried different dimensionalities of the reduced subspaces.
Test accuracies are shown in Table V and Table VI, for the
case of classification without correlation features and the case
with correlation features, respectively. We see that training set
expansion with synthesized samples is effective to improve
in both cases the generalization ability. Comparing results in
Table VI and Table II, when using DFE for dimensionality re-
duction, training set expansion improves the best performances
of LVQ, MQDF, DLQDF by 1.23%, 0.72%, and 0.89%,
respectively. Comparing Table VI and Table V, on expanded
training set, when using DFE for dimensionality reduction,
correlation features improve the best performances of LVQ,
MQDF, DLQDF by 2.63%, 1.02%, and 0.96% respectively.
The best result of LVQ with correlation features and training
set expansion is 91.41%. This exceeds DLQDF’s 91.33% when
not using correlation features and training set expansion.

VI. CONCLUSION

In this paper, we proposed a nonlinear feature extraction
method called DQFE, which first uses some quadratic features
for dimensionality promotion and then reduces the dimen-
sionality using DFE. The quadratic features are generated
from GDH features, and two types of quadratic features —
correlation features and covariance features were evaluated.
Experiments of HCCR using LVQ, MQDF and DLQDF clas-
sifiers demonstrated the effectiveness of the proposed DQFE
method. With training sample expansion using synthesized
samples, the performances of all the classifiers were further
improved significantly.
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